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Abstract

We study consistency properties of surrogate loss functions for general multiclass learning
problems, defined by a general multiclass loss matrix. We extend the notion of classification
calibration, which has been studied for binary and multiclass 0-1 classification problems
(and for certain other specific learning problems), to the general multiclass setting, and
derive necessary and sufficient conditions for a surrogate loss to be calibrated with respect to
a loss matrix in this setting. We then introduce the notion of convex calibration dimension
of a multiclass loss matrix, which measures the smallest ‘size’ of a prediction space in
which it is possible to design a convex surrogate that is calibrated with respect to the loss
matrix. We derive both upper and lower bounds on this quantity, and use these results
to analyze various loss matrices. In particular, we apply our framework to study various
subset ranking losses, and use the convex calibration dimension as a tool to show both the
existence and non-existence of various types of convex calibrated surrogates for these losses.
Our results strengthen recent results of Duchi et al. (2010) and Calauzénes et al. (2012) on
the non-existence of certain types of convex calibrated surrogates in subset ranking. We
anticipate the convex calibration dimension may prove to be a useful tool in the study and
design of surrogate losses for general multiclass learning problems.

Keywords: Statistical consistency, multiclass loss, loss matrix, surrogate loss, convex
surrogates, calibrated surrogates, classification calibration, subset ranking.

1. Introduction

There has been significant interest and progress in recent years in understanding consistency
properties of surrogate risk minimization algorithms for various learning problems, such as
binary classification, multiclass 0-1 classification, and various forms of ranking and multi-
label prediction problems (Lugosi and Vayatis, [2004; Jiang, [2004; Zhang), 2004a; Steinwart],
2005]; [Bartlett et al., 2006} [Zhang, |2004b} Tewari and Bartlett], 2007} |Steinwart]|, 2007 |Cos-
sock and Zhang|, |2008;; Xia et al., 2008} [Duchi et al. 2010} [Ravikumar et al., [2011; |[Buffoni
et al., [2011; |Gao and Zhou, 2011; Kotlowski et al., 2011)). Any such problem that involves
a finite number of class labels and predictions can be viewed as an instance of a general
multiclass learning problem, whose structure is defined by a suitable loss matrix. While the
above studies have enabled an understanding of learning problems corresponding to cer-
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tain forms of loss matrices, a framework for analyzing consistency properties for a general
multiclass problem, defined by a general loss matrix, has remained elusive.

In this paper, we develop a unified framework for studying consistency properties of
surrogate losses for such general multiclass learning problems, defined by a general multiclass
loss matrix. For algorithms minimizing a surrogate loss, the question of consistency with
respect to the target loss matrix reduces to the question of calibration of the surrogate
loss with respect to the target IOSSE We start by giving both necessary and sufficient
conditions for a surrogate loss function to be calibrated with respect to any given target
loss matrix. These conditions generalize previous conditions for the multiclass 0-1 loss
studied for example by Tewari and Bartlett| (2007). We then introduce the notion of convex
calibration dimension of a loss matrix, a fundamental quantity that measures the smallest
‘size’ of a prediction space in which it is possible to design a convex surrogate that is
calibrated with respect to the given loss matrix. This quantity can be viewed as representing
one measure of the intrinsic ‘difficulty’ of the loss, and has a non-trivial behavior in the sense
that one can give examples of loss matrices defined on the same number of class labels that
have very different values of the convex calibration dimension, ranging from one (in which
case one can achieve consistency by learning a single real-valued function) to practically
the number of classes (in which case one must learn as many real-valued functions as the
number of classes). We give upper and lower bounds on this quantity in terms of various
algebraic and geometric properties of the loss matrix, and apply these results to analyze
various loss matrices.

As concrete applications of our framework, we use the convex calibration dimension as
a tool to study various loss matrices that arise in subset ranking problems, including the
normalized discounted cumulative gain (NDCG), pairwise disagreement (PD), and mean
average precision (MAP) losses. A popular practice in subset ranking, where one needs
to rank a set of r documents by relevance to a query, has been to learn r real-valued
scoring functions by minimizing a convex surrogate loss in r dimensions, and to then sort
the 7 documents based on these scores. As discussed recently by [Duchi et al. (2010) and
Calauzenes et al.| (2012)), such an approach cannot be consistent for the PD and MAP losses,
since these losses do not admit convex calibrated surrogates in r dimensions that can be
used together with the sorting operation. We obtain a stronger result; in particular, we
show that the convex calibration dimension of these losses is lower bounded by a quadratic
function of r, which means that if minimizing a convex surrogate loss, one necessarily needs
to learn (r?) real-valued functions to achieve consistency for these losses.

1.1 Related Work

There has been much work in recent years on consistency and calibration of surrogate losses
for various learning problems. We give a brief overview of this body of work here.

Initial work on consistency of surrogate risk minimization algorithms focused largely
on binary classification. For example, Steinwart (2005) showed the consistency of support
vector machines with universal kernels for the problem of binary classification; \Jiang] (2004)

1. Assuming the surrogate risk minimization procedure is itself consistent (with respect to the surrogate
loss); in most cases, this can be achieved by minimizing the surrogate risk over a function class that
approaches a universal function class as the training sample size increases, e.g. see |Bartlett et al.| (2006)).
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and [Lugosi and Vayatis| (2004) showed similar results for boosting methods. Bartlett et al.
(2006) and Zhang| (2004a) studied the calibration of margin-based surrogates for binary
classification. In particular, in their seminal work, [Bartlett et al. (2006) established that the
property of ‘classification calibration’ of a surrogate loss is equivalent to its minimization
yielding 0-1 consistency, and gave a simple necessary and sufficient condition for convex
margin-based surrogates to be calibrated w.r.t. the binary 0-1 loss. More recently, |Reid and
Williamson! (2010]) analyzed the calibration of a general family of surrogates termed proper
composite surrogates for binary classification. Variants of standard 0-1 binary classification
have also been studied; for example, [Yuan and Wegkamp (2010) studied consistency for the
problem of binary classification with a reject option, and Scott| (2012) studied calibrated
surrogates for cost-sensitive binary classification.

Over the years, there has been significant interest in extending the understanding of
consistency and calibrated surrogates to various multiclass learning problems. Early work
in this direction, pioneered by Zhang| (2004b) and Tewari and Bartlett| (2007)), considered
mainly the multiclass 0-1 classification problem. This work generalized the framework of
Bartlett et al. (2006) to the multiclass 0-1 setting and used these results to study calibration
of various surrogates proposed for multiclass 0-1 classification, such as the surrogates of [We-
ston and Watkins| (1999)), Crammer and Singer| (2001)), and Lee et al.| (2004)). In particular,
while the multiclass surrogate of Lee et al. (2004) was shown to calibrated for multiclass
0-1 classification, it was shown that several other widely used multiclass surrogates are in
fact not calibrated for multiclass 0-1 classification.

More recently, there has been much work on studying consistency and calibration for
various other learning problems that also involve finite label and prediction spaces. For ex-
ample, (Gao and Zhou| (2011) studied consistency and calibration for multi-label prediction
with the Hamming loss. Another prominent class of learning problems for which consis-
tency and calibration have been studied recently is that of subset ranking, where instances
contain queries together with sets of documents, and the goal is to learn a prediction model
that given such an instance ranks the documents by relevance to the query. Various subset
ranking losses have been investigated in recent years. (Cossock and Zhang (2008) studied
subset ranking with the discounted cumulative gain (DCG) ranking loss, and gave a simple
surrogate calibrated w.r.t. this loss; Ravikumar et al.| (2011) further studied subset ranking
with the normalized DCG (NDCG) loss. Xia et al. (2008) considered the 0-1 loss applied
to permutations. Duchi et al.| (2010) focused on subset ranking with the pairwise disagree-
ment (PD) loss, and showed that several popular convex score-based surrogates used for this
problem are in fact not calibrated w.r.t. this loss; they also conjectured that such surrogates
may not exist. |Calauzenes et al.| (2012) showed conclusively that there do not exist any con-
vex score-based surrogates that are calibrated w.r.t. the PD loss, or w.r.t. the mean average
precision (MAP) or expected reciprocal rank (ERR) losses. Finally, in a more general study
of subset ranking losses, Buffoni et al.|(2011)) introduced the notion of ‘standardization’ for
subset ranking losses, and gave a way to construct convex calibrated score-based surrogates
for subset ranking losses that can be ‘standardized’; they showed that while the DCG and
NDCG losses can be standardized, the MAP and ERR losses cannot be standardized.

We also point out that in a related but different context, consistency of ranking has
also been studied in the instance ranking setting (Clémencon and Vayatis|, [2007; |(Clémencon
et al.l 2008; [Kotlowski et all 2011; |Agarwal, 2014).
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Finally, Steinwart| (2007) considered consistency and calibration in a very general setting.
More recently, Pires et al| (2013 used Steinwart’s techniques to obtain surrogate regret
bounds for certain surrogates w.r.t. general multiclass losses, and Ramaswamy et al.| (2013])
showed how to design explicit convex calibrated surrogates for any low-rank loss matrix.

1.2 Contributions of this Paper

As noted above, we develop a unified framework for studying consistency and calibration for
general multiclass (finite-output) learning problems, described by a general loss matrix. We
give both necessary conditions and sufficient conditions for a surrogate loss to be calibrated
w.r.t. a given multiclass loss matrix, and introduce the notion of convex calibration dimen-
sion of a loss matrix, which measures the smallest ‘size’ of a prediction space in which it is
possible to design a convex surrogate that is calibrated with respect to the loss matrix. We
derive both upper and lower bounds on this quantity in terms of certain algebraic and geo-
metric properties of the loss matrix, and apply these results to study various subset ranking
losses. In particular, we obtain stronger results on the non-existence of convex calibrated
surrogates for certain types of subset ranking losses than previous results in the literature
(and also positive results on the existence of convex calibrated surrogates for these losses in
higher dimensions). The following is a summary of the main differences from the conference
version of this paper (Ramaswamy and Agarwal, [2012):

e Enhanced definition of positive normal sets of a surrogate loss at a sequence of points
(Definition [5; this is required for proofs of stronger versions of our earlier results).

e Stronger necessary condition for calibration (Theorem .

e Stronger versions of upper and lower bounds on the convex calibration dimension,
with full proofs (Theorems [12} [L6]).
e Conditions under which the upper and lower bounds are tight (Section .

e Application to a more general setting of the PD loss (Section .
e Additional applications to the NDCG and MAP losses (Sections .
e Additional examples and illustrations throughout (Examples |§|7 E @ Figures .

e Minor improvements and changes in emphasis in notation and terminology.

1.3 Organization

We start in Section [2] with some preliminaries and examples that will be used as running
examples to illustrate concepts throughout the paper, and formalize the notion of calibration
with respect to a general multiclass loss matrix. In Section [3| we derive both necessary
conditions and sufficient conditions for calibration with respect to general loss matrices;
these are both of independent interest and useful in our later results. Section 4] introduces
the notion of convex calibration dimension of a loss matrix and derives both upper and
lower bounds on this quantity. In Section [5], we apply our results to study the convex
calibration dimension of various subset ranking losses. We conclude with a brief discussion
in Section [6} Shorter proofs are included in the main text; all longer proofs are collected
in Section [7] so as to maintain easy readability of the main text. The only exception to
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this is proofs of Lemma [2| and Theorem 3| which closely follow earlier proofs of [Tewari and
Bartlett| (2007) and are included for completeness in Appendix Some calculations are
given in Appendices [B] and [C}

2. Preliminaries, Examples, and Background

In this section we set up basic notation (Section , give background on multiclass loss
matrices and risks (Section and on multiclass surrogates and calibration (Section ,
and then define certain properties associated with multiclass losses and surrogates that will
be useful in our study (Section [2.4)).

2.1 Notation

Throughout the paper, we denote R = (—o0,00), Ry = [0,00), R = [~00, 0], Ry = [0, .
Similarly, Z and Z, denote the sets of all integers and non-negative integers, respectively.
Forn € Z4, we denote [n] = {1,...,n}. For a predicate ¢, we denote by 1(¢) the indicator of
¢, which takes the value 1 if ¢ is true and 0 otherwise. For z € R, we denote z; = max(0, z).
For a vector v € R", we denote [[v|lo = > 1, 1(v; # 0) and ||v|1 = >, |vi]. For a set
A C R", we denote by relint(.A) the relative interior of A, by cl(A) the closure of A, by
span(A) the linear span (or linear hull) of A, by aff(.A) the affine hull of A, and by conv(A)
the convex hull of A. For a vector space V, we denote by dim(V) the dimension of V.
For a matrix M € R™*" we denote by rank(M) the rank of M, by affdim(M) the affine
dimension of the set of columns of M (i.e. the dimension of the subspace parallel to the
affine hull of the columns of M), by null(IM) the null space of M, and by nullity(M) the
nullity of M (i.e. the dimension of the null space of M). We denote by A,, the probability
simplex in R™: A, = {p € R} : Y. p; = 1}. Finally, we denote by II, the set of all
permutations of [n], i.e. the set of all bijective mappings o : [n]—[n]; for a permutation
o € II,, and element i € [n], o(i) therefore represents the position of element ¢ under o.

2.2 Multiclass Losses and Risks

The general multiclass learning problem we consider can be described as follows: There is a
finite set of class labels J and a finite set of possible predictions 5)\, which we take without
loss of generality to be Y = [n] and Y = [k] for some n,k € Z,. We are given training
examples (X1,Y1),..., (X, Yy) drawn i.i.d. from a distribution D on X x ), where X is an
instance space, and the goal is to learn from these examples a prediction model h : X—)Y
which given a new instance x € X', makes a prediction y = h(z) € Y. In many common
learning problems, the label and prediction spaces are the same, i.e. ;)A/ =), but in general,
these could be different (e.g. when there is an ‘abstain’ option available to a classifier, in
which case k =n+1).

The performance of a prediction model is measured via a loss function £ : ) X j)\—>R+,
or equivalently, by a loss matriz L € R’}FX]“, with (y,t)-th element given by £,; = £(y,t); here
lys = (y,t) defines the penalty incurred on predicting ¢ € [k] when the true label is y € [n].
We will use the notions of loss matrix and loss function interchangeably. Some examples of
common multiclass loss functions and corresponding loss matrices are given below:



RAMASWAMY AND AGARWAL

Example 1 (0-1 loss) Here Y =Y = [n], and the loss incurred is 1 if the predicted label
t is different from the actual class label y, and 0 otherwise:

Oy, t) = 1(t #y) Yy, t € [n].

The loss matriz L9 for n = 3 is shown in Figure (a). This is one of the most commonly
used multiclass losses, and is suitable when all prediction errors are considered equal.

Example 2 (Ordinal regression loss) Here) = Y= [n], and predictions t farther away
from the actual class label y are penalized more heavily, e.g. using absolute distance:

"y, t) = [t —yl Vy,t € [n].

The loss matriz LY for n = 3 is shown in Figure ( b). This loss is often used when
the class labels satisfy a natural ordinal property, for example in evaluating recommender
systems that predict the number of stars (say out of 5) assigned to a product by user.

Example 3 (Hamming loss) Here ) = Y= [2"] for some r € Zy, and the loss incurred
on predicting t when the actual class label is y is the number of bit-positions in which the
r-bit binary representations of t — 1 and y — 1 differ:

T
My, t) = > (- 1) # (y— 1)) vyt € [2'],

i=1
where for each z € {0,...,2" — 1}, z; € {0,1} denotes the i-th bit in the r-bit binary
representation of z. The loss matriz LT2™ for r = 2 is shown in Figure (c) This loss is
frequently used in sequence learning applications, where each element in Y = Yisa binary
sequence of length r, and the loss in predicting a sequence t € {0,1}" when the true label
sequence is'y € {0,1}" is simply the Hamming distance between the two sequences.

Example 4 (‘Abstain’ loss) Here Y = [n] and Y = [n + 1], where t = n + 1 denotes a
prediction of ‘abstain’ (or ‘reject’). One possible loss function in this setting assigns a loss
of 1 to incorrect predictions in [n], 0 to correct predictions, and % for abstaining:

(D(y,t) = 1(t€[n])'l(t#y)Jré'l(t:"Jrl) W€ nl,t € n+1].

The loss matriz L) for n = 3 is shown in Figure (d) This type of loss is suitable in
applications where making an erroneous prediction is more costly than simply abstaining.
For example, in medical diagnosis applications, when uncertain about the correct prediction,
it may be better to abstain and request human intervention rather than make a misdiagnosis.

As noted above, given examples (X1,Y1), ..., (Xm, Yy) drawn i.i.d. from a distribution
D on X x [n], the goal is to learn a prediction model h : X—[k]. More specifically, given a
target loss matrix L € RiXk with (y, t)-th element £,;, the goal is to learn a model h : X —[k]
with small expected loss on a new example drawn randomly from D, which we will refer to
as the L-risk or L-error of h:

2

erplh] = Exy)mn [fynx] - (1)
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011 01 2 (1)(1);? 011 3
101 101 L9 0 1 101 3

1
110 2 10 5 11 0 110 %

(a) (b) © (@)

Figure 1: Loss matrices corresponding to Examples 1-4: (a) L% for n = 3; (b) Lo for
n=3; (c) LI*™ for r = 2 (n = 4); (d) L) for n = 3.

Clearly, denoting the t-th column of L as £; = ({14, ...,¢y,;) " € R?, and the class probability
vector at an instance x € X under D as p(z) = (p1(2),...,pn(2))" € A, where py(z) =
P(Y =y | X =x) under D, the L-risk of h can be written as

erblh] = EX{Zn:py(X)Ey,h(X)} = Ex [p(X)Tfh(X)]- (2)
y=1

The optimal L-risk or optimal L-error for a distribution D is then simply the smallest
L-risk or L-error that can be achieved by any model h:

Ex [P(X)Tfh(X)] = Ex[min P(X)Tft]- (3)

eryy” S inf erblh] = i
te

inf
h: X —[k] h: X —[k]
Ideally, one would like to minimize (approximately) the L-risk, e.g. by selecting a model
that minimizes the average L-loss on the training examples among some suitable class
of models. However, minimizing the discrete L-risk directly is typically computationally
difficult. Consequently, one usually minimizes a (convex) surrogate risk instead.

2.3 Multiclass Surrogates and Calibration

Let d € Z,, and let C C R be a convex set. A surrogate loss function v : Y x C—R.
acting on the surrogate prediction space C assigns a penalty 1(y,u) on making a surrogate
prediction u € C when the true label is y € [n]. The v-risk or i-error of a surrogate
prediction model f : X¥—C w.r.t. a distribution D on X’ x [n] is then defined as

erhlf] = Eoxyyep [w(Y.£(X)]. (4)

The surrogate ¢ can be represented via n real-valued functions v, : C—»R4 for y € [n],
defined as ¥y (u) = ¢ (y, u) ; equivalently, we can also represent the surrogate 1 as a vector-

valued function 1 : C—=R’}, defined as 1 (u) = (1/)1 (u),..., wn(u))T . Clearly, the 1)-risk of
f can then be written as

ert] = Ex| Y p(X) 0,(00)| = B o) w(e(x)]. 6
y=1

The optimal -risk or optimal 1-error for a distribution D is then simply the smallest
1-risk or y-error that can be achieved by any model f:

e’ £t erblf] = int Bx[p(X) 9(ECO)] = By | it p(0) wlw)]. (6)
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We will find it convenient to define the sets

Y(C) < RY (7)
conv(Ry) € RY. (8)

Ry £

S, 2

Clearly, the optimal -risk can then also be written as

U — Ex| inf p(X)'z| = Ex| inf p(X)T
et = By | jnf p(x)7a| = Bx| inf p(x)"4]. Q
Example 5 (Crammer-Singer surrogate) The Crammer-Singer surrogate was proposed
as a hinge-like surrogate loss for 0-1 multiclass classification (Crammer and Singer, |2001)).

For Y = [n], the Crammer-Singer surrogate %S acts on the surrogate prediction space
C =R" and is defined as follows:

gs(u) = y/el[gf;;y (1— (uy — uy/))+ Vy € [n],u e R".

A surrogate 1 is convex if 1, is convex Vy € [n]. As an example, the Crammer-Singer
surrogate defined above is clearly convex. Given training examples (X1,Y1),..., (Xm, Ym)
drawn i.i.d. from a distribution D on X X [n], a (convex) surrogate risk minimization al-
gorithm using a (convex) surrogate loss 1 : C—R’} learns a surrogate prediction model by
minimizing (approximately, based on the training sample) the -risk; the learned model
f : X—C is then used to make predictions in the original space [k] via some transformation
pred : C—[k]. This yields a prediction model h : X—[k] for the original multiclass problem
given by h = (pred o f): the prediction on a new instance x € X is given by pred(f(z)),
and the L-risk incurred is er% [pred o f]. As an example, several surrogate risk minimizing
algorithms for multiclass classification with respect to 0-1 loss (including that based on the
Crammer-Singer surrogate) use a surrogate space C = R", learn a function of the form
f: X—R", and predict according to pred(f(z)) = argmax;cp, fi(z).

Under suitable conditions, surrogate risk minimization algorithms that approximately
minimize the 1-risk based on a training sample are known to be consistent with respect to
the 1)-risk, i.e. to converge (in probability) to the optimal i-risk as the number of training
examples m increases. This raises the natural question of whether, for a given loss matrix L,
there are surrogate losses 1 for which consistency with respect to the v-risk also guarantees
consistency with respect to the L-risk, i.e. guarantees convergence (in probability) to the
optimal L-risk (defined in Eq. ) As we shall see below, this amounts to the question of
calibration of surrogate losses 1 w.r.t. a given target loss matrix L, and has been studied
in detail for the 0-1 loss and for square losses of the form ¢(y,t) = a,1(t # y), which can
be analyzed similarly to the 0-1 loss (Zhang, 2004b; Tewari and Bartlett, |2007)). In this
paper, we consider this question for general multiclass loss matrices L € RT’“, including
rectangular loss matrices with k # n. The only assumption we make on L is that for each
t € [k], 9p € Ay, such that argming gy p'€y = {t} (otherwise the element ¢ € [k] never
needs to be predicted and can simply be ignored).

We will need the following definitions and basic results, generalizing those of [Zhang
(2004Db), Bartlett et al.| (2006), and [Tewari and Bartlett| (2007). The notion of calibration
will be central to our study; as Theorem [3| below shows, calibration of a surrogate loss ¢
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w.r.t. L corresponds to the property that consistency w.r.t. ¢-risk implies consistency w.r.t.
L-risk. Proofs of Lemma [2] and Theorem [3] can be found in Appendix [A]

Definition 1 ((L,P)-calibration) Let L € RiXk and P C A,. A surrogate loss function
¥ : C—=RY is said to be (L, P)-calibrated if there exists a function pred : C—[k| such that

VpeP: inf T > infp' )
P uEC:pred(u)lélargmintpTZ,gp ¢(U) lllrele 'lb(ll)

If ¢ is (L, Ay,)-calibrated, we simply say v is L-calibrated.

The above definition of calibration clearly generalizes that used in the binary case. For
example, in the case of binary 0-1 classification, with n = k = 2 and L%! = [[1) (1)], the
probability simplex Ay is equivalent to the interval [0, 1], and it can be shown that one only
need consider surrogates on the real line, C = R, and the predictor ‘sign’; in this case one
recovers the familiar definition of binary classification calibration of |Bartlett et al.| (20006]),
namely that a surrogate ¢ : R—R? is (L%!, Ay)-calibrated if

1
Vpe[0,1],p# 5 - inf p1(u)+(1—p)a(u) > inf pehi(u)+(1—p)ia(u).
2 uGR:mgn(u)yﬁmgn(p—%) ueR

Similarly, in the case of binary cost-sensitive classification, withn = k = 2 and L¢ = [Oc 15"’]

where ¢ € (0, 1) is the cost of a false positive and (1—c) that of a false negative, one recovers
the corresponding definition of |Scott| (2012), namely that a surrogate v : R—HRi is (L€, Ag)-
calibrated if
Vpe [0,1],p#c: ~inf p1(u)+(1—p)ha(u) > inf pib(u)+(1—p)be(u).
u€R:sign(u)#sign(p—c) u€R
The following lemma gives a characterization of calibration similar to that used by
Tewari and Bartlett| (2007)):

Lemma 2 LetL € R* and P C A,,. Then a surrogate loss 1 : C—R" is (L, P)-calibrated
iff there exists a function pred’ : Sy,—[k] such that
VpeP: inf p'z > inf p'z.
z€8y:pred’ (z)¢argmin, p ' £; z€Sy,
In this paper, we will mostly be concerned with (L, A, )-calibration, which as noted
above, we refer to as simply L-calibration. The following result, whose proof is a straight-

forward generalization of that of a similar result for the 0-1 loss given by Tewari and Bartlett
(2007)), explains why L-calibration is useful:

Theorem 3 Let L € RS‘er. A surrogate loss ¢ : C—R"} is L-calibrated iff there erists a
function pred : C—[k] such that for all distributions D on X x [n] and all sequences of
(vector) functions f,, : X—C,

) hyx

erp[fn] — erp implies  er¥[pred o f,,] —» er%’* .

In particular, Theorem [3| implies that a surrogate 1) is L-calibrated if and only if 3 a
mapping pred : C—[k] such that any 1-consistent algorithm learning models of the form
£, 1 X—C (from ii.d. examples (X1,Y1),...,(Xm,Yn)) yields an L-consistent algorithm
learning models of the form (pred o f,,) : X—[k].
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(0,1,0) (0,1,0) (0,1,0)

(%, %, 0) (0,%, %) (0,%, %)

(1,0,0) (%,0,%) (0,0,2) (1,0,0) (%, 0, %) (0,0,1) (1,0,0) (%, 0, %) (0,0,2)
Q! = {p € A3 : p1 > max(p2,p3)} QY4 ={peAz:p >1} Qg‘?):{pQAgjpl > 13
ng:{peAsszZmaxm,pa)} Qyi={peAs:p <Lips<iy QP = (pedsipy >y
Q3" = {p € A3 : p3 > max(p1,p2)} QY ={peAz:ps>1i} Q) =(pengips > 1}

Qfl?) = {p € Az : max(p1,p2,p3) < 3}
(a) (b) ()
Figure 2: Trigger probability sets for (a) 0-1 loss L%!; (b) ordinal regression loss L°'; and
(c¢) ‘abstain’ loss L("); all for n = 3, for which the probability simplex can be visualized
easily. Calculations of these sets can be found in Appendix

2.4 Trigger Probabilities and Positive Normals

Our goal is to study conditions under which a surrogate loss ¥ : C—R is L-calibrated
for a target loss matrix L € RZ‘er . To this end, we will now define certain properties of
both multiclass loss matrices L and multiclass surrogates @ that will be useful in relating
the two. Specifically, we will define trigger probability sets associated with a multiclass loss
matrix L, and positive normal sets associated with a multiclass surrogate 1; in Section
we will use these to obtain both necessary and sufficient conditions for calibration.

Definition 4 (Trigger probability sets) Let L € R’}er. For each t € [k], the trigger
probability set of L at t is defined as

A .
L = {p €A, :p (8 —Ly) <OV € [k]} = {p € Ap 1t € argming gy prt/} .

In words, the trigger probability set QF is the set of class probability vectors for which
predicting ¢ is optimal in terms of minimizing L-risk. Such sets have also been studied by
Lambert and Shoham| (2009) and |O’Brien et al.| (2008) in a different context. |Lambert and
Shoham (2009) show that these sets form what is called a power diagram, which is a gen-
eralization of the Voronoi diagram. Trigger probability sets for the 0-1, ordinal regression,
and ‘abstain’ loss matrices (described in Examples and 4] are illustrated in Figure
the corresponding calculations can be found in Appendix

Definition 5 (Positive normal sets) Let 1) : C=RY. For each point z € Sy, the posi-
tive normal set of v at z is defined asE]

N (z) = {peAn:pT(z—z')SOVzle&p} = {pEAn:pTz:Z}éléprz’}.

2. For points z in the interior of Sy, N'¥(z) is empty.

10
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(0,1,0)
NCS(z1)={p€A3g:p > %}
NCS(z3) = {p € Az :pp > 3}
%, %, 0,%,%
(%, %, 0) (0, %, %) NCS(Zs)Z{p€A3:p32%}
N©S(24) = {p € Az : max(p1,p2,p3) < 5}

(1,0,0) (%%, 0,%) (0,0,1)

Figure 3: Positive normal sets for the Crammer-Singer surrogate ¥°S for n = 3, at 4
points z; = ¥(w;) € R3 (i € [4]) for u; = (1,0,0)T, uz = (0,1,0)", uz = (0,0,1)7,
and uy = (0,0,0)". Calculations of these sets are based on Lemma |§| and can be found in
Appendixg

For any sequence of points {z,,} in Sy, the positive normal set of ¥ at {z,,} is defined a:ﬂ

NY{zm}) 2 {pe A, : lim p'z, = inf pTz'}.
m—o0 2'€S,

In words, the positive normal set N'¥(z) at a point z = p(u) € Ry is the set of class
probability vectors for which predicting u is optimal in terms of minimizing -risk. Such
sets were also studied by [Tewari and Bartlett| (2007). The extension to sequences of points
in Sy is needed for technical reasons in some of our proofs. Note that for N'¥({z,,}) to
be well-defined, the sequence {z,,} need not converge itself; however if the sequence {z,,}
does converge to some point z € Sy, then NV ({z,,}) = N'¥(z). Positive normal sets for the
Crammer-Singer surrogate (described in Example [5)) at 4 points are illustrated in Figure
the corresponding calculations can be found in Appendix [C]

3. Conditions for Calibration

In this section we give both necessary conditions (Section and sufficient conditions
(Section for a surrogate @ to be calibrated w.r.t. an arbitrary target loss matrix L.
Both sets of conditions involve the trigger probability sets of L and the positive normal sets
of 1; in Section [3.3 we give a result that facilitates computation of positive normal sets for
certain classes of surrogates 1.

3.1 Necessary Conditions for Calibration

We start by deriving necessary conditions for L-calibration of a surrogate loss 1. Consider
what happens if for some point z € Sy, the positive normal set of ¢ at z, N/ ¥(z), has a non-
empty intersection with the interiors of two trigger probability sets of L, say Q{‘ and Q% (see
F igurefor an illustration), which means 3qi, q2 € N¥(z) with argming q; £ = {1} and
argming e q; £ = {2}. If 1 is L-calibrated, then by Lemma [2, we have Jpred’ : S;,—[k]

3. For sequences {z,} for which lim,, oo P Zm does not exist for any p, N'¥(z) is empty.

11
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(0,1, 0)

(%, %, 0) (0, %, %)

I
$

(1,0,0) (%%, 0, %) (0,0,1)

Figure 4: Visual proof of Theorem @ If a surrogate 1) is such that its positive normal
set N ¢(z) at some point z has non-empty intersection with the interiors of two trigger
probability sets (say QF and QY) of L, then 1) cannot be L-calibrated.

such that
inf q 7z = inf q/z > inf q(7 = q|z
2’ €Sy pred’(z/)#1 2’ €8, :pred’ (z’)¢argmin, qf £ z/ €Sy
inf Q7 = inf a7z > inf qu7 = qiz.
z' €Sy :pred’(z/)#2 2’ €8, :pred’ (z’)¢argmin, qJ £ z/ €Sy

The first inequality above implies pred’(z) = 1; the second inequality implies pred’(z) = 2,
leading to a contradiction. This gives us the following necessary condition for L-calibration
of 1, which requires the positive normal sets of 1 at all points z € Sy, to be ‘well-behaved’
w.r.t. L in the sense of being contained within individual trigger probability sets of L and
generalizes the ‘admissibility’ condition used for 0-1 loss by [Tewari and Bartlett| (2007)):

Theorem 6 Let L € R?_Xk, and let 1 : C—R"} be L-calibrated. Then for all points z € Sy,
there exists some t € [k] such that N¥(z) C QF.

Proof See above discussion. [ |

In fact, we have the following stronger necessary condition, which requires the positive
normal sets of 1 not only at all points z € S, but also at all sequences {z,,} in Sy, to be
contained within individual trigger probability sets of L:

Theorem 7 Let L € R’}er, and let ¢ : C—=R"} be L-calibrated. Then for all sequences
{zm} in Sy, there exists some t € [k] such that N¥({z,}) C OF.

Proof Assume for the sake of contradiction that there is some sequence {z,,} in Sy for
which N'¥({z,,}) is not contained in QF for any ¢ € [k]. Then Vt € [k], Iq; € NY({zm})
such that q; ¢ QF, i.e. such that ¢t ¢ argmin, q, £s. Now, since 1 is L-calibrated, by
Lemma there exists a function pred’ : S;—[k] such that for all p € N¥({z,,}), we
have pred’(z,,) € argming p' £y for all large enough m. In particular, for p = q;, we
get pred’(z,,) € argmin, q/ £y ultimately. Since this is true for each t € [k], we get
pred’(z,,) € Nielk] argming q/ £y ultimately. However by choice of qy, this intersection

12
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is empty, thus yielding a contradiction. This completes the proof. |

Note that Theorem (7] includes Theorem |§| as a special case, since N'¥(z) = N¥({z})
for the constant sequence z,, = z Ym. We stated Theorem [f] separately above since it had
a simple, direct proof that helps build intuition.

Example 6 (Crammer-Singer surrogate is not calibrated for 0-1 loss) Looking at
the positive normal sets of the Crammer-Singer surrogate > (for n = 3) shown in Fig-
ure @ and the trigger probability sets of the 0-1 loss L' shown in Figure @(a), we see that
NC5(zy4) is not contained in any single trigger probability set of LO1, and therefore applying
Theorem@ it is immediately clear that ¢CS is not L9 -calibrated (this was also established
by | Tewari and Bartlett (2007) and|Zhang (2004Y])).

3.2 Sufficient Condition for Calibration

We now give a sufficient condition for L-calibration of a surrogate loss 1 that will be helpful
in showing calibration of various surrogates. In particular, we show that for a surrogate
loss 1 to be L-calibrated, it is sufficient for the above property of positive normal sets of
1) being contained in trigger probability sets of L to hold for only a finite number of points
in Sy, as long as the corresponding positive normal sets jointly cover A,:

Theorem 8 Let L € RﬁXk and v : C—R". Suppose there existr € Zy and z1,...,2, € Sy
such that U, N¥(z;) = A, and for each j € [r], 3t € [k] such that N'¥(z;) C QF. Then
1 is L-calibrated.

Example 7 (Crammer-Singer surrogate is calibrated for L) and L°" for n = 3)
Inspecting the positive normal sets of the Crammer-Singer surrogate 1S (for n = 3) in Fig-
ure @ and the trigger probability sets of the ‘abstain’ loss matriz L") in Figure @(c), we see
that N©S(z;) = QE?) Vi € [4], and therefore by Theorem@ the Crammer-Singer surrogate
PO is L) -calibrated. Similarly, looking at the trigger probability sets of the ordinal re-
gression loss matriz L in Figure @(b) and again applying Theorem @ we see that the
Crammer-Singer surrogate Y is also Lo -calibrated!

Some additional examples of applications of Theorems|[6]and [§are provided in Section[3.3]
below. Both the necessary and sufficient conditions above will also be used when we study
the convex calibration dimension of a loss matrix L in Section Al

3.3 Computation of Positive Normal Sets

Both the necessary and sufficient conditions for calibration above involve the positive normal
sets N'¥(z) at various points z € Sy. Thus in order to use the above results to show that
a surrogate 1 is (or is not) L-calibrated, one needs to be able to compute or characterize
the sets N¥(z). Here we give a method for computing these sets for certain surrogates
1 at certain points z € Sy,. Specifically, the following result gives an explicit method
for computing N'¥(z) for convex surrogate losses 1 operating on a convex surrogate space
C C RY, at points z = (u) € Ry, for which the subdifferential 01, (u) for each y € [n]

13
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can be described as the convex hull of a finite number of points in R?; this is particularly
applicable for piecewise linear surrogatesEHﬂ

Lemma 9 Let C C R? be a convex set and let v : C—R" be conver. Let z = p(u) for
some u € C such that Yy € [n], the subdifferential of 1, at u can be written as

Iy (u) = conv ({w,..., wY })
for some sy € Zy and wY,... ,w¥ € R Let s= > y—1 5y, and let
A=[wl..wiwi.. . wi ... wi ... wl ] e R, B = [b,;] € R"**,
where by; is 1 if the j-th column of A came from {w{,... ,wé/y} and 0 otherwise. Then

N¥(z) = {p € A, : p =Bq for some q € null(A) N As} ,
where null(A) C R® denotes the null space of the matriz A.

The proof makes use of the fact that a convex function ¢ : R*—R attains its minimum
at ug € R? iff the subdifferential d¢(ug) contains 0 € R? (e.g. see [Bertsekas et al. (2003)).
We will also make use of the fact that if ¢1, ¢ : R*—=R are convex functions, then the subd-
ifferential of their sum ¢; + ¢2 at ug is is equal to the Minkowski sum of the subdifferentials
of ¢1 and ¢o at ug:
A1 + ¢2)(ug) = {Wl +wa 1wy € 0¢1(ug), wy € 8¢2(u0)} .
Proof (Proof of Lemma [9)

We have for all p € R,
p < Nw(¢(u)) < PpEiy, PT1P(u) < pTZ/ vz e S,/}
— pci,, pT't,b(u) < pTz' vz € Ry
<= p€A,, and the convex function ¢p(u’) = p'y(u') = Zzzlpywy(u’)

achieves its minimum at u’ = u

= pEA,, 0€) p,diy(u)

y=1
n Sy
— pei, 0= ZpyZvJyw? for some v¥ € Ay
y=1 j=1
n Sy
< peA, 0= quijg for some q¥ = p,v¥, v¥ e Ay,
y=1j=1

< peEA,,Aq=0 for some q = (p1v',...,p,v")T € A,, VYE As,
<= p = Bq for some q € null(A) N A;.

4. Recall that a vector function is convex if all its component functions are convex.

5. Recall that the subdifferential of a convex function ¢ : R*—=R at a point ug € R? is defined as d¢(uo) =
{weR: ¢(u) — ¢(uo) > w' (u—1ug) Yu € R?} and is a convex set in R? (e.g. see [Bertsekas et al.
(2003)).

14
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We now give examples of computation of positive normal sets using Lemma [9] for two
convex surrogates, both of which operate on the one-dimensional surrogate space C = R,
and as we shall see, turn out to be calibrated w.r.t. the ordinal regression loss L™ but not
w.r.t. the 0-1 loss L or the ‘abstain’ loss L(). As another example of an application of
Lemmal 9] calculations showing computation of positive normal sets of the Crammer-Singer
surrogate (as shown in Figure |3 are given in the appendix.

Example 8 (Positive normal sets of ‘absolute’ surrogate) Letn =3, and letC = R.
Consider the ‘absolute’ surrogate " : R—)Rij_ defined as follows:

w;bs(u) = |u—yl Vy € 3], u e R. (10)
Clearly, ¥ is a convex function (see Figure @ Moreover, we have
Rabs = PR) = {(Ju—1|,Ju—2),ju—3))T :ueR} CR3 .
Now let uy =1, uo = 2, and uz = 3, and let

7z, = Ipabs(ul) _ ¢abs(1) — (07 1’ 2>T e Rabs
79 = ,lpabs(u2) _ ¢abs(2) — (1’ 07 1)T e Rabs
z3 = wabs(u?)) = 'l:babs(s) = (27 1, O)T € Rabs -

Let us consider computing the positive normal sets of Y at the 3 points z1,z9, z3 above.
To see that z1 satisfies the conditions of Lemmal[9, note that

Ui () = (1) = [~1,1] = conv({+1,~1});:
U3t u) = (1) = {1} = conv({~1});
Ut (u) = (1) = {1} = conv({-1}).

Therefore, we can use Lemma @ to compute N2P5(z1). Here s = 4, and

1 100
A=[+1 -1 -1 -1]; B=|00 10
0 001
This gives
N*»(z1) = {p€As:p=(q1+q,0q3 q) for someq €Ay, q1 —q2—q3— qa =0}

{p € Az :p=(q1+ q,q3,q4) for some q € Ay, q1 = %}
{peds:p >4}

It is easy to see that zo and z3 also satisfy the conditions of Lemmal9; similar computations
then yield

NP5 (z5) {pens:p <3,p3< 3}
Nabs(Z:),) = {p € Az :pg > %} .
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(0,1,0

(1,0,0 (%2, 0,%) (0,0,1)

(b)

Figure 5: (a) The ‘absolute’ surrogate 1™ : R—R3_ (for n = 3), and (b) its positive normal
sets at 3 points z; = 1™ (u;) € R (i € [3]) for ug = 1,up = 2,u3 = 3. See Example I 8| for
details.

The positive normal sets above are shown in Figure [5. Comparing these with the trigger
probability sets in Figure @, we have by Theorem @ that ¥ is Lo _calibrated, and by
Theoremla that 1™ is not calibrated w.r.t. L& or L),

Example 9 (Positive normal sets of ‘e-insensitive’ surrogate) Let n = 3, and let
C = R. Lete € [0,0.5), and consider the ‘e-insensitive’ surrogate ¢ : ]R—)Ri defined
as follows:

Yy (u) = (lu—y| - e)+ Vy € [3], u € R. (11)

For € = 0, we have ¢ = ™. Clearly, ¢ is a convex function (see Figure @ Moreover,
we have

Re = ¥*(R) = {((ju—1-, (lu=2 -1, (lu-3[—e)y) :uecR} CRE.

For concreteness, we will take € = 0.25 below, but similar computations hold Ve € (0,0.5).
Letui =14+e€e=125,u0=2—€=1.75, u3 =2+ e =225, and ug =3 — e = 2.75, and let

2 = ") = POB(1.25) = (0,0.5,1.5)7 € Roas
25 = POB(uy) = POB(175) = (05,0,1)7 € Ros
25 = 0P(uz) = $OP(2.25) = (1,0,0.5)7 € Roas
21 = OP(ug) = POB(2.75) = (1.5,0.5,0)7 € Roos.

Let us consider computing the positive normal sets of ¥°?° at the J points z; (i € [4]) above.
To see that zy satisfies the conditions of Lemmal9, note that

O (w) = 09*(1.25) = [0,1] = conv({0,1});
Oy ® (ur) = Oy*(1.25) = {-1} = conv({—1});
VY (uy) = 0pI*(1.25) = {—1} = conv({—1}).
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Therefore, we can use Lemma @ to compute N925(z1). Here s = 4, and

11
A=[01 -1 -1]; B=|00
00

S = O

0
0
1
This gives

NY®(z1) = {p€As:p=I(q+q2q3 q) for someq€ Ay, q2—q3 —qs =0}
= {peAs:p=(q1+q,0q3 q) for someq€ Ny, q1+q2>q3+qa}
= {pels:p>3}.

Similarly, to see that zs satisfies the conditions of Lemmal[9, note that

PV (ug) = Y (1.75) = {1} = conv({1});
Yy (ug) = Yy ®(1.75) = [-1,0] = conv({~1,0});
Yy (uz) = WGP (L.75) = {~1} = conv({-1}).

Again, we can use Lemma @ to compute NO-?°(z3); here s = 4, and

1 000
A=[1 -1 0 -1]; B=|0110
0001
This gives
NOP(zg) = {peAs:p=(q1,q2+q3,q4) for some q € Ay, g1 — g2 —qs =0}

= {peAs:ip >p3, pr <31},

It is easy to see that zg and z4 also satisfy the conditions of Lemmal9; similar computations
then yield

NO®(z3) = {peAs:p <ps, p3<3}
N°®(z4) = {peAs:ps>3}.

The positive normal sets above are shown in Figure [0 Comparing these with the trigger
probability sets in Figure @, we have by Theorem @ that %% is Lo calibrated, and by
Theoremla that ¥°2° is not calibrated w.r.t. Lo or L),

4. Convex Calibration Dimension

We now turn to the study of a fundamental quantity associated with the property of L-
calibration. Specifically, in Examples 6 and 7 above, we saw that to develop a surrogate
calibrated w.r.t. to the ordinal regression loss L' for n = 3, it was sufficient to consider
a surrogate prediction space C = R, with dimension d = 1; in addition, the surrogates we
considered were convex, and can therefore be used in developing computationally efficient
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(0,1,0)

(%, %, 0) Nz,) | Nzy) (0, %, %)

N(z,) N(zy)

(1,0,0) (%, 0,%) (0,0,1)

(a) (b)

Figure 6: (a) The ‘c-insensitive’ surrogate ¢ : R—R? for € = 0.25 (and n = 3), and (b) its
positive normal sets at 4 points z; = ¥ (u;) € RS (i € [4]) for uy = 1.25,uy = 1.75,u3 =
2.25,us = 2.75. See Example [J] for details.

algorithms. In fact the same surrogate prediction space with d = 1 can be used to develop
similar convex surrogate losses calibrated w.r.t. the L™ for any n € Z,. However not all
multiclass loss matrices L have such ‘low-dimensional’ convex surrogates. This raises the
natural question of what is the smallest dimension d that supports a convex L-calibrated
surrogate for a given multiclass loss L, and leads us to the following definition:

Definition 10 (Convex calibration dimension) Let L € R"*. Define the convex cal-
ibration dimension (CC dimension) of L as

CCdim(L) 2 min {d € Zy -3 a convex set C C RY and a convex surrogate 1 : C—RY
that is L—calibmted} ,

if the above set is non-empty, and CCdim(L) = oo otherwise.

The CC-dimension of a loss matrix L provides an important measure of the ‘complexity’
of designing convex calibrated surrogates for L. Indeed, while the computational complexity
of minimizing a surrogate loss, as well as that of converting surrogate predictions into target
predictions, can depend on factors other than the dimension d of the surrogate space C C R,
in the absence of other guiding factors, one would in general prefer to use a surrogate in a
lower dimension d since this involves learning a smaller number of real-valued functions.

From the above discussion, CCdim(L*¥) = 1 for all n. In the following, we will be
interested in developing an understanding of the CC dimension for general loss matrices L,
and in particular in deriving upper and lower bounds on this quantity.

4.1 Upper Bounds on the Convex Calibration Dimension

We start with a simple result that establishes that the CC dimension of any multiclass loss
matrix L is finite, and in fact is strictly smaller than the number of class labels n.
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Lemma 11 Let L € R™**. Let C = {fueRry: Z;L:_ll uj < 1}, and for each y € [n], let
1y : C—R be given by

by(n) = 1y #n) (uy, — 1)* + Z us”.

Je[n71]7.77éy
Then v is L-calibrated. In particular, since ¥ is convexr, CCdim(L) <n — 1.

It may appear surprising that the convex surrogate @ in the above lemma, operating on a
surrogate space C C R" !, is L-calibrated for all multiclass losses L on n classes. However
this makes intuitive sense, since in principle, for any multiclass problem, if one can estimate
the conditional probabilities of the n classes accurately (which requires estimating n — 1
real-valued functions on X'), then one can predict a target label that minimizes the expected
loss according to these probabilities. Minimizing the above surrogate effectively corresponds
to such class probability estimation. Indeed, the above lemma can be shown to hold for any
surrogate that is a strictly proper composite multiclass loss (Vernet et al. 2011]).

In practice, when the number of class labels n is large (such as in a sequence labeling
task, where n is exponential in the length of the input sequence), the above result is not
very helpful; in such cases, it is of interest to develop algorithms operating on a surrogate
prediction space in a lower-dimensional space. Next we give a different upper bound on the
CC dimension that depends on the loss L, and for certain losses, can be significantly tighter
than the general bound above.

Theorem 12 Let L € R7*. Then CCdim(L) < affdim(L).

Proof Let affdim(L) = d. We will construct a convex L-calibrated surrogate loss ¢ with
surrogate prediction space C C R,

Let V C R”™ denote the (d-dimensional) subspace parallel to the affine hull of the
column vectors of L, and let r € R™ be the corresponding translation vector, so that
V = aff({€1,...,£}) +r. Let vi,...,vq € V be d linearly independent vectors in V. Let
{e1,...,e4} denote the standard basis in R?, and define a linear function 1 : R“—R™ by

P(ej) =v; Vjield].

Then for each v € V, there exists a unique vector u € R such that '(Np(u) = v. In particular,
since £;+r € V Vt € [k], there exist unique vectors uy, ..., u; € R¢ such that for each t € [k],
p(u) = £, +r. Let C = conv({uy,...,u;}) € R% and define ¢ : C—R" as

Ppu)=pu)—r YueCl.

To see that 9p(u) € R’} Vu € C, note that for any u € C, dae € Ay, such that u = Zle apuy,
which gives (u) = 17’(“) —r= (Zf:l Oét;ﬂ(ut)) —r= (Zf:l o (€ + r)) —r= Zf:l aly
(and £; € R} Vt € [k]). The function 9 is clearly convex. To show 1) is L-calibrated, we
will use Theorem Specifically, consider the k points z; = ¥(uy) = €, € Ry, for t € [k].
By definition of 1, we have Sy, = conv(v(C)) = conv({€y,...,£;}); from the definitions of
positive normals and trigger probabilities, it then follows that N¥(z;) = NV (£;) = QF for
all t € [k]. Thus by Theorem [8] 9 is L-calibrated. [ |
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Since affdim(L) is equal to either rank(L) or rank(L) — 1, this immediately gives us the
following corollary:

Corollary 13 Let L € RY*. Then CCdim(L) < rank(L).

Proof Follows immediately from Theorem (12| and the fact that affdim(L) < rank(L). B

Example 10 (CC dimension of Hamming loss) Let n = 2" for some r € Z,, and
consider the Hamming loss LH2™ ¢ RY*™ defined in Example @ As in Example@ for each
z€{0,...,2" —1}, let z; € {0,1} denote the i-th bit in the r-bit binary representation of z.
For each y € [n], define oy € {£1}" as

+1 if(y—1);=1
-1 otherwise.

oy = 2(y—1);i—1 = {

Then we have

r

L™ = Z 1((y— 1) # (t— 1))

i=1

_ Zr: <1 _inati)
2

i=1

T
T inoti
= —— Yy, t .
5 ;1 5 y,t € [n]

Thus affdim(LH2™) < ¢, and therefore by Theorem we have CCdim (L) < r. This is
a significantly tighter upper bound than the bound of 2" — 1 given by Lemma[I]]

4.2 Lower Bound on the Convex Calibration Dimension

In this section we give a lower bound on the CC dimension of a loss matrix L and illustrate
it by using it to calculate the CC dimension of the 0-1 loss. In Section 5| we will explore
applications of the lower bound to obtaining impossibility results on the existence of convex
calibrated surrogates in low-dimensional surrogate spaces for certain types of subset ranking
losses. We will need the following definition:

Definition 14 (Feasible subspace dimension) The feasible subspace dimension of a
convex set Q@ C R™ at a point p € Q, denoted by ug(p), is defined as the dimension of
the subspace Fo(p) N (—Fo(p)), where Fo(p) is the cone of feasible directions of Q at pff]

In essence, the feasible subspace dimension of a convex set () at a point p € Q is simply
the dimension of the smallest face of Q containing p; see Figure [7] for an illustration.

6. For a set @ C R™ and point p € Q, the cone of feasible directions of Q at p is defined as
Fo(p) ={veR": e > 0such that p+ev e Q Ve e (0,e)}.
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(a) Convex set Q

(b) dim(Fo(p) N (~Fo(@")) =2  (c) dim(Fo(p?) N (~Fa(P?) =1  (d) dim(Fo(p®) N (~Fo(p?))) =0

Figure 7: Illustration of feasible subspace dimension pg(p) of a 2-dimensional convex set
Q at three points p = p', p?, p®. Here pg(p') = 2, po(p?) = 1, and puo(p?) = 0.

Both the proof of the lower bound we will provide below and its applications make use
of the following lemma, which gives a method to calculate the feasible subspace dimension
for certain convex sets Q and points p € Q:

Lemma 15 Let Q = {q eR": Alq < b!,A%q < b? A3q = b3}. Let p € Q be such that
1
A'p =b', A%p < b2. Then uo(p) = nullity ([i D

} > , from which the lemma follows.

1
Proof We will show that Fo(p)N(—Fo(p)) = null( [23

1
First, let v € null( [23] ) Then for € > 0, we have
Alp+ev) = Alp+eAlv = Alp+0 = b?
A%(p+ev) < b? for small enough e, since A%p < b?
A3(p+ev) = A’p+eAiv = A’p+0 = b3,
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Thus v € Fo(p). Similarly, we can show —v € Fo(p). Thus v € Fo(p)N(—Fo(p)), giving
1
null([:3]> C Fo(p)N(=Fo(p)). Now let v € Fo(p) N (—Fo(p)). Then for small enough

€ > 0, we have both A'(p + ev) < b! and Al(p — ev) < bl. Since Alp = b!, this gives

Alv = 0. Similarly, for small enough € > 0, we have A3(p + ev) = b?; since A3p = b3,
1

this gives Av = 0. Thus [2;} v = 0, giving Fo(p) N (—Fo(p)) C null( [23] > [ ]

The following gives a lower bound on the CC dimension of a loss matrix L in terms of
the feasible subspace dimension of the trigger probability sets QF at points p € QF:

Theorem 16 LetL € ]R’}FX]“. Letp € A, andt € argming p' £y (equivalently, let p € QF).
Then
CCdim(L) = |[pllo — por(p) — 1.

The above lower bound allows us to calculate precisely the CC dimension of the 0-1 loss:

Example 11 (CC dimension of 0-1 loss) Let n € Z,, and consider the 0-1 loss L% €
RY*" defined in Example 1. Takep = (,..., )T € A,,. Thenp € QY! for allt € [k] = [n]
(see Figure @; in particular, we have p € QY. Now Q¥ can be written as

Q(l)'l = {qGAn:qlzquyE{Q,...,n}}
= {qeRn: [_en—l In—l]qgoa_qéoael—qzl}a
where e,_1, €, denote the (n — 1) x 1 and n x 1 all ones vectors, respectively, and I,_1

denotes the (n — 1) x (n — 1) identity matriz. Moreover, we have [—en_l In_l]p =0,
—p < 0. Therefore, by Lemma[15], we have

[—-110 ... 0]
1 -101...0
. —€p—1 Ip—1 . .
,ug(l).l(p):nulhty<[ oT ]) = nullity : =0.
" ~100...1
111 ... 1)

Moreover, ||pllo =n. Thus by Theorem[16, we have CCdim(L*!) > n — 1. Combined with
the upper bound of Lemmal[11] this gives CCdim(L%') =n — 1.

4.3 Tightness of Bounds

The upper and lower bounds above are not necessarily tight in general. For example, for
the n-class ordinal regression loss of Example 2, we know that CCdim(L°'9) = 1; however
the upper bound of Theorem [12|only gives CCdim(L°¢) < n — 1. Similarly, for the n-class
abstain loss of Example 4, it can be shown that CCdim(L(")) = O(Inn) (in fact we conjecture
it to be O(Inn)) (Ramaswamy et al., 2015), whereas the upper bound of Theorem [12| gives
CCdim(L(")) < n, and the lower bound of Theorem [16| yields only CCdim(L(")) > 1.
However, as we show below, for certain losses L, the bounds of Theorems [12| and [16| are in
fact tight (upto an additive constant of 1).
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Lemma 17 Let L € R™**. Let p € relint(A,) and ¢ € Ry be such that p" £, = ¢ Vt € [k].
Then Vt € [k],

por(p) < n — affdim(L).

Proof Since p'£; = ¢ Vt € [k], we have p € QF Vt € [k]. In particular, we have p € QL.

Now T
(€2 — £1)
ol = {qeRr": : q>0,-q<0,e/q=1
(&, —£1)"
(€2 —£1)"
Moreover, : p = 0 and —p < 0. Therefore, by Lemma |15, we have
(& — €)'
(62— £1)" (€2 —£1)"
por(p) = nullity : = n —rank : < n—affdim(L) .
“ (6= £1)7 (6~ )7
e e,
A similar proof holds for pgr(p) for all other ¢ € [k]. [ ]

Combining the above result with Theorem [L6| immediately gives the following;:
Theorem 18 Let L € R’}er. If 3p € relint(A,),c € Ry such that p' £, = c Vt € [k], then
CCdim(L) > affdim(L) — 1.

Proof Follows immediately from Theorem [16] and Lemma [ |

Intuitively, the condition that Ip € relint(A,),c € Ry such that p' £ = ¢ Vt € [k] in
Lemma [17] and Theorem (18| above captures the essence of a hard problem: in this case, if
the underlying label probability distribution p’ is very close to p, then it becomes hard to
decide which element ¢ € [k] is an optimal prediction. This is essentially what leads the
lower bound on the CC-dimension to become tight in this case.

A particularly useful application of Theorem [18]is to losses L whose columns £; can be
obtained from one another by permuting entries:

Corollary 19 LetL € RiXk be such that all columns of Li can be obtained from one another
by permuting entries, i.e. Vt1,ta € [k], 3o € I, such that £y, = Ly, Yy € [n]. Then

CCdim(L) > affdim(L) — 1.

Proof Let p = (%, ce %)T € relint(A,,). Let ¢ = ”%Hl. Then under the given condition,
p' £, = c ¥Vt € [k]. The result then follows from Theorem [ |

We will use the above corollary in establishing lower bounds on the CC dimension of
certain subset ranking losses below.
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5. Applications to Subset Ranking

We now consider applications of the above framework to analyzing various subset ranking
problems, where each instance x € X consists of a query together with a set of » documents
(for simplicity, r € Z here is fixed), and the goal is to learn a prediction model which given
such an instance predicts a ranking (permutation) of the » documents (Cossock and Zhang),
2008)E| We consider three popular losses used for subset ranking: the normalized discounted
cumulative gain (NDCG) loss, the pairwise disagreement (PD) loss, and the mean average
precision (MAP) lossﬁ Each of these subset ranking losses can be viewed as a specific type
of multiclass loss acting on a certain label space ) and prediction space )A/ In particular,
for the NDCG loss, the label space )Y contains r-dimensional multi-valued relevance vectors;
for PD loss, )V contains directed acyclic graphs on r nodes; and for MAP loss, ) contains
r-dimensional binary relevance vectors. In each case, the prediction space Y is the set of
permutations of r objects: y = II,.. We study the convex calibration dimension of these
losses below. Specifically, we show that the CC dimension of the NDCG loss is upper
bounded by r (Section , and that of both the PD and MAP losses is lower bounded
by a quadratic function of r (Sections and [5.3). Our result on the CC dimension of
the NDCG loss is consistent with previous results in the literature showing the existence
of r-dimensional convex calibrated surrogates for NDCG (Ravikumar et al., [2011; Buffoni
et al) 2011); our results on the CC dimension of the PD and MAP losses strengthen
previous results of (Calauzenes et al.| (2012]), who showed non-existence of r-dimensional
convex calibrated surrogates (with a fixed argsort predictor) for PD and MAP.

5.1 Normalized Discounted Cumulative Gain (NDCG)

The NDCG loss is widely used in information retrieval applications (Jarvelin and Kekalainen,
2000). Here Y is the set of r-dimensional relevance vectors with say s relevance levels,
Yy ={0,1,...,5s—1}", and Y is the set of permutations of r objects, y =11, (thus here
n=|Y| =s"and k = |Y| = r!). The loss on predicting a permutation ¢ € II, when the
true label is y € {0,1,...,s — 1}" is given by

1 2% — 1
ENDCG - 1—
(y,0) Z ] .

where z(y) is a normalizer that ensures the loss is non-negative and depends only on y. The
NDCG loss can therefore be viewed as a multiclass loss matrix LNPCG ¢ Rir”!. Clearly,
aﬁdim(LNDCG) < r, and therefore by Theorem we have

CCdim(LNPCE) < r.

Indeed, previous results in the literature have shown the existence of r-dimensional convex
calibrated surrogates for NDCG (Ravikumar et al., [2011; Buffoni et al., [2011)).

7. The term ‘subset ranking’ here refers to the fact that in a query-based setting, each instance involves a
different ‘subset’ of documents to be ranked; see (Cossock and Zhang, [2008)).

8. Note that NDCG and MAP are generally expressed as gains, where a higher value corresponds to better
performance; we can express them as non-negative losses by subtracting them from a suitable constant.
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5.2 Pairwise Disagreement (PD)

Here the label space ) is the set of all directed acyclic graphs (DAGs) on r vertices, which
we shall denote as G,; for each directed edge (7,j) in a graph G € G, associated with an
instance x € X, the i-th document in the document set in x is preferred over the j-th
document. The prediction space j/\ is again the set of permutations of r objects, ji\ = II,.
The loss on predicting a permutation o € I, when the true label is G € G, is given by

(FP(G0) = > 1(o(i) > o(j))

(i,5)€G

= > > 1((i,4) € G) - 1(o(i) > o(4))
i=1 j=1
r i—1
= > > 1((i,4) € G) - 1(o(i) > 0(4)) + 1((§,1) € G) - (1 —1(o(i) > a(j)))
i=1 j=1
r i—1 r o i—1
= Y3 (U6 €6) -G €G)) 1(eli) > o() + D 3 1((G1) € ).

=1 =1 i=1 j=1

The PD loss can be viewed as a multiclass loss matrix LFP e RE"'XT!. Note that the second
term in the sum above depends only the label G; removing this term amounts to simply
subtracting a fixed vector from each column of the loss matrix, which does not change the
properties of the minimizer of the loss or its CC dimension. We can therefore consider the
following loss instead:

r o o1—1

FP(G,o) = DN (1(G4) € G) = 1((Ghi) € G) ) - 1o () > 0(5) -

i=1 j=1

The resulting loss matrix LFD clearly has rank at most @ Therefore, by Corollary
we have

CCdim(LP) = CCdim(LFP) < ’"(7“2_1)

r(r—1)

LPP is exactly =——:

In fact one can show that the rank of

Proposition 20 rank(LFP) = @

Moreover, it is easy to see that the columns of LPP can all be obtained from one another

by permuting entries. Therefore, by Corollary we also have

r(r—1)
2

CCdim(L"P) = CCdim(LPP) > -2,
Informally, this implies that a convex surrogate that achieves calibration w.r.t. L'P over the
full probability simplex must effectively ‘estimate’ all edge weights. Formally, this strength-
ens previous results of |Duchi et al. (2010) and |Calauzenes et al.| (2012). In particular,
Duchi et al. (2010) showed that certain popular r-dimensional convex surrogates are not
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calibrated for the PD loss, and conjectured that such convex calibrated surrogates (in r
dimensions) do not exist; (Calauzenes et al. (2012) showed that indeed there do not exist
any r-dimensional convex surrogates that use argsort as the predictor and are calibrated
for the PD loss. The above result allows us to go further and conclude that in fact, one
cannot design convex calibrated surrogates for the PD loss in any prediction space of less
than T(T U _ 2 dimensions (regardless of the predictor used).

5.3 Mean Average Precision (MAP)

Here the label space ) is the set of all (non-zero) r-dimensional binary relevance vectors,
Y =4{0,1}"\ {0}, and the prediction space Y is again the set of permutations of r objects,
Y =1I,.. The loss on predicting a permutation o € II, when the true label is y € {0,1}7\ {0}
is given by

gMAP(yva) = 1- Z Zya L(4)

Hyul 2

= Zy’ Zyal

HyH1

_ ZZ Yo—1(3) ya—l(]

Hyul 22

= — L Yi Yj
=1 Iyl ;; max (o (i), o(5)) (12)

Thus the MAP loss can be viewed as a multiclass loss matrix LMAP ¢ R(2 —Dxr

affdim(LMAP) < w, and therefore by Theorem l we have

. Clearly,

CCdim(@MAP) < "D
—_— 2 .

One can also show the following lower bound on the rank of LMAP:

sps MAP r(r—1)
Proposition 21 rank(LY4") > =5 — 2.

Again, it is easy to see that the columns of LMAP can all be obtained from one another
by permuting entries, and therefore by Corollary we have

-1
CCdim(LMAP) > ”(7”2) —4.
This again strengthens a previous result of |Calauzenes et al.| (2012), who showed that there
do not exist any r-dimensional convex surrogates that use argsort as the predictor and are
calibrated for the MAP loss. As with the PD loss, the above result allows us to go further
and conclude that in fact, one cannot design convex calibrated surrogates for the MAP loss

in any prediction space of less than T(TT_I) — 4 dimensions (regardless of the predictor used).
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6. Conclusion

We have developed a unified framework for studying consistency properties of surrogate
risk minimization algorithms for general multiclass learning problems, defined by a general
multiclass loss matrix. In particular, we have introduced the notion of convex calibration
dimension (CC dimension) of a multiclass loss matrix, a fundamental quantity that mea-
sures the smallest ‘size’ of a prediction space in which it is possible to design a convex
surrogate that is calibrated with respect to the given loss matrix, and have used this to
analyze consistency properties of surrogate losses for various multiclass learning problems.

Our study both generalizes previous results and sheds new light on various multiclass
losses. For example, our analysis shows that for the n-class 0-1 loss, any convex calibrated
surrogate must necessarily entail learning at least n — 1 real-valued functions, thus showing
that the calibrated multiclass surrogate of |Lee et al. (2004), whose minimization entails
learning n real-valued functions, is essentially not improvable (in the sense of the number of
real-valued functions that need to be learned). Another implication of our study is to the
pairwise disagreement (PD) and mean average precision (MAP) losses for subset ranking:
while previous results have shown that for subset ranking problems with r documents per
query, there do not exist r-dimensional convex calibrated surrogates for the PD and MAP
losses, our analysis shows that (a) these losses do admit convex calibrated surrogates in
higher dimensions, and (b) to obtain such convex calibrated surrogates for these losses, one
needs to operate in an (r?)-dimensional surrogate prediction space (i.e. one needs to learn
Q(r?) real-valued functions, rather than just r real-valued ‘scoring’ functions).

As discussed in Section [4.3] while the upper and lower bounds we have obtained on
the CC dimension are tight (up to an additive constant of 1) for certain classes of loss
matrices, they can be quite loose in general. An important open direction is to obtain
a characterization of the CC dimension in more general settings. It would also be useful
to develop methods for deriving explicit surrogate regret bounds for general calibrated
surrogates, through which one can relate the excess target risk to the excess surrogate risk
for any multiclass loss and corresponding calibrated surrogate. Finally, another interesting
direction would be to develop a generic procedure for designing convex calibrated surrogates
operating on a ‘minimal’ space according to the CC dimension of a given loss matrix. There
has been some recent progress in this direction in (Ramaswamy et al., 2013)), where a general
method is described for designing convex calibrated surrogates in a surrogate space with
dimension at most the rank of the given loss matrix. However, while the rank forms an
upper bound on the CC dimension of the loss matrix, as discussed above, this bound is not
always tight, giving rise to the possibility of designing convex calibrated surrogates in lower-
dimensional spaces for certain losses. Resolving these issues will contribute significantly
to our understanding of the conditions under which convex calibrated surrogates can be
designed for a given multiclass learning problem.

7. Proofs
7.1 Proof of Theorem

The proof uses the following technical lemmas:
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Lemma 22 Let L € R”}er and 1 : C—R" . Suppose there exist r € N and z1,...,2, € Ry
such that ngle(Zj) = A, and for each j € [r], 3t € [k] such that N¥(z;) C QF. Then
any element z € Sy, can be written as z = z’' + 2" for some 2’ € conv({z1,...,2z,}) and
z’ e R},

Proof (Proof of Lemma

Let 8" = {2/ +2" : 2/ € conv({z1,...,2,}),2"” € R}, and suppose there exists a point
z € Sy which cannot be decomposed as claimed, i.e. such that z ¢ &’. Then by the
Hahn-Banach theorem (e.g. see (Gallier| (2009), corollary 3.10), there exists a hyperplane
that strictly separates z from S’, i.e. 3w € R™ such that w'z < w'a Va € &'. It is easy to
see that w € R’} (since a negative component in w would allow us to choose an element a
from &’ with arbitrarily small w'a).

Now consider the vector q = w/ > 1" w; € Ay. Since J)_, N¥(zj) = Ay, 3j € [r] such
that g € N w(zj). By definition of positive normals, this gives quj < q'z, and therefore
Wsz < w'z. But this contradicts our construction of w (since z; € §’). Thus it must be
the case that every z € Sy, is also an element of S’ [ |

Proof (Proof of Theorem
We will show L-calibration of ¢ via Lemma [2| For each j € [r], let

Ty = {te k) N'(z) C QF}
by assumption, T} # () Vj € [r]. By Lemma for every z € Sy, dJa € A,,u € R} such

that z = Z;zl a;z; +u. For each z € Sy, arbitrarily fix a unique a” € A, and u* € R}
satisfying the above, i.e. such that

r

_ Z,, . Z

Z = E ozjz]—l—u .
j=1

Now define pred’ : Sy—[k] as
pred’(z) = min {t € [k] : 3j € [r] such that a% > LandteT;}.

We will show pred’ satisfies the condition for /-calibration.
Fix any p € A,,. Let

Jo={i€ll:peN(z)};
since A, = |, N¥(z;), we have Jp, # (). Clearly,
VicJy:p'zj= inf p'z (13)
ZESw
Vié Jp: pTZj > inf p'z (14)
ZGSw
Moreover, from definition of T}, we have

Vi€edp: teTl; = ple = tEargmint,pTEt/.
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Thus we get

Vi€ Jy: TjCargming p' £y . (15)
Now, for any z € S, for which pred’(z) ¢ argminy p' €y, we must have af > % for
at least one j ¢ J, (otherwise, we would have pred’(z) € T for some j € Jp, giving
pred’(z) € argming p' £y, a contradiction). Thus we have

T

i T : z T T..z
inf z = inf aip ' z;+p u 16
z2€8y:pred’ (z)¢argmin, pT £, P z€Sy:pred’ (z)¢argmin, p ' £, ; ]p J p ( )
T
> inf a;p ' z; (17)
a€Ara;>1 for some j¢Jp =
> min inf o;p'z;+(1—a;) inf p'z (18)
J¢Jp o€t 1] ! ! J zESy,
> inf p'z 19
ZGSw P ’ ( )

where the last inequality follows from Eq. . Since the above holds for all p € A, by
Lemma [2] we have that 1 is L-calibrated. |

7.2 Proof of Lemma [11]

u
-1
1- Z?:l Uy

pred(u) = min{t € [k]:p" € Qf}.

Proof For each u € C, define p" = ( ) € A,,. Define pred : C—[k] as

We will show that pred satisfies the condition of Definition 1.
Fix p € A,,. It can be seen that

n—1

p'Y(u) = (Pj(uj —1)* + (1 —p) uﬁ) :
1

<.
Il

Minimizing the above over u yields the unique minimizer u* = (p1,...,pn_1)" € C, which
after some calculation gives

ueC

n—1

inf pTyp(u) = p'Ypu) = Y pi(l-p;).
j=1

Now, for each ¢ € [k], define

A
regret{;(t) S p'4;— minp .
t'e[k]

Clearly, regretl;(t) = 0 <= p € QF. Note also that p" = p, and therefore regrety (pred(u*)) =
0. Let

. L
€ = min _regrets(t) > 0.
telklpgl P
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Then we have

inf p Yu) = inf p'¥(u) (20)

u€eC:pred(u)¢argmin, p ' £ ueC:regreth (pred(u))>e

= inf ply(u). (21
ueC:regreth (pred(u))>regreth (pred(u*))+e ( ) ( )

Now, we claim that the mapping u — regretg(pred(u)) is continuous at u = u*. To see
this, suppose the sequence u,, converges to u*. Then it is easy to see that p"™ converges
to p* = p, and therefore for each t € k], (p“m)Tft converges to p ' #;. Since by definition
of pred we have that for all m, pred(u,,) € argmin,(p“) T £, this implies that for all large
enough m, pred(u,,) € argmin, p' £;. Thus for all large enough m, regret};(pred(um)) =0;
i.e. the sequence regretg(pred(um)) converges to regretg(pred(u*)), yielding continuity at
u*. In particular, this implies 30 > 0 such that

lu—u*|| <8 = regrety(pred(u)) — regrety (pred(u*)) <.

This gives
inf p' () > inf  p'e(u) (22)
ueC:regreth (pred(u))>regreth (pred(u*))+e ueC:||lu—u*||>§
inf p' 2
> Infp 4(u), (23)

where the last inequality holds since p'4(u) is a strictly convex function of u and u* is its
unique minimizer. The above sequence of inequalities give us that

inf T > inf T ' 04
UEC:pred(u;gargmintpTetp /lp(u) lllrélcp w(u) ( )

Since this holds for all p € A,,, we have that 1 is L-calibrated. |

7.3 Proof of Theorem [16]

The proof will require the lemma below, which relates the feasible subspace dimensions of
different trigger probability sets at points in their intersection; we will also make critical
use of the notion of e-subdifferentials of convex functions (Bertsekas et al., 2003), the main
properties of which are also recalled below.

Lemma 23 Let (: [n] x [k]>R". Let p € relint(A,,). Then for any t1,ts € argminy p' £y
(i.e. such that p € Q}i N Qt[;),
ror (P) = nor (p) -

Proof (Proof of Lemma
Let t1,ty € argming p' £y (ie. p € Qtli N Qg) Now

Qtli = {qeR”:—qSO,ezqzl,(Etl —4)'q<0vte [k]},
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where e,, denotes the n x 1 all ones vector. Moreover, we have —p < 0, and (€, —Et)Tp =0
iff pe OF. Let {t € [k]:p € Q}‘} = {?1, e ,%VT} for some r € [k]. Then by Lemmaﬁ, we
have

Hor = nullity(Aq),

where A; € RU+HDX" is a matrix containing r rows of the form (£;, — E;j)—r,j € [r] and the
all ones row. Similarly, we get

oL = nullity(As),
2

where Ay € RHDX" i a matrix containing r rows of the form (£, — E;;]_)T,j € [r] and
the all ones row. It can be seen that the subspaces spanned by the first » rows of A; and

Ay are both equal to the subspace parallel to the affine space containing £;, ..., £; . Thus

both A; and A, have the same row space and hence the same null space and nullity, and

therefore pgr (p) = frQL (p). [ ]
“1 2

e-Subdifferentials of a Convex Function. For any € > 0, the e-subdifferential of a
convex function ¢ : R*—=R at a point ug € R? is defined as follows (Bertsekas et al., [2003):

dep(ug) = {w € R?: p(u) — p(ug) > w'(u—1ug) —e YueR}.
We recall some important properties of e-subdifferentials below:

e 0€0p(ug) < ¢(ug) < inf ¢(u)+e.
ucRd
e For any A > 0, 9c(Ap(ug)) = A9(c/n)P(0o)-
o If = ¢1 + ...+ ¢, for some convex functions ¢; : RE—=R, then

dcp(ug) € Ocp1(ug) + ... + Octn(ug) € Oncdp(ug) .

e c;<ea = O,P(ug) C I, P(uy) .

We are now ready to give the proof of the lower bound on the CC dimension.

Proof (Proof of Theorem

Let d € Z, be such that there exists a convex set C C R% and surrogate loss 4 : C—R%
such that v is L-calibrated. We will show that d > ||p|lo — fiQL (p) — 1. We consider two
cases:

Case 1: p € relint(A,,).

In this case ||p|lo = n. We will show that there exist H C A,, and ty € [k] satisfying
the following three conditions:

(a) pEH;
(b) () =n—d—1; and
(c) HC OF.
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Clearly, conditions (a) and (c) above imply p € Q. Conditions (b) and (c) will then
give
ok (P) = pu(p) = n—d—1.

Further, by Lemma we will then have that
por(p) = pgp (p) =2 n—d-1,

thus proving the claim.

We now show how to construct H and to satisfying the above conditions. Let {u,,}
be a sequence in C such that

p'Y(u,) — inf p'z = inf p e(u).
z€S,y uelC

Let
€m = pT'c,b(um) — inf pT'l,b(u) )
uelC
Then clearly €,, — 0. Now, for each m, we have

0 € 0, (P ¥(un))
C aﬁm (Pﬂ#l (um)) + .+ aem (pn¢n(um))
= D a(em/pl)(wl (um)) + ...+ Dn a(em/pn)(wn(um)) .

Therefore 3w} € O(c,,, /p,)(¥y(um)) Yy € [n] such that

n
ZpyW;”:O.
y=1
Let
A" = [wi . ow] e R
and define
H,y = {qGAn:Amq:O}
= {qeR":A™q=0.,e/q=1,-q<0},

where e,, denotes the n x 1 all ones vector. Clearly, p € H,, and —p < 0; therefore
by Lemma [15] we have

Jio (p) = nullity<[ A D > o (d+1).

n

This means that there exist (n —d — 1) orthonormal vectors v{*,...,v" , ; € R"
whose span V" = span({v{",...,v" , ,}) is contained in Fy,, (p) N (—=F,,(p)). It
can be verified that this in turn implies

P+v:veV"InA, C Hpn.
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Now, {(vI*,...,v™ . )} is a bounded sequence in (R™)"~9~1 and must therefore have
a convergent subsequence, say with indices r1, 79, ..., converging to some limit point
(Vi,. s Vp—g—1) € (R")»~4=1 It can be verified that vy,...,Vv,_4_1 must also form
an orthonormal set of vectors. Let V = span({vi,...,v,_4-1}), and define

H ={p+v:veVINA,.

Clearly p € H, and moreover, since p € relint(A,), we have uy(p) =n —d — 1, thus
satisfying conditions (a) and (b) above.

For condition (c), we will show that H C N¥({z,}), where z,, = ¥(u,, ); the claim
will then follow from Theorem Consider any point q € H. By construction of
H, we must have that q is the limit point of some convergent sequence {q,,} in A,
satisfying q,, € H,,, Vm, i.e. A"mq,, = 0 Ym. Therefore for each m, we have

T'm

0 = Z qm’ngm € Z qmvy 8(5rm /py) (T/}y(urm))
y=1

y=1
n

= Za(erqu,y/py)(qym wy(uTm))

y=1
n
g Z a(erm /pmin) (qmzy wy(u""m))
y=1
-
g a(ne’f‘m/pmin) (qm w(urm))7
where pmin = minyep,; py > 0 (since p € relint(A,)). This gives for each m:
: ner,, , ne,,
quZm = qu¢(urm) < inf qu¢(u) + —" = inf quZ + —=.
ueR? Pmin 2E€Sy, Pmin

Taking limits as m — oo, we thus get

lim qm ' zm < lim inf q, z. (25)
m—00 m—00 zESy,

Now, since {z,,} is bounded, we have

lim qm 'z, = lim (dm — q)sz + lim q'z, = lim q'z,. (26)

Moreover, since the mapping p + inf,es, p 'z is continuous over its domain A,, (see
Lemma [24)), we have

lim inf qmn'z= inf q'z. 27
mgnoo z16n8¢ Am 2 z1€%¢ a4z ( )
Putting together Equations , and , we therefore get
lim q 'z, = inf q'z. (28)
m— 00 zESy,

Thus q € N¥({z.,}). Since q was an arbitrary point in A, this gives H C N¥({z.,}).
The claim follows.
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Case 2: p ¢ relint(A,,).
For each b € {0,1}"\ {0}, define

PP ={qeA,:q>0=b,=1}.

Clearly, the set {PP : b € {0,1}"\ {0}} forms a partition of A,,. Moreover, for b = e,
(the n x 1 all ones vector), we have

Per = {qeD,:qy>0Vy € [n]} = relint(A,).

Therefore we have p € PP for some b € {0,1}"\ {0, e,}, with ||p|lo = |/bljo. Now,
define P : C%R!Lbuo, Lb ¢ Rib”wk, and pP € Ajp||, as projections of ¢, L and p
onto the ||b|lo coordinates y : b, = 1, so that 1P (u) contains the elements of ) (u)
corresponding to coordinates y : b, = 1, the columns E}? of LP contain the elements of
the columns £; of L corresponding to the same coordinates y : by, = 1, and similarly,
pP contains the strictly positive elements of p. Since ) is L-calibrated, and therefore
in particular is calibrated w.r.t. L over {q € A, : ¢, = 0 Vy : b, = 0}, we have that PP
is LP-calibrated (over Ajp,)- Moreover, by construction, we have pP € relint(Ap,)-
Therefore by Case 1 above, we have

d > [bllo — g (P*) ~ 1.

The claim follows since i ,b (pP) < tor(p).
t

|
7.4 Proof of Proposition
Proof We will establish rank(LFP) > @ by showing the existence of r(r; U Jinearly

independent rows in iPD; the claim will then follow by combining this with the previously

T r(r—1
stated upper bound rank(LFP) < %

Consider the T(rzi_l) rows of LFD corresponding to graphs consisting of single directed edges

(i,7) with ¢ < j. We claim these rows are linearly independent. To see this, suppose for
the sake of contradiction that this is not the case. Then one of these rows, say the row
corresponding to the graph with directed edge (a, b) for some a,b € [r],a < b, can be written
as a linear combination of the other rows:

FP((a,b),0) = > ¢i; OF°((i,5),0) Vo ell,, (29)
1<i<j<r, (i,5)#(a,b)
for some coefficients ¢;; € R. Now consider two permutations o, ¢’ € II, such that
ola) = o
o(b) = d'(a)
o

ofi) =
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Then applying Eq. to these two permutations gives

"P((a,b),0) = "°((a,b),0").
However from the definition of LFP it is easy to verify that the columns corresponding to
these two permutations have identical entries in all rows except for the row corresponding
to the graph (a,b), giving

(PP((i,4),0) = P((i,5),0')  Vi<j,(i,j) # (a,b);
*

This yields a contradiction, and therefore we must have that the T(T; U rows above are

linearly independent, giving

rank(LFP) > T(T;l)

The claim follows. |

7.5 Proof of Proposition
Proof From Eq. , we have that LMAP ¢ R"™=1x" can be written as

LMAP = e(2r_1)e;r! — AB,

where e(;r_1) and e, denote the (2" — 1) x 1 and r! x 1 all ones vectors, respectively, and

r r(r+1) r(r+1) .
where A € R -1DX"%— and BeR 2 *" are given by

1 . o .
Ay ij) = myz‘yj Vy € {0,1}"\ {0}, 4,5 € [r] : i < j,

1
= - Vi,jelr]:i<yj, o€ll,.

B max(o (i), (7))

?:7.]‘)70-

We will show that
r(r+1)

rank(A) > 5 1 (30)
and
-1
rank(B) > 7“(7"2) . (31)
The result will then follow, since we will then have
rank(LMAP) = rank (e(2r,1)e,j! — AB)
> rank(AB) -1
> rank(B) —2, since A is away from full (column) rank by at most 1
S r(r—1) 5
- 2
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To see why Eq. is true, consider the 2" vectors v® € R?" defined as

vy = Hyi Va Cr],y € {0,1}".
[ISYe]

It is easy to see that these vectors form a basis in R?". The columns of A can be obtained

from the T(giﬂ) vectors v® corresponding to subsets oo C [r] of sizes 1 and 2, by removing the
element corresponding to y = 0 and dividing all other rows corresponding toy € {0,1}"\{0}

by [ly|l1. This establishes the lower bound on rank(A) in Eq. (30).

To see why Eq. is true, let us make the dependence of B on r explicit by denoting
B, = B, and observe that B, can be decomposed as

_[B..; D
BT_|:C E:|’

r(r=1) — LN
where the sub-matrix B,_; € R~z %=1 is obtained by taking the T(r2 U rows (i,7) in

B, with i < j <r and the (r — 1)! columns o in B, with o(r) = r:

‘T:{UEHTIU(T):T} Q={cell,:o(r) #r}
rlxrlii<j<r} B, D
C E

-
[
—~
—~
\.N. “@.
. .
~—
m m
=) =N

| x[r]:i<j=r}

1
max(o(i),0(5))
with i < j = and o(r) = r. Thus all entries in C are equal to 1 and rank(C) = 1.

Consider the matrix C € R™("=D' Each entry in this matrix has the form

Next, consider the matrix E € R™*'=(—D) We will show that there are r — 1 linearly
independent columns in E. In particular, consider any permutations o',o2,...,0" ! in
the set Q such that ¢7(j) = 7 and 07(r) = r — 1 (such permutations clearly exist). The

sub-matrix of E corresponding to these columns is given by

o) =r o%(2) =r ot r—1)=r
oliry=r—1 o*r)=r—1 ot r)y=r—1
1 1 1
o i T T
(2,7) 1 r 1
' 1 i ;
A A i
(r,7) =1 =1 =1

Thus excluding the last row of E, one gets a square (r — 1) x (r — 1) matrix with diagonal
entries equal to % and off-diagonal entries equal to T_% The last row of E has all entries
equal to % Clearly, this gives rank(E) = r — 1. Moreover, the span of the » — 1 column
vectors of E does not intersect with column space of C non-trivially, since it does not
contain the all ones vector. This implies that the r — 1 columns of B, corresponding to

the permutations o', 02,...,0"~! € Q (which yield the linearly independent columns of E),
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together with the columns of B, corresponding to permutations ¢ € Y that yield linearly
independent columns of B,_1, are all linearly independent. Therefore, we have

rank(B,) > rank(B,_1)+7r—1.

Trivially, rank(B;) > 0. Expanding the above recursion therefore gives

-1
rank(B,) > 7“(7'2) :
This establishes the lower bound on rank(B) in Eq. (31). [ |
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Appendix A. Proofs of Lemma [2] and Theorem
A.1 Proof of Lemma [2]

Proof Let ¢ : C—R’}. We will show that 3 pred : C—[k] satisfying the condition in
Definition [1|if and only if 3 pred’ : Sy,—[k] satisfying the stated condition.

(“if” direction) First, suppose 3 pred’ : Sy,—[k] such that

VpeP: inf p'z > inf p'z.
z2€8y:pred’ (z)¢argmin, p " £; zESy

Define pred : C—[k] as follows:
pred(u) = pred’(¢)(u)) VueC.
Then for all p € P, we have
inf Tpu) = inf Tz
ueC:pred(u)g¢argmin, p ' £; P d}( ) zE€R :pred’ (z)¢argmin, p T £; P

> inf pTz
z€8,,:pred’ (z)¢argmin, p T £

> inf p'z
ZESy

= infp' .
nfp P(u)

Thus v is (L, P)-calibrated.

(‘only if* direction) Conversely, suppose v is (L, P)-calibrated, so that 3 pred : C—[k] such
that

VpeP: inf T > infp' .
P ueC:pred(u)lgrélargmintpTétp w(U) &Iécp 'l,b(u)
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By Caratheodory’s Theorem (e.g. see Bertsekas et al. (2003))), we have that every z € Sy,
can be expressed as a convex combination of at most n + 1 points in Ry, i.e. for every
z € Sy, Ja € Apqi,ug,. .., Uy € Csuch that z = Z”H a;1p(uj); w.lo.g., we can assume
o] > %H
a” € Apqq,uf,...,uf, € C with of > n%rl such that

For each z € S¢, arbitrarily fix a unique such convex combination, i.e. fix

n+1
z = Z aj1p(u?)
j=1
Now, define pred’ : S;,—[k| as follows:
pred’(z) = pred(uf) Vz e S,.

Then for any p € P, we have

n+1

inf p'z = inf Za pT'(p
z€8y:pred’ (z)¢argmin, p ' £; z€S8y,:pred(u?)¢argmin, p " £; =
n+1
> mf Zajp P (uj)
aEAp4+1,U1,...,Up+1E€C:a1 > —— n+1 ,pred(uy)¢argmin, p th
n+1
> inf Z inf o;p P(u;))
acA o> Lo u;€C:pred(u;)¢argmin, p ' £ J J
12 s W ‘P 1 t t
n+1
> inf oy inf p (u)+ (1 — o) Z inf p ' (u)
O‘le[n+1 1] u€C:pred(u)¢argmin, p T4 = ueC
T
> inf
nf pep(u)
= inf Z.
ZESw p
Thus pred’ satisfies the stated condition. |

A.2 Proof of Theorem 3

The proof is similar to that for the multiclass 0-1 loss given by Tewari and Bartlett| (2007)).
We will make use of the following two lemmas; the first is a straightforward generalization
of a similar lemma in (Tewari and Bartlett, [2007), and the second follows directly from
Lemma 2

Lemma 24 The map p — infgzes, p 'z is continuous over A,,.

Lemma 25 LetL € RT}er. A surrogate 1 : C—R"™ is Li-calibrated if and only if there exists
a function pred’ : Sy—[k] such that the following holds: for all p € Ay, and all sequences
{zm} in Sy such that limy, o p'z, = infzes, p'z, we have pTﬂpmd/(Zm) = mine p' &
for all large enough m.
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Proof (Proof of Theorem
Let v : C—R".

(‘only if* direction) First, suppose v is L-calibrated. Then by Lemma [2| 3 pred’ : Sy—[k]
such that
VpeP: inf p'z > inf p'z.
z€8,:pred’(z)¢argmin, p T £; zESy,

Now, for each € > 0, define

H(e) = inf {pTz — inf pTz} )
PEARZES P £yred! () —Milyer] P £t >e€ ZESy,

We claim that H(e) > 0 Ve > 0. Assume for the sake of contradiction that Je > 0 for which
H(e) = 0. Then there must exist a sequence (Pm,2m) in A, x Sy such that

meZpred’(zm) —minp, & >e Vm (32)
te(k]
and
Pm Zm — inf Pz — 0. (33)
Z€S¢

Since p,, come from a compact set, we can choose a convergent subsequence (which we still
call {pm}), say with limit p. Then by Lemma we have infges, Pm 'z — inf,es, p'z,
and therefore by Eq. , we get

Pm Zm — inf p'z.
Z€S¢

Now we show that z,, is a sequence such that p'z,, — infycs » p'z. Without loss of
generality, we assume that the first a coordinates of p are non-zero and the rest are zero.
Hence the first a coordinates of z,, are bounded for sufficiently large m, and we have

a
limsupp ' z,, = limsup E PmyZmy < lim Pm Zm = inf p'z.
m . ’ ’ m—00 ZESy
y:

By Lemma we therefore have pTﬂpmd/(zm) = minye g p "¢, for all large enough m, which
contradicts Eq. as pm, converges to p. Thus we must have H(e) > 0 Ve > 0; the rest of
the proof then follows from (Zhang, 2004a).

(‘if* direction)

Conversely, suppose % is not L-calibrated. Consider any pred : C—[k]. Then 3p € A,, such
that

. T . T
inf u) = inf u).
u€eC:pred(u)¢argmin, p ' £; p ’(p( ) ueC p Il)( )
In particular, this means there exists a sequence of points {u,,} in C such that

pred(u,,) ¢ argmin, p' £ Vm
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and
p'$(un) — infpu).

Now consider a data distribution D = Dx x Dy|x on X x [n], with Dx being a point mass
at some z € X and Dy|x—, = p. Let f,, : X—C be any sequence of functions satisfying
f(z) = u,, Vm. Then we have

er%[fm] = pTw(um); er%’* = inf pT'(,b(u)

ueC
and

L .

erplpred o f] = p lpred(u, i erpy” = minp' 4.
This gives
er% fn] — er%’*
but
erblpredof,] £ er%’* .

This completes the proof. |

Appendix B. Calculation of Trigger Probability Sets for Figure
(a) 0-1loss /%! (n = 3).

0 1 1
=1 ]; L=10[; L=|1
1 1 0
QY' = {pelAs:p & <pl p li<pts)

{p€As:pr+p3 <pi+p3, p2+p3<pi+p2}
{PeA3:p2<p1, p3 <p1}
= {p € As3:p; > max(ps,p3)}

By symmetry,

0%t = {p€A;z:py>max(pr,p3)}
oF' = {pe€A;s:p;>max(pi,p2)}

(b) Ordinal regression loss 4 (n = 3).

0 1 2
=11 s o= 0 |; £3=1| 1
2 1 0
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Q! = {pel3:p Li<p'ly p & <p L}

{p € Az :pa+2p3 < p1 +p3, p2+2p3 < 2p1 + 2}
{p€As:pa+p3<p1, p3 <p1}
{peA3:1—p <pi}

= {peA3:p >1}

By symmetry,
o3l = {peAg:ip;>1}
Finally,

094 = {peAs:ply<ply, p'ly<p'es}

{p € Az :p1+p3 < p2+2p3, p1 +p3 < 2p1 + p2}
{p € Az :p1 <p2+p3, p3 < p1+p2}
{peA3:pr <1—p1, p3<1-—ps}

= {pels:p <3, p3< 3}

(c) ‘Abstain’ loss £(") (n = 3).

0 1 1 3
=1 |; =[0]; &=|1]; ta=| 3
1 1 0 3
O = (peAy:p £ <ply, p £i<p s p L <p L}

= {pE€As:pa+p3s<p1+ps, p2+p3<p1+p2, p2+ps < 5(p1+p2+p3)}
= {pels:pr<pi, p3<p1, p2+p3<35}
= {pel3:p >3}

By symmetry,

0y = {pelsip>1}
Qg?) = {peA3:p3>1}
Finally,
Qz(l?) = {peAs:p y<p by, p Ls<p' Ly p Ly<pl}

{p € Az : 5(p1+ p2 +p3) < min(py + p3, p1 + p3, p1 +p2)}
{p S A3 : % S 1-— max(p17p27p3)}
= {p € Az :max(p1,p2,p3) < 3}
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Appendix C. Calculation of Positive Normal Sets for Figure

For n = 3, the Crammer-Singer surrogate 1 : ]1%3—>]R§r is given by

?S(u) = max(1+uQ—u1,1+U3—u1,0)
$5(u) = max(14 u; — ug, 1 + uz — ug,0)
Y$9(u) = max(1+u; —us, 1 +up —u3,0) YueR?.

Clearly, ¥“® is a convex function. Let u; = (1,0,0)", uy = (0,1,0)", uz = (0,0,1)7,
uy = (0,0,0)", and let

z1 = ¥Suw) = (0,2,2)7
zo = PS(up) = (2,0,2)7
z3 = %S(uz) = (2,2,0)7
zg = PS(wy) = (1,1,1)7

We apply Lemma@ to compute the positive normal sets of I[JCS at the 4 points z1, zo, z3, 24
above. In particular, to see that z4 satisfies the conditions of Lemma [9] note that by
Danskin’s Theorem (Bertsekas et al.,2003), we have that

[—1] —1
oS (uy) =conv [ [+1],] 0 ;

| 0| [+1]

[+1] [0 ]
S (uy) = conv | | -1, |-1 ;

| 0| [+1]

[+1] [ 0]
OY§S(uy) = conv 01, [+1

-1 -1

We can therefore use Lemma |§I to compute N'°5(z4). Here s = 6, and

-1 -1 1 0 1 0 1 100 00
A=1|1 0O -1 -1 0 1{; B=|0 011 00
0 1 0 1 -1 -1 00 0 011
By Lemma [J] (and some algebra), this gives

NSB(zs) = {peAs:p=I(q1+q:,a+ @ q + ) for some q € Ag,
N+ eR=3+a, G+u=a+d G+ =a0+aul
= {pels:p <5 p<ip<i}.

It is easy to see that z1, z9, z3 also satisfy the conditions of Lemma [0} similar computations
then yield

N®B(zy) = {P€A32P12%}
N®B(z5) = {peAs:p>3}
NSB(z3) = {peAs:ps>1}.
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