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Abstract

We present the path-sum formulation for exact statistical inference of marginals on Gaus-
sian graphical models of arbitrary topology. The path-sum formulation gives the covariance
between each pair of variables as a branched continued fraction of finite depth and breadth.
Our method originates from the closed-form resummation of infinite families of terms of the
walk-sum representation of the covariance matrix. We prove that the path-sum formulation
always exists for models whose covariance matrix is positive definite: i.e. it is valid for both
walk-summable and non-walk-summable graphical models of arbitrary topology. We show
that for graphical models on trees the path-sum formulation is equivalent to Gaussian belief
propagation. We also recover, as a corollary, an existing result that uses determinants to
calculate the covariance matrix. We show that the path-sum formulation formulation is
valid for arbitrary partitions of the inverse covariance matrix. We give detailed examples
demonstrating our results.
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1. Introduction

A Gaussian Markov random field (GMRF) is a random vector that follows a multivari-
ate normal (or Gaussian) distribution and satisfies conditional independence assumptions,
hence the Markov property. If X, X2, X3 are random variables with a joint probability
density function (or joint probability mass function in a discrete case), we say that X is
conditionally independent of Xo given X3, denoted X; 1l X5| X3, if (Lauritzen, 1996)

[y, w2|23) = f(21|73) f(22]73).

Here we use f as a generic symbol for the probability density function of the random
variables corresponding to its arguments. GMRFs have a simple interpretation and find
their applications, for example, in image analysis, spatial statistics, structural time series
analysis and analysis of longitudinal and survival data (Rue and Held, 2005).

Consider a random vector X = (X1, Xo,...,X,,) following a multivariate normal dis-
tribution with mean p and covariance matrix ¥, denoted X ~ N(u,Y). The probability
density function of X is given as

—;ex —lx— Ty=Y(z -
) = s o |~ (o= S ).

Here ¥ is a symmetric and positive definite matrix. We write A > 0 to denote that the
matrix A is positive definite. Alternatively the probability density function of X can be
expressed in a canonical form

f(z) = g(x)exp |:;$TJCL‘ +hTe — k(u, E)}

1
X exp [—2xTJa: + th] , (1)

where J = X' h = Jpu, g(z) = (2r)"2 and k(p, X)) = T Jp— 5 In(det(J)). We call J the
information matriz (or precision matrix) and h the potential vector.

One advantage of using the form of parametrization in (1) is that J admits a graphical
model in the following sense. Let G = (V,£) be an undirected graph with the vertex set V
and the set of edges £. Let X,;; denote the set of variables with X; and X; removed from
X. If J = (Jij)ijev is positive definite, then for i, j € V, where i # j, we have (Proposition
5.2, Lauritzen, 1996)

X; 1L Xj’X\ij = Jij = 0.
Then we define a GMRF as follows.

Definition 1 (Definition 2.1, Rue and Held, 2005) A random vector X is called a GMRF
with respect to a graph G = (V, ) with information matriz J and potential vector h if and
only if its density has the form of (1) and J;; # 0 < (i,5) € €, for all i and j.
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It is known that X satisfies the Markov property on G (see Theorem 2.4 by Rue and
Held, 2005)!. Note that by Definition 1, there is a one-to-one correspondence between
the structure of J and the structure of G. Most information matrices J for GMRFs are
sparse, i.e. there are O(n) non-zero entries in J. The sparsity structure of J facilitates the
simulation of GMRFs through J (Rue and Held, 2005).

Another advantage of using the canonical form concerns the estimation of X given noisy
observations Y (Johnson, 2002). Indeed, assume that Y = CX + ¢, where C is an n X n
real matrix and € ~ N (0, M). Then the conditional distribution of X|Y is given by

_ flyle) f(=)
f(zly) = )

o f(yle)f(z)

1 - -
X exp [—2:ETJ£C + th] ,

where J = J + CTM~1C and h = h+ CTM~1y. Thus given noisy observations, one only
needs to update the information matrix and the potential vector to construct a graphical
model for f(x|y). For simplicity, we use J and h to denote the parameters after absorption
of observations.

Given the canonical form, one needs both the covariance matrix ¥ = J~! and the mean
vector s = J~'h to obtain the marginal distributions of X or X|Y. Since knowing J !
is sufficient to recover y, we focus our efforts on calculating J~'. Direct inversion of J
has complexity O(n?) and does not exploit the sparsity of J.? In a simple situation where
the graph G of a GMRF is a tree, belief propagation (BP) efficiently calculates the correct
marginals (Malioutov et al., 2006; Pearl, 1988). For graphs with cycles (also called loopy
graphs), the method of loopy belief propagation (LBP) can be used to efficiently approximate
the marginals. However, it was shown in Weiss and Freeman (2001) that while LBP gives
correct means for the marginals, the estimates of the covariance matrices it provides are
generally incorrect.

In this article, we present a novel approach to the calculation of the marginals of X or
X|Y, which we term method of path-sums. This approach is a generalization and completion
of the walk-sum formulation developed in Malioutov et al. (2006). The method of path-sums
is based on results established by Giscard et al. (2012) concerning the algebraic structure
of walk sets, which permit the systematic resummation of infinite families of walks in any
walk-sum. These resummations transform a walk-sum into a branched continued fraction
comprising only a finite number of terms. Furthermore, these terms have an elementary
interpretation as simple paths and simple cycles on G. A simple path is a walk (i.e. a
trajectory on G) whose vertices are all distinct. A simple cycle is a walk whose endpoints

1. For a GMRF, the pairwise Markov property, the local Markov property and the global Markov property
are equivalent. This is proven by using Proposition 3.8 of Lauritzen (1996), in conjunction with the
Hammersley-Clifford Theorem (Theorem 3.9, Lauritzen, 1996).

2. Algorithms that compute some entries (either diagonal entries or certain off-diagonal entries) of a sym-
metric sparse matrix with complexity less than O(ng) do exist (see Eastwood and Wan, 2013; Li et al.,
2008; Lin et al., 2011; Tang and Saad, 2012). The path-sum representation achieves this as well, comput-
ing the covariance of a pair of variables with complexity O(n) whenever G is a tree: see §5 and Giscard
et al. (2013).
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are identical and intermediate vertices (from the second to the penultimate) are all distinct
and different from the endpoints. An important consequence of these observations is that
if J is positive definite?, the path-sum formulation of J~! is convergent.

Consequently, one does not need the walk-summability of a model, which was devised by
Malioutov et al. (2006) to guarantee the convergence of the infinite walk-sum representation
of the covariance matrix ¥ = J~!. Let R := I — J be the partial correlations matrix and
|R| be the entrywise absolute value of this matrix, i.e. (|R|);; = |R;;|. The authors showed
that a GMRF is walk-summable if and only if the spectral radius p(|R|) is strictly less
than 1, which implies J > 0. However, the converse does not hold: that is, there are
positive definite information matrices which are not walk-summable. In contrast to the
walk-summability criterion, our formulation only requires positive definiteness of J. Most
importantly, the path-sum formulation gives the correct marginals when the graph G is
loopy, and is equivalent to BP when G is a tree.

The rest of this article is organized as follows. In §2, we introduce the context and
arguments underlying the path-sum formulation. We present the path-sum result in §2.2
and show its validity for all positive definite matrices, irrespective of the walk-summability
criterion. In the following section, §3, we relate the path-sum representation of a covariance
matrix to existing approaches. In §4 we prove that the path-sum representation can be
applied to arbitrary partitions of the information matrix J. We give an example demon-
strating this claim. Finally in §5 we briefly discuss the computational cost of our approach
as well as future prospects. The proof of the path-sum result is deferred to Appendix A.

2. Path-Sum Representation
2.1 Context

The “most basic result of algebraic graph theory” (as described in Flajolet and Sedgewick,
2009) states that the powers of the adjacency matrix Ag of a graph G generate all the walks
on this graph (Biggs, 1993). This result extends to weighted graphs if Ag is replaced by a
weighted adjacency matrix R, with R;; the weight of the edge from vertex j to vertex ¢ on
G. Then (Re)ij is the sum of the weights of all the walks of length ¢ from j to ¢ (Flajolet
and Sedgewick, 2009). The weight of a walk is simply the ordered product of the weight
of the edges it traverses. (Note that the indices of a matrix are written right-to-left, but
correspond to an edge written left-to-right. This is due to unfortunate conventions). We
index the entries of R by the labels of the vertices in G. We write these labels with roman
letters, Greek letters, or numbers, as convenient. Now — assuming that the Taylor series
converges — we have (I — R)™! = 3, R’. It follows that (I — R);j1 can be interpreted as
the sum of the weights of all the walks from j to 4. This directly implies the walk-sum
interpretation advocated by Malioutov et al. (2006) for J~! = (I — R)™!, with R=1—J
and G the graphical model of the GMRF constructed by using Definition 1. Further, it
follows that the calculation of J~! is susceptible to a particular resummation technique
from graph theory based on the structure of sets of walks, called the method of path-sums.

In its most general form, the method of path-sums stems from a fundamental algebraic
property of the set of all walks on any weighted graph: namely, that any walk factorizes

3. J > 0 is equivalent to J being non-singular for a GMRF.



EXACT INFERENCE ON GAUSSIAN GRAPHICAL MODELS USING PATH-SUMS

uniquely into products of prime walks, which are the simple paths and simple cycles of
G (see §1 for the definitions). The path-sum representation of the series of all walks on
the graph G is thus the representation of this series that only involves the prime walks.*
Since a finite graph sustains only finitely many primes, the walk series (which is typically
infinite) thus has an exact representation involving only finitely many terms. An important
consequence of this observation is that the path-sum expression of J~! is convergent as long
as J > 0.

For a full exposition of the algebraic structure of walk sets at the origin of path-sums
and its applications in linear algebra, the interested reader can refer to Giscard et al. (2012)
and Giscard et al. (2013). In §2.2 we give the explicit and universal path-sum formulation
for J~1. This expression takes the form of a branched continued fraction of finite depth and
breadth.

2.2 Path-Sum Formulation of the Covariance Matrix

Let G \ {a,3...} denote the subgraph of G obtained by deleting from G the vertices
{a,p...} CV and the edges incident to them. For simplicity, we write Jojf} for (J71)ap.
The path-sum expression for ¥ = J~! is presented in Theorem 2 below. We defer its proof
to Appendix A.

Theorem 2 Let J >~ 0 be an information matriz. Let Ilg. o, and I'g. . be the sets of simple
paths from a to w on G and the set of simple cycles from « to itself on G, respectively. If G
has finitely many vertices and edges, these two sets are finite.

Then each entry of the covariance matriz ¥ = J~ admits an expression involving only
weighted prime walks, called a path-sum representation. It is explicitly given by

{(p)+1 .
JoL = Z (—1)4P) H {(Jg\{am,__vyjl})w JVMVJ}J;;, (2)
j=1

peHQ;aw
() 1 -
-1 _ o) +1 -
Joa = Z (—1) ™ Jﬂlﬂé('y) H {(Jg\{a,#2y-~7uj1})ujuj Juj,uj—l} ) 3)
'Yerg;aa Jj=2

where the products are right-to-left (i.e. [[;2)ai = am---a1), p = (v1, va, ..., Vgp)+1)
is a simple path of length {(p) with o = v1 and w = vy 41 for convenience; and v =
(M1, p2, -y ey, pa) is a simple cycle of length £(7y) from o = py to itself.

Note that J3,! is obtained recursively through Eq. (3). Indeed it is expressed in terms
of entries of inverses of submatrices of J, such as (JQ\{a,uz,...,ujﬁ});jluj7 which is in turn
obtained through Eq. (3) but on the subgraph G\{«,...,j—1} of G. The recursion stops
when vertex p; has no neighbor on this subgraph, in which case (Jg\{a»ll%-w/ﬁjfl})/;jlﬂj =
1/Ju,p, (note that Jy,,, # 0 since J = 0). The entry J,4 is therefore expressed as a
branched continued fraction which terminates at a finite depth, and J.;! is a finite sum of

such continued fractions.

4. Since path-sums are the prime representations of walk series, they are the graph-theoretic analog of Euler
product formulas for the Riemann zeta function and other totally multiplicative functions in number
theory.
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Figure 1: The circle graph on 5 vertices Cs associated with J in Example 1. The edge-weights
are indicated next to the edges and the vertices are labeled 1 to 5.

Remark 3 Theorem 2 is valid even when G is loopy and/or J is not walk-summable. In
particular there is no restriction on the spectrum of J as long as J > 0. An example showing
this is given below.

Example 1 (An illustrative example) To illustrate Theorem 2, we consider an example
taken from Malioutov et al. (2006), where J has the structure of a circle graph on 5 vertices,
denoted Cs, see Figure 1. The information matrix is

<

I
S OO 3 =
oo 3~ =3
O 3 = 3 O
= = 3 OO0
_ 3 O O 3

Then J is positive definite for 172\/5 <r< 1+2\/5 (approximately —1.618 < r < 0.618), and
walk-summable if and only if —1/2 < r < 1/2. This example thus provides a test case for
both the walk-summable and non-walk-summable situations, depending on the value of r.

Here we obtain J~! correctly for all values of 7 such that J is not singular.

By the symmetry of Cs, all the diagonal entries of J~! are identical, and we choose to
calculate Jl_l1 without loss of generality. There are five simple cycles from vertex 1 to itself
on Cs: i) the self-loop 1 — 1; ii) the two backtracks 1 — 2 — 1 and 1 — 5 — 1; and iii) the
two pentagons 1 -2 —+3 —+4—-5—1land1—-5—>4—3—2— 1. By symmetry, the
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two backtracks and the two pentagons have the same weights. Consequently Eq. (3) gives

(J D= < \1/ - 277 (']C5\{1})_21

(%) ) ) C
Self-loop 3:}0 Backtracks j:?e ﬁg
( ( /
O \

-1
-1 -1 -1 -1
+ 20 (e r2.3.4y) 55 (Jes\i12.3)) 1 (Jesir2y) 33 (Jesiay) o > :

Pentagons @) Kf?ﬂ

The required entries (JCS\{I})Q_;, e (JC5\{1,2,3,4})5_51 remain to be calculated. To this end,

we use again Eq. (3) of Theorem 2. For example, consider calculating (JC5\{1})521. Since
the graph associated with Je.\ (1) is C5 with vertex 1 removed, the only simple cycles from
vertex 2 to itself on C5\{1} are the self-loop 2 — 2 and the backtrack 2 — 3 — 2. We thus
find

-1
-1 -1
(Jes\(1}) 29 :< \1/ - (Je\12)) ) >

Self-loop 050 Backtrack O\}
|}

D)

. . _ -1 _ IR
Similarly we obtain (Jc5\{1,2})331 = (1—7‘2(!](;5\{172’3})441) , (Jc5\{1,273})441 = (1—T2(JC5\{172’374})551) 1
and finally (JCS\{172,374})5_51 = 1. Combining these equations gives

- -1 1
(Jes\(1,2,3.4))5 = 1 = (Jes\f1.23)) 00 = 0
-1 1— 72
= (JC5\{1,2})33 = m
-1 1—2r2
= o)z = =gz
- 1—3r2 47!

= (J

T 152+ brt 2

As noted, the last equation gives the value of every diagonal entry of J~!. We now consider
the off-diagonal entries. We note again that, by the symmetry of Cs, there are only two
different entries, and we choose to calculate (J~1)o; and (J~1)3; without loss of generality.
Following Theorem 2, these two entries are given by a sum over simple paths from vertex
1 to vertex 2, and vertex 1 to vertex 3, respectively. In each case there are only two simple
paths: for example from 1 to 2, we have 1 - 2 and 1 —+ 5 — 4 — 3 — 2. Then Eq. (2)
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yields

_ 1,
(J 1)21 == T(Jcs\{l})m (J 1)11

-~

Simple path 3:5@

Q

+ ! (e (usast) e (Jes(sa)) s (Jeniisy)m (Jeniy)ss (7 D1 -

Simple path j:?G

By the symmetry of Cs, we have (Jeo\ (15.4.3))22 = (Jes\(1.284))55 » (Jes\ (154133 = (Jes\ (12,311 »
(JC5\{1,5})Z41 = (Jcs\{l,z})ggl and (JC5\{1})5_51 = (JC5\{1})2_21. The previously obtained results
then immediately give

4 3
_ re42r° —r
(J7 D1 = 2 1 5
1—5r2+5r*+2r
and similarly
2_ .3 _ .4
_ re—re—r
(7 a1

T 152 4 hrt 25

Piecing these results together, we finally obtain

7@—27«—1 1471 -1 -1 1+t

2 147t =0l g et -1

-1 _ —1  (r=1r-1 -1
= A it i S QP -1
3 2 _ ., _ 3
2r> +3rc —r—1 . . 1 —|—rr*1 (r—l%r—l T
T

I | 1 14t =

We now verify that this expression is correct in both the walk-summable and non-walk-
summable situations:

(a) Walk-summable and J > 0: set r = 0.3. Then to 5 decimal places we have
(J7 Y11 = 1.23975, (J )91 = —0.39959 and (J 131 = 0.09221, so that

1.23975  —0.39959 0.09221  0.09221 —0.39959
—0.39959 1.23975 —0.39959 0.09221  0.09221
JV=1 009221 —0.39959 1.23975 —0.39959  0.09221
0.09221  0.09221 —0.39959 1.23975 —0.39959
—0.39959 0.09221  0.09221 —0.39959 1.23975

One can verify that this result obtained by using the path-sum formulation coincides with
the one obtained by direct inversion of .J.
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(b) Non walk-summable and J > 0: set = 0.6. Then to 5 decimal places, we
have (J~1)11 = 14.09091, (J~1)o; = —10.90909 and (J~!)3; = 4.09091, and so

14.09091 —10.90909  4.09091 4.09091  —10.90909
—10.90909 14.09091 —10.90909  4.09091 4.09091
J = 4.09091  —10.90909 14.09091 —10.90909  4.09091
4.09091 4.09091  —10.90909 14.09091 —10.90909
—0.39959 4.09091 4.09091 —0.39959  14.09091

This result is again easily verified through direct inversion of J.

Remark 4 First, one could have calculated everything with numerical values from the
start, as opposed to evaluating the analytic expression of J~! for a specific value of r as we
did here. This gives the same results, as expected. Second, the analytical formula for J~!
remains valid even when J is not positive definite and only fails for those values of r such
that J is singular. The main mathematical role of the condition J > 0 in the path-sum
representation is to guarantee that .J is not singular.’

In the following section, we discuss the relations between Theorem 2 and two existing
approaches.

3. Relation to Existing Approaches

Malioutov et al. (2006) provided a walk-sum derivation for Gaussian belief propagation on
trees. Jones and West (2005) presented an expression for the entries of J~! as a sum of
simple paths. In this section, we show that these results are corollaries of Theorem 2 arising
as special cases.

3.1 Path-Sums on Trees

The recursive structure of the path-sum representation of J~! is especially simple on trees,
for which we recover the Gaussian belief propagation results of Malioutov et al. (2006).
Let J > 0 be an information matrix associated with a tree model 7. For any vertex «
of T, let N'(«) be the set of neighbors of & on 7. Observe that since T is a tree, the only
simple cycles from « to itself are the self-loop a — « with weight J,., and the backtracks
to the neighbors of & on T, e.g. @« — 8 — «, 8 € N(«). Then Eq. (3) of Theorem 2 gives

—1
Yoo = Jojo} = <Jaa + Z —JQB(JT\{Q})/BﬁlJﬂa> . (4a)
BeEN (a)
The quantity (JT\{Q})EHI satisfies a similar relation on the subtree 7\{a},

1
(Jma})éé=<=fﬁﬁ+ > —Jﬁa(JT\{a,ﬁ})Eale) :
SN B\

5. A path-sum result for singular matrices also exists, but it necessitates additional mathematical machinery.
In this case the path-sum formulation yields a pseudo-inverse for the singular matrix, see Giscard et al.
(2013).
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Let Cy\(g};5 be the connected component of 7\{/} that contains the vertex § € N(a).
Similarly define Cr {4 );5 to be the connected component of 7\{a, 3} that contains the
vertex 0. Since 7T is a tree, these components are identical: Cp\ (5,6 = C7\{a,8};5, and
therefore (JT\{,B}>5_51 = (JT\{aﬁ})gél. Thus, we have

-1
(J7\(a})35 = (JBB + ) Jﬁé(JT\{B})551J65> : (4b)
SeN(B)\a

In order to show that Eqgs. (4a, 4b) are the Gaussian belief propagation results, we introduce
some notation from Malioutov et al. (2006). Let J, := 1/%,4, and J,éf\la = (JT\{OC})EE. With
these notations, Eqgs. (4a, 4b) become

ja = Jaa + Z AJBH&; and jﬁ\a = Jﬁﬁ + Z AJ&HB;
BEN () SEN(B)\ex

with

AJs_g = —Jg(gj(s_\,ng(;g.

These are the Gaussian belief propagation equations (Egs. 7, 8 and 9 in Malioutov et al.,
2006), which immediately imply Propositions 16 and 17 in Malioutov et al. (2006) with the
further definitions rgo := Rgo = —Jga; V8\a = (JT\{a})Egl' Note that ro3 = 734 since J is
symmetric.

3.2 An Approach using Determinants

A determinant-based approach to the calculation of the covariance matrix ¥ = J~! was
demonstrated by Jones and West (2005). Here we show that this result follows from Eq. (2)
by using the adjugate formula for the matrix inverse. We then point out the fundamental
limitation of determinant-based approaches. We overcome this limitation using the path-
sum formulation in §4.

We recall the adjugate formula for matrix inverses:

Proposition 5 (Adjugate formula, Strang, 2005) Let M € C" " be a n X n non-
stngular complex matrixz. Then

det M det M
(M_l)z.j = (1) det]\fj’ and in particular (M_l)z.z. = deew,

where M]’ is the matriz M with its ith column and jth row removed and M* = AMZZ
To obtain this result we start with Eq. (2), which gives here
Jojo} = Z (_1)6@)(JQ\{a,Vz,...,ug(p)});:;‘]wve(p) s JV3V2(Jg\{a});glygjwa(‘]il)aow
pEHg;aw

with p = (@, va, ... vyp)w) is a simple path of length £(p). Since all the entries of J commute,
we can reorganize the weights in the above expression to get

Jc;o} - Z (_1)é(p)¢[p] X (Jg\{a, V2,...,Vg(p)})u_)(.}) XX (JQ\{a});glz/g X (J_l)cww

pEHg; aw

10
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Figure 2: top: the graphical model associated with a 5-banded 30 x 30 positive definite
information matrix. The weights of the edges are the entries of J. Bottom: the graphical
model associated with a partition of J into 5 x 5 blocks. The edge weights are the blocks
constituting J.

where ¢[p] = Juwvyy - - - JvavsJuaa 1s the weight of the simple path p. Using the adjugate

formula in Proposition 5, we have

Joa = Y (=1)Pg[p]

PGHg; aw

det J* P2 Vo) @ y det J&¥2 y det J*
det J& V2 Ve() 7 det Jo det J "’

since Jg\ (o, vo,...,v;} = J U 7#". This simplifies to
det J V25w

Joa = Z (—1)"®gp] T ded (5)
pellg; aw
The last equation is given as Theorem 1 in Jones and West (2005). Note that we only
used Eq. (2) in Theorem 2 to obtain this result. Jones and West (2005) did not give an
expression equivalent to Eq. (3) in Theorem 2, which provides an explicit formula for the
necessary determinants in terms of simple cycles on the graph associated with J.

The requirement that the entries of J be commutative to obtain Eq. (5) from Eq. (2)
may seem trivial, but in fact it excludes the very important case of block matrices. In the
next section, we demonstrate the use of Theorem 2 in the case where J is a block matrix.

4. Path-Sums for Arbitrary Partitions of J

An information matrix J may have a sparsity structure that is best exploited by partitioning
J into blocks. For example, consider an n x n information matrix J which is banded:
ie. Ji; = 0 if and only if |i — j| > b for some b < n. We say that J is b-banded. Then
J is simply block-tridiagonal when partitioned b x b blocks. Consequently, the graph G
associated with this partition of J is simpler than the graph associated with the full matrix:
see for example Figure 2. It is therefore desirable to develop a method capable of exploiting
these simplifications.

A fundamental impediment to determinant-based approaches to J~! is that the notion
of determinant itself does not extend to matrices with non-commutative blocks (Silvester,
2000). In contrast, the path-sum formulation for J~! does not require the commutativity
of the entries of J. For this reason, it continues to hold even when these entries do not
commute, see (Giscard et al., 2012) and (Giscard et al., 2013).

11
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Let J be an n X n information matrix and Iy, ..., Ip for some 1 < B < n be B disjoint
subsets of {1,...,n}. Then we write J;,;; for the minor (i.e. block) of J that corresponds to
the rows indexed by I; and the columns indexed by I;. We form a new graph ¢’ = (V',&’)
associated with this partition of J, such that Jr,;, # 0 <= (j,i) € £, where 0 is a
zero matrix. The block Jr,7; is now the weight associated with the edge (j,7). With these
conventions, Theorem 2 extends to block matrices without modification.

Remark 6 For a GMRF X, the partition of J given above is equivalent to a partition of the
set of random variables X into B > 1 disjoint subsets Xy,...,Xp. Let X' = (X4,...,Xp)
be a GMRF with respect to a new graph G’ = (V', ') with information matrix J'. Note
that each X; is now a random vector instead of a random variable. Following Definition 1:

X LX;|X{;; <= J;=0 < (j,i) ¢ &, (6)

with X’\Z.j the set of variables with X; and X; removed from X’. Note that X; 1L X;|X{ i
implies the global Markov property (GMP), which, for GMRFs, is equivalent to the pairwise
Markov property (PMP) (Lauritzen, 1996). However for a general distribution, the PMP
does not imply the GMP (Lauritzen, 1996). Hence in this case, the partition of X as per

Eq. (6) may not correspond to the partition of J.

Below we give a detailed synthetic example demonstrating the path-sum formulation of
the covariance matrix ¥ = J~! using a partition of J.

Example 2 (Non walk-summable block matrix on a loopy graph) Consider the fol-
lowing positive definite information matrix J of a thin membrane model

J = (7)
a+5b —b 0 - 0 - 0
“b  a+5 —b b 0 A 0 —b
0 ~b  a+5 0 - 0 -
- 0 a+5b —b 0 - 0
—b 0 b —b  a+5 —b  —b 0 b |,
0 - 0 —b  a+5 0 -
- 0 - 0 a+5b —b 0
—b 0 S — 0 ~b  —b  a+5b —b
0 b —b 0 - 0 —b  a+5b

where a, b > 0. Recall that walk-summability is equivalent to the condition p(|R|) < 1,
where |R)| is the entry-wise absolute value of R := I — J (Malioutov et al., 2006). Here we
have p(|R|) = |a + 5b — 1| ++/19b+b, and thus—depending on the values of a and b—walk-
summability does not always hold. For example, when a = b = 1 we have p(|R|) ~ 10.36,
p(J) ~9.36 and p(R) ~ 8.36 and J is not walk-summable.

The graph G associated to J is shown on the left of Figure 3. Instead of working on this
complicated graph, we may partition the matrix into 3 x 3 blocks as follows

L E E
J=|E L E]|, (8)
E E L

12
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Figure 3: left: graphical model associated with the thin membrane model matrix J of
Eq. (7). Every edge has weight —b and every self-loop has weight a + 5b. Right: triangular
graphical model K3 associated with the partition of J given in Eq. (8). Edges and self-
loops have matrix weights F and L, respectively. The vertices are labeled «, 8 and ~ for
convenience.

with
-b —-b O a+5db b 0
E=|-b 0 =b|, L:= -b a+5b b
0 —b —-b 0 -b a+5b

The graph G’ associated with this partition of .J is a triangle, denoted K3 and shown on the
right of Figure 3. Accordingly, the edge-weights are now the matrices F and L for edges and
self-loops, respectively. Note that these weights do not commute: [E,L] = EL — LE # 0.

The only simple cycles from any vertex (say, a) to itself on this graph are the self-
loop @ — «, the two backtracks « — 8 — « and o — v — « and the two triangles
a—f—v—aand a -y — 8 — a. Theorem 2 therefore yields

J—1:<

- \E-(J;cg\{a})gé-E —  E.(Jep\(a)yy - E (9a)

L
~—~—
0
Self loop /@ Backtrack I\(D Backtrack >
C ' K/// s
-1

+ E-Ukaap)y - E-Uxai))ss - B + E-Ukavtant)gs - B+ k(o)) - B > :

M I

Triangle \£>() Triangle \p()
C C

13
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where, by Eq. (3),

-1
Jica\ fa —1:< L — E.(Je,\fap)os  E ) and (Jepfagy)on = L1
( KC3\{ })BB ( Ks\{ 75})77 ( Ka\{ 75})77
Self loop O Backtrack ) Self loop
. -~ o

(9b)

Since (JICg\{a});’yl = (J]Cd\{a})gﬁl and (JICg\{a;y})gé = (J;C?’\{a’ﬁ});,yl, Egs. (9&, 9b) com-
pletely determine J,.!. Thus, we have

b
Jil = — X
a* g2 4 8ab — 3b?
5 1 3b
bt aim T 3ren T3 é , @136
a a

31b bt 5@ Ts 1 . 1

a+3b 1 bt ai3 T sy T3

By symmetry of J, this gives also Jﬂ_ﬂl and Jﬂ/iyl. The off-diagonal blocks, which are all
identical because of the symmetry of the matrix, now follow easily. For example, we have

(J_l)ﬁoc = (JIC:),\{a})Eﬁl E -(J_l)aa - E. (JICg\{a,w})Eﬁl B (JIC:),\{a});'yl B '(J_l)aaa

0 Q
Path I\/() Path b@
Y O

a 5a + 5 1 3b
b a+3b 6(a+6b) 6 a+3b
_ 1 _6b 1
- 5b
a? + 8ab — 302 3b_ N e _se 5
a+3b a+3b  6(a+6b) 6

As long as a,b > 0 (which implies J > 0), these results hold regardless of the values of a
and b. For example setting a = b = 1, we obtain the correct covariance matrix even though
J is not walk-summable.

5. Conclusion

We have presented an approach for exact inference of marginals in Gaussian graphical
models, called the path-sum formulation. This approach represents the covariance matrix
¥ of a Gaussian Markov Random Field (GMRF) as a continued fraction of finite depth and
breadth, and which only involves the simple paths and simple cycles on the graphical model
of the GMRF. For GMRFs, we have shown that the path-sum formulation only requires
J > 0. It also extends to arbitrary partitions of J, thereby providing the flexibility necessary
to exploit the sparsity structure of the information matrix J = 71,

From an algorithmic point of view, the computational cost associated with the calcula-
tion of any entry of a n xn covariance matrix using a path-sum is known to be O(n) on trees,

14
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see Giscard et al. (2013). The O(n) complexity is achieved for the most general situation;
if J or G has symmetries, the complexity would be lower. Evaluating the complexity of the
path-sum approach on a graph with an arbitrary topology remains an open problem. In
practice, finding the simple paths and simple cycles required for the computation of a path-
sum can be achieved using standard depth-first or breadth-first algorithms (Johnson, 1975).
In addition, we have consistently observed in numerical experiments that the contribution
of a simple cycle/path to any path-sum decays exponentially with its length. The method
we propose is therefore likely to find practical applications on sufficiently sparse yet large
Gaussian graphical models where the increase in the number of simple cycles/paths with
the length £ is offset by the decay of their contributions with £.

Alternatively, path-sums can be used to enhance existing walk-sum calculations. To this
end, we first factorise the walks involved in the walk-sum using an algorithm provided by
Giscard et al. (2012). The typical computational cost of this operation grows linearly, and
at worst quadratically, with the length of the walks. This yields a set of simple cycles/paths,
from which a path-sum can be constructed. This path-sum is guaranteed to contain all the
walks present in the original walk-sum as well as (infinitely) many more walks, all of which
are valid walks on the graphical model. Since the method of path-sums arises from exact
resummations on walk-sums, every problem that has a walk-sum interpretation is suscep-
tible to these resummations and therefore admits a path-sum expression. Consequently,
every algorithm that has a walk-sum interpretation (see e.g. Chandrasekaran et al., 2008)
necessarily has a path-sum formulation.

The interpretation of the entries of the covariance matrix as walk-sums and the existence
of the path-sum formulation opens the door to many more walk-based methods, which are
intermediary between these two approaches. The central idea is to exploit recent results
regarding the algebraic structure of the set of walks on graphs with arbitrary topology
(Thwaite, 2014) to identify certain infinite geometric series of terms appearing in a walk-
sum. These geometric series can then be exactly resummed, thereby reducing the sum of
all walk weights to a sum over the weights of a certain (yet infinite) subset of ‘irreducible’
walks. Each term in this sum is ‘dressed’ so as to exactly include the contributions of the
infinite families of resummed terms. The exact form of both the dressing and the irreducible
terms remaining in the sum depend on the structure of the resummed terms: choosing a
different family of terms produces a different series.

Viewed in this context, the walk-sum and path-sum formulations of a given problem can
be seen to be the extrema of a hierarchy of possible resummations: a walk-sum corresponds
to the case where no terms are exactly resummed, such that an explicit summation over
all walks remains to be carried out, while the path-sum expression corresponds to the case
where all possible geometric series have been resummed, leaving behind only a (finite) sum
over simple paths. In between these extremes lie many intermediate formulations, whose
mathematical properties such as complexity and convergence are expected to interpolate
between those of walk-sums and path-sums.
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Appendix A.

In this appendix we prove Theorem 2.

Proof The proof of the theorem is organized in two steps. First, assuming walk-summability,
we obtain the path-sum formulation for J~!. Second, we show that path-sum expression
thus obtained is the unique analytic continuation of the sum of all walks, and continues
to exist in the absence of walk-summability. Consequently, the path-sum remains a valid
representation of J~! when walk-summability fails.

Step 1: the path-sum expression for J~! is a special case of the more general result
concerning the path-sum formulation of the matrix inverse function presented and proved
in Giscard et al. (2013). Below we briefly recount how we obtain result for the specific case
of J71. Let R := I — J and |R| be the entry-wise absolute value of R, i.e. |R|;j = |R;;].
Let p(|R]|) be the spectral radius of |R|, i.e. the largest eigenvalue of |R|. As established
by Malioutov et al. (2006), p(|R|) < 1 is equivalent to to walk-summability, and is enough
to guarantee absolute convergence of the series Y, ., R" = (I — R)~! = J~1. This power
series can be seen as a sum of walk weights on the graph G associated with R (Flajolet and

Sedgewick, 2009), that is
(r") = > ol (10)

n>0 wEWg;aw

with ¢[w] the weight of the walk w, which is defined to be the product of the weights of the
edges traversed by w, where the weight of an edge from « to § is given by

T Ha#B,

11
1—Jopa fa=p. (11)

¢laf] = Rpa = {

Note that since we assumed walk-summability, the right-hand side of Eq. (10) exists. We
then use the result by Giscard et al. (2012), which reduces a series of weighted walks, such
as the one of Eq. (10), to a sum of weighted simple paths and simple cycles. This result is
reproduced here for the sake of completeness:

Theorem 7 (Path-sum, Giscard et al., 2012) Let G be a graph and ¢|.] be the weight
function of Eq. (11). Suppose that the walk-sum }_ ey, ¢lw] exists. Then this sum is
given by the weighted path-sum ’

£(p)+1
Z ¢[w] = Z H {¢g\{a,yz,...,yj1};yj d)[l/j—i-lyj]} ¢g;a>

weEWg;aw pEllg; aw J=1
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where ¢g. o 1= ZwEWg;aa olw] is the weighted sum of all walks from « to itself on G and is
explicitly given by '

o) -1

boia=(1— ¢[M1W(7)]H{cf)g\{a,m,...,uj_l};uj¢>[Mjuj1]} ;

'YGFQ; aa j:2

and similarly for all ¢g\{a,vy,....v;_1};0; O PG\(a, g, i1} ;- 1 these expressions, the
products are right-to-left, p = (v1, va, ..., Vyp)41) is a simple path of length £(p) with o = vy
and w = Vyp)41 for convenience; and v = (u1, p2, - .., fe,, p1) is a simple cycle of length
L(~y) from a = py to itself.

By using the edge weights of Eq. (11), we obtain ¢g. o, = J,} and similarly PG\ {, vayesvj_1}iv; =
(Jg\{a,yzr_ﬂyjil});jlyj and Theorem 7 yields Eqs. (2, 3). Next we prove that Eqgs. (2, 3) yield
J~! for any matrix J > 0, even when walk-summability does not hold and the walk-sum of
Eq. (10) does not converge. Central to our proof is the (well-established) theory of analytic
continuation (Priestley, 2003).

Step 2: we consider the three following functions of a complex variable z into C
g1(2) == (I — zR)7Y, ga(2) := 3,50 2" R" and, since go(2) is a walk-sum, it has a path-
sum expression which we denote g3(z). (The path-sum expression g3(z) is obtained from
Theorem 2 on using the edge-weights 2R3, for an edge from « to 3).

The first function, g1(z), is analytic on z € C\Sp~!(R) with Sp~!(R) the inverse of
the spectrum of R. The second function, gs(z), is analytic on the disk Dg of the complex
plane where z < 1/p(|R|). The third function, g3(z), comprises only a finite number of
terms (since there are finitely many simple paths and simple cycles on a finite graph).
Consequently g3(z) exists for z € C\Sp~!(R). Evidently g; and go agree on Dp and by
construction go and g3 agree on Dy as well. It follows that g; and g3 constitute two direct
analytic continuations of go outside of Dp (Priestley, 2003) (also called extensions of ga,
Kreyszig, 1989). By the Uniqueness Theorem (Theorem 15.9, Priestley, 2003) only one such
analytic continuation exists and g;(z) = g3(z) on the domain C\Sp~1(R).

We conclude the proof by showing that the point z = 1, for which g;(z) and g3(z) yield
J~1, is also in this domain. Indeed, the covariance matrix ¥ of a Gaussian distribution must
be positive definite, implying that it is non-singular (Corollary 7.17 in Horn and Johnson,
2013). Consequently, .J is not singular: so J ! exists exists and 1 is not an eigenvalue of
R=1-J,ie. 1€ C\Sp }(R). Then g; and g3 exist at z = 1, in particular g3(1) is a valid
representation of J~!, even though z = 1 may not be in Dg (i.e. J is not walk-summable).
This completes the proof of Theorem 2. |

nxn
’
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