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Abstract

In the past few years, differential privacy has become a standard concept in the area of pri-
vacy. One of the most important problems in this field is to answer queries while preserving
differential privacy. In spite of extensive studies, most existing work on differentially pri-
vate query answering assumes the data are discrete (i.e., in {0, 1}d) and focuses on queries
induced by Boolean functions. In real applications however, continuous data are at least as
common as binary data. Thus, in this work we explore a less studied topic, namely, differen-
tial privately query answering for continuous data with continuous function. As a first step

1. Part of this work has been appeared in (Wang et al., 2013).
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towards the continuous case, we study a natural class of linear queries on continuous data
which we refer to as smooth queries. A linear query is said to be K-smooth if it is specified
by a function defined on [−1, 1]d whose partial derivatives up to order K are all bounded.
We develop two ε-differentially private mechanisms which are able to answer all smooth
queries. The first mechanism outputs a summary of the database and can then give answers
to the queries. The second mechanism is an improvement of the first one and it outputs a

synthetic database. The two mechanisms both achieve an accuracy of O(n−
K

2d+K /ε). Here
we assume that the dimension d is a constant. It turns out that even in this parameter
setting (which is almost trivial in the discrete case), using existing discrete mechanisms to
answer the smooth queries is difficult and requires more noise. Our mechanisms are based
on L∞-approximation of (transformed) smooth functions by low-degree even trigonomet-
ric polynomials with uniformly bounded coefficients. We also develop practically efficient
variants of the mechanisms with promising experimental results.1

Keywords: differential privacy, smooth queries, synthetic dataset

1. Introduction

Statistical analysis and machine learning are often conducted on data sets containing sen-
sitive information, such as medical records, commercial data, etc. The benefit of mining
from such data is tremendous. But when releasing sensitive data, one must take privacy
issue into consideration, and has to accept a tradeoff between the accuracy and the amount
of privacy loss of the individuals in the database.

In this paper, we consider differential privacy (Dwork et al., 2006), which has become
a standard concept in the area of privacy. Roughly speaking, a mechanism which releases
information about some database is said to preserve differential privacy, if the change of
a single database element does not affect the probability distribution of the output signif-
icantly. Differential privacy provides strong guarantees against attacks. It ensures that
the risk of information leakage for any individual who submits her information to the
database is very small, in the sense that an adversary can discover almost nothing new
from the database that contains one individual’s information compared with that from the
database without that individual’s information. Recently there have been extensive studies
of machine learning, statistical estimation, and data mining under the differential privacy
framework (Wasserman and Zhou, 2010; Chaudhuri et al., 2011; Lei, 2011; Kifer and Lin,
2010; Chaudhuri et al., 2012; Williams and McSherry, 2010; Jain et al., 2012; Chaudhuri
and Hsu, 2011).

Accurately answering statistical queries is a well studied problem in differential privacy.
A simple and efficient method is the Laplace mechanism (Dwork et al., 2006), which adds
Laplace noise to the true answers. Laplace mechanism is especially useful for queries with
low sensitivity, which is the maximal difference of the query values of two databases that
are different in only one item. A typical class of queries that has low sensitivity is linear
queries, whose sensitivity is O(1/n), where n is the size of the database.

The Laplace mechanism has a limitation. It can answer at most O(n2) queries. If the
number of queries is substantially larger than n2, Laplace mechanism is not able to provide
differentially private answers with nontrivial accuracy. Considering that potentially there
are many users and each user may submit a set of queries, limiting the number of total

1. Source codes available at http://www.cis.pku.edu.cn/faculty/vision/wangliwei/software.html
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queries to be smaller than n2 is too restricted in some situations. A remarkable result due
to Blum, Ligett and Roth (Blum et al., 2008) (will be referred to as BLR in this paper) shows
that: information theoretically it is possible for a mechanism to answer far more than n2

linear queries while preserving differential privacy and nontrivial accuracy simultaneously.

There is a series of works (Dwork et al., 2009, 2010; Roth and Roughgarden, 2010; Hardt
and Rothblum, 2010) improving the result of (Blum et al., 2008). All these mechanisms
are very powerful in the sense that they can answer general and adversely chosen queries.
On the other hand, even the fastest algorithms for query answering (Hardt and Rothblum,
2010; Hardt et al., 2012a) run in time linear in the size of the data universe. Often the
size of the data universe is much larger than that of the database, so these mechanisms are
inefficient. Recently, Ullman (2013) shows that there is no polynomial time algorithm that
can answer n2+o(1) general linear queries while preserving privacy and accuracy (assuming
the existence of one-way function).

Recently, there are growing interests in studying differentially private mechanisms for
restricted classes of queries, in particular queries useful in applications. One class of queries
that attracts a lot of attentions are the k-way conjunctions. The data universe for this
problem is {0, 1}d. Thus each individual record has d binary attributes. A k-way conjunc-
tion query is specified by k features. The query asks what fraction of the individual records
in the database has all these k features being 1. A series of works attack this problem using
several different techniques (Barak et al., 2007; Gupta et al., 2011; Cheraghchi et al., 2012;
Hardt et al., 2012b; Thaler et al., 2012) . They proposed elegant mechanisms which run in
time poly(n) when k is a constant. Another class of queries that yields efficient mechanisms
is the class of sparse query. A query is m-sparse if it takes non-zero values on at most m
elements in the data universe. Blum and Roth (2013) developed mechanisms which are
efficient when m = poly(n).

The above differentially private mechanisms can also be categorized into two classes
according to the output of the algorithm. The first class of algorithms output answers
to the queries. The second class of algorithms output synthetic databases instead; the
answers of the queries can then be simply computed from the synthetic database. The
Laplace mechanism belongs to the first class. BLR and the offline version of the Private
Multiplicative Weight updating (PMW) mechanism (Hardt and Rothblum, 2010; Hardt
et al., 2012a) output synthetic database. From a practical point of view, the synthetic
dataset output is appealing. In fact, before the notion of differential privacy was proposed,
almost all practical techniques developed to preserve privacy against certain types of attacks
output a synthetic dataset by modifying the raw dataset (please see the survey Aggarwal
and Yu 2008 and the references therein).

Among the studies of differentially private query answering, most existing works focus
on binary data and queries induced by Boolean functions2. In real applications however,
continuous data are at least as common as binary data; and one has to use continuous
functions in this scenario instead of Boolean functions. In this paper, we explore this
relatively less studied topic, i.e., differentially private query answering with continuous

2. On the other hand, there are many results (e.g., Chaudhuri et al. 2011, Williams and McSherry 2010,
Jain et al. 2012, Chaudhuri and Hsu 2011) on differentially private learning that study continuous data
and continuous function.
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functions on continuous data. We assume that 1) the data universe is X = [−1, 1]d; 2) a
linear query qf is induced by a continuous function f : X → R.

As will be clear soon, answering general linear queries in the continuous setting is con-
siderably more difficult than that in the binary case. Therefore we will focus our analysis on
a restricted class of linear queries. The first question is: which subclass of linear queries is
commonly used in practice? Let D = {x1, . . . , xn} (xi ∈ [−1, 1]d) be a database consisting
of continuous data. A linear query qf on D is defined as qf (D) := 1

n

∑
x∈D f(x), where

f : [−1, 1]d → R is a continuous function. Thus, to find out a natural class of linear queries,
one only needs to find out a natural class of continuous functions.

The set of continuous functions considered in this paper is the set of smooth queries.
We say a function f : [−1, 1]d → R is K-smooth, if all the partial derivatives of f up to the
Kth order are bounded. We say a linear query qf is K-smooth if f is a K-smooth function.
We believe smooth function is one of the most natural and useful classes of continuous
functions; and therefore the set of smooth queries is a natural class of linear queries worth
studying. Our aim is to answer all smooth queries while preserving differential privacy
and accuracy. See also section 4.2 for an explanation of why answering all smooth queries
is useful for differentially private machine learning. As a first step towards differential
privacy for continuous query, we study in this work the case where the dimension d of the
data universe [−1, 1]d is a constant. It turns out that the smooth query problem is very
challenging even for d = O(1) which is almost trivial in the discrete case (see below).

We develop two mechanisms for the smooth query. The two mechanisms both achieve

accuracy of O
((

1
n

) K
2d+K /ε

)
for all K-smooth queries. If the order of smoothness K is large

compared to the dimension d, then the errors of the mechanisms are close to n−1.

To be more concrete, the former mechanism outputs a summary of the database. To ob-
tain an answer of a smooth query, the user runs a public evaluation procedure which contains

no information of the database. Outputting the summary has running time O
(
n1+ d

2d+K

)
,

and the evaluation procedure for answering a query runs in time Õ(n
d+2+2d

K
2d+K ). It can be

seen that if K is large compared to d, then the mechanism runs in almost linear time. For

our second mechanism which outputs synthetic database, the running time is O(n
3dK+5d
4d+2K ),

polynomial in the size of the database. Theoretically, the second mechanism is far less effi-
cient as the first one. This is reasonable since outputting synthetic database is much harder
than outputting answers. We then develop practically efficient variants of this mechanism.

As a comparison, we will consider how to apply existing mechanisms (e.g., PMW, BLR)
to solve the smooth query problem. As our goal is to answer all smooth queries while
preserving privacy and accuracy, and because there are infinitely many K-smooth functions,
one has to discretize the set of smooth functions before using any existing mechanism. It
is not clear how to efficiently discretize this set of queries. More importantly, we show that
even if one can discretize this query set in an optimal way, there is a lower bound for the
number of discretized queries of this set. The lower bound is exponential in 1/α, where α
is the desired error of the query answering mechanism; and as a result, the best existing
mechanism has significantly larger error than that of the algorithms proposed in this paper.
(See Section 3.2.1 and Proposition 18 in Section 4.1 for details.)
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The mechanisms proposed in this paper are based on L∞-approximation and is mo-
tivated by Thaler et al. (2012), which considers approximation of k-way conjunctions by
low degree polynomials. Our basic idea is to approximate the whole query class by linear
combination of a small set of basis functions. The main technical difficulty lies in that in
order that the approximation induces an efficient and differentially private mechanism, all
the linear coefficients of the basis functions must be small. To guarantee this, we first trans-
form the query function. Then by using even trigonometric polynomials as basis functions
we prove a constant upper bound for the linear coefficients. It is worth pointing out that
to guarantee accuracy, we must consider L∞-approximation. It is completely different from
L2-approximation, which is simply Fourier analysis when using trigonometric polynomial
as basis. Another difficulty for the first mechanism is how to efficiently compute the linear
coefficients. It turns out that the smoothness of the functions allows us to use an efficient
numerical method to compute the coefficients to a precision so that the accuracy of the
mechanism is not affected significantly.

We also point out that the basis functions described above have some relation to conjunc-
tions. In fact, conjunctions can also be viewed as smooth functions as they are multilinear
polynomials. Conjunctions form a small subset of smooth functions. Moreover, the set of
conjunctions is also a strict subset of the basis function used in our mechanism. If we re-
strict to conjunctions, our algorithm essentially reduces to Laplace mechanism (see Section
3.2.2 for details). But different to all existing works dealing with conjunctions, our aim here
is to answer all smooth queries while preserving privacy and accuracy.

Finally we conduct experiments on the efficient variant of the mechanism which outputs
synthetic database as it may be more useful in practice. Experimental results demonstrate
that the algorithm achieves good accuracy and are practically efficient on datasets of various
sizes and of a number of attributes.

This work is a small step towards an understanding of smooth queries. Our mechanisms
have obvious limitations: The performances decrease exponentially with respect to the data
dimension d. Thus the algorithms cannot handle the case in which d is a super constant.
The experimental results also demonstrate that our mechanisms work well mostly when d
is no more than a few hundred. Studying the general case d = ω(1) is our future work.

The rest of the paper is organized as follows. Section 2 gives the background and
all the definitions. In Section 3, we propose the query-answering mechanism. In Section
4, we give the mechanism which is able to output synthetic database. In Section 5, we
develop a practical variant of the second mechanism and conduct experiments to evaluate
its performance. Finally, we conclude in Section 6.

2. Preliminaries

Let D be a database containing n data points in the data universe X . In this paper, we
consider the case that X ⊂ Rd where d is a constant. Typically, we assume that the data
universe X = [−1, 1]d. Two databases D and D′ are called neighbors if |D| = |D′| = n and
they differ in exactly one data point. The following is the formal definition of differential
privacy.

Definition 1 ((ε, δ)-differential privacy) A randomized mechanismM whose output lies
in some range S is said to preserve (ε, δ)-differential privacy if for all measurable S ∈ S,
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for all pairs of neighbor databases D,D′, the following holds:

P(M(D) ∈ S) ≤ P(M(D′) ∈ S) · eε + δ,

where the probability is taken over the randomness of the M. If M preserves (ε, 0)-
differential privacy, we say M is ε-differentially private.

We consider linear queries. Each linear query qf is specified by a function f which maps
the data universe [−1, 1]d to R. qf is defined as

qf (D) :=
1

|D|
∑
x∈D

f(x).

Let Q be a set of queries. The accuracy of a mechanism with respect to Q is defined as
follows.

Definition 2 ((α, β)-accuracy) Let Q be a set of queries. A mechanism M is said to
have (α, β)-accuracy for size n databases with respect to Q, if for every database D with
|D| = n the following holds

P(∃q ∈ Q, |M(D, q)− q(D)| ≥ α) ≤ β,

where M(D, q) is the answer to q given by M, and the probability is over the internal
randomness of the mechanism M.

We will make use of the Laplace mechanism (Dwork et al., 2006) in our algorithm.
Laplace mechanism adds Laplace noise to the output. We denote by Lap(σ) the random
variable distributed according to the Laplace distribution with parameter σ, whose density
function is 1

2σ exp(−|x|/σ).
Next, we formally define smooth queries, which is a special class of linear queries. Since

each linear query qf is specified by a function f , a set of queries QF can be specified by
a set of functions F . Remember that each f ∈ F maps [−1, 1]d to R. For any point
x = (x1, . . . , xd) ∈ [−1, 1]d, if k = (k1, . . . , kd) is a d-tuple of nonnegative integers, then we
define

Dk := Dk1
1 · · ·D

kd
d :=

∂k1

∂xk11

· · · ∂
kd

∂xkdd
.

Let |k| := k1 + . . .+ kd. Define the K-norm as

‖f‖K := sup
|k|≤K

sup
x∈[−1,1]d

|Dkf(x)|.

We will study the set CKB which contains all smooth functions whose derivatives up to
order K have ∞-norm upper bounded by a constant B > 0. Formally,

CKB := {f : ‖f‖K ≤ B}.

The set of queries specified by CKB , denoted as QCKB
, is our focus. Smooth functions have

been studied in depth in machine learning (van der Vart and Wellner, 1996; Wahba et al.,

6



Differentially Private Data Releasing for Smooth Queries

1999; Smola et al., 1998; Wang, 2011). See Section 4.2 for examples of smooth functions
and its relation to differentially private machine learning.

In this work we will frequently use trigonometric polynomials. For the univariate case,
a function p(θ) is called a trigonometric polynomial of degree m if

p(θ) = a0 +

m∑
r=1

(ar cos rθ + br sin rθ) ,

where ar, br are constants. If p(θ) is an even function, we say that it is an even trigonometric
polynomial, and

p(θ) = a0 +
m∑
r=1

ar cos rθ.

For the multivariate case, if

p(θ1, . . . , θd) =
∑

r=(r1,...,rd)

ar cos(r1θ1) . . . cos(rdθd),

then p is said to be an even trigonometric polynomial (with respect to each variable), and
the degree of θi is maxi≤d{ri}.

3. The First Mechanism: Query Answering

In this section we propose our first mechanism which outputs answers to the queries. Our
second mechanism which is able to output synthetic database will be given in the next
section.

3.1 Mechanism and Main Results

The following theorem is our first main result. It says that if the query class is specified by
smooth functions, then there is an efficient mechanism for query answering which preserves
ε-differential privacy and good accuracy. The mechanism consists of two parts: One for
outputting a summary of the database, the other for answering a query. The two parts are
described in Algorithm 1 and Algorithm 2 respectively. The second part of the mechanism
contains no private information of the database.

Theorem 3 Let the query set be

QCKB
:= {qf =

1

n

∑
x∈D

f(x) : f ∈ CKB },

where K ∈ N and B > 0 are constants. Let the data universe be [−1, 1]d, where d ∈ N is a
constant. Then the mechanism M given in Algorithm 1 and Algorithm 2 satisfies that for
any ε > 0, the followings hold:

1) The mechanism is ε-differentially private.

7
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Algorithm 1 Outputting the summary

Notations: T dt := {0, 1, . . . , t− 1}d, x := (x1, · · · , xd), θi(x) := arccos(xi).
Parameters: Privacy parameters ε, δ > 0, Failure probability β > 0,

Smoothness order K ∈ N.
Input: Database D ∈

(
[−1, 1]d

)n
Output: A td-dimensional vector as the summary b̂.

1: Set t = dn
1

2d+K e.
2: for all r = (r1, . . . , rd) ∈ T dt do
3: br ← 1

n

∑
x∈D cos (r1θ1(x)) . . . cos (rdθd(x))

4: b̂r ← br + Lap
(
td

nε

)
5: end for
6: b̂← (b̂r)‖r‖∞≤t−1 (b̂ is a td dimensional vector)

7: return: b̂

Algorithm 2 Answering a query

Input: A query qf , where f : [−1, 1]d → R and f ∈ CKB ,

Summary b̂ returned by Algorithm 1
Output: Approximate answer to qf (D).

1: Set t = dn
1

2d+K e.
2: Let gf (θ) = f (cos(θ1), . . . , cos(θd)), θ = (θ1, . . . , θd) ∈ [−π, π]d.
3: Compute the a trigonometric polynomial approximation pt(θ) of gf (θ), where
pt(θ) =

∑
r=(r1,...,rd),‖r‖∞≤t−1 cr cos(r1θ1) . . . cos(rdθd). (see Section 3.3 for details)

4: c← (cr)‖r‖∞≤t−1 (c is a td dimensional vector)

5: return: c · b̂

2) For any β ≥ 10·e−
1
5

(n
d

2d+K ) the mechanism is (α, β)-accurate, where α = O
(
n−

K
2d+K /ε

)
,

and the hidden constant depends only on d, K and B.

3) The running time for M to output the summary is O(n
3d+K
2d+K ).

4) The running time for M to answer a query is O(n
d+2+2d

K
2d+K · polylog(n)).

The proof of Theorem 3 is essentially based on Theorem 4 given below. The detailed
proof of Theorem 3 is given in the Section 3.4.

To have a better idea of how the performances depend on the order of smoothness, let
us consider three cases. The first case is K = 1, i.e., the query functions only have the first
order derivatives. Another extreme case is K � d, and we assume d/K = ε0 � 1. We also
consider a case in the middle by assuming K = 2d. Table 1 gives simplified upper bounds
for the error and running time in these cases. We have the following observations:

1) The accuracy α improves dramatically from roughly O(n−
1
2d ) to nearly O(n−1) as K

increases. For K > 2d, the error is smaller than the sampling error O(n−
1
2 ).

8
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Order of smoothness Accuracy α Running Time: Running Time:
Outputting summary Answering a query

K = 1 O(n−
1

2d+1 ) O(n
3
2 ) Õ(n

3
2

+ 1
4d+2 )

K = 2d O(n−
1
2 ) O(n

5
4 ) Õ(n

1
4

+
3/4
d )

d
K = ε0 � 1 O(n−(1−2ε0)) O(n1+ε0) Õ(nε0(1+ 3

d
))

Table 1: Performance vs. Order of Smoothness for Query Answering

2) The running time for outputting the summary does not change too much, because
reading through the database requires Ω(n) time.

3) The running time for answering a query reduces significantly from roughly O(n3/2)
to nearly O(nε0) as K getting large. When K = 2d, it is approximately n1/4 if d is
not too small.

Conceptually our mechanism is simple. First, by change of variables we have

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd).

It also transforms the data universe from [−1, 1]d to [−π, π]d. Note that for each variable
θi, gf is an even function. To compute the summary, the mechanism just gives noisy
answers to queries specified by even trigonometric monomials cos(r1θ1) . . . cos(rdθd). For
each trigonometric monomial, the highest degree of any variable is max1≤i≤d ri ≤ t =

O(n
1

2d+K ). The summary is an O(n
d

2d+K )-dimensional vector. To answer a query specified
by a smooth function f , the mechanism computes a trigonometric polynomial approximation
of gf . The answer to the query qf is a linear combination of the summary by the coefficients
of the approximation trigonometric polynomial.

Our algorithm is an L∞-approximation based mechanism, which is motivated by Thaler
et al. (2012). An approximation based mechanism relies on three conditions:

1) There exists a small set of basis functions such that every query function can be well
approximated by a linear combination of them.

2) All the linear coefficients are small.

3) The whole set of the linear coefficients can be computed efficiently.

If these conditions hold, then the mechanism just outputs noisy answers to the set of
queries specified by the basis functions as the summary. When answering a query, the mech-
anism computes the coefficients with which the linear combination of the basis functions
approximate the query function. The answer to the query is sidiscretizationmply the inner
product of the coefficients and the summary vector.

The following theorem contains the main technical results based on which Theorem 3
holds. It guarantees that by change of variables and using even trigonometric polynomials
as the basis functions, the class of smooth functions has all the three properties described
above.

9
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Theorem 4 Let γ > 0. For every f ∈ CKB defined on [−1, 1]d, let

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd), θi ∈ [−π, π].

Then, there is an even trigonometric polynomial p whose degree of each variable is t(γ) =(
1
γ

)1/K
:

p(θ1, . . . , θd) =
∑

0≤r1,...,rd<t(γ)

cr1,...,rd cos(r1θ1) . . . cos(rdθd),

such that

1) ‖gf − p‖∞ ≤ γ.

2) All the linear coefficients cr1,...,rd can be uniformly upper bounded by a constant M
independent of t(γ) (i.e., M depends only on K, d, and B).

3) The whole set of the linear coefficients can be computed in time O
(

( 1
γ )

d+2
K

+ 2d
K2 · polylog( 1

γ )
)

.

Theorem 4 is proved in Section 3.3. Based on Theorem 4, the proof of Theorem 3
is mainly the argument for Laplace mechanism together with an optimization of the ap-
proximation error γ trading-off with the Laplace noise. (Please see Section 3.4 for more
details.)

3.2 Discussions

In this section, we show that our algorithm is more effective than methods based on dis-
cretization.

3.2.1 Performance of Existing Mechanisms for Smooth Queries

As mentioned in Introduction, in order to apply existing mechanisms to smooth query prob-
lem, one has to conduct discretization, both to the data universe and the set of queries.
Here, we show that even if one can discretize this function set and even if the it is im-
plemented in an optimal way, the discretized set is exponentially large, and all existing
mechanisms have accuracies significantly worse than that of our algorithm.

Proposition 5 Let 0 < α < 1. Let CKB (α) be a subset of CKB so that for every f, g ∈ CKB (α),
‖f − g‖[−1,1]d ≥ α. In other words, |CKB (α)| is the packing number of CKB . We have

log
∣∣CKB (α)

∣∣ ≥ Ω

((
1

α

)d/K)
.

If we further define Qα
CKB

as the corresponding discretization of QCKB
with precision α, then

log
∣∣∣QαCKB ∣∣∣ ≥ Ω

((
1

α

)d/K)
.
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Corollary 6 Suppose the query set QCKB
can be discretized in an optimal way. Then the

accuracy guarantee of the PMW mechanism is at best O(n
− K

2(d+K) /ε), and the running time

is O(n
Kd

2(K+d) ) per query.

Compare to the accuracy of our mechanism O(n−
K

2d+K /ε), our algorithm has significantly
better accuracy especially when K is relatively large.

3.2.2 Connection with Conjunctions

In a sense, the well studied query class conjunctions defined on {0, 1}d can be seen as
smooth functions, by simply extending the domain from {0, 1}d to [−1, 1]d and extrapolating
xi1 ∧ . . . ∧ xiJ to xi1 · · ·xiJ . Clearly f(x) :=

∏J
j=1 xij is multilinear and smooth.

Note that for multilinear function f induced query, our mechanism will transform it
to gf (θ1, . . . , θd) := f(cos θ1, . . . , cos θd) =

∏J
j=1 cos θij . Thus gf is simply a multilinear

trigonometric polynomial and is one of the basis functions used in our algorithm. Recall
that the mechanism adds Laplace noise to the basis functions. Therefore, if we focus only
on the conjunction queries, our algorithm simply reduces to Laplace mechanism.

3.3 L∞-approximation of smooth functions: small and efficiently computable
coefficients

In this section we prove Theorem 4. That is, for every f ∈ CKB the corresponding gf
can be approximated by a low degree trigonometric polynomial in L∞-norm. We also
require that the linear coefficients of the trigonometric polynomial are all small and can be
computed efficiently. These properties are crucial for the differentially private mechanism
to be accurate and efficient.

In fact, L∞-approximation of smooth functions in CKB by polynomial (and other basis
functions) is an important topic in approximation theory. It is well-known that for every
f ∈ CKB there is a low degree polynomial with small approximation error. However, it is
not clear whether there is an upper bound for the linear coefficients that is sufficiently good
for our purpose. Instead we transform f to gf and use trigonometric polynomials as the
basis functions in the mechanism. Then we are able to give a constant upper bound for the
linear coefficients. We also need to compute the coefficients efficiently. But results from
approximation theory give the coefficients as complicated integrals. We adopt an algorithm
which fully exploits the smoothness of the function and thus can efficiently compute ap-
proximations of the coefficients to certain precision so that the errors involved do not affect
the accuracy of the differentially private mechanism too much.

Below, Section 3.3.1 describes the classical theory on trigonometric polynomial approx-
imation of smooth functions. Section 3.3.2 shows that the coefficients have a small upper
bound and can be efficiently computed. Theorem 4 then follows from these results.

3.3.1 Trigonometric Polynomial Approximation with Generalized Jackson
Kernel

This section mainly contains known results of trigonometric polynomial approximation,
stated in a way tailored to our problem. For a comprehensive description of univariate

11
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approximation theory, please refer to the excellent book of DeVore and Lorentz (1993) and
to Temlyakov (1994) for multivariate approximation theory.

Let gf be the function obtained from f ∈ CKB ([−1, 1]d):

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd).

Note that gf ∈ CKB′([−π, π]d) for some constant B′ depending only on B,K, d, and gf is
even with respect to each variable. The key tool in trigonometric polynomial approximation
of smooth functions is the generalized Jackson kernel.

Definition 7 Define the generalized Jackson kernel as

Jt,r(s) =
1

λt,r

(
sin(ts/2)

sin(s/2)

)2r

,

where λt,r is determined by
∫ π
−π Jt,r(s)ds = 1.

Jt,r(s) is an even trigonometric polynomial of degree r(t − 1). Let Ht,r(s) = Jt′,r(s),
where t′ = bt/rc + 1. Then Ht,r is an even trigonometric polynomial of degree at most t.
We write

Ht,r(s) = a0 +
t∑
l=1

al cos ls. (1)

Suppose that g is a univariate function defined on [−π, π] which satisfies that g(−π) =
g(π). Define the approximation operator It,K as

It,K(g)(x) = −
∫ π

−π
Ht,r(s)

K+1∑
l=1

(−1)l
(
K + 1

l

)
g(x+ ls)ds, (2)

where r = dK+3
2 e. It is not difficult to see that It,K maps g to a trigonometric polynomial

of degree at most t.

Next suppose that g is a d-variate function defined on [−π, π]d, and is even with respect
to each variable. Define an operator Idt,K as sequential composition of It,K,1, . . . , It,K,d,
where It,K,j is the approximation operator given in (2) with respect to the jth variable of
g. Thus Idt,K(g) is a trigonometric polynomial of d-variables and each variable has degree
at most t.

Theorem 8 Suppose that g is a d-variate function defined on [−π, π]d, and is even with

respect to each variable. Let D
(K)
j g be the Kth order partial derivative of g respect to the

j-th variable. If ‖D(K)
j g‖∞ ≤ M for some constant M for all 1 ≤ j ≤ d, then there is a

constant C such that

‖g − Idt,K(g)‖∞ ≤
C

tK+1
,

where C depends only on M , d and K.

12
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3.3.2 The Linear Coefficients

In this subsection we study the linear coefficients in the trigonometric polynomial Idt,K(gf ).

The previous subsection established that gf can be approximated by Idt,K(gf ) for a small t.
Here we consider the upper bound and approximate computation of the coefficients. Since
Idt,K(gf )(θ1, . . . , θd) is even with respect to each variable, we write

Idt,K(gf )(θ1, . . . , θd) =
∑

0≤n1,...,nd≤t
cn1,...,nd cos(n1θ1) . . . cos(ndθd). (3)

Fact 9 The coefficients cn1,...,nd of Idt,K(gf ) can be written as

cn1,...,nd = (−1)d
∑

1≤k1,...,kd≤K+1
0≤l1,...,ld≤t
li=ki·ni∀i∈[d]

ml1,k1,...,ld,kd , (4)

where

ml1,k1,...,ld,kd =
d∏
i=1

(−1)kiali

(
K + 1

ki

)(∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
gf (θ)dθ

)
, (5)

and ali is the linear coefficient of cos(lis) in Ht,r(s) as given in (1).

The following lemma shows that the coefficients cn1,...,nd of Idt,K(gf ) can be uniformly
upper bounded by a constant independent of t.

Lemma 10 There exists a constant M which depends only on K,B, d but independent of
t, such that for every f ∈ CKB , all the linear coefficients cn1,...,nd of Idt,K(gf ) satisfy

|cn1,...,nd | ≤M.

For clarity, we postpone the proof in Section 3.3.3.
Now we consider the computation of the coefficients cn1,...,nd of Idt,K(gf ). Note that

each coefficient involves d-dimensional integrations of smooth functions, so we have to nu-
merically compute approximations of them. For function class CKB defined on [−1, 1]d,
traditional numerical integration methods run in time O(( 1

τ )d/K) in order that the error is
less than τ . Here we adopt the sparse grids algorithm due to Gerstner and Griebel (1998)
which fully exploits the smoothness of the integrand. By choosing a particular quadrature
rule as the algorithm’s subroutine, we are able to prove that the running time of the sparse
grids is bounded by O(( 1

τ )2/K). The sparse grids algorithm, the theorem giving the bound
for the running time and its proof are all given in the follow section 3.3.4 and 3.3.5. Based
on these results, we establish the running time for computing the approximate coefficients
of the trigonometric polynomial, which is stated in the following Lemma.

Lemma 11 Let ĉn1,...,nd be an approximation of the coefficient cn1,...,nd of Idt,K(gf ) obtained
by approximately computing the integral in (5) with a version of the sparse grids algorithm
(Gerstner and Griebel, 1998) (given in the section 3.3.4). Let

Îdt,K(gf )(θ1, . . . , θd) =
∑

0≤n1,...,nd≤t
ĉn1,...,nd cos(n1θ1) . . . cos(ndθd).

13
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Then for every f ∈ CKB , in order that

‖Îdt,K(gf )− Idt,K(gf )‖∞ ≤ O
(
t−K

)
,

it suffices that the computation of all the coefficients ĉn1,...,nd runs in time

O
(
t(1+ 2

K
)d+2 · polylog(t)

)
. In addition, maxn1,...,nd |ĉn1,...,nd − cn1,...,nd | = o(1) as t→∞.

The proof of Lemma 11 is given in the Section 3.3.5. Theorem 4 then follows easily from
Lemma 10 and Lemma 11.

Proof of Theorem 4

Setting t = t(γ) =
(

1
γ

)1/K
. Let p = Îdm,K(gf ). Combining Lemma 10 and Lemma

11, and note that the coefficients ĉn1,...,nd are upper bounded by a constant, the theorem
follows.

3.3.3 Proof of Lemma 10

We first give a simple lemma.

Lemma 12 Let

Ht,r(s) =

t∑
l=0

al cos ls. (6)

Then for all l = 0, 1, . . . , t

|al| ≤ 1/π.

Proof For any l ∈ {0, 1, . . . , t}, multiplying cos ls on both sides of (6) and integrating from
−π to π, we obtain that for some ξ ∈ [−π, π],

al =
1

π

∫ π

−π
Ht,r(s) cos lsds =

cos lξ

π

∫ π

−π
Ht,r(s)ds =

cos lξ

π
.

where in the last equation we use the identity∫ π

−π
Ht,r(s)ds = 1.

This completes the proof.

Proof of Lemma 10

We first bound ml1,k1,...,ld,kd . Recall that (see also (5) in Fact 9)

ml1,k1,...,ld,kd =

d∏
i=1

(−1)kiali

(
K + 1

ki

)(∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
gf (θ)dθ

)
.

14
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It is not difficult to see that |ml1,k1,...,ld,kd | can be upper bounded by a constant depending
only on d,K and B, but independent of t. This is because that the previous lemma shows
|ali | ≤ 1

π and gf is upper bounded by a constant.

Now consider cn1,...,nd . Recall that

cn1,...,nd = (−1)d
∑

1≤k1,...,kd≤K+1
0≤l1,...,ld≤t
li=ki·ni∀i∈[d]

ml1,k1,...,ld,kd .

We need to show that all |cn1,...,nd | are upper bounded by a constant independent of t.
Note that although each li takes t+1 values, li and ki must satisfy the constraint li/ki = ni.
Since ki can take at most K + 1 values, the number of ml1,k1,...,ld,kd appeared in the sum-
mation is at most (K + 1)d. Therefore all cn1,...,nd are bounded by a constant depending
only on d,K and B, and is independent of t.

3.3.4 The Sparse Grids Algorithm

In this section we briefly describe the sparse grids numerical integration algorithm due to
Gerstner and Griebel. (Please refer to Gerstner and Griebel 1998 for a complete introduc-
tion.) We also specify a subroutine used by this algorithm, which is important for proving
the running time.

Numerical integration algorithms dicretize the space and use weighted sum to approxi-
mate the integration. Traditional methods for the multidimensional case usually discretize
each dimension to the same precision level. In contrast, the sparse grids methods, first
proposed by Smolyak (1963), discretize each dimension to carefully chosen and possibly
different precision levels, and finally combine many such discretization results. When the
integrand has bounded mixed derivatives, as in our case that the integrand is in CKB , one
can use very few grids in most dimension and still achieve high accuracy.

The sparse grids method is based on one dimensional quadrature (i.e., numerical inte-
gration). There are many candidates for one dimensional quadrature. In order to prove
an upper bound for the running time, we choose the Clenshaw-Curtis rule (Clenshaw and
Curtis, 1960) as the subroutine. This also makes the analysis simpler.

Let h : [−1, 1]d → R be the integrand. Let SG(h) be the output of the sparse grids
algorithm. Let l be the level parameter of the algorithm.

Let k = (k1, . . . , kd) and j = (j1, . . . , jd) be d-tuples of positive integers. Then SG(h) is
given as a combination of weighted sum:

SG(h) :=
∑

|k|≤l+d−1

m(k1)∑
j1=1

· · ·
m(kd)∑
jd=1

uk,jf(xk,j). (7)

Below we describe m(ki), xk,j and uk,j respectively.

1) For any k ∈ N, m(k) := 2k.

2) For each k = (k1, . . . , kd) and j = (j1, . . . , jd), define xk,j := (xk1,j1 , . . . , xkd,jd), and
xki,ji is the jith zero of the Chebyshev polynomial with degree m(ki). Denote by Tm(ki) the
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Chebyshev polynomial. Its zeros are given by the following formula.

xki,ji = cos

(
(2ji − 1)π

2m(ki)

)
, ji = 1, 2, . . . ,m(ki). (8)

3) Now we define the weights uk,j. First let wk,j be the weight of xk,j in the one-
dimensional Clenshaw-Curtis quadrature rule given by

wk,1 =
1

(m(k) + 1)(m(k)− 1)
,

wk,j =
2

m(k)

1 + 2

m(k)/2∑
r=1

′ 1

1− 4r2
cos

(
2π(j − 1)r

m(k)

) , for 2 ≤ j ≤ m(k), (9)

where
∑′ means that the last term of the summation is halved.

Next, for any fixed k and j, define

v(k+q),j =

{
wk,j if q = 1,

w(k+q−1),r − w(k+q−2),s if q > 1, and r, s with xk,j = x(k+q−1),r = x(k+q−2),s ,

where xk,j is the zero of Chebyshev polynomial defined above.

Finally, the weight uk,j is given by

uk,j =
∑

|k+q|≤l+2d−1

v(k1+q1),j1 . . . v(kd+qd),jd ,

where k = (k1, . . . , kd) and q = (q1, · · · , qd). This completes the description of the sparse
grids algorithm.

3.3.5 Proof of Lemma 11

We first give the result that characterizes the running time of the Gerstner-Griebel sparse
grids algorithm in order to achieve a given accuracy.

Lemma 13 Let h ∈ CKB ([−π, π]d) for some constants K and B. Let SG(h) be the numeri-
cal integration of h using the sparse grids algorithm described in the previous section. Given
any desired accuracy parameter τ > 0, the algorithm achieves∣∣∣∣∣

∫
[π,π]d

h(θ)dθ − SG(h)

∣∣∣∣∣ ≤ τ,
with running time at most O

((
1
τ

) 2
K (log 1

τ )3d+ 2d
K

+1
)

.

Proof

Let L = 2l+1 − 2, where l is the level parameter of the sparse grids algorithm. l and L
will be determined by the desired accuracy τ later. In fact, L is the maximum number of
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grid points of one dimension. By (7) it is easy to see that the total number of grid points,
denoted by Nd

l , is given by

Nd
l =

∑
|k|≤l+d−1

m(k1) · · ·m(kd)

= O(ld−1L)

= O(L(log2 L)d−1). (10)

In Gerstner and Griebel (1998), it is shown that the approximation error τ can be
bounded by the maximal number of grid points per dimension as follows.

τ = O(L−K(logL)(K+1)(d−1)). (11)

Next, let us consider the computational cost per grid point. Since we assume that h(x)
can be computed in unit time, and the zeros of Chebyshev polynomials can be computed
according to (8), then computing the weights uk,j dominates the running time. Fix k ∈ N,
consider wk,j , 1 ≤ j ≤ m(k). From (9), it is not difficult to see that the set of wk,j
can be computed by Fast Fourier Transform (FFT). Therefore the computation cost is
O(m(k) logm(k)). Some calculations yield that for a fixed k, j, the computational cost for
uk,j is O(dL logL). Combining this with (10) and (11) the lemma follows.

Next we turn to prove Lemma 11. First, we need the following famous result.

Lemma 14 Let m be a positive integer, let σ(m) denotes the number of divisors of m, then
for large t

t∑
m=1

σ(m) = t ln t+ (2c− 1)t+O(t1/2),

where c is Euler’s constant.

To analyze the running time, we also need a result about the normalizing constant of
the generalized Jackson kernel (Vyazovskaya and Pupashenko, 2006).

Lemma 15 (Vyazovskaya and Pupashenko 2006) Let

Jt,r =
1

λt,r

(
sin(ts/2)

sin(s/2)

)2r

,

be the generalized Jackson kernel as given in Definition 4.1, and the normalizing constant
λt,r is determined by ∫ π

−π
Jt,r(s)ds = 1.

Then the following identity of the normalizing constant λt,r holds

λt,r = 2π

[r−r/t]∑
k=0

(−1)k
(

2r

k

)(
r(t+ 1)− tk − 1

r(t− 1)− tk

)
. (12)
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Now we are ready to prove Lemma 11.

Proof of Lemma 11

Assume that the error induced by the sparse grids algorithm is at most τ per integration.
That is, for every k = (k1, . . . , kd), l = (l1, . . . , ld)∣∣∣∣∣

∫
[−π,π]d

d∏
i=1

cos

(
li
ki
θi

)
g(θ)dθ − SG

(
d∏
i=1

cos

(
li
ki
θi

)
g(θ)

)∣∣∣∣∣ ≤ τ.
Then

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤ sup
n1,...,nd

∣∣∣∣∣∣
∑

li/ki=ni

d∏
i=1

(−1)ki
(
K + 1

ki

)
ali

∣∣∣∣∣∣ · τ.
By Lemma 12, |ali | ≤ 1

π . We obtain that

sup
n1,...,nd

|cn1,...,nd − ĉn1,...,nd | ≤M · τ, (13)

for some constant M independent of t.

Similarly, we have ∥∥∥Idt,K(g)− Îdt,K(g)
∥∥∥
∞
≤ O(tdτ). (14)

Since in the statement of the lemma the desired approximation error is O(t−K), we have

τ = t−(K+d). (15)

It is also clear that

max
n1,...,nd

|ĉn1,...,nd − cn1,...,nd | = o(1), as t→∞.

Now let us consider the computation cost. Recall that the kernel Ht,r is an even trigono-
metric of degree at most t:

Ht,r(s) = a0 +
t∑
l=1

al cos ls, (16)

where Ht,r(s) = Jt′,r(s) and Jt′,r is the generalized Jackson kernel given in Definition 4.1.
First we need to compute the value of the linear coefficient al of Ht,r. By Lemma 15, one
can compute the linear coefficients al by solving a system of t+ 1 linear equations. That is,
we choose arbitrary t+ 1 points in [−π, π] and solve (16), since we can compute the value
of Ht,r(s) directly based on the value of λt,r. Clearly, the running time is O(t3).

Having ali , let us consider the computational cost for calculating ĉn1,...,nd . According to
Lemma 13, the running time for the sparse grids algorithm to compute one integration is

O

(
(
1

τ
)

2
K (log(1/τ))3d+ 2d

K
+1

)
= O

(
t
2(K+d)
K polylog(t)

)
.
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Since we only need to compute the integration when li|ki for all i ∈ [d], by Lemma 14
the number of integrations to compute is at most

(K + 1 + σ(1) + . . .+ σ(t))d = O
(

(t log t)d
)
.

Thus the total time cost for all numerical integration is O
(
t(1+ 2

K
)d+2polylog(t)

)
. Since

(1 +
2

K
)d+ 2 ≥ 3,

the computation time for obtaining the coefficients al in Ht,r is dominated by the running
time of the sparse grids algorithm. It is also easy to see that all other computation costs
are dominated by that of the numerical integration. The lemma follows.

3.4 Proof of Theorem 3

Here we provide the full proof of our first main theorem (Theorem 3).

Proof of Theorem 3

We prove the four results separately.

3.4.1 Differential Privacy

The summary is a td-dimensional vector with sensitivity td

n . By the standard argument for

Laplace mechanism, adding td i.i.d. Laplace noise Lap( t
d

nε) preserves ε-differential privacy.

3.4.2 Accuracy

The error of the answer to each query consists of two parts: the approximation error and

the noise error. Setting the approximation error γ in Theorem 4 as γ = n−
K

2d+K . Then the
degree of each variable in g(θ) is

t(γ) =

(
1

γ

)1/K

= n
1

2d+K ,

which is the same as t given in Algorithm 1. Now consider the error induced by the Laplace
noise. The noise error is simply the inner product of the td linear coefficients cl1,...,ld and td

i.i.d. Lap( t
d

nε). Since the coefficients are uniformly bounded by a constant, the noise error
is bounded by the sum of td independent and exponentially distributed random variables
(i.e., |Lap( t

d

nε)|). The following lemma gives it an upper bound.

Lemma 16 Let X1, . . . , XN be i.i.d. random variables with p.d.f. P(Xi = x) = 1
σe
−x/σ for

x ≥ 0. Then

P(

N∑
i=1

Xi ≥ 2Nσ) ≤ 10 · e−
N
5 .
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Proof Let Y =
∑N

i=1Xi. It is well-known that Y satisfies the gamma distribution, and
for ∀u > 0

P(Y ≥ u) ≤ e−
u
σ

N−1∑
n=0

1

n!

(u
σ

)n
.

Thus

P(Y ≥ 2Nσ) ≤ e−2N
N−1∑
n=0

1

n!
(2N)n.

Note that for n < N

1
n!(2N)n

e2N
≤

1
N !(2N)N

1
(2N)!(2N)2N

≤
N−1∏
n=1

(1− n

2N
) ≤ e−

N−1
4 .

Thus
P(Y ≥ 2Nσ) ≤ e−2N

(
e2NNe−

N−1
4

)
≤ 10 · e−

N
5 .

Part 2) of Theorem 3 then follows from Lemma 16.

3.4.3 Running Time for Outputing Summary

This is straightforward since the summary is a td-dimensional vector and for each item the
running time is O(n).

3.4.4 Running Time for Answering a Query

According to our setting of t, it is easy to check that the error induced by Laplace noise
and that of approximation have the same order. Then by the third part of Theorem 4
we have the running time for computing the coefficients of the trigonometric polynomial

is O

(
n
d+2+2d

K
2d+K · polylog(n)

)
. The result follows since computing the inner product has

running time O(n
d

2d+K ), which is much less than computing the coefficients.

4. An Improved Mechanism: Output Synthetic Database

Although the mechanism given in the previous section achieves good accuracy for smooth
queries and is efficient, it has a disadvantage: The mechanism can only output answers to
given queries, and therefore is not convenient for most machine learning tasks which involve
optimizations.

In this section we propose an improved mechanism. The mechanism has the advantage
that it is able to output a synthetic database. From a practical point of view this is
very appealing, because users can simply use this differentially private database to learn
whatever they want. Of course, utility will be guaranteed only for restricted types of tasks
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as described below. Also, the price for outputting synthetic database is that theoretically
this mechanism is less efficient than the previous one, although it runs in polynomial time.
Please see Section 5.2 for practically efficient variations.

4.1 The Mechanism and Theoretical Results

The following theorem is our second main result. It says that if the query class is specified by
smooth functions, then there is a polynomial time mechanism which preserves ε-differential
privacy and achieves good accuracy. The output of the mechanism is a synthetic dataset.
A formal description of the mechanism is given in Algorithm 3.

Theorem 17 Let the query set be

QCKB
:= {qf (D) =

1

n

∑
x∈D

f(x) : f ∈ CKB },

where K ∈ N and B > 0 are constants. Let the data universe be [−1, 1]d, where d is a
constant. Then the mechanism described in Algorithm 3 satisfies that for any ε > 0, the
followings hold:

1) The mechanism preserves ε-differential privacy.

2) There is an absolute constant c such that for every β ≥ c · e−n
1

2d+K
the mechanism is

(α, β)-accurate, where α = O(n−
K

2d+K /ε), and the hidden constant depends only on
d, K and B.

3) The running time of the mechanism is O(n
3dK+5d
4d+2K ). (This is dominated by solving

the linear programming problem in step 20 of the algorithm.)

4) The size of the output synthetic database is O(n1+ K+1
2d+K ).

The proof of Theorem 17 is given in the Section 4.3. Note that the accuracy of this new
mechanism is of the same order as that of our first mechanism.

In Table 2, we illustrate the results with typical parameters as we did in the previous
section. From Table 2 we can see, as before, the same accuracy improvement as K/d
increases. On the other hand, the running time of the mechanism increases if one wants
better accuracy for highly smooth queries. Finally, the size of the output synthetic database
also increases in order to have better accuracy: roughly, O(n−1) accuracy requires an O(n2)-
size synthetic database.

Now we explain the mechanism in detail. Part of Algorithm 3 is the same as Algorithm 1.
In particular, Algorithm 3 still employs L∞ approximation with trigonometric polynomials
as basis for transformed smooth functions

gf (θ1, . . . , θd) = f(cos θ1, . . . , cos θd).

Here we view the trigonometric polynomial functions as a set of basis queries. As in Algo-
rithm 1, we compute the answers to the basis queries and add Laplace noise. So far, if we
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Algorithm 3 Private Synthetic DB for Smooth Queries

Notations: T dt := {0, 1, . . . , t− 1}d, x := (x1, · · · , xd), θi(x) := arccos(xi),
ak := 2k+1−N

N , A := {ak|k = 0, 1, . . . , N−1}, L := { iL |i = −L,−L+1, . . . , L−1, L}.
Parameters: Privacy parameters ε, δ > 0, Failure probability β > 0,

Smoothness order K ∈ N.
Input: Database D ∈

(
[−1, 1]d

)n
Output: Synthetic database D̃ ∈

(
[−1, 1]d

)m
1: Set t = dn

1
2d+K e, N = dn

K
2d+K e, m = dn1+ K+1

2d+K e, L = dn
d+K
2d+K e.

2: Initialize: D ← ∅, D̃ ← ∅, u← 0Nd

3: for all x = (x1, . . . , xd) ∈ D do
4: xi ← arg mina∈A |xi − a|, i = 1, . . . , d
5: Add x = (x1, . . . , xd) to D
6: end for
7: for all r = (r1, . . . , rd) ∈ T dt do
8: br ← 1

n

∑
x∈D cos (r1θ1(x)) . . . cos (rdθd(x))

9: b̂r ← br + Lap
(
td

nε

)
10: b̂r ← arg minl∈L |b̂r − l|
11: end for
12: for all k = (k1, . . . , kd) ∈ T dN do
13: for all r = (r1, . . . , rd) ∈ T dt do
14: Wrk ← cos (r1 arccos(ak1)) . . . cos (rd arccos(akd))
15: Wrk ← arg minl∈L |Wrk − l|
16: end for
17: end for
18: b̂← (b̂r)‖r‖∞≤t−1 (b̂ is a td dimensional vector)

19: W← (Wrk)‖r‖∞≤t−1,‖k‖∞≤N−1 (a td ×Nd matrix)

20: Solve the following LP problem: minu ‖Wu − b̂‖1, subject to u � 0, ‖u‖1 = 1.
Obtain the optimal solution u∗.

21: repeat
22: Sample y according to distribution u∗

23: Add y to D̃
24: until |D̃| = m
25: return: D̃

ignore the discretization steps (step 3-6), Algorithm 3 is essentially the same as Algorithm
1.

Recall that the next step in our first mechanism is that, for any given smooth query
function, we compute the linear coefficients with which the combination of the trigonometric
polynomial basis functions is a good approximation of it. The key idea (and the main
advantage) of Algorithm 3 is that we do not even need to know the linear coefficients. We
merely need to know that there exist such coefficients which leads to a good approximation
of the smooth function. Now, the goal of the algorithm is to generate a synthetic dataset
so that if we evaluate all the basis queries on this synthetic database, all the answers will
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Order of smoothness Accuracy α Running time Size of synthetic DB

K = 1 O(n−
1

2d+1 ) O(n2) O(n1+ 2
2d+1 )

K = 2d O(n−
1
2 ) O(n

3
4
d+ 5

8 ) O(n
3
2

+ 1
4d )

d
K = ε0 � 1 O(n−(1−2ε0)) O(nd( 3

2
− ε0

2
)) O(n2− ε0

2 )

Table 2: Performance vs. Order of Smoothness for Outputing Synthetic Database

be close to the noisy answers obtained from the original dataset. The key observation is
that if we have such a synthetic dataset, then the evaluation of any smooth query on this
synthetic dataset is an answer both differentially private and accurate. To generate such
a dataset, we first learn a probability distribution over [−1, 1]d so that the answers of the
basis queries with respect to this distribution are close to the noisy answers. Observe that
such a distribution must exist, because the uniform distribution over the original dataset
satisfies this requirement. However, learning a continuous distribution is computationally
intractable. So we discretize the domain (as well as the original data (step 4)) and consider
distributions over the discretized data universe. Because the queries are smooth, the error
involved by discretization can be controlled. Learning the distribution can be formulated
as a linear programming problem (step 20). Note that in the LP problem we minimize l1
error instead of l∞ error because it results in slightly better accuracy. Finally, we randomly
draw sufficiently large number of data from this probability distribution, and these data
form the output synthetic database.

The running time of the mechanism is dominated by the linear programming step. It is
known that the worst-case time complexity of the interior point method is upper bounded
in terms of the number of variables, number of constraints, and the number of bits to encode
the problem. It is easy to see that there are only poly(n) variables and constraints. To
control the number of bits, we round each number in the linear programming problem at a
certain precision level (step 10 and 15). Because all the numbers after rounding are bounded
uniformly by a constant, the total number of bits to encode the problem is not too large.

We can also analyze the performance of BLR for the smooth query problem and compare
to our mechanism proposed in this section as both of them output synthetic database. The
analysis is almost identical to that for PMW in Section 3.2.1. Even if one can discretize the
query set QCKB

in an optimal way, the error of BLR is still considerably larger than that of
our algorithm, as described in the following Proposition.

Proposition 18 Suppose the query set QCKB
in an optimal way. The accuracy guarantee

of the BLR is at best O
(
n−

K
d+3K

)
; and the running time is super-exponential in n.

4.2 Examples of Smooth Queries and Application to Learning

Almost all widely used continuous functions are smooth up to a certain order. Here we list
some simple examples. The smoothness of these functions are either obvious or are well
known. (See Section 4.4 for proofs.)

1) Linear functions: f(x) = wTx is infinitely smooth if ‖w‖ is bounded.
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2) Gaussian kernel functions: f(x) = exp(‖x−x0‖2
2σ2 ) (for some x0 ∈ Rd) is in Cσ

2

1 , i.e., its
derivatives up to order σ2 is bounded by 1.

3) Logistic function: f(x) = 1
1+e−x/σ

(for σ > 2) is K-smooth for any K such that
maxk≤K Bk ≤ 1, where Bk is the kth Bernoulli number.

We also point out that many loss functions used in machine learning, composed with
smooth functions, are still smooth. Here we just give one example. Suppose the data record
in the database are of the form (x, y). Then the square loss for a smooth regression function
f defined as

l(f ; x, y) = (y − f(x))2 ,

is smooth.
Now let us discuss applications of our mechanisms to differentially private machine

learning. Suppose people want to learn a regression function using the database, where for
each data record the first d−1 features are independent variables and the dth feature is the
dependent variable. In fact, there are excellent algorithms that can do this and guarantee
differential privacy. However, consider the following setting: There are many users each
wants to learn a regressor and each uses a different type of smooth functions (e.g., linear,
polynomial, Ridge, kernel, etc.). Suppose there are totally M users. If we want to guarantee
ε-differential privacy, we have to require each learner achieve ε/M -differential privacy; or
equivalently an M -times accuracy decrease in accuracy. As the major goal of differential
privacy is to safely release the data and allows everyone to use it, the number of learners M
can be very large. Thus a differentially private regression algorithm is not sufficient for this
aim. Recently, Ullman (2015) applied PMW to answering multiple convex optimization
problems. Using their method, the accuracy decreases only logM -times for M learning
problems. However, their algorithm only works for convex loss of linear learning models,
while ours work for all smooth functions.

On the other hand, our mechanism can achieve this goal easily: just run the mechanism
and output the synthetic database. It is clear that the mechanism guarantees ε-differential
privacy no matter how many learners use it. The mechanism also guarantees accuracy to
all learners who use smooth regression functions and the least square criterion, because
the accuracy provided by our mechanism hold for all smooth functions simultaneously.
Therefore, there is no accuracy decrease or privacy loss increase as the number of users
grow.

4.3 Proof of Theorem 17

In this section we prove Theorem 17.
Proof of Theorem 17

We first define some notations repeatedly used in this proof.Let the input database be
D = {x(1),x(2), · · · ,x(n)}. Let the discretized dataset be (please see step 5 in Algorithm 3)
D = {x(1),x(2), · · · ,x(n)}.Also let the output synthetic dataset be D̃ = {y(1),y(2), · · · ,y(m)}.

Let
b = (br)‖r‖∞≤t−1.

be a td dimensional vector, where br is defined in step 8 of the Algorithm 3. Similarly, Let

b̂ = (b̂r)‖r‖∞≤t−1
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and
W = (Wrk)‖r‖∞≤t−1,‖k‖∞≤N−1,

where b̂r andWrk are defined as in step 9 and 14 of the algorithm respectively. Let ∆ = b̂−b
be the td dimensional Laplace noise. Finally let

b̃ = (b̃r)‖r‖∞≤t−1,

where

b̃r =
1

m

∑
y∈D̃

cos (r1θ1(y)) . . . cos (rdθd(y)) .

(Recall that θi(y) = arccos(yi). Please see also the Notations in Algorithm 3.)
Now we prove the four results in the theorem one by one.

4.3.1 Differential Privacy

That the mechanism preserves ε-differential privacy is straightforward. Note that the output
synthetic database D̃ contains no private information other than that obtained from b̂. So
we only need to show that b̂ is differentially private. But this is immediate from the privacy
of Laplace mechanism.

4.3.2 Accuracy

Let θ = (θ1, . . . , θd). For any f(x) ∈ CKB , where x ∈ [−1, 1]d, let

gf (θ) := f(cos θ1, . . . , cos θd).

By Theorem 4, we know, there’s an even trignometric polynomial:

hM,t
f (θ) :=

∑
r=(r1,...,rd),‖r‖∞≤t−1

c∗r cos(r1θ1) . . . cos(rdθd) (17)

satisfy: (Denote c∗ = (c∗r)‖r‖∞≤t−1)

‖gf − hM,t
f ‖∞ ≤ O(

1

tK+1
) (18)

‖c∗‖∞ ≤M (19)

Where constant M only dependents on K, d, B.
Recall that θ(x) := (arccosx1, . . . , arccosxd). Now we are ready to decompose the error

of the mechanism into several terms:∣∣∣qf (D̃)− qf (D)
∣∣∣ =

∣∣∣∣∣∣ 1

m

∑
y∈D̃

f(y)− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m

∑
y∈D̃

f(y)− 1

m

∑
y∈D̃

hM,t
f (θ(y))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

m

∑
y∈D̃

hM,t
f (θ(y))− 1

n

∑
x∈D

hM,t
f (θ(x))

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1n
∑
x∈D

hM,t
f (θ(x))− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑
x∈D

f(x)− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣ . (20)
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We further decompose the second term in the last row of the above inequality. We have∣∣∣∣∣∣ 1

m

∑
y∈D̃

hM,t
f (θ(y))− 1

n

∑
x∈D

hM,t
f (θ(x))

∣∣∣∣∣∣
=
∣∣∣c∗ · (b̃− b)

∣∣∣ ≤ (‖b̃− b̂‖1 + ‖∆‖1
)
‖c∗‖∞

≤
(
‖b̃−Wu∗‖1 + ‖Wu∗ −Wu∗‖1 + ‖Wu∗ − b̂‖1 + ‖b̂− b̂‖1 + ‖∆‖1

)
‖c∗‖∞

≤
(
‖b̃−Wu∗‖1 + ‖(W −W)u∗‖1 + ‖Wu− b̂‖1 + ‖(W −W)u‖1

+ 2‖b̂− b̂‖1 + ‖∆‖1
)
‖c∗‖∞

≤
(
‖b̃−Wu∗‖1 +

4td

L
+ 4‖∆‖1

)
‖c∗‖∞ (21)

where L is the number of grid points in each dimension for rounding, b̂ is rounded
version of b̂,W is rounded version of W,u∗ is optimal distribution by solving LP in step 20
in Algorithm 3, and u is the uniform distribution on D. Note that the second last inequality
holds because

‖Wu∗ − b̂‖1 ≤ ‖W · u− b̂‖1.
Also, the last inequality in (21) follows from

‖b̂− b̂‖1 ≤
td

L
+ ‖∆‖1,

and
‖Wu− b̂‖1 ≤ ‖Wu− b‖1 + ‖∆‖1 = ‖∆‖1,

where the last equality holds since Wu = b.
Define

ηd =

∣∣∣∣∣∣ 1n
∑
x∈D

f(x)− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣ ,
ηn = 4‖∆‖1‖c∗‖∞,

ηa =

∣∣∣∣∣∣ 1

m

∑
y∈D̃

f(y)− 1

m

∑
y∈D̃

hM,t
f (θ(y))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑
x∈D

hM,t
f (θ(x))− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣ ,
ηs = ‖b̃−Wu∗‖1‖c∗‖∞,

ηr =
4td

L
‖c∗‖∞,

where ηd, ηn, ηa, ηs, ηr correspond to the discretization error, noise error, approximation
error, sampling error and rounding error, respectively. Combining (20), (21) and the equa-
tions above, we have the error of the mechanism bounded by the sum of these five types of
errors: ∣∣∣qf (D̃)− qf (D)

∣∣∣ ≤ ηd + ηn + ηa + ηs + ηr.

We now bound the five errors separately.
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Discretization error ηd: Since f ∈ CKB (K ≥ 1), the first order derivatives of f are all
bounded by B. Also the discretization precision of [−1, 1]d is 1

N , so the distance between
the data in D and the corresponding data in D is O( 1

N ). Recall that N is number of grid
points in each dimension for discretization. Thus we have

ηd =

∣∣∣∣∣∣ 1n
∑
x∈D

f(x)− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣ ≤ dB

N
= O

(
n−

K
2d+K

)
.

Noise error ηn: Since M in Equation (19) is a constant only depending on d, K, B, We
know ‖c∗‖∞ = O(1). Thus to bound ηn = ‖∆‖1 · ‖c∗‖∞, we only need to bound the l1

norm of the td-dimensional vector ∆ which contains i.i.d. random variables Lap
(
td

nε

)
; or

equivalently bound the sum of td i.i.d. random variables with exponential distribution. It
is well known that such a sum satisfies gamma distribution. Simple calculations yields

P
(
‖∆‖1 ≤ 2

t2d

nε

)
≥ 1− 10e−

td

5 .

Thus, with probability 1− 10e−
td

5 , we have

ηn = ‖∆‖1‖c∗‖∞ ≤ O
(
t2d

nε

)
.

Approximation error ηa: Recall that for any x,

gf (θ(x)) = f(x).

Denote
‖gf − hM,t

f ‖[−π,π]d := sup
θ∈[−π,π]d

∣∣∣gf (θ)− hM,t
f (θ)

∣∣∣ .
We have

ηa =

∣∣∣∣∣∣ 1

m

∑
y∈D̃

f(y)− 1

m

∑
y∈D̃

hM,t
f (θ(y))

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1n
∑
x∈D

hM,t
f (θ(x))− 1

n

∑
x∈D

f(x)

∣∣∣∣∣∣
≤ 2‖gf − hM,t

f ‖∞ ≤ O
(

1

tK+1

)
.

Sampling error ηs: It is easy to bound sampling error. Let Wr· be the row vector of
matrix W indexed by r. Recall that −1 ≤ Wrk ≤ 1. Thus for each r, by Chernoff bound
we have that for any τ > 0:

P
(
|b̃r −Wr·u

∗| ≥ τ
)
≤ 2e−

mτ2

2 ,

since b̃r is just the average of m i.i.d. samples and Wu∗ is its expectation. Next by union
bound

P
(
‖b̃−Wu∗‖∞ ≥ τ

)
≤ 2tde−

mτ2

2 ,
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and therefore

P
(
‖b̃−Wu∗‖1 ≥ tdτ

)
≤ 2tde−

mτ2

2 .

Setting τ such that 2tde−
mτ2

2 = e−t, we have that with probability 1− e−t,

‖b̃−Wu∗‖1 ≤ O

(
td+1/2

√
m

)
.

Rounding error ηr: Since ‖c∗‖∞ is upper bounded by a constant, we have

ηr ≤ O
(
td

L

)
.

Putting it together: Combining the five types of errors, we have that with probability

1− e−t − 10e−
td

5 , the error of the mechanism satisfies∣∣∣∣ 1

m

∑
y∈D̃

f(y)− 1

n

∑
x∈D

f(x)

∣∣∣∣ ≤ O
(

1

N
+

1

tK+1
+
t2d

nε
+
td+ 1

2

√
m

+
td

L

)
. (22)

Recall that the mechanism sets

t = dn
1

2d+K e, N = dn
K

2d+K e,

m = dn1+ K+1
2d+K e, L = dn

d+K
2d+K e.

The theorem follows after some simple calculation.

4.3.3 Running Time

It is not difficult to see that in this case the running time of the mechanism is dominated
by solving the Linear Programming problem in step 20. (Because the time complexity of
linear programming is with respect to arithmetic operations, all running time discussed here
should be understand in this way.) To analyze the running time of the LP problem, observe
that it could be rewritten in following standard form:

max
x̄

c̄T x̄ (23)

s.t. Āx̄ = b̄

x̄ � 0

where

Ā =

(
L ·W L · Itd −L · Itd
1T
Nd 0 0

)
,

b̄ =

(
L · b̂

1

)
, c̄ =

 0
1td
1td

 , x̄ =

u
v
w

 .

28



Differentially Private Data Releasing for Smooth Queries

Ā is a m̄ × n̄ matrix where m̄ = td + 1 and n̄ = Nd + 2td. Note that 1) each element
of W is in [−1, 1]; 2) each element of b̂ is in [−1, 1]; and 3) each element of W and b̂ is
rounded to precision 1/L. So actually we have reduce to a LP problem (23), with elements
of Ā, b̄, c̄ are all integers and bounded by L.

The most well-known worst-case complexity of the interior point algorithm for linear
programming with integer parameters is O(n̄3L̃), where n̄ is the number of variables and L̃
is the number of bits to encode the linear programming problem. Here we use a more refined
bound given in Anstreicher (1999). By using this bound, we are able to prove a much better
time complexity for our algorithm; because in the linear programming problem (23), the
number of constraints is often much smaller than the number of variables. The bound we
make use of for the complexity of linear programming is O( n̄

1.5m̄1.5

ln m̄ L̄) (Anstreicher, 1999).
Here, L̄ is the size of LP problem in standard form defined as follows (Monteiro and Adler,
1989):

L̄ =dlog(1 + |det(Āmax)|)e+ dlog(1 + ‖c̄‖∞)e
+ dlog(1 + ‖b̄‖∞)e+ dlog(m̄+ n̄)e,

where
Āmax = arg max

Xis a square submatrix ofĀ

| det(X)|.

Note that m̄ < n̄, so the size of Āmax is at most m̄× m̄. Therefore, we have

|det(Āmax)| ≤ m̄!Lm̄,

and
L̄ = O(m̄(log m̄+ logL) + log n̄).

Given m̄ = O(td) and n̄ = O(Nd), simple calculation shows that the total time com-
plexity is

O

(
n̄1.5m̄1.5

ln m̄
L̄

)
= O

(
N1.5dt2.5d

)
= O

(
n

3dK+5d
4d+2K

)
.

4.3.4 Size of the Output Synthetic Database

The size of synthetic dataset m is set in step 1 of the algorithm.

4.4 Proof of Smoothness

Here we prove the smoothness of the functions listed in Section 4.2. We only give the proof
for Gaussian kernel function. The smoothness for logistic function follows directly from the
derivative of hyperbolic tangent.

Proposition 19 Let

f(x) =

J∑
j=1

αj exp

(
−‖x− xj‖2

2σ2

)
,

where x ∈ Rd. Let α = (α1, . . . , αJ). Suppose ‖α‖1 ≤ 1. Then for every K ≤ σ2, ‖f‖K ≤ 1.
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Proof We first give a well-known inequality for Hermite polynomial. Proposition 19 follows
immediately from this lemma.

Lemma 20 (Indritz 1961) For Hermite polynomial of degree k defined as

Hk(x) = (−1)kex
2 dk

dxk
e−x

2
,

where k ∈ N and x ∈ (−∞,∞), it satisfies following inequality:

|Hk(x)| ≤ (2kk!)
1
2 e

1
2
x2 .

To prove Proposition 19, we only need to show that the K-norm of the Gaussian kernel
function is bounded by 1 since ‖α‖1 ≤ 1.

Let g(x) = e−x
2
. From Lemma 20 we directly have:

| dk

dxk
g(x)| = |Hk(x)e−x

2 | ≤ (2kk!)
1
2 .

Let k = (k1, . . . , kd), and |k| = K. Therefore, for f(x) defined in Proposition 19, we
have:

|Dkf(x)| =
d∏
j=1

dkj

dx
kj
j

g

(
xj − yj√

2σ

)
≤
(

1√
2σ

)K  d∏
j=1

(2kjkj !)

 1
2

≤ (K!)
1
2

σK
.

Obviously, when K ≤ σ2,

|Dkf(x)| ≤ K
K
2

σK
≤ 1.

The proposition follows.

5. Additional Results

In this section we provide some additional results. In Section 5.1 we show that the two
mechanisms described in Section 3 and Section 4 respectively can be modified to achieve
slightly better accuracy and preserve (ε, δ)-differential privacy. In Section 5.2 we give a
variant of our second mechanism which outputs synthetic database. The goal is to make
the algorithm practically efficient, since as stated in Theorem 17 the running time of that
mechanism is approximately O(n3d/2), which is not acceptable in real applications.

5.1 (ε, δ)-Differentially Private Mechanisms

The two mechanisms given in Section 3 and Section 4 respectively preserve ε-differential
privacy. It is easy to generalize them to preserve (ε, δ)-differential privacy and have slightly
better accuracy.

For the first mechanism, simply setting

t = dn
2

3d+2K (log
1

δ
)−

1
3d+2K e,

in step 1 of Algorithm 1 and Algorithm 2 respectively we have the following result.
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Theorem 21 Let the query set be

QCKB
= {qf =

1

n

∑
x∈D

f(x) : f ∈ CKB },

where K ∈ N and B > 0 are constants. Let the data universe be [−1, 1]d, where d ∈ N is
a constant. Then the new mechanism related to Algorithm 1 and Algorithm 2 satisfies that
for any ε > 0, δ > 0, the following hold:

1) The mechanism is (ε, δ)-differentially private.

2) There is an absolute constant c such that for any β ≥ c · e−n
2

3d+2k (log 1
δ

)
− 1

3d+2K
, the

mechanism is (α, β)-accurate, where α = O
(
n−

2K
3d+2K (log 1

δ )
K

3d+2K /ε
)

, and the hidden

constant depends only on d, K and B.

3) The running time of the mechanism is O
(
n

5d+2K
3d+2K (log 1

δ )−
d

3d+2K

)
.

4) The running time for S to answer a query is O

(
n

2d+4+2d
K

3d+2K (log 1
δ )−

d+2+ d
K

3d+2K log(n)

)
.

The proof of Theorem 21 is along the same line as the proof of Theorem 3 plus standard
use of the composition theorem (Dwork et al., 2010). We omit the details.

For the second mechanism, replacing step 1 and step 9 of Algorithm 3 by the following
we obtain an (ε, δ)-differentially private mechanism.

1) Step 1. Set t = dn
2

3d+2K (log 1
δ )−

1
3d+2K e, N = dn

2K
3d+2K (log 1

δ )−
K

3d+2K e,
m = dn

4d+4K+2
3d+2K (log 1

δ )−
2d+2K+1
3d+2K e, and L = dn

2d+2K
3d+2K (log 1

δ )−
d+K

3d+2K e.

2) Step 9. b̂r = br + Lap

(
(td log 1

δ
)
1
2

nε

)
.

Theorem 22 Let the query set QCKB
be defined as in Theorem 17. Let the data universe

be [−1, 1]d, where d ∈ N is a constant. Then the new mechanism related to Algorithm 3
satisfies that for any ε > 0, δ > 0, the followings hold:

1) The mechanism is (ε, δ)-differentially private.

2) There is an absolute constant c such that for any β ≥ c · e−n
2

3d+2k (log 1
δ

)
− 1

3d+2K
, the

mechanism is (α, β)-accurate, where α = O
(
n−

2K
3d+2K (log 1

δ )
K

3d+2K /ε
)

, and the hidden

constant depends only on d, K and B.

3) The running time of the mechanism is O
(
n

3dK+5d
3d+2K (log 1

δ )−
3dK+5d
6d+4K

)
.

4) The size of synthetic database is O
(
n

4d+4K+2
3d+2K (log 1

δ )−
2d+2K+1
3d+2K

)
.

The proof of Theorem 22 is omitted for the same reason as above.
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5.2 A Practical Variant of the Synthetic-Database-Output Mechanism

The time complexity of our second mechanism, which outputs synthetic database, can be

nearly n
3d
2 to achieve n−1 accuracy for highly smooth queries, where d is the dimension

of the data. In real application such a running time is unacceptable. We thus consider a
variant of Algorithm 3 which turns out to be very efficient and suffers only from minor loss
in accuracy in our experiments. (On the other hand we do not have theoretical guarantee
for the utility of this algorithm any more.) Note that the running time of Algorithm 3
is dominated by the linear programming step. This LP problem has O(Nd) variables and
O(td) constraints, where Nd is the number of discretized grids in [−1, 1]d and td is the
number of trigonometric polynomial basis functions. To make our algorithm practical, we
consider a subset S of the Nd grids with size C := |S| � Nd and restrict the probability
distribution u on this subset of grids (see step 20 in Algorithm 3). Similarly, we may use
a subset of size R of the td trigonometric polynomial basis functions preferred to lower
degrees. By doing this, the LP problem has C variables and R constraints.

The simplest approach to obtain a small subset S is sampling from the Nd grids in
[−1, 1]d uniformly. However, this approach suffers from substantial loss in accuracy (see the
supplementary material for experimental results of this method), because |S| is extremely
small compared to Nd, the probability that S contains data points in D (or close to D) is
very small. In order to reduce the size of the LP problem and preserve the accuracy, we
need a better approach to obtain S. Formally, the problem of choosing a subset S for our
purpose can be formulated as follows: We want a subset S so that

1) S is differentially private;
2) |S| is small;
3) For almost every data point x in D, there is a point in S close to x.
Note that without the privacy concern, one can simply let S = D. But under the

requirement of privacy, this problem is non-trivial. Here we adopt private PCA to obtain
a low dimensional ellipsoid. The ellipsoid is spanned by the (private) top eigenvectors of
the data covariance matrix with the square root of the (private) eigenvalues as the radius.
In particular, we use a slightly modified version of the Private Subspace Iteration (PSI)
mechanism (Hardt, 2013) to compute the private eigenpairs. The mechanism is described
in Algorithm 4. Finally, we uniformly sample C points from the ellipsoid to form S.

In the following three results, we show that the PSI mechanism is differentially private
and accurate for the top eigenvectors and eigenvalues respectively. Note that Hardt (2013)
shows that the principal angle between the space spanned by the top-k leading eigenvectors
of the true data covariance matrix and the the space spanned by the output column vectors
of X(T ) is small. However, it does not directly imply that the output private ellipsoid
converges to the true PCA ellipsoid. Our results slightly strengthen the results in Hardt
(2013). We show each private top-k eigenvalue is close to the true eigenvalue and each
private top-k eigenvector is close to the true eigenvector, provided the true eigenvalues are
well separated.

Theorem 23 (Accuracy of the eigenvectors) Given a database D with |D| = n, let

A =
1

n

∑
y∈D

(y − ȳ)(y − ȳ)T
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Algorithm 4 Private Subspace Iteration (Hardt, 2013)

Input: Database D ∈ ([−1, 1]d)n

Output: λ (as private top-k eigenvalues), X(T ) (columns as private top-k eigenvectors).
Parameters: Number of iterations T ∈ N, dimension k, privacy parameters ε, δ > 0,

Denote GS as the Gram-Schmidt orthonormalization algorithm.

1: Set σ =
5d
√

4k(T+1) log(1/δ)

nε ,
A = 1

n

∑
y∈D(y − ȳ)(y − ȳ)T , where ȳ = 1

n

∑
y∈D y. Thus A is the data covariance

matrix.
2: Initialize: G(0) ∼ N(0, 1)d×k (i.i.d. Gaussian distribution), X(0) ← GS(G0)
3: for all l = 1, 2, . . . , T do
4: Sample G(l) ∼ N(0, σ2)n×k.
5: W(l) = AX(l−1) + G(l)

6: X(l) ← GS(W(l))
7: end for
8: Set λ̂s = ‖w(T )

s ‖2 for s = [k], where w
(T )
s is the s-th column of W(T ). Set λ = (λ̂s)s≤k.

be the data covariance matrix. Also let λ1 ≥ · · · ≥ λd be the eigenvalues of A and γk =
λk/λk+1 − 1. Let

U = (u1, . . . ,uk) ∈ Rd×k,

where u1, . . . ,uk are the top k eigenvectors of A. Denote θ(u,v) as the angle between
two vectors u and v. Then, with parameters k ≤ d/2 and T ≥ C(mins≤k γs)

−1 log d for

some sufficiently large constant C, the matrix X(T ) = (x
(T )
1 , . . . ,x

(T )
k ) ∈ Rd×k returned by

Algorithm 4 satisfies that: with probability 1− o(1), for all s ≤ k

sin θ(us,x
(T )
s ) ≤ O

(ωsd 3
2

√
kT log T log

(
1
δ

)
nε

)
,

where

ωs =

{
1

γ1λ1
s = 1,

max{ 1
γsλs

, 1
γs−1λs−1

} 2 ≤ s ≤ k.

Theorem 24 (Accuracy of the eigenvalues) Using the same notions as in Theorem

23, let λ̂s = ‖w(T )
s ‖2 for s ≤ k, where w

(T )
s is the sth column of W(T ). Then with probability

1− o(1), we have for all s ≤ k

|λ̂s − λs| ≤ O
(
d3kT log T log

(
1
δ

)
n2ε2γ2

sλ
2
s

+
kd
√
T log T log

(
1
δ

)
nε

)
.

Theorem 25 (Privacy) If Algorithm 4 is executed with each G(l) independently sampled
as

G(l) ∼ N(0, σ2)d×k,

with

σ =
5d
√

4kT log(1/δ)

nε
,
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then Algorithm 4 satisfies (ε, δ)-differential privacy.

If Algorithm 4 is executed with each G(l) independently sampled as

G(l) ∼ Lap(σ)d×k,

with

σ =
50d3/2kT

nε
,

then Algorithm 4 satisfies ε-differential privacy.

The proof of Theorem 23, Theorem 24 and Theorem 25 are given below.

Before we state it formally, let us take a closer look at the Theorem 3.3 in Hardt (2013):
With high probability, the tangent of the angle between the space spanned by the top-k
leading eigenvectors, namely eigenspace, and the space spanned by the output columns,
namely output-space, is small, given regularity conditions. Our goal is the column-wise
convergence between eigenvectors and output columns, which can be concluded from the
simultaneous convergence between the increasing sequence of eigenspaces and the increasing
sequence of output-spaces, given that they shared the same dimension. This constraint leads
us to utilize a weaker version of Theorem 3.3 by specifying r = k, but the favored column-
wise convergence at least compensated for the loss of tuning parameter r. Note that simply
applying Theorem 3.3 consecutively for the sequence will not assure the high convergence
probability 1 − o(1) and our analysis can be extended to the case k = O(d), where the
dimension d can grow as the size of database given the aptitude of added noise is adequate.

Our results generalize Theorem 3.3 in Hardt (2013) which proves that the principal
angle between the subspace spanned by the private top-k eigenvectors and the subspace
spanned by the true eigenvectors is small. But what we need in this paper is that each
private eigenvector (and eigenvalue) converges to the true eigenvector (and eigenvalue). It
is worth pointing out that simply applying Theorem 3.3 in Hardt (2013) consecutively for
each k does not obtain our result, although our proofs rely on some results in Hardt (2013).

We first give three lemmas. The proof of the first two lemmas are straightforward and
are omitted. For simplicity, below we denote ‖X‖ the spectral norm of a matrix X.

Lemma 26 Assuming the data universe X = [−1, 1]d, for all pairs of neighbor databases
D,D′ with |D| = |D′| = n, let

A(D) =
1

n

∑
y∈D

(y − ȳ)(y − ȳ)T ,

be the data covariance matrix. It holds that

‖A(D)−A(D′)‖ ≤ 5d

n
.

Lemma 27 Let A = (aij) ∈ Rn×d, denote Akl = (aij)i≤k,j≤l the (k, l)-sub matrix of A for
any k ≤ n and l ≤ d, then ‖Akl‖ ≤ ‖A‖.
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Lemma 28 Let U ∈ Rd×k be a matrix with orthonormal columns. Let

G(1), ...,G(T ) ∼ N(0, σ2)d×k,

with k ≤ d and assume that T ≤ d. Let G
(l)
s and Us be the (d, s)-sub matrix of G(l) and U

respectively for s ∈ [k]. Then, with probability 1− o(1),

max
l∈[T ]
‖UT

s G(l)
s ‖ ≤ O(σ

√
k log T ), ∀ s ∈ [k].

Proof

By Lemma A.3 in Hardt (2013),

‖UT
kG

(l)
k ‖ ≤ O(σ

√
k log T ).

The desired result follows from Lemma 27 since UT
s G

(l)
s is the (s, s)-sub matrix of UT

kG
(l)
k .

Proof of Theorem 23 Consider the spectral decomposition A = ZΛZ−1, and denote

Λ =

(
Λ1

Λ2

)
, and Z =

(
Z1 Z2

)
, where Λ1 ∈ Rs×s and Z1 ∈ Rd×s. Next we denote

Us = Z1Λ1Z
T
1 and Vs = Z2Λ2Z

T
2 . Obviously we have

A = UsΛ1U
T
s + VsΛ2V

T
s .

Let

∆(Us) = max
l
‖UT

s G(l)
s ‖,

and

∆(Vs) = max
l
‖VT

s G(l)
s ‖,

where G
(l)
s is the (d, s)-sub matrix of G(l). By Lemma 28, we concludes that with probability

1− o(1), the following events occur simultaneously:

1. ∀ s ∈ [k],∆(Us) ≤ O(σ
√
k log T ),

2. ∀ s ∈ [k],∆(Vs) ≤ O(σ
√
d log T ).

Notice that for all s ≤ k, we have with probability 1− o(1) that ∆(Us) ≤ ∆(Vs) as we

set s ≤ k ≤ d/2. Since arccos θ(Us,X
(0)
s ) is bounded, where X

(0)
s is the (d, s)-sub matrix of

X(0), we have for all s ≤ k

∆(Us) arccos θ(Us,X
(0)
s ) ≤ O(σ

√
k log T ).

Applying Theorem 2.9 in Hardt (2013), we have with probability of 1 − o(1), for all
s ∈ [k]

tan θ(Us,X
(T )
s ) ≤ O

(
σ

γsλs

√
d log T

)
. (24)
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For the case s = 1, the theorem is proved. Now for any fixed s ∈ [k], notice that us
is in the space spanned by (u1, . . . ,us) as well as the orthogonal complement of the space
spanned by (u1, . . . ,us−1), we have

sin2 θ(us,x
(T )
s )

= ‖Us−1U
T
s−1x

(T )
s + (I−UsU

T
s )x(T )

s ‖2

= ‖Us−1U
T
s−1x

(T )
s ‖2 + ‖(I−UsU

T
s )x(T )

s ‖2

≤ sin2 θ(Us−1,X
(T )
s−1) + sin2 θ(Us,X

(T )
s )

≤ 2(max{sin2 θ(Us−1,X
(T )
s−1), sin2 θ(Us,X

(T )
s )})

≤ 2(max{tan2 θ(Us−1,X
(T )
s−1), tan2 θ(Us,X

(T )
s )}).

(25)

The theorem, for the case s ≥ 2, is proved by substituting (24) into (25).

Proof of Theorem 24 Denote xs = x
(T−1)
s , ws = w

(T )
s , gs as the s-column of G(T ), and

θ(T ) = θ(Us,X
(T )
s ) for short. Let xs = u + u⊥, where u is the eigenvector corresponding to

λs. Then, since u = xs cosφ and u⊥ = xs sinφ for a φ ≤ θ(T ), we have

λ̂2
s = wT

s ws

= (Axs + gs)
T (Axs + gs)

= xTs A2xs + 2xTs Ags + gTs gs

,

Let R = 2xTs Ags+gTs gs, then by Lemma 28, with probability 1−o(1), R ≤ O(σ
√
k log T )+

O(dσ2).

xTs A2xs = uTA2u + u⊥
T
A2u⊥

= λ2
su

Tu + u⊥
T
A2u⊥

≤ λ2
s‖u‖2 + λ2

1‖u⊥‖2

≤ λ2
s cos2 θ(T ) + λ2

1 sin2 θ(T )

= λ2
s(1− sin2 θ(T )) + λ2

1 sin2 θ(T )

= λ2
s + (λ2

1 − λ2
s) sin2 θ(T ).

Thus,

|λ̂s − λs| ≤
(λ2

1 − λ2
s)

λ̂s + λs
sin2 θ(T ) +O(σ

√
k log T ) +O(dσ2)

= O(
σ2d log T

γ2
sλ

2
s

) +O(σ
√
k log T ).

Plug in the setting of σ the corollary follows.
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Dataset Size (n) # Attributes (d)

NOM 20643 116
NUR 12958 28
CTG 2126 42

Table 3: Summary of the dataset

Remark 29 The accuracy of both the private eigenvectors and the private eigenvalues can
be improved by considering the matrix coherence of A, as analyzed in Hardt (2013). Typi-
cally, the accuracy can be improved by a factor of O

(
1
d · polylog(d)

)
.

Proof of Theorem 25 The theorem follows immediately from Lemma 26 and Lemma 3.6
in Hardt (2013).

5.2.1 Experimental Results

Here we provide experimental results for the practical variant mechanism described above.
It turns out that this algorithm is also far more efficient than our first mechanism given in
Section 3 as answering a query is still time consuming in practice.

We adopt three datasets all from the UCI repository. A summary of the size and the
number of attributes of these datasets is given in Table 3. Since the data universe considered
in this paper is [−1, 1]d, we normalize each attribute to [−1, 1].

We conduct two sets of experiments in order to have a relatively comprehensive un-
derstanding of the utility of the differentially private synthetic database generated by our
mechanism. In both sets of experiments we first output the synthetic database. In one
set of experiments, we test the accuracy of query answering, as described in the previous
sections. In the other set of experiments, we consider a very different task. We learn a SVM
classifier from the synthetic database, and evaluate its accuracy (on the original data). We
think that this task may be more useful from a practical point of view. It is worth pointing
out that in the scenario of classification, the classification error (0− 1 loss) is not a smooth
function. Therefore the second set of experiments might be viewed, in a sense, as a test of
how well our mechanism generalize to non-smooth functions.

The queries employed in the first set of experiments are linear combinations of Gaussian
kernel functions. We use this type of functions because 1) These functions possess good
smoothness property as stated in Section 2, and 2) linear combinations of Gaussian are
universal approximators.

Detailed parameter setting of the query functions is as follows. We consider

f(x) =

J∑
j=1

αj exp

(
−‖x− xj‖2

2σ2

)
.

In all experiments, we set J = 10; αj is randomly chosen from [0, 1], and xj is randomly
chosen from [−1, 1]d. We test various values of σ and various ε to see how the smoothness
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Dataset ε Error
σ

Time (s)
2 4 6 8 10

NOM

0.1
Abs 0.0276 0.0859 0.0750 0.0520 0.0374

8.5
Rel 0.6800 0.2192 0.1138 0.0657 0.0433

1
Abs 0.0155 0.0506 0.0330 0.0286 0.0202

8.2
Rel 0.4600 0.1286 0.0521 0.0373 0.0237

10
Abs 0.0047 0.0199 0.0070 0.0096 0.0065

8.5
Rel 0.1660 0.0594 0.0109 0.0128 0.0077

NUR

0.1
Abs 0.0050 0.0018 0.0015 0.0004 0.0001

2.3
Rel 0.0057 0.0018 0.0015 0.0004 0.0001

1
Abs 0.0015 0.0007 0.0003 0.0003 0.0002

3.1
Rel 0.0018 0.0008 0.0003 0.0004 0.0001

10
Abs 0.0037 0.0001 0.0001 0.0005 0.0001

2.7
Rel 0.0042 0.0001 0.0001 0.0006 0.0001

CTG

0.1
Abs 0.1022 0.2113 0.1479 0.0984 0.0693

0.7
Rel 0.8590 0.3871 0.1981 0.1139 0.0770

1
Abs 0.0970 0.1605 0.1193 0.0770 0.0505

0.7
Rel 0.8007 0.2923 0.1597 0.0891 0.0560

10
Abs 0.0462 0.0632 0.0430 0.0353 0.0147

0.8
Rel 0.3881 0.1184 0.0602 0.0415 0.0165

Table 4: Worst-case error for the variant of the database-outputting mechanism

of the query function and privacy parameter affect the performance of the algorithm (see
below for detailed results).

We use different performance measures to evaluate the algorithm. The goal is to have
a comprehensive understanding of the performance of the mechanism. We consider the
worst-case error of the mechanism over the set of queries. Because our query set, i.e., linear
combination of Gaussian Kernels, contains infinitely many functions, we randomly choose
104 queries in each experiment. The worst-case error is over these 104 queries.

We give both absolute error and relative error for all experiments. The absolute error of

a query qf is defined as |qf (D)− qf (D̃)|; and relative error is defined as | qf (D)−qf (D̃)
qf (D) |. We

present relative error because in certain cases (e.g. when σ is small) f(x) is very small for
most x ∈ D. Therefore in this case a small absolute error does not necessarily imply good
performance, and relative error is more informative3.

We present the running time of the mechanism for outputting the synthetic database in
each experiment. The computer used in all the experiments is a workstation with 2 Intel
Xeon X5650 processors of 2.67GHz and 32GB RAM.

We present the performance of the ε-differentially private algorithm in Table 4. For
each dataset, both absolute error and relative error, as average of 20 rounds, are reported

3. One also needs to be careful when using relative error. In our experiments, we deliberately set αj ∈ [0, 1].
So f(x) ≥ 0 for all x. If instead we set αj ∈ [−1, 1], then f(x) can be either positive or negative, and
it is possible that qf (D) is close to zero while f(x) is not small for most x ∈ D. In such a case, a large
relative error does not necessarily imply a bad performance.
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Dataset Original
ε

0.1 1 10

NOM 0.9353 0.6328 0.7959 0.8491

NUR 0.9081 0.5361 0.7748 0.8164

CTG 0.9755 0.5309 0.5853 0.6116

Table 5: AUC for the variant of the database-outputting mechanism

sequentially. We make use of linear combination of Gaussian with different values of σ as
the query functions. The last column of the table lists the running time with respect to the
worst σ of the algorithm for outputting the synthetic database.

Now we analyze the experimental results in Table 4 in greater detail. First, the algorithm
is quite efficient. On all datasets, the mechanism outputs the synthetic databases in a
few seconds. Next consider the accuracy. As explained earlier, the relative error is more
meaningful in our experiments. It can be seen that except for the case σ = 2 (recall that
K = σ2), the accuracy is reasonably good. The relative errors decrease monotonically as
the the order of smoothness of the queries increases.

We then turn to describe the second set of experiments. We randomly partition each
dataset into two subsets of equal size. One subset is used as training dataset, the other as test
dataset. By running our mechanism, we generate a differentially private synthetic database
using the training dataset as input. Since our task is classification, and the attribute values
in the synthetic dataset are continuous ([−1, 1]), we round the label attribute to {−1, 1}.
We then learn a SVM classifier from the synthetic dataset. Finally we test the classifier’s
performance on the test dataset. As a comparison, we also list the performance of the
SVM classifier learned from the non-private training data, as shown in the second column
of Table 5. Here, the performance measures are Area Under ROC Curve (AUC).

We test three values of ε, and the performances are given in Table 5. For each dataset,
the AUC is an average of 10 rounds. It can be seen that when ε is small, there is usually a
relatively big utility gap. But as ε getting large, the performances improve quickly.

6. Conclusion

In this paper, we study differentially private mechanisms with respect to the K-smooth
queries. We first propose a differentially private mechanism for efficiently answering smooth
queries. The running time for outputting the summary is O(n1∼1.5). For queries of high
order smoothness, the running time for answering a query is sublinear, and nearly O(nε0).
Furthermore, the mechanisms achieve an accuracy nearly O(n−1) in highly smooth case,
much better than the sampling error O(n−1/2) which is inherent to differentially private
mechanisms answering general queries.

From a practical viewpoint, outputting a synthetic database while preserving differential
privacy is more appealing. In this paper, we also propose a differentially private mechanism
which output synthetic database. The user can obtain accurate answers to all smooth
queries from the synthetic database. Our mechanisms run in polynomial time, while existing
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algorithms run in super-exponential time. This synthetic dataset outputing mechanism
achieves almost the same level of accuracy as the query-answering mechanism.

There is a future direction we think worth exploring. As mentioned in Introduction,
there exists an efficient and differentially private algorithm which outputs a synthetic
database and is accurate to the class of rectangle queries defined on [−1, 1]d (Blum et al.,
2008). Rectangle queries are not smooth. They are specified by indicator functions which
are not even continuous. The mechanism proposed in Blum et al. (2008) is completely
different to the mechanism for smooth queries given in this paper. Thus an immediate
question is: can we develop efficient mechanisms which output synthetic database and pre-
serve differential privacy for a natural class of queries containing both smooth and important
non-smooth functions?
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