
Journal of Machine Learning Research 17 (2016) 1-23 Submitted 11/14; Revised 7/15; Published 4/16

Estimating Causal Structure Using Conditional DAG Models

Chris. J. Oates christopher.oates@uts.edu.au
School of Mathematical and Physical Sciences
University of Technology Sydney
NSW 2007, Australia

Jim Q. Smith j.q.smith@warwick.ac.uk
Department of Statistics
University of Warwick
Coventry, CV4 7AL, UK

Sach Mukherjee sach.mukherjee@dzne.de

German Center for Neurodegenerative Diseases (DZNE)

53175 Bonn, Germany

Editor: Samuel Kaski

Abstract

This paper considers inference of causal structure in a class of graphical models called
conditional DAGs. These are directed acyclic graph (DAG) models with two kinds of
variables, primary and secondary. The secondary variables are used to aid in the estimation
of the structure of causal relationships between the primary variables. We prove that,
under certain assumptions, such causal structure is identifiable from the joint observational
distribution of the primary and secondary variables. We give causal semantics for the model
class, put forward a score-based approach for estimation and establish consistency results.
Empirical results demonstrate gains compared with formulations that treat all variables
on an equal footing, or that ignore secondary variables. The methodology is motivated
by applications in biology that involve multiple data types and is illustrated here using
simulated data and in an analysis of molecular data from the Cancer Genome Atlas.

Keywords: Graphical Models, Causal Inference, Directed Acyclic Graphs, Instrumental
Variables, Data Integration

1. Introduction

This paper considers learning causal structure among a set of primary variables (Yi)i∈V ,
using additional secondary variables (Xi)i∈W to aid in estimation. The primary variables are
those of direct scientific interest while the secondary variables are variables that are known
to influence the primary variables, but whose mutual relationships are not of immediate
interest and perhaps not amenable to estimation using the available data. As we discuss
further below, the primary/secondary distinction is common in biostatistical applications
and is often dealt with in an ad hoc manner, for example by leaving some relationships
or edges implicit in causal diagrams. Our aim is to define a class of graphical models for
this setting and to clarify the conditions under which secondary variables can aid in causal
estimation. We focus on causal estimation in the sense of estimation of the presence or
absence of edges in the causal graph rather than estimation of quantitative causal effects.
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The fact that primary variables of direct interest are often part of a wider context,
including additional secondary variables, presents challenges for graphical modelling and
causal inference, since in general the secondary variables will not be independent and simply
marginalising may introduce spurious dependencies (Evans and Richardson, 2014). Moti-
vated by this observation, we define conditional DAG (CDAG) models and discuss their
semantics. Nodes in a CDAG are of two kinds, corresponding to primary and secondary
variables, and as detailed below the semantics of CDAGs allow causal inferences to be made
about the primary variables (Yi)i∈V whilst accounting for the secondary variables (Xi)i∈W .
To limit scope, we focus on the setting where each primary variable has a known cause
among the secondary variables. Specifically we suppose there is a bijection φ : V → W ,
between the primary and secondary index sets V and W , such that for each i ∈ V a di-
rect1 causal dependency Xφ(i) → Yi exists. Under explicit assumptions we show that such
secondary variables can aid in causal inference for the primary variables, because known
relationships between secondary and primary variables render “primary-to-primary” causal
links of the form Yi → Yj identifiable from joint data on primary and secondary variables.
We put forward score-based estimators of CDAG structure that we show are asymptoti-
cally consistent under certain conditions; importantly, independence assumptions on the
secondary variables are not needed.

This work is motivated by current efforts in biology aimed at exploiting high-throughput
data to better understand causal molecular mechanisms, such as those involved in gene
regulation or protein signaling. A notable feature of molecular biology is the fact that some
causal links are relatively clearly defined by known sequence specificity. For example, the
DNA sequence has a causal influence on the level of corresponding mRNA; mRNAs have a
causal influence on corresponding total protein levels; and total protein levels have a causal
influence on levels of post-translationally modified protein. This means that in a study
involving a certain molecular variable (a protein, say), a subset of the causal influences
upon it may be clear at the outset (e.g. the corresponding mRNA) and typically it is the
unknown influences that are the subject of the study. Then, it is natural to ask whether
accounting for the known influences can aid in identification of the unknown influences. For
example, if interest focuses on causal relationships between proteins, known mRNA-protein
links could be exploited to aid in causal identification at the protein-protein level. We show
below an example using protein data.

Our development of the CDAG can be considered dual to the acyclic directed mixed
graphs (ADMGs) developed by Evans and Richardson (2014), in the sense that we inves-
tigate conditioning as an alternative to marginalisation. In this respect our work mirrors
recently developed undirected graphical models called conditional graphical models (CGMs;
Li et al, 2012; Cai et al., 2013) In CGMs, Gaussian random variables (Yk)k∈V satisfy

Yi ⊥⊥ Yj |(Yk)k∈V \{i,j}, (Xk)k∈W if and only if (i, j) /∈ G (1)

where G is an undirected acyclic graph and (Xk)k∈W are auxiliary random variables that
are conditioned upon. CGMs have recently been applied to gene expression data (Yi)i∈V .
In that setting Zhang and Kim (2014) used single nucleotide polymorphisms (SNPs) as the

1. Throughout, we use the term “direct” in the sense of Pearl (2009) and note that the causal influence
need not be physically direct.
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(Xi)i∈W , while Logsdon and Mezey (2010); Yin and Li (2011); Cai et al. (2013) used expres-
sion qualitative trait loci (e-QTL) as the (Xi)i∈W . The latter work was recently extended
to jointly estimate several such graphical models in Chun et al. (2013). Also in the context
of undirected graphs, van Wieringen and van de Wiel (2014) recently considered encoding a
bijection between DNA copy number and mRNA expression levels into inference. Our work
complements these efforts by using directed models that are arguably more appropriate for
causal inference (Pearl, 2009). Evans (2015) uses a similar directed graphical characterisa-
tion and nomenclature. However, secondary variables in Evans (2015) are unobserved and
can have multiple children in the set of primary variables, while ours are observed and have
exactly one child among the primary variables. CDAGs are also related to instrumental
variables and Mendelian randomisation approaches (Didelez and Sheehan, 2007) that we
discuss below (Section 2.2).

CDAGs share some similarity with the influence diagrams (IDs) introduced by Dawid
(2002) as an extension of DAGs that distinguish between variable nodes and decision nodes.
This generalised the augmented DAGs of Spirtes et al. (2000); Lauritzen (2000); Pearl
(2009) in which each variable node is associated with a decision node that represents an
intervention on the corresponding variable. However, the semantics of IDs are not well suited
to the scientific contexts that we consider, where secondary nodes represent variables to be
observed, not the outcomes of decisions. The notion of a non-atomic intervention (Pearl,
2003), where many variables are intervened upon simultaneously, shares similarity with
CDAGs in the sense that the secondary variables are in general non-independent. However
again the semantics differ, since our secondary nodes represent random variables rather
than interventions. In a different direction, Neto et al. (2010) recently observed that the
use of e-QTL data (Xi)i∈W can help to identify causal relationships among gene expression
levels (Yi)i∈V . However, Neto et al. (2010) require independence of the (Xi)i∈W ; this is too
restrictive for general settings, including in molecular biology, since the secondary variables
will typically themselves be subject to regulation and far from independent. An important
and novel aspect of our approach is that no independence or conditional independence
assumptions need to be placed on the secondary variables in order to draw causal conclusions
about the primary variables.

This paper begins in Sec. 2 by defining CDAGs and discussing identifiability of their
structure from observational data on primary and secondary variables. Sufficient conditions
are then given for consistent estimation of CDAG structure along with an algorithm based
on integer linear programming. The methodology is illustrated in Section 3 on simulated
data, including data sets that violate CDAG assumptions, and on protein data from cancer
samples, the latter from the Cancer Genome Atlas (TCGA).

2. Methodology

Below we define CDAGS, study their theoretical properties and propose consistent estima-
tors for CDAG structure.

2.1 A Statistical Framework for Conditional DAG Models

Consider index sets V , W and a bijection φ : V → W between them. We will distinguish
between the nodes in graphs and the random variables (RVs) that they represent. Specif-
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v1w1 v2 w2

v3 w3

(a)

type index node variable

primary i ∈ V vi ∈ N(V ) Yi
secondary i ∈W wi ∈ N(W ) Xi

(b)

Figure 1: A conditional DAG model with primary nodes N(V ) = {v1, v2, v3} and secondary
nodes N(W ) = {w1, w2, w3}. Here primary nodes represent primary random
variables (Yi)i∈V and solid arrows correspond to a DAG G on these vertices.
Square nodes are secondary variables (Xi)i∈W that, in the causal interpretation
of CDAGs, represent known direct causes of the corresponding (Yi)i∈V (dashed
arrows represent known relationships; the random variables (Xi)i∈W need not be
independent). The name conditional DAG refers to the fact that conditional upon
(Xi)i∈W , the solid arrows encode conditional independence relationships among
the (Yi)i∈V .

ically, indices correspond to nodes in graphical models; this is signified by the notation
N(V ) = {v1, . . . , vp} and N(W ) = {w1, . . . , wp}. Each node vi ∈ N(V ) corresponds to a
primary RV Yi and similarly each node wi ∈ N(W ) corresponds to a secondary RV Xi.

Definition 1 (CDAG) A conditional DAG (CDAG) G, with primary and secondary index
sets V , W respectively and a bijection φ between them, is a DAG on the primary node
set N(V ) with additional directed edges from each secondary node wφ(i) ∈ N(W ) to its
corresponding primary node vi ∈ N(V ).

In other words, a CDAG G has node set N(V ) ∪ N(W ) and an edge set that can be
generated by starting with a DAG on the primary nodes N(V ) and adding a directed edge
from each secondary node in N(W ) to its corresponding primary node in N(V ), with the
correspondence specified by the bijection φ. An example of a CDAG is shown in Fig. 1a. To
further distinguish V and W in the graphical representation we employ circular and square
vertices respectively. In addition we use dashed lines to represent edges that are required
by definition and must therefore be present in any CDAG G.

Since the DAG on the primary nodes N(V ) is of particular interest, throughout we use
G to denote a DAG on N(V ). We use G to denote the set of all possible DAGs with |V |
vertices. For notational clarity, and without loss of generality, below we take the bijection
to simply be the identity map φ(i) = i. The parents of node vi in a DAG G are indexed
by paG(i) ⊆ V \ {i}. Write anG(S) for the ancestors of nodes S ⊆ N(V ) ∪ N(W ) in the
CDAG G (which by definition includes the nodes in S). For disjoint sets of nodes A,B,C
in an undirected graph, we say that C separates A and B if every path between a node in
A and a node in B in the graph contains a node in C.

Definition 2 (c-separation) Consider disjoint A,B,C ⊆ N(V )∪N(W ) and a CDAG G.
We say that A and B are c-separated by C in G, written A ⊥⊥ B|C [G], when C separates
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v1w1 v2 w2

v3 w3

(a) Step (i)

v1w1 v2 w2

v3 w3

(b) Step (ii)

v1w1 v2 w2

v3 w3

(c) Step (iii)

v1w1 v2 w2

v3 w3

(d) Step (iv)

Figure 2: Illustrating c-separation. Here we ask whether v3 and v1 are c-separated by {v2}
in G, the CDAG shown in Fig. 1a. [Step (i): Take the subgraph induced by
anG({v1, v2, v3}). Step (ii): Moralise this subgraph (i.e. join with an undirected
edge any parents of a common child that are not already connected by a directed
edge). Step (iii): Take the skeleton of the moralised subgraph (i.e. remove the
arrowheads). Step (iv): Add an undirected edge between every pair (wi, wj). In
the final panel (d) we ask whether there exists a path from v3 to v1 that does
not pass through v2; the answer is positive (e.g. v3−w3−w1− v1) and hence we
conclude that v3 6⊥⊥ v1|v2[G], i.e. v3 and v1 are not c-separated by {v2} in G.]

A and B in the undirected graph U4 that is formed as follows: (i) Take the subgraph U1

induced by anG(A∪B ∪C). (ii) Moralise U1 to obtain U2 (i.e. join with an undirected edge
any parents of a common child that are not already connected by a directed edge). (iii) Take
the skeleton of the moralised subgraph U2 to obtain U3 (i.e. remove the arrowheads). (iv)
Add an undirected edge between every pair of nodes in N(W ) to obtain U4.

The c-separation procedure is illustrated in Fig. 2, where we show that v3 is not c-
separated from v1 by the set {v2} in the CDAG from Fig. 1a.

Remark 3 The classical notion of d-separation for DAGs is equivalent to omitting step
(iv) in c-separation. Notice that v3 is d-separated from v1 by the set {v2} in the DAG G,
underlining the need for a custom notion of separation for CDAGs.

The topology (i.e. the set of edges) of a CDAG carries formal (potentially causal)
semantics on the primary RVs, conditional on the secondary RVs, as specified below. Write
T (S) for the collection of triples 〈A,B|C〉 where A,B,C are disjoint subsets of S.
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Definition 4 (Independence model) The CDAG G, together with c-separation, implies
a formal independence model (p.12 of Studený, 2005)

MG = {〈A,B|C〉 ∈ T (N(V ) ∪N(W )) : A ⊥⊥ B|C [G]} (2)

where 〈A,B|C〉 ∈ MG carries the interpretation that the RVs corresponding to A are con-
ditionally independent of the RVs corresponding to B when given the RVs corresponding to
C. We will write A ⊥⊥ B|C [MG] as a shorthand for 〈A,B|C〉 ∈ MG.

Remark 5 An independence modelMG does not contain any information on the structure
of the marginal distribution P(Xi) of the secondary variables, due to the additional step (iv)
in c-separation.

Lemma 6 (Equivalence classes) The map G 7→ MG is an injection.

Proof Consider two distinct DAGs G,H ∈ G and suppose that, without loss of generality,
the edge vi → vj belongs to G and not to H. It suffices to show that MG 6= MH . First
notice that G represents the relations (i) wi 6⊥⊥ vj |wj [G], (ii) wi 6⊥⊥ vj |wj , (vk)k∈V \{i,j} [G],

and (iii) wj ⊥⊥ vi|wi [G]. (These can each be directly verified by c-separation.) We show
below that H cannot also represent (i-iii) and hence, from Def. 4, it follows thatMG 6=MH .
We distinguish between two cases for H, namely (a) vi ← vj /∈ H, and (b) vi ← vj ∈ H.

Case (a): Suppose (i) also holds for H; that is, wi 6⊥⊥ vj |wj [H]. Then since vi → vj /∈ H,
it follows from c-separation that the variable vi must be connected to vj by directed path(s)
whose interior vertices must only belong to N(V ) \ {vi, vj}. Thus H implies the relation
wi ⊥⊥ vj |wj , (vk)k∈V \{i,j} [H], so that (ii) cannot also hold.

Case (b): Since vi ← vj ∈ H it follows from c-separation that wj 6⊥⊥ vi|wi [H], so that
(iii) does not hold for H.

Remark 7 More generally the same argument shows that a DAG G ∈ G satisfies vi → vj /∈
G if and only if ∃S ⊆ paG(j) \ {i} such that wi ⊥⊥ vj |wj , (vk)k∈S [G]. As a consequence,
we have the interpretation that conditional upon the (secondary variables) (Xi)i∈W , the
solid arrows in Fig. 1a encode conditional independence relationships among the (primary
variables) (Yi)i∈V , motivating the CDAG nomenclature.

It is well known that conditional independence (and causal) relationships can usefully be
described through a qualitative, graphical representation. However to be able to use a graph
for reasoning it is necessary for that graph to embody certain assertions that themselves
obey a logical calculus. Pearl and Verma (1987) proposed such a set of rules (the semi-
graphoid axioms) that any reasonable set of assertions about how one set of variables might
be irrelevant to the prediction of a second, given the values of a third, might hold (see also
Dawid, 2001; Studený, 2005). This can then be extended to causal assertions (Pearl, 2009),
thereby permitting study of causal hypotheses and their consequences without the need
to first construct elaborate probability spaces and their extensions under control. Below
we establish that the independence models MG induced by c-separation on CDAGs are
semi-graphoids and thus enable reasoning in the present setting with two kinds of variables:
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Lemma 8 (Semi-graphoid) For any DAG G ∈ G, the set MG is semi-graphoid (Pearl
and Paz, 1985). That is to say, for all disjoint A,B,C,D ⊆ N(V ) ∪N(W ) we have

(i) (triviality) A ⊥⊥ ∅|C [MG]

(ii) (symmetry) A ⊥⊥ B|C [MG] implies B ⊥⊥ A|C [MG]

(iii) (decomposition) A ⊥⊥ B,D|C [MG] implies A ⊥⊥ D|C [MG]

(iv) (weak union) A ⊥⊥ B,D|C [MG] implies A ⊥⊥ B|C,D [MG]

(v) (contraction) A ⊥⊥ B|C,D [MG] and A ⊥⊥ D|C [MG] implies A ⊥⊥ B,D|C [MG]

Proof The simplest proof is to note that our notion of c-separation is equivalent to classical
d-separation applied to an extension G of the CDAG G. The semi-graphoid properties then
follow immediately by the facts that (i) d-separation satisfies the semi-graphoid properties
(p.48 of Studený, 2005), and (ii) the restriction of a semi-graphoid to a subset of vertices is
itself a semi-graphoid (p.14 of Studený, 2005).

Construct an extended graph G from the CDAG G by the addition of a node z and
directed edges from z to each of the secondary vertices N(W ). Then for disjoint A,B,C ⊆
N(V )∪N(W ) we have that A and B are c-separated by C in G if and only if A and B are
d-separated by C in G. This is because every path in the undirected graph U4(G) (recall
the definition of c-separation) that contains an edge wi → wj corresponds uniquely to a
path in U3(G) that contains the sub-path wi → z → wj .

2.2 Causal CDAG Models

The previous section defined CDAG models using the framework of formal independence
models. However, CDAGs can also be embellished with a causal interpretation, that we
make explicit below. In this paper we make a causal sufficiency assumption that the (Xi)i∈W
are the only source of confounding for the (Yi)i∈V and below we talk about direct causes at
the level of (Xi)i∈W ∪ (Yi)i∈V .

Definition 9 (Causal CDAG) A CDAG is causal when an edge vi → vj exists if and
only if Yi is a direct cause of Yj. It is further assumed that Xi is a direct cause of Yi and
not a direct cause of Yj for j 6= i. Finally it is assumed that no Yi is a direct cause of any
Xj.

Remark 10 Here direct cause is understood to mean that the parent variable has a “con-
trolled direct effect” on the child variable in the framework of Pearl (e.g. Def. 4.5.1 of
Pearl, 2009) (it is not necessary that the effect is physically direct). No causal assumptions
are placed on interaction between the secondary variables (Xi)i∈W .

Remark 11 In a causal CDAG the secondary variables (Xi)i∈W share some of the proper-
ties of instrumental variables (Didelez and Sheehan, 2007). Consider estimating the average
causal effect of Yi on Yj. Then, conditioning on Xj in the following, Xi can be used as a
natural experiment (Greenland, 2000) to determine the size and sign of this causal effect.
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When we are interested in the controlled direct effect, we can repeat this argument with
additional conditioning on the (Yk)k∈V \{i,j} (or a smaller subset of conditioning variables if
the structure of G is known).

2.3 Identifiability of CDAGs

There exist well-known identifiability results for independence models M that are induced
by Bayesian networks; see for example Spirtes et al. (2000); Pearl (2009). These relate
the observational distribution P(Yi) of the random variables (Yi)i∈V to an appropriate DAG
representation by means of d-separation, Markov and faithfulness assumptions (discussed
below). The problem of identification for CDAGs is complicated by the fact that (i) the pri-
mary variables (Yi)i∈V are insufficient for identification, (ii) the joint distribution P(Xi)∪(Yi)

of the primary variables (Yi)i∈V and the secondary variables (Xi)i∈W need not be Markov
with respect to the CDAG G, and (iii) we must work with the alternative notion of c-
separation. Below we propose novel “partial” Markov and faithfulness conditions that will
permit, in the next section, an identifiability theorem for CDAGs. We make the standard
assumption that there is no selection bias (for example by conditioning on common effects).
We also assume throughout that there exists a true CDAG G. In other words, the observa-
tional distribution P(Xi)∪(Yi) induces an independence model that can be expressed as MG

for some DAG G ∈ G.

Definition 12 (Partial Markov) Let G denote the true DAG. We say that the observa-
tional distribution P(Xi)∪(Yi) is partially Markov with respect to G when the following holds:
For all disjoint subsets {i}, {j}, C ⊆ {1, . . . , p} we have wi ⊥⊥ vj |wj , (vk)k∈C [MG] ⇒
Xi ⊥⊥ Yj |Xj , (Yk)k∈C .

Definition 13 (Partial faithfulness) Let G denote the true DAG. We say that the ob-
servational distribution P(Xi)∪(Yi) is partially faithful with respect to G when the following
holds: For all disjoint subsets {i}, {j}, C ⊆ {1, . . . , p} we have wi ⊥⊥ vj |wj , (vk)k∈C [MG]⇐
Xi ⊥⊥ Yj |Xj , (Yk)k∈C

Remark 14 The partial Markov property implies that P(Xi)∪(Yi) admits the factorisation

p((xi)i=1,...,p, (yi)i=1,...,p) = p((xi)i=1,...,p)

p∏
i=1

p(yi|(yk)k∈paG(i), xi), (3)

while partial faithfulness ensures that none of the terms inside the product in Eqn. 3 can
be further decomposed. In this work we will prove only estimation consistency; for more
refined convergence analysis the partial faithfulness property must be strengthened. See e.g.
Uhler et al. (2013) for a recent discussion of faithfulness in the DAG setting.

Remark 15 The partial Markov and partial faithfulness properties do not place any con-
straint on the marginal distribution P(Xi) of the secondary variables.

The following is an immediate corollary of Lem. 6:

Theorem 16 (Identifiability) Suppose that the observational distribution P(Xi)∪(Yi) is
partially Markov and partially faithful with respect to the true DAG G. Then
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(i) It is not possible to identify the true DAG G based on the observational distribution
P(Yi) of the primary variables alone.

(ii) It is possible to identify the true DAG G based on the observational distribution
P(Xi)∪(Yi).

Proof (i) We have already seen that P(Yi) is not Markov with respect to the DAG G: Indeed
a statistical association Yi 6⊥⊥ Yj |(Yk)k∈V \{i,j} observed in the distribution P(Yi) could either
be due to a direct interaction Yi → Yj (or Yj → Yi), or could be mediated entirely through
variation in the secondary variables (Xk)k∈W . (ii) It follows immediately from Lemma 6
that observation of both the primary and secondary variables (Yi)i∈V ∪ (Xi)i∈W is sufficient
for identification of G.

2.4 Estimating CDAGs From Data

In this section we assume that the partial Markov and partial faithfulness properties hold, so
that the true DAG G is identifiable from the joint observational distribution of the primary
and secondary variables. Below we consider score-based estimation for CDAGs and prove
consistency of certain score-based CDAG estimators.

Definition 17 (Score function; Chickering (2003)) A score function is a map S :
G → [0,∞) with the interpretation that if two DAGs G,H ∈ G satisfy S(G) < S(H)
then H is preferred to G.

We will study the asymptotic behaviour of ĜS , the estimate of graph structure obtained
by maximising S(G) over all G ∈ G based on observations (Xj

i , Y
j
i )j=1,...,n
i=1,...,p . Let Pn =

P(Xj
i ,Y

j
i ) denote the finite-dimensional distribution of the n observations.

Definition 18 (Partial local consistency) We say the score function S is partially lo-
cally consistent if, whenever H is constructed from G by the addition of one edge Yi → Yj,
we have

1. Xi 6⊥⊥ Yj |Xj , (Yk)k∈paG(j) ⇒ limn→∞ Pn[S(H) > S(G)] = 1

2. Xi ⊥⊥ Yj |Xj , (Yk)k∈paG(j) ⇒ limn→∞ Pn[S(H) < S(G)] = 1.

Theorem 19 (Consistency) If S is partially locally consistent then limn→∞ Pn[ĜS =
G] = 1, so that ĜS is a consistent estimator of the true DAG G.

Proof It suffices to show that limn→∞ Pn[ĜS = H] = 0 whenever H 6= G. There are two
cases to consider:

Case (a): Suppose vi → vj ∈ H but vi → vj /∈ G. Let H ′ be obtained from H by the
removal of vi → vj . From c-separation we have wi ⊥⊥ vj |wj , (vk)k∈paG(j) [G] and hence from
the partial Markov property we have Xi ⊥⊥ Yj |Xj , (Yk)k∈paG(j). Therefore if S is partially

locally consistent then limn→∞ Pn[S(H) < S(H ′)] = 1, so that limn→∞ Pn[ĜS = H] = 0.
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Case (b): Suppose vi → vj /∈ H but vi → vj ∈ G. Let H ′ be obtained from H by
the addition of vi → vj . From c-separation we have wi 6⊥⊥ vj |wj , (vk)k∈paG(j) [G] and
hence from the partial faithfulness property we have Xi 6⊥⊥ Yj |Xj , (Yk)k∈paG(j). There-
fore if S is partially locally consistent then limn→∞ Pn[S(H) < S(H ′)] = 1, so that
limn→∞ Pn[ĜS = H] = 0.

Remark 20 In this paper we adopt a maximum a posteriori (MAP) -Bayesian approach

and consider score functions given by a posterior probability p(G|(xli, yli)
l=1,...,n
i=1,...,p) of the DAG

G given the data (xli, y
l
i)
l=1,...,n
i=1,...,p . This requires that a prior p(G) is specified over the space G

of DAGs. From the partial Markov property we have that, for n independent observations,
such score functions factorise as

S(G) = p(G)

n∏
l=1

p((xli)i=1,...,p)

p∏
i=1

p(yli|(ylk)k∈paG(i), x
l
i). (4)

We further assume that the DAG prior p(G) factorises over parent sets paG(i) ⊆ V \ {i} as

p(G) =

p∏
i=1

p(paG(i)). (5)

This implies that the score function in Eqn. 4 is decomposable and the maximiser ĜS,
i.e. the MAP estimate, can be obtained via integer linear programming (ILP). In Sec. 2.6
we derive an ILP that targets the CDAG ĜS and thereby allows exact (i.e. deterministic)
estimation in this class of models.

Lemma 21 A score function of the form Eqn. 4 is partially locally consistent if and only
if, whenever H is constructed from G by the addition of one edge vi → vj, we have

1. Xi 6⊥⊥ Yj |Xj , (Yk)k∈paG(j) ⇒ limn→∞ Pn[BH,G > 1] = 1

2. Xi ⊥⊥ Yj |Xj , (Yk)k∈paG(j) ⇒ limn→∞ Pn[BH,G < 1] = 1

where

BH,G =
p((Y l

j )l=1,...,n|(Y l
k)l=1,...,n
k∈paH(j), (X

l
j)
l=1,...,n)

p((Y l
j )l=1,...,n|(Y l

k)l=1,...,n
k∈paG(j), (X

l
j)
l=1,...,n)

(6)

is the Bayes factor between two competing local models paG(j) and paH(j).

2.5 Bayes Factors and Common Variables

The characterisation in Lemma 21 justifies the use of any consistent Bayesian variable
selection procedure to obtain a score function. To be clear, although our local scores derive
from the variable selection literature, we do not perform node-wise variable selection, which
would not produce a DAG in general. Instead, the local scores form the basis for a global
search over DAGs via ILPs; see Sec. 2.6.

10



Estimating Causal Structure Using Conditional DAG Models

The secondary variables (X l
i)
l=1,...,n are included in all models, and parameters relating

to these variables should therefore share a common prior. Below we discuss a formulation of
the Bayesian linear model that is suitable for CDAGs. Consider variable selection for node
j and candidate parent (index) set paG(j) = π ⊆ V \ {j}. We construct a linear model for
the observations

Y l
j = [1 X l

j ]β0 + Y l
πβπ + εlj , εlj ∼ N(0, σ2) (7)

where Y l
π = (Y l

k)k∈π is used to denote a row vector and the noise εlj is assumed independent
for j = 1, . . . , p and l = 1, . . . , n. Although suppressed in the notation, the parameters β0,
βπ and σ are specific to node j. This regression model can be written in vectorised form as

Yj = M0β0 + Yπβπ + ε (8)

where M0 is the n × 2 matrix whose rows are the [1 X l
j ] for l = 1, . . . , n and Yπ is the

matrix whose rows are Y l
π for l = 1, . . . , n.

We orthogonalize the regression problem by defining Mπ = (I−M0(M
T
0 M0)

−1MT
0 )Yπ

so that the model can be written as

Yj = M0β̃0 +Mπβ̃π + ε (9)

where β̃0 and β̃π are Fisher orthogonal parameters (see Deltell, 2011, for details).
In the conventional approach of Jeffreys (1961), the prior distribution is taken as

pj,π(β̃π, β̃0, σ) = pj,π(β̃π|β̃0, σ)pj(β̃0, σ) (10)

pj(β̃0, σ) ∝ σ−1 (11)

where Eqn. 11 is the reference or independent Jeffreys prior. (For simplicity of exposition
we leave conditioning upon M0, and Mπ implicit.) The use of the reference prior here is
motivated by the observation that the common parameters β0, σ have the same meaning
in each model π for variable Yj and should therefore share a common prior distribution
(Jeffreys, 1961). Alternatively, the prior can be motivated by invariance arguments that
derive p(β0, σ) as a right Haar measure (Bayarri et al., 2012). Note however that σ does
not carry the same meaning across j ∈ V in the application that we consider below, so that
the prior is specific to fixed j. For the parameter prior pj,π(β̃π|β̃0, σ) we use the g-prior
(Zellner, 1986)

β̃π|β̃0, j, π ∼ N(0, gσ2(MT
πMπ)−1) (12)

where g is a positive constant to be specified. Due to orthogonalisation, cov(β̂π) =
σ2(MT

πMπ)−1 where β̂π is the maximum likelihood estimator for β̃π, so that the prior
is specified on the correct length scale (Deltell, 2011). We note that many alternatives to
Eqn. 12 are available in the literature (including Johnson and Rossell, 2010; Bayarri et al.,
2012). For discrete data we mention recent work by Massam and Weso lowski (2014).

Under the prior specification above, the marginal likelihood for a candidate model π has
the following closed-form expression:

pj(yj |π) =
1

2
Γ

(
n− 2

2

)
1

π(n−2)/2
1

|MT
0 M0|1/2

(
1

g + 1

)|π|/2
b−(n−2)/2 (13)

b = yTj

(
I −M0(M

T
0 M0)

−1MT
0 −

g

g + 1
Mπ(MT

πMπ)−1MT
π

)
yj (14)
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Following Scott and Berger (2010), we control multiplicity via the prior

p(π) ∝
(
p

|π|

)−1
. (15)

Proposition 22 (Consistency) Let g = n. Then the Bayesian score function S(G) de-
fined above is partially locally consistent, and hence the corresponding estimator ĜS is con-
sistent.

Proof This result is an immediate consequence of Lemma 21 and the well-known variable
selection consistency property for the unit-information g-prior (see e.g. Fernández et al.,
2001).

2.6 Computation via Integer Linear Programming

Structure learning for DAGs is a well-studied problem, with contributions including Fried-
man and Koller (2003); Silander and Myllymäkki (2006); Tsamardinos et al. (2006); Cowell
(2009); Cussens (2011); Yuan and Malone (2013). Discrete optimisation via ILP can be
used to allow efficient estimation for graphical models, exploiting the availability of power-
ful (and exact) ILP solvers (Nemhauser and Wolsey, 1988; Wolsey, 1998; Achterberg, 2009),
as discussed in Bartlett and Cussens (2013). Below we extend the ILP approach to CDAG
models.

We begin by computing and caching the quantities

p((yli)
l=1,...,n|(ylk)

l=1,...,n
k∈π , (xli)

l=1,...,n) (16)

that summarise evidence in the data for the local model paG(i) = π ⊆ V \ {i} for variable
i. These cached quantities are transformed to obtain “local scores”

s(i, π) := log(p((yli)
l=1,...,n|(ylk)

l=1,...,n
k∈π , (xli)

l=1,...,n)) + log(p(π)). (17)

These are the (log-) evidence from Eqn. 16 with an additional penalty term that provides
multiplicity correction over varying π ⊆ V \{i}, arising from Eqn. 5. Then we define binary
indicator variables that form the basis of our ILP as follows:

Π(i, π) := [paG(i) = π] ∀i = 1, . . . , p, π ⊆ V \ {i}. (18)

The information in the variables Π contains all information on the DAG G. However it will
be necessary to impose constraints that ensure the Π correspond to a well-defined DAG:∑

π⊆V \{i}

Π(i, π) = 1 ∀i = 1, . . . , p (C1; convexity)

Constraint (C1) requires that every node i has exactly one parent set (i.e. there is a well-
defined graph G). To ensure G is acyclic we require further constraints:∑

i∈C

∑
π⊆V \{i}
π∩C=∅

Π(i, π) ≥ 1 ∀ C ⊆ V,C 6= ∅. (C2; acyclicity)

12
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(C2) states that for every non-empty set C there must be at least one node in C that does
not have a parent in C.

Proposition 23 The MAP estimate ĜS is characterised as the solution of the ILP

ĜS = arg maxG∈G

p∑
i=1

∑
π⊆V \{i}

s(i, π)Π(i, π) (19)

subject to constraints (C1) and (C2).

Proof It was proven in Jaakola et al. (2010) that (C1) and (C2) together exactly charac-
terise the space G of DAGs.

For the applications in this paper, all ILP instances were solved using the GOBNILP
software that is freely available to download from http://www.cs.york.ac.uk/aig/sw/

gobnilp/.

3. Results

Below we present results based on simulated data and data from molecular biology.

3.1 Simulated Data

We simulated data from linear-Gaussian structural equation models (SEMs). Here we sum-
marise the simulation procedure, with full details provided in the supplement. We first
sampled a DAG G for the primary variables and a second DAG G′ for the secondary vari-
ables (independently of G), following a sampling procedure described in the supplement.
That is, G is the causal structure of interest, while G′ governs dependence between the sec-
ondary variables. Data for the secondary variables (Xi)i∈W were generated from an SEM
with structure G′. The strength of dependence between secondary variables was controlled
by a parameter θ ∈ [0, 1]. Here θ = 0 renders the secondary variables independent and θ = 1
corresponds to a deterministic relationship between secondary variables, with intermediate
values of θ giving different degrees of covariation among the secondary variables. Finally,
conditional on the (Xi)i∈W , we simulated data for the primary variables (Yi)i∈V from an
SEM with structure G. To manage computational burden, for all estimators we considered
only models of size |π| ≤ 5. Performance was quantified by the structural Hamming distance
(SHD) between the estimated DAG ĜS and true, data-generating DAG G, taking into ac-
count directionality; we report the mean SHD as computed over 10 independent realisations
of the data. We emphasise that the secondary variables need not be generated from a DAG
model, however this is a convenient and familiar approach. We note that in the biological
application below a DAG for the secondary variables might not be appropriate.

In Table 1 we compare the proposed score-based CDAG estimator with the correspond-
ing score-based DAG estimator that uses only the primary variable data (Y l

i )l=1,...,n
i=1,...,p . We

also considered an alternative (DAG2) where a standard DAG estimator is applied to all of
the variables (Xi)i∈W , (Yi)i∈V , with the subgraph induced on the primary variables giving
the estimate for G. We considered values θ = 0, 0.5, 0.99 corresponding to zero, mild

13
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θ = 0 n = 10 n = 100 n = 1000

DAG DAG2 CDAG DAG DAG2 CDAG DAG DAG2 CDAG
p = 5 2.9 ± 0.48 2.6 ± 0.48 3.4 ± 0.56 3.2 ± 0.81 1.9 ± 0.43 0.8 ± 0.25 3 ± 0.76 1.6 ± 0.48 0.3 ± 0.21
p = 10 9.8 ± 0.55 9.2 ± 0.66 8.8 ± 0.81 8.2 ± 0.99 5 ± 0.84 2.8 ± 0.51 5.5 ± 1.2 5.4 ± 1.1 0.3 ± 0.15
p = 15 15 ± 1.3 14 ± 1.1 15 ± 1.2 11 ± 1 6.8 ± 0.83 4.4 ± 0.58 6.3 ± 1.5 8.2 ± 0.92 0.8 ± 0.25

θ = 0.5 n = 10 n = 100 n = 1000

DAG DAG2 CDAG DAG DAG2 CDAG DAG DAG2 CDAG
p = 5 5.7 ± 0.56 4.5 ± 0.48 4 ± 0.49 3.9 ± 0.75 2.1 ± 0.62 0.6 ± 0.31 3.8 ± 0.74 1.8 ± 0.81 0 ± 0
p = 10 9.8 ± 0.96 8.1 ± 0.95 7.8 ± 1.1 7.2 ± 1.7 4.6 ± 1.2 1.7 ± 0.84 7.9 ± 1.3 3 ± 0.52 0.6 ± 0.31
p = 15 14 ± 0.85 13 ± 0.86 13 ± 0.7 14 ± 1.1 6.2 ± 0.55 3.6 ± 0.76 11 ± 0.93 7.5 ± 1.7 1 ± 0.45

θ = 0.99 n = 10 n = 100 n = 1000

DAG DAG2 CDAG DAG DAG2 CDAG DAG DAG2 CDAG
p = 5 5.1 ± 0.72 4 ± 0.56 4.2 ± 0.49 4.7 ± 0.79 2.1 ± 0.5 0.5 ± 0.31 2.7 ± 0.42 1.7 ± 0.56 0.9 ± 0.48
p = 10 9.1 ± 0.84 8.1 ± 0.72 7.8 ± 1.3 9.7 ± 1.1 3.7 ± 0.52 2.5 ± 0.45 9.4 ± 1 4.4 ± 0.64 0.3 ± 0.3
p = 15 15 ± 1.1 13 ± 0.94 13 ± 1.2 13 ± 1.4 6.6 ± 0.91 4.7 ± 0.86 17 ± 1.8 9.1 ± 0.69 0.7 ± 0.4

Table 1: Simulated data results. Here we display the mean structural Hamming distance
from the estimated to the true graph structure, computed over 10 independent
realisations, along with corresponding standard errors. [Data were generated using
linear-Gaussian structural equations. θ ∈ [0, 1] quantifies dependence between the
secondary variables (Xi)i∈W , n is the number of data points and p is the number of
primary variables (Yi)i∈V . “DAG” = estimation based only on primary variables
(Yi)i∈V , “DAG2” = estimation based on the full data (Xi)i∈W ∪ (Yi)i∈V , “CDAG”
= estimation based on the full data and enforcing CDAG structure.]

and strong covariation among the secondary variables. In each data-generating regime we
found that CDAGs were either competitive with, or (typically) more effective than, the
DAG and DAG2 estimators. In the p = 15, n = 1000 regime (that is closest to the bio-
logical application that we present below) the CDAG estimator dramatically outperforms
these two alternatives. Inference using DAG2 and CDAG (that both use primary as well as
secondary variables) is robust to large values of θ, whereas in the p = 15, n = 1000 regime,
the performance of the DAG estimator based on only the primary variables deteriorates
for large θ. This agrees with intuition since association between the secondary Xi’s may
induce correlations between the primary Yi’s. CDAGs outperformed DAG2 at large n (see
also Table 1).

To better understand the limitations of CDAGs we considered three data-generating
regimes that violate the CDAG assumptions. Firstly we focused on the θ = 0, p = 15,
n = 1000 regime where the CDAG estimator performs well when data are generated “from
the model”. We then introduced a number E of edges of the form Xi → Yj where Yi → Yj ∈
G. These edges (strongly) violate the structural assumptions implied by the CDAG model
because their presence means that Xi is no longer a suitable instrument for Yi → Yj as it is
no longer conditionally independent of the variable Yj given Yi. We assessed performance
of the CDAG, DAG and DAG2 estimators as the number E of such misspecified edges is
increased (Fig. 3). We find that whilst CDAG continues to perform well up to a moderate
fraction of misspecified edges, for larger fractions performance degrades and eventually
coincides with DAG and DAG2. Secondly, we fixed θ = 0, p = 15, n = 1000 and reduced the
dependence of the Yi on the Xi from 100% (relative to values used in the above simulations)
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Figure 3: Simulated data results; model misspecification. [Data were generated using linear-
Gaussian structural equations. Here we fixed θ = 0, p = 15, n = 1000 and
considered varying the number E of misspecified edges as described in the main
text. On the x-axis we display the marginal probability that any given edge Yi →
Yj has an associated misspecified edge Xi → Yj , so that when Prob(Xi → Yj) = 1
the number E of misspecified edges is equal to the number of edges in G. “DAG”
= estimation based only on primary variables (Yi)i∈V , “DAG2” = estimation
based on the full data (Xi)i∈W ∪ (Yi)i∈V , “CDAG” = CDAG estimation based on
the full data (Xi)i∈W ∪ (Yi)i∈V .]

down to 0%. At 0% the partial faithfulness assumption is violated and estimators are no
longer consistent. Results (SFig. 1) show that CDAG remains effective over a wide range
of data-generating regimes, but eventually degrades when faithfulness is strictly violated.
Thirdly, we considered removing the Xi → Yi dependence from a random subset of the
indices i ∈ {1, . . . , p}, so that faithfulness is violated in a more heterogeneous way across
the CDAG, similar to the situation considered by Neto et al. (2010). Results (SFig. 2)
showed CDAG remained effective when only a handful of deletions occur, but eventually
degraded as all the dependencies on secondary variables were removed.

3.2 Molecular Biological Data

In this section we illustrate the use of CDAGs in an analysis of molecular data from cancer
samples. We focus on causal links between post-translationally modified proteins involved
in a process called cell signalling. The estimation of signalling networks has been a promi-
nent topic in computational biology for some years (see, among others, Sachs et al., 2005;
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Figure 4: CHK1 total protein (t-CHK1) as a natural experiment for phosphorylation of
CHK2 (p-CHK2). (a) Description of the variables. (b) A portion of the CDAG
relating to these variables. It is desired to estimate whether there is a causal
relationship Yi → Yj (possibly mediated by other protein species) or vice versa.
(c) Top row: Plotting phosphorylated CHK1 (p-CHK1; Yi) against p-CHK2 (Yj)
we observe weak correlation in some of the cancer subtypes. Middle row: We
plot the residuals when t-CHK1 is regressed on total CHK2 (t-CHK2; x-axis)
against the residuals when p-CHK2 is regressed on t-CHK2 (y-axis). The plots
show a strong (partial) correlation in each subtype that suggests a causal effect
in the direction p-CHK1 → p-CHK2. Bottom row: Reproducing the above but
with the roles of CHK1 and CHK2 reversed, we see much reduced and in many
cases negligible partial correlation, suggesting lack of a causal effect in the reverse
direction, i.e. p-CHK1 8 p-CHK2. [The grey line in each panel is a least-squares
linear regression.]

Nelander et al., 2008; Hill et al., 2012; Oates and Mukherjee, 2012). Aberrations to causal
signalling networks are central to cancer biology (Weinberg, 2013).

In this application, the primary variables (Yi)i∈V represent abundance of phosphory-
lated protein (p-protein) while the secondary variables (Xi)i∈W represent abundance of
corresponding total proteins (t-protein). A t-protein can be modified by a process called
phosphorylation to form the corresponding p-protein and the p-proteins play a key role in
signalling. An edge vi → vj has the biochemical interpretation that the phosphorylated
form of protein i acts as a causal influence on phosphorylation of protein j. The DAG2
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Figure 5: Maximum a posteriori conditional DAG, estimated from protein data from cancer
samples (from the Cancer Genome Atlas, samples belonging to the BRCA-like
group, see text). Here vertices represent phosphorylated proteins (primary vari-
ables) and edges have the biochemical interpretation that the parent protein plays
a causal role in phosphorylation of the child protein.

method described in Sec. 3.1 may not be suitable for use here since the t-proteins are likely
confounded by unobserved variables.

The data we analyse are from the TCGA “pan-cancer” project (Akbani et al., 2014)
and comprise measurements of protein levels (including both t- and p-proteins) using a
technology called reverse phase protein arrays (RPPAs). We focus on p = 24 proteins for
which (total, phosphorylated) pairs are available; the data span eight different cancer types
(as defined by a clustering analysis due to Städler et al., 2015) with a total sample size of
n = 3, 467 patients. We first illustrate the key idea of using secondary variables to inform
causal inference regarding primary variables with an example from these data:

Example 1 (CHK1 t-protein as a natural experiment for CHK2 phosphorylation)
Consider RVs (Yi, Yj) corresponding respectively to p-CHK1 and p-CHK2, the phosphory-
lated forms of CHK1 and CHK2 proteins. Fig. 4c (top row) shows that these variables
are weakly correlated in most of the 8 cancer subtypes. There is a strong partial correla-
tion between t-CHK1 (Xi) and p-CHK2 (Yj) in each of the subtypes when conditioning on
t-CHK2 (Xj) (middle row), but there is essentially no partial correlation between t-CHK2
(Xj) and p-CHK1 (Yi) in the same subtypes when conditioning on t-CHK1 (bottom row).
Thus, under the CDAG assumptions, this suggests that there exists a directed causal path
from p-CHK1 to p-CHK2, but not vice versa.

Example 1 provides an example from the TCGA data where controlling for a secondary
variable (here, t-protein abundance) may be important for causal inference concerning pri-
mary variables (p-protein abundance).

17



Oates, Smith and Mukherjee

40 50 60 70 80 90 100

40

50

60

70

80

90

100

Num. edges (DAG)

N
u
m

. 
e
d
g
e
s
 (

C
D

A
G

) OVCA−like

BRCA−like

UCEC/BLCA−like

HNSC/LUAD/LUSC−like

GBM−like

COAD/READ−like

M

KIRC−like

Figure 6: Cancer patient data; relative density of estimated protein networks. Here we
plot the number of edges in the networks inferred by estimators based on DAGs
(x-axis) and based on CDAGs (y-axis). [Each point corresponds to a cancer
subtype (see text). “DAG” = estimation based only on primary variables (Yi)i∈V ,
“CDAG” = estimation based on the full data and enforcing CDAG structure.]

We now apply the CDAG methodology to all p = 24 primary variables that we consider,
using data from the largest subtype in the study (namely BRCA-like). The estimated graph
is shown in Fig. 5. We note that assessment of the biological validity of this causal graph is
a nontrivial matter, and outside the scope of the present paper. However, we observe that
several well known edges, such as from p-MEK to p-MAPK, appear in the estimated graph
and are oriented in the expected direction. Interestingly, in several of these cases, the edge
orientation is different when a standard DAG estimator is applied to the same data, showing
that the CDAG formulation can reverse edge orientation with respect to a classical DAG
(see supplement). We note also that the CDAG is denser, with more edges, than the DAG
(Fig. 6), demonstrating that in many cases, accounting for secondary variables can render
candidate edges more salient. These differences support our theoretical results insofar as
they demonstrate that in practice CDAG estimation can give quite different results from a
DAG analysis of the same primary variables but we note that proper assessment of estimated
causal structure in this setting is beyond the scope of this paper.

4. Conclusions

Practitioners of causal inference understand that it is important to distinguish between
variables of direct interest and others that can play a supporting role in analysis. In this
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work we put forward CDAGs as a simple class of graphical models that make this distinction
explicit. Motivated by molecular biological applications, we developed CDAGs that use
bijections between primary and secondary index sets. The general approach presented here
could be extended to other multivariate settings where variables are in some sense non-
exchangeable. Naturally many of the philosophical considerations and practical limitations
and caveats of classical DAGs remain relevant for CDAGs and we refer the reader to Dawid
(2010) for an illuminating discussion of these issues.

The application to biological data presented above represents a principled approach to
integrate different molecular data types (here, total and phosphorylated protein, but the
ideas are general) for causal inference. Our results suggest that integration in a causal
framework may be useful in some settings. Theoretical and empirical results showed that
CDAGs can improve estimation of causal structure relative to classical DAGs when the
CDAG assumptions are even approximately satisfied.

We briefly mention three natural extensions of the present work: (i) The CDAGs put
forward here allow exactly one secondary variable Xi for each primary variable Yi. In
many settings this may be overly restrictive. In biology there are many examples of known
causal relationships that are one-to-many or many-to-one. It would be natural to extend
CDAGs in this direction. Examples of a more general formulation along these lines were
recently discussed by Neto et al. (2010) in the context of eQTL data. Conversely we could
extend the recent ideas of Kang et al. (2014) by allowing for multiple secondary variables
for each primary variable, not all of which may be valid as instruments. (ii) In many
applications data may be available from multiple related but causally non-identical groups,
for example disease types. It could then be useful to consider joint estimation of multiple
CDAGs, following recent work on estimation for multiple DAGs (Oates et al., 2015, 2014).
(iii) Biotechnological advances now mean that the number p of variables is frequently very
large. Estimation for high-dimensional CDAGs may be possible using recent results for
high-dimensional DAGs (e.g. Kalisch and Bühlmann, 2007; Loh and Bühlmann, 2014, and
others).
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