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Abstract
We consider loss functions for multiclass prediction problems. We show when a multiclass loss
can be expressed as a “proper composite loss”, which is the composition of a proper loss and
a link function. We extend existing results for binary losses to multiclass losses. We subsume
results on “classification calibration” by relating it to properness. We determine the stationarity
condition, Bregman representation, order-sensitivity, and quasi-convexity of multiclass proper
losses. We then characterise the existence and uniqueness of the composite representation for
multiclass losses. We show how the composite representation is related to other core properties
of a loss: mixability, admissibility and (strong) convexity of multiclass losses which we charac-
terise in terms of the Hessian of the Bayes risk. We show that the simple integral representation
for binary proper losses can not be extended to multiclass losses but offer concrete guidance re-
garding how to design different loss functions. The conclusion drawn from these results is that
the proper composite representation is a natural and convenient tool for the design of multiclass
loss functions.
Keywords: Proper losses, Multiclass losses, Link Functions, Convexity and quasi-convexity
of losses, Margin losses, Classification calibration, Parametrisations and representations of loss
functions, Admissibility, Mixability, Minimaxity, Superprediction set

1. Introduction

Machine learning is done for a purpose. The performance of a machine learning solution is
judged by means of a loss function. Different choices of loss function will lead to different
solutions. The theory of binary losses (i.e. losses suitable for binary prediction problems) is
well understood. This paper extends that understanding to multiclass losses and aids the choice
of a suitable loss function by exploring the parametrisations available and the implications of
different choices. It does so by systematically exploring a decomposition of a multiclass loss
into two components, one which affects the statistical performance, and one which affects the
computational optimisation of models.

The problem setting is where one is given a bag *(xi,yi)+i of pairs of points xi and their
accompanying labels yi ∈ [n] := {1, . . . ,n}, drawn from a finite set of size n. The task can
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be either predict a label for an unseen instance, or predict the probability that a label takes
on a particular value. These two problems are called multiclass classification and probability
estimation respectively.

Proper composite losses are the composition of a proper loss and and invertible link (both
defined formally below). This representation makes the understanding of multiclass losses eas-
ier because, crucially, it seperates two distinct concerns: the statistical and the computational.
The statistical properties are controlled by the proper loss, while the link function is essentially
just a parametrisation. Choice of a suitable link can help—for example, a nonconvex proper loss
can be made convex (and thus more amenable to numerical optimisation) by choice of the ap-
propriate link. For prediction purposes it is desirable to use an admissible loss (one where every
possible prediction is uniquely optimal for some underlying distribution). It turns out that every
proper composite loss is admissible; in fact proper composite losses satisfy a stronger adequacy
property than admissibility.

We characterise when a multiclass loss has a proper composite representation and when such
representations are unique. We consider integral representations (whereby the proper component
can be expressed as a weighted combination of elementary proper losses). We show the suprising
result that there is a fundamental difference between n = 2 and n > 2 in terms of the simplicitly
of the parametrisation of the class of elementary proper losses. It has been known for some
time that proper losses are characterised by their conditional Bayes risks (or entropy functions).
It has already been shown how important properties of a loss that control the performance of
certain learning tasks can be expressed directly in terms of the Bayes risk. In this paper we
extend results due to Reid and Williamson (2010) (for n = 2) to general n and characterise the
convexity of a proper loss in terms of the associated Bayes risk.

We also illuminate the connection between classification and probability estimation by char-
acterising the relationship between the cruicial property that a loss should have for each of these:
classification calibrated (which we first generalise to make sense in the more general setting we
consider) and properness. We explain the relationship between these two concepts, which cap-
tures the idea behind the probing reduction from classification to class probability estimation.

We also show how the results of the paper can provide tools to help with the design of
multiclass losses, putting this on firmer ground than in the past.

1.1 Previous Work

With some exceptions, existing work on multiclass loss functions attempts to work directly with
` : V → Rn

+. As we shall show this conflates two seperate concerns—the design of the statis-
tical properties of the loss, those that affect statistical performance, with the aspects that affect
the computational properties that control the ease with which empirical averages of the loss are
minimized. The proper composite representation is not new—in hindsight the observation of
Grünwald and Dawid (2004) that every loss induces a proper scoring rule is tantamount to the
proper composite representation. Furthermore, its components (link functions and proper losses)
have a long history. The novelty of the present work is to systematically use these two compo-
nents as a canonical parametrisation of loss functions. Key differences between the present paper
and previous work are tabulated in Table 1.
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Attribute Previous Work Present Paper Ref.

Structure and
Semantics

None—just a function; possibly
convex in parameters

Clear seperation of concerns and
meaning for λ and ψ . Gives
meaning to predictions v as trans-
formed probabilities.

Fig. 1

Classification
versus probabil-
ity estimation

Little insight in the multiclass
case; confer recent works such
as (Reid and Williamson, 2010,
2011; Narasimhan and Agarwal,
2013; Menon and Williamson,
2014) for the binary case

Clear connection via a character-
isation relating classification cal-
ibrated, prediction calibrated and
proper losses

§3

Effect of choice
of loss function
on performance

Margin based. Only a suffi-
cient condition and only for
statistical batch setting. Mixes
up statistical fundamentals
(L) with parametrization (ψ).
Strong convexity for speed of
convergence in online setting;
cf. (Abernethy et al., 2009).

Mixability and Stochastic Mix-
ability. Characterisation in on-
line setting. Both online worst-
case and statistical batch settings.
Parametrisation ψ automatically
ignored.

§6.1

Admissibility
Not considered explicitly. En-
sured however by assuming ` is
convex.

All proper composite losses ad-
missible. All continuous Bayes
losses have a proper composite
representation.

§6.2

Quasi-convexity
and Minimaxity

Guaranteed by assumimg ` is
convex.

Quasi-convexity guaranteed for
all continuous proper losses; min-
imaxity for all continuous proper
composite losses.

§6.4

Convexifiability
No principled way to convexify
a loss; can make convex surro-
gate approximations.

All continuous proper losses con-
vexifiable (using the canonical
link).

§6.4

Design principles
and parametrisa-
tion

No guidance; choose ` or mar-
gin function φ , in which case
symmetry imposed.

Principled; general asymmetric
losses possible; parametrise via
(Λ,Ψ); separation of concerns.

§8.3

Connections to
divergences

Many to one for margin losses
in binary case. (Nguyen et al.,
2009)

Explicit 1:1 correspondence for
binary and multiclass case (Reid
and Williamson, 2011; Garcı́a-
Garcı́a and Williamson, 2012).

§9

Table 1: Comparison of present paper to previous works on loss functions.

Proper losses are the natural losses to use for probability estimation. They have been studied
in detail when n = 2 (the “binary case”) where there is a nice integral representation (Buja et al.,
2005; Gneiting and Raftery, 2007; Reid and Williamson, 2011), and characterization (Reid and
Williamson, 2010) when differentiable. The proper composite representation for binary losses
has proved very illuminating in the study of bipartite ranking problems (Menon and Williamson,
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2014). Classification calibrated losses are an analog of proper losses for the problem of classifi-
cation (Bartlett et al., 2006). The relationship between classification calibration and properness
was determined by Reid and Williamson (2010) for n = 2. Most of these results have had no
multiclass analogue until now. Whilst there is much work on classification problems, it is now
widely understood that there are often advantages in being able to predict probabilities, rather
than just labels (Bennett, 2003; Cohen and Goldszmidt, 2004).

The theory of loss functions makes it clear how one ideally chooses a loss—one takes ac-
count of one’s utility concerning various incorrect predictions (Kiefer, 1987), (Berger, 1985,
Section 2.4). The practice rarely involves such a step, primarily, we conjecture, because there
is no adequate understanding of the way one can parametrise losses effectively, especially in
the multiclass case. There is little guidance in the literature concerning how to choose a loss
function; typically heuristic arguments are used for the choice—confer e.g. (Ighodaro et al.,
1982; Nayak and Naik, 1989). An early approach to multiclass losses is simply reduction to bi-
nary (Allwein et al., 2001; Beygelzimer et al., 2007; Crammer and Singer, 2001; Dietterich and
Bakiri, 1995; Zadrozny and Elkan, 2002). Related approaches are pairwise coupling or Bradley-
Terry models (Hastie and Tibshirani, 1998; Wu and Weng, 2004; Huang et al., 2006) where
certain relationships are assumed to hold between the pairwise probabilities and the multivariate
probability of interest.

The design of losses for multiclass prediction has received recent attention (Zhang, 2004;
Hill and Doucet, 2007; Tewari and Bartlett, 2007; Liu, 2007; Santos-Rodrı́guez et al., 2009;
Zou et al., 2008; Zhang et al., 2009) although none of these papers developed the connection to
proper losses, and most restrict consideration to margin losses (which imply certain symmetry
conditions). Zou et al. (2005) proposed a multiclass generalisation of “admissible losses” (their
name for classification calibration) for multiclass margin classification. Liu (2007) considered
several multiclass generalisations of hinge loss (suitable for multiclass SVMs) and showed some
of them were and others were not Fisher consistent, and when they were not it was shown how
the training algorithm could be modified to make the losses behave consistently. Shi et al.
(2010) have investigated the relationship between classification calibration of multiclass losses
and losses for structure prediction, and have proposed an extension of classification calibration
which they call parametric consistency, which attempts to take account of the function class used
(classification calibration is, like all the results in this paper, concerned with behaviour per point;
in practice one typically optimises over restricted classes of functions). Multiclass losses have
also been considered in the development of multiclass boosting (e.g. Zhu et al., 2009; Mukherjee
and Schapire, 2013; Wu and Lange, 2010).

1.2 Outline

The rest of the paper is organised as follows. In §2: we set up the problem formally and state
some purely mathematical results we will need; §3: we relate properness, classification calibra-
tion, and the notion used by Tewari and Bartlett (2007) which we rename “prediction calibrated”;
§4: we provide a novel characterization of multiclass properness; §5: we study composite proper
losses (the composition of a proper loss with an invertible link) and characterise when a given
loss has such a representation and when the representation is unique; §6: we develop a num-
ber of interesting implications of the representation and the characterisation results in terms of
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mixability (§6.1), admissibility (§6.2) and convexity (§6.4), where we give a complete charac-
terisation of the (strong) convexity of composite multiclass proper losses in terms of the Bayes
risk; §7: we present a (somewhat surprising) negative result concerning the integral representa-
tion of proper multiclass losses; §8: we outline how the above results can aid in the design of
proper losses, especially by use of a (new) multiclass extension of the “canonical link”; finally,
§9 summarises the key contributions and outlines some future directions.

2. Formal Setup

Suppose X is some set and Y = [n] = {1, . . . ,n} is a set of labels. (Throughout the paper n
is an integer greater than or equal to 2.) We suppose we are given data S = *(xi,yi)+i∈[m] such
that yi ∈ Y is the label corresponding to xi ∈X . These data follow a joint distribution PX ,Y

on X × [n]. We denote by EX ,Y and EY |X respectively, the expectation and the conditional
expectation with respect to PX ,Y . Given a new observation x we want to predict the probability
pi := P(Y = i|X = x) of x belonging to class i, for i ∈ [n]. Multiclass classification requires the
learner to predict the most likely class of x; that is to find ŷ ∈ argmaxi∈[n] pi.

A loss measures the quality of prediction. Let ∆n := {(p1, . . . , pn) : ∑i∈[n] pi = 1,and 0 ≤
pi ≤ 1, ∀i ∈ [n]} denote the n-simplex. For multiclass probability estimation, ` : ∆n→ Rn

+. The
partial losses `i are the components of `(q) = (`1(q), . . . , `n(q))′ and `i(q) is the loss incurred
by predicting q ∈ ∆n when y = i. A commonly used loss for probability estimation is the log
loss `log defined by `

log
i (q) := − logqi for i ∈ [n]. Other examples of multiclass losses we will

refer to in this paper include the square loss `
sq
i (q) := ∑ j∈[n](Ji = jK− q j)

2, the absolute loss
`abs

i (q) := ∑ j∈[n] |Ji = jK−q j| and the 0-1 loss `01
i (q) := Ji ∈ argmax j∈[n] q jK. Here, JPK denotes

the function that is 1 when P is true and 0 otherwise.
Throughout the paper, A′ denotes transpose of the matrix or vector A, except when applied

to a real-valued function where it denotes derivative. We denote matrix multiplication of com-
patible matrices A and B by A ·B, so the inner product of two vectors x,y ∈ Rn is x′ · y. The
conditional risk L associated with a loss ` is the function

L : ∆
n×∆

n 3 (p,q) 7→ L(p,q) = EY∼p`Y(q) = p′ · `(q) = ∑
i∈[n]

pi`i(q) ∈ R+,

where Y ∼ p means Y is drawn according to a multinomial distribution with parameter p ∈
∆n. In a typical learning problem one will construct an estimate q : X → ∆n. The full risk is
L(q) = EX EY |X `Y(q(X)). Minimizing L(q) over q : X → ∆n is equivalent to minimizing
L(p(x),q(x)) over q(x) ∈ ∆n for all x ∈X where p(x) = (p1(x), . . . , pn(x))′, and pi(x) = P(Y=
i|X = x). Thus it suffices to only consider the conditional risk; confer (Reid and Williamson,
2011).

If one is interested in estimating probabilities (` : ∆n→ Rn
+) it is natural to require the asso-

ciated conditional risk is minimized when estimating the true underlying probability. Such a loss
is called proper (formally: if L(p, p)≤ L(p,q), ∀p,q ∈ ∆n). It is strictly proper if the inequality
is strict when p 6= q (so it is uniquely minimised by predicting the correct probability). The
conditional Bayes risk is defined by

L : ∆
n 3 p 7→ inf

q∈∆n
L(p,q).
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V

ψ−1

∆n

v p λ

Rn
+

x

`
∈ ∈ ∈

Controls convexity Controls statistical properties

link proper loss

proper composite loss
predictions probabilities loss values

ψ is a monotone function ∆n→ V

λ is parametrised by a concave Bayes risk Λ : ∆n→ R

Figure 1: The idea of a proper composite loss.

This function is always concave (Gneiting and Raftery, 2007). If ` is proper, then L(p) =
L(p, p) = p′ · `(p). Strictly proper losses induce Fisher consistent estimators of probabilities:
if ` is strictly proper, p = argminq L(p,q). By considering when the derivatives ∂

∂qi
L(p,q) are

zero it is straight-forward to show that, of the example losses introduced above, the log loss,
square loss, and 0-1 loss are proper, while absolute loss is not. Furthermore, both log loss and
square loss are strictly proper while 0-1 loss is proper but not strictly proper. Using the fact
that, for proper losses, the Bayes risk L(p) = L(p, p) we see that Llog(p) =−∑i∈[n] pi log pi (i.e.,
Shannon entropy); Lsq(p) = 1−∑i∈[n] p2

i ; and L01(p) = mini{1− pi}.
The losses above are defined on the simplex ∆n since the argument (a predictor) represents

a probability vector. However it is sometimes desirable to use another set V of predictions. For
example if one wishes to use linear predictors, their natural range is Rn. One can consider losses
` : V →Rn

+. Suppose there exists an invertible function ψ : ∆n→ V . Then ` can be written as a
composition of a loss λ defined on the simplex with ψ−1. That is, `(v) = λ ψ(v) := λ (ψ−1(v)).
Such a function λ ψ is a composite loss. If λ is proper, we say ` is a proper composite loss, with
associated proper loss λ and link ψ; see Figure 1. Many commonly used multiclass losses are
composite losses, even though they are not often expressed as such; see the example in §8.4.

Throughout the paper, ` is a general loss defined on V , where V may equal ∆n, and λ is al-
ways a loss defined on ∆n, which may be proper. For such a loss λ : ∆n→Rn

+, its corresponding
conditional risk is denoted Λ(p,q) and its conditional Bayes risk is Λ(p).

In order to differentiate the losses we project the n-simplex into a subset of Rn−1. Let

∆̃
n :=

{
(p1, . . . , pn−1)

′ : pi ≥ 0, ∀i ∈ [n],
n−1

∑
i=1

pi ≤ 1

}
denote the “bottom” of the n-simplex. We denote by

Π∆ : ∆
n 3 p = (p1, . . . , pn)

′ 7→ p̃ = (p1, . . . , pn−1)
′ ∈ ∆̃

n,

the projection of the ∆n, and

Π
−1
∆

: ∆̃
n 3 p̃ = (p̃1, . . . , p̃n−1)

′ 7→ p = (p̃1, . . . , p̃n−1,1−
n−1

∑
i=1

p̃i)
′ ∈ ∆

n

its inverse. For convenience, we will often use ñ := n−1 to denote the dimension of the set ∆̃n.
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e2e1

e3

c

T1(c) T2(c)

T3(c)

Figure 2: A partitioning of the 3-simplex by regions Ti(c), i = 1,2,3, where c = (.35, .2, .45)
as viewed from the direction (1,1,1).

We use the following notation. The kth unit vector ek is the n vector with all components zero
except the kth which is 1. The n-vector 1n := (1, . . . ,1)′. The (relative) interior of the simplex is
∆̊n := {(p1, . . . , pn) : ∑i∈[n] pi = 1,and 0 < pi < 1, ∀i ∈ [n]} and the boundary is ∂∆n := ∆n \ ∆̊n.
We also adopt notation from Magnus and Neudecker (1999). For the reader’s convenience we
list the essential notations and conventions in Appendix A.

3. Relating Properness to Classification Calibration

Properness is an attractive property of a loss for the task of class probability estimation. However
if one is merely interested in classifying (predicting ŷ ∈ [n] given x ∈X ) then it is stronger than
one needs. In this section we relate classification calibration (the analog of properness for
classification problems) to properness.

Suppose c ∈ ∆̊n. We cover ∆n with n subsets each representing one class:

Ti(c) := {p ∈ ∆
n : ∀ j 6= i pic j ≥ p jci}, i ∈ [n].

Observe that for i 6= j, the sets Ri j(c) := {p ∈ ∆n : pic j = p jci} are subsets of dimension n−2
through c and all ek such that k 6= i and k 6= j. These subsets partition Rn into two parts. The set
Ri j(c) is the intersection of ∆n and the subspaces delimited by the precedent (n− 2)-subspace
and in the same side as ei. An example of this partition is shown graphically in Figure 2. We
will make use of the following properties of Ti(c).

Lemma 1 Suppose c ∈ ∆̊n, i ∈ [n]. Then the following hold:
1. For all p ∈ ∆n, there exists i such that p ∈Ti(c).

2. Suppose p ∈ ∆n. Ti(c)∩T j(c)⊆ {p ∈ ∆n : pic j = p jci}, a subset of a subspace of dimen-
sion n−2.
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3. Suppose p ∈ ∆n. If p ∈
⋂n

i=1 Ti(c) then p = c.

4. For all p,q ∈ ∆n, p 6= q, there exists c ∈ ∆̊n, and i ∈ [n] such that p ∈Ti(c) and q /∈Ti(c).

The proof is deferred to Appendix B.1.
Classification calibrated losses have been developed and studied under some different def-

initions and names (Zhang, 2004; Bartlett et al., 2006). Below we generalise the notion of
c-calibration which was proposed for n = 2 by Reid and Williamson (2010) and developed by
Scott (2011, 2012) as a generalisation of the notion of classification calibration of Bartlett et al.
(2006); confer also Steinwart (2007).

Definition 2 Suppose ` : ∆n→ Rn
+ is a loss and c ∈ ∆̊n. We say ` is c-calibrated at p ∈ ∆n if for

all i ∈ [n] such that p /∈ Ti(c) then ∀q ∈ Ti(c), L(p) < L(p,q). We say that ` is c-calibrated if
∀p ∈ ∆n, ` is c-calibrated at p.

Definition 2 means that if the probability vector q one predicts doesn’t belong to the same subset
(i.e. doesn’t predict the same class) as the real probability vector p, then the loss might be larger
than L(p).

Classification calibration in the sense used by Bartlett et al. (2006) corresponds to 1
2 -calibrated

losses when n = 2. If cmid := (1
n , . . . ,

1
n)
′, cmid-calibration induces Fisher-consistent estimates in

the case of classification. Furthermore “` is cmid-calibrated and for all i ∈ [n], and `i is contin-
uous and bounded below” is equivalent to “` is infinite sample consistent” as defined by Zhang
(2004). This is because if ` is continuous and Ti(c) is closed, then ∀q ∈Ti(c), L(p)< L(p,q) if
and only if L(p)< infq∈Ti(c) L(p,q).

The following result generalises the correspondence between binary classification calibra-
tion and properness (Reid and Williamson, 2010, Theorem 16) to multiclass losses (n > 2).

Proposition 3 A continuous loss ` : ∆n→ Rn
+ is strictly proper if and only if it is c-calibrated

for all c ∈ ∆̊n.

Proof (⇒) Suppose that ` is strictly proper. Then for all c∈ ∆̊n, for all i∈ [n] such that p /∈Ti(c)
and for all q ∈Ti(c) then p 6= q and thus L(p)< L(p,q) since ` is strictly proper.

(⇐) Suppose that ` is c-calibrated for all c ∈ ∆̊n. Suppose p,q ∈ ∆n and p 6= q. By Lemma 1
(part 4) one can partition p and q into two different classes: there exists c ∈ ∆̊n and i ∈ [n] such
that q ∈Ti(c) and p /∈Ti(c). Hence L(p)< L(p,q) since ` is c-calibrated. Since ` is continuous
and ∆n is closed, the infimum in the definition of L(p) is attained. Since L(p) < L(p,q) for all
q 6= p, we conclude L(p) = L(p, p). Thus ` is strictly proper.

In particular, a continuous strictly proper loss is cmid-calibrated. Thus for any estimator q̂n

of the conditional probability vector one constructs by minimizing the empirical average of a
continuous strictly proper loss, one can build an estimator of the label (corresponding to the
largest probability of q̂n) which is Fisher consistent for the problem of classification.

In the binary case, ` is classification calibrated if and only if the following implication holds
(Bartlett et al., 2006):(

L( fn)→min
g

L(g)
)
⇒
(
PX ,Y (Y 6= fn(X))→min

g
PX ,Y (Y 6= g(X))

)
. (1)
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Tewari and Bartlett (2007) have characterised when (1) holds in the multiclass case. Since there
is no reason to assume the equivalence between classification calibration and (1) still holds for
n > 2, we give different names for these two notions. We use classification calibration for the
notion (Definition 2) linked to Fisher consistency and use prediction calibrated (defined below)
for the notion of Tewari and Bartlett (equivalent to (1)).

Definition 4 Suppose ` : V → Rn
+ is a loss. Let C` := co({`(v) : v ∈ V }), the convex hull

of the image of V . ` is said to be prediction calibrated if there exists a prediction function
pred: Rn→ [n] such that

∀p ∈ ∆
n : inf

z∈C` : ppred(z)<maxi∈[n]pi
p′ · z > inf

z∈C`

p′ · z = L(p).

Suppose that ` : ∆n → Rn
+ is such that ` is prediction calibrated and pred(`(p)) ∈ argmaxi pi.

Then ` is cmid-calibrated almost everywhere.
By introducing a reference link ψ̄ (which corresponds to the actual link ψ if ` is a proper

composite loss `= λ ◦ψ−1) we now show how the pred function can be canonically expressed
in terms of argmaxi pi.

Proposition 5 Suppose ` : V →Rn
+ is a loss. Let ψ̄ : ∆n→ V satisfy ψ̄(p)∈ argminv∈V L(p,v)

and λ = `◦ ψ̄ . Then λ is proper. If ` is prediction calibrated then pred(λ (p)) ∈ argmaxi∈[n] pi.

Proof We show first that λ is proper. Let p ∈ ∆n. Then

Λ(p, p) = L(p, ψ̄(p)) = L(p,argmin
v

L(p,v)) = min
v

L(p,v)≤ min
q∈∆n

Λ(p,q).

Thus λ is proper and L(p) = Λ(p). We now assume that ` is prediction calibrated. Suppose that
pred(z = λ (p)) /∈ argmaxi pi. Then ppred(λ (p)) < maxi pi , thus p′ · z = Λ(p, p) > L(p) = Λ(p)
which contradicts the properness of λ .

4. Characterizing Properness

We now present some simple (but new) consequences of properness in the multiclass case
(Proposition 6). We also build some connections between the properness of multiclass losses
and the properness of binary losses that can be derived from them via a restriction of the multi-
class loss to a line connecting two points in the n-simplex (Proposition 7). Finally, we show that
multiclass proper losses are effectively characterised by their Bayes risks (Proposition 8) and the
continuity of losses is intimately tied to the differentiability of their Bayes risks (Proposition 9).
An important implication of these last results is that we are able to study the class of multiclass
proper losses by focusing our attention on concave functions defined over probabilities.

To state our propositions we need to introduce monotone functions, directional derivatives,
and superdifferentials (cf. (Hiriart-Urruty and Lemaréchal, 2001)). We say f : C ⊂ Rn→ Rn is
monotone (resp. strictly monotone) on C when for all x and y in C,

( f (x)− f (y))′ · (x− y)≥ 0 resp. ( f (x)− f (y))′ · (x− y)> 0; (2)
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confer (Hiriart-Urruty and Lemaréchal, 2001; Rockafellar and Wets, 2004). If a function f :
Rn→R is concave then limt↓0

f (x+td)− f (x)
t exists, and is called the directional derivative of f at x

in the direction d and is denoted D f (x,d). By analogy with the usual definition of subdifferential
for convex functions, we introduce the superdifferential ∂ f (x) for concave f at x is

∂ f (x) :=
{

s ∈ Rn : s′ · y≥ D f (x,y), ∀y ∈ Rn}
=
{

s ∈ Rn : f (y)≤ f (x)+ s′ · (y− x), ∀y ∈ Rn} .
Similarly, a vector s ∈ ∂ f (x) is called a supergradient of f at x.

Proposition 6 Suppose ` : ∆n→ Rn
+ is a loss. If ` is proper, then −` is monotone on ∆n. Fur-

thermore, if ` is strictly proper then it is also invertible.

Proof For all p,q ∈ ∆n, (`(p)− `(q))′ · (p− q) = p′ · `(p)− q′ · `(p)+ q′ · `(q)− p′ · `(q) ≤ 0
since p′ ·`(p)≤ p′ ·`(q). For the strictly proper case, we just have to check that ` is injective. By
way of contradiction assume ` is not invertible. Then there exists p 6= q such that `(p) = `(q).
which means L(p, p) = L(p,q), contradicting the supposed strict properness of `.

The following proposition presents several characterisations of multiclass properness. It
shows how the characterisation of properness in the general (not necessarily differentiable) mul-
ticlass case can be reduced to the binary case. We also show this is equivalent to testing the
properness condition for the loss on all possible line segments joining two distributions within
the simplex. This latter characterisation can be viewed as a statement connecting “order sensi-
tivity” and properness: the true class probability minimizes the risk and if the prediction moves
away from the true class probability in a line then the risk increases. This property appears con-
venient for optimisation purposes: if one reaches a local minimum in the second argument of
the risk and the loss is strictly proper then it is a global minimum. If the loss is proper, such a
local minimum is a global minimum or a constant in an open set. But observe that typically one
is minimising the full risk L(q(·)) over functions q : X → ∆n. We note that order sensitivity of
` does not imply this optimisation problem is well behaved; one needs convexity of q 7→ L(p,q)
for all p ∈ ∆n to ensure convexity of the functional optimisation problem; we characterise when
that holds in section 6.4.

Proposition 7 Suppose ` : ∆n→ Rn
+ is a loss. We define the binary loss

˜̀p,q : [0,1] 3 η 7→
( ˜̀p,q

1 (η)
˜̀p,q
−1(η)

)
=

(
q′ · `

(
p+η(q− p)

)
p′ · `

(
p+η(q− p)

) ) .

The following statements are equivalent:

1. ` is proper;

2. ˜̀p,q is proper for all p,q ∈ ∂∆n;

3. ∀p,q ∈ ∆n, ∀0≤ h1 ≤ h2, L(p, p+h1(q− p))≤ L(p, p+h2(q− p)); and

10
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4. there exists a concave function f : ∆n → R and ∀q ∈ ∆n, there exists a supergradient
A(q) ∈ ∂ f (q) such that ∀p,q ∈ ∆n, p′ · `(q) = L(p,q) = f (q)+(p−q)′ ·A(q).

The proof is deferred to Appendix B.3.
Characterisation (2) shows that in order to check if a loss is proper one need only check the

properness in each line. One could use the easy characterization of properness for differentiable
binary losses (` : [0,1]→ R2

+ is proper if and only if ∀η ∈ [0,1], −`
′
1(η)

1−η
=

`′−1(η)

η
≥ 0, (Reid and

Williamson, 2010)). However this needs to be checked for all lines defined by p,q ∈ ∂∆n. The
above result can also been seen as a generalisation of a result by Lambert (2010) who proved
that properness is equivalent to the fact that the further your prediction is from reality, the larger
the loss (hence the name “order sensitivity”); also confer the results on monotonicity due to Nau
(1985). His result relied upon on the total order of R. In the multiclass case, there does not exist
such a total order. Yet, as the above result shows, one can compare two predictions if they are in
the same line as the true real class probability.

Characterisation (4) is a restatement of the well known Bregman representation of proper
losses; Cid-Sueiro and Figueiras-Vidal (2001) presented the differentiable case, and Gneiting
and Raftery (2007, Theorem 3.2) the general case. This last property gives us the form of the
proper losses associated with a given Bayes risk. Suppose L : ∆n→ R+ is concave. The proper
losses whose Bayes risk is equal to L are

` : ∆
n 3 q 7→

(
L(q)+(ei−q)′ ·A(q)

)n

i=1
∈ Rn

+, ∀A(q) ∈ ∂L(q). (3)

This result suggests that some information is lost by representing a proper loss via its Bayes risk
(when the last is not differentiable). The next proposition elucidates this by showing that proper
losses which have the same Bayes risk are equal almost everywhere.

Proposition 8 Two proper losses `1, `2 : ∆n→Rn
+ have the same conditional Bayes risk function

L if and only if `1 = `2 almost everywhere. If L is differentiable, `1 = `2 everywhere.

Proof A concave function is differentiable almost everywhere (Hiriart-Urruty and Lemaréchal,
2001, theorem 4.2.3). Thus (3) proves that two proper losses `1 and `2 which have the same
Bayes risk are equal almost everywhere. Suppose now that two proper losses are equal almost
everywhere. Then their associated Bayes risks L1 and L2 are equal almost everywhere and con-
tinuous (since they are concave). If there exists p such that L1(p) 6= L2(p), then since L1 and
L2 are continuous, there exists ε > 0 such that ∀q ∈ B(p,ε)∩∆n, L1(q) 6= L2(q), where B(p,ε)
is a ball of radius ε centred at p. Yet this contradicts the fact that L1 and L2 are equal almost
everywhere. Hence the Bayes risks are equal everywhere.

While the previous proposition shows that losses are closely related to their Bayes risks the
next proposition also shows how the continuity of a loss is related to the differentiability of its
Bayes risk.

Proposition 9 Suppose ` : ∆n→Rn
+ is a proper loss. Then ` is continuous in ∆̊n if and only if L

is differentiable on ∆̊n; ` is continuous at p ∈ ∆̊n if and only if L is differentiable at p ∈ ∆̊n.

11
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The proof of this result can be found in Appendix B.2. This type of relationship is further
explored in Section 6.4 where the convexity of a composite loss is related to properties of its
Bayes risk.

5. The Proper Composite Representation: Uniqueness and Existence

Many natural predictors have a range other than the simplex (for example those induced by linear
functions). It is thus sometimes convenient to define a loss on some set V rather than ∆n; confer
(Reid and Williamson, 2010). The link function explicates the result of Grünwald and Dawid
(2004) that every decision problem induces a decision problem expressed in terms of proper
losses; (see van Erven et al., 2011, section 6, for further explanation).

Traditionally (McCullagh and Nelder, 1989) links are defined only for binary problems
(where one is using univariate probabilities). However there is scattered (but seemingly un-
systematic) work on multivariate links (Glonek and McCullagh, 1995; Glonek, 1996), primarily
from the perspective of probabilistic modelling (as opposed to the design of loss functions).
Sometimes multivariate links are constructed from univariate links (Molenberghs and Lesaffre,
1999).

Composite losses (see the definition in §2) are a way of constructing losses on sets other than
∆n: given a proper loss λ : ∆n→ Rn

+ and an invertible link ψ : ∆n→ V , one defines λ ψ : V →
Rn
+ as λ ψ := λ ◦ψ−1. We now consider the question: given a loss ` : V → Rn

+, when does `
have a proper composite representation (whereby ` can be written as ` = λ ◦ψ−1), and is this
representation unique? We first consider the binary case. Here the prediction space V ⊆ R is
assumed to be either an interval or the entire real line.

5.1 The Binary Case

Our first result shows that if you can write a binary loss as a proper composite loss, the proper
loss defined on the simplex is unique. Furthermore, as soon as the loss is not constant the link
function is also unique. If the loss is constant on an interval, then you can choose any value
of the link function on this interval which keeps the link function continuous and invertible and
still obtain a composite proper loss. The proof can be found in Appendix B.4. As is common in
the literature, we write the binary labels as {−1,+1} and so the partial losses are `−1 and `+1.

Proposition 10 Suppose `= λ ◦ψ−1 : V → R2
+ is a proper composite loss and that the proper

loss λ is differentiable and the link function ψ is differentiable and invertible. Then the proper
loss λ is unique. Furthermore ψ is unique if ∀v1,v2 ∈ V , ∃v ∈ [v1,v2], `′1(v) 6= 0 or `′−1(v) 6= 0.
If there exists v̄1, v̄2 ∈ V such that `′1(v) = `′−1(v) = 0 ∀v ∈ [v̄1, v̄2], one can choose any ψ|[v̄1,v̄2]

such that ψ is differentiable, invertible and continuous in [v̄1, v̄2] and obtain `= λ ◦ψ−1, and ψ

is uniquely defined where ` is invertible.

We now determine necessary and sufficient conditions for a binary loss to be expressed as a
proper composite loss. Once again, the proof is deferred to Section B.5.

Proposition 11 Suppose ` : V →R2
+ is a differentiable binary loss such that ∀v∈V , `′−1(v) 6= 0

or `′1(v) 6= 0. Then ` can be expressed as a proper composite loss if and only if the following
three conditions hold:

12
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1. `1 is decreasing (increasing);

2. `−1 is increasing (decreasing); and

3. f : V 3 v 7→ `′1(v)
`′−1(v)

is strictly increasing (decreasing) and continuous.

Observe that the last condition is alway satisfied if both `1 and `−1 are convex.

5.2 Binary Margin Losses

Suppose ϕ : R→ R+ is a function. The loss `ϕ : V 3 v 7→ (`−1(v), `1(v))
′ = (ϕ(−v),ϕ(v))′ ∈

R2
+ is called a binary margin loss. Binary margin losses are often used for classification prob-

lems. We will now show how the previous proposition applies to them.

Corollary 12 Suppose ϕ : R→R+ is differentiable and ∀v∈R, ϕ ′(v) 6= 0 or ϕ ′(−v) 6= 0. Then
`ϕ can be expressed as a proper composite loss if and only if f : R 3 v 7→ − ϕ ′(v)

ϕ ′(−v) is strictly
monotonic continuous and ϕ is monotonic.

If ϕ is convex or concave then f defined above is monotonic. However not all binary margin
losses are composite proper losses. One can even build a smooth margin loss which cannot
be expressed as a proper composite loss. Consider ϕ(x) = 1−arctan(x−1)

π
. Then f (v) = ϕ ′(v)

ϕ ′(−v) =

x2+2x+2
x2−2x+2 which is not invertible. This loss is illustrated in Figure 5, after some additional concepts
are introduced.

5.3 The Multiclass Case

Uniqueness of the composite representation remains straightfoward in the multiclass case.

Proposition 13 Suppose a loss ` : V → Rn
+ has two proper composite representations ` =

λ ◦ψ−1 = µ ◦ φ−1 where λ and µ are proper losses with corresponding Bayes risks Λ and
M respectively, and ψ and φ are continuous invertible link functions. Then λ = µ almost every-
where.

If ` is continuous and has a composite representation, then the proper loss (in the decompo-
sition) is unique (λ = µ everywhere).

If ` is invertible and has a composite representation, then the representation is unique.

Proof Λ(p) = infq p′ ·λ (q) = infq p′ · `(ψ(q)) = infv L(p,v) (since ψ is invertible)
= infv L(p,v) = infv L(p,φ(q)) = M(p).
Then λ and µ are two proper losses which have the same Bayes risk, so these two losses are

equal almost everywhere.
If moreover ` is continuous, λ = `◦ψ and µ = `◦φ are continuous. So λ = µ everywhere.
If moreover ` is invertible, ψ = λ ◦ `−1 and φ = µ ◦ `−1. So ψ and φ are also equal almost

everywhere and as they are continuous, they are equal everywhere. So λ = `◦ψ = `◦φ = µ .
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Figure 3: Illustration of ∆n-smoothness and ∆n-strict convexity. The hyperplanes witness the
possession or non-possession of the respective properrties.

Characterising the existence of a composite representation is more complex in the multiclass
case. We need to introduce some definitions: We make use of a set of hyperplanes for p ∈ ∆n

and β ∈ R,
hβ

p := {x ∈ Rn : x′ · p = β}.

A hyperplane hβ
p supports a set A at x ∈ A when x ∈ hβ

p and for all a ∈ A, a′ · p ≥ β or for all
a ∈ A, a′ · p≤ β . Given a loss ` : V → Rn

+, the loss image `(V ) := {`(v) : v ∈ V }.

Definition 14 Let S(p,x) := “`(V ) is supported by hβ
p at x for some β ∈ R.”.

1. A loss image `(V ) is ∆n-strictly convex if for all p ∈ ∆n there exists a unique x ∈ `(V )
such that S(p,x).

2. A loss image `(V ) is ∆n-smooth if for all x ∈ `(V ) there exists a unique p ∈ ∆n such that
S(p,x).

This definition is illustrated in Figure 3. Dropping the uniqueness requirement in these defi-
nitions would drastically change things: since we will require ` is continuous, `(V ) is always
closed. Since by assumption `(V ) ⊂ [0,∞)n every such loss satisfies the weakened version of
∆n-strict convexity: for all p ∈ ∆n there exists x ∈ `(V ) such that S(p,x). The weakened ver-
sion of ∆n-smoothness requires that for all x ∈ `(V ) there exists p ∈ ∆n such that S(p,x) is

14
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`1(v)

` 2
(v
)

q

h L(q)

q
=
{x : x ·q

=
L(q)}

S`

x = `(v)

`(V )

Figure 4: Illustration of geometry of loss functions. The locus of the vector valued loss ` is
plotted as v varies over V . The superprediction set S` is the region to the “north-
east” of the loss image `(V ). The hyperplane hL(q)

q has normal vector q and offset
L(q). It supports S` at the point x = `(v) indicating the Bayes risk is achieved at v for
the true probability q.

a convexity-like requirement. (Confer the following result (Schneider, 1993, Theorem 1.3.3):
Suppose A is closed set such that Å 6=∅ and through each boundary point of A there is a support
plane to A; then A is convex.)

The name “∆n-strictly convex” is justified by the observation that replacing ∆n by Bln
1

(the ln
1

unit ball) gives a natural definition of strict convexity of a general set in Rn. We also observe that
both ∆n-strict convexity and ∆n-smoothness are closely related to the curvature of the Bayes risk
L by way of the fact that the support function of the set `(V ) (restricted to ∆n) is the Bayes risk;
confer (Williamson, 2014). Specifically, ∆n-strict convexity is equivalent to the Hessian HL(p)
being non-singular for all p∈ ∆n while ∆n-smoothness is implied whenever L(p) is continuously
differentiable.

Suppose A,B⊂ Rn. Then the Minkowski sum A+B := {a+b : a ∈ A,b ∈ B}.

Definition 15 Given a loss ` : V → Rn
+, we denote by

S` := `(V )+ [0,∞)n = {x ∈ Rn
+ : ∃v ∈ V , ∀i ∈ [n], xi ≥ `i(v)}

the superprediction set of ` (Kalnishkan and Vyugin, 2008).

One can characterise the existence of proper composite representations in terms of properties
the superprediction set. We start with an old result; confer (Dawid, 2007).

Proposition 16 Every continuous proper loss has a convex superprediction set.
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`1(v)

` −
1(
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S`

Figure 5: Superprediction set of a binary margin loss which is a not a composite proper loss;
See text following Corollary 12.

Proof Suppose ` is proper but S` is not convex. Then there exists x0 ∈ `(∆n) such that `(∆n) is
not supported at x0 by any hyperplane hp with normal vector p ∈ ∆n. Let q0 ∈ ∆n be such that
`(q0) = x0. Then there is a hyperplane hq0 (with normal q0) that supports `(∆n) at some x1 6= x0.
Thus q′0`(q) is minimised at q1 and not minimised at q0 and thus ` is can not be proper—a con-
tradiction.

The geometry of continuous proper losses is illustrated (for n = 2) in Figure 4. The superpre-
diction set of the margin loss discussed following Corollary 12 is not convex as can be seen in
Figure 5.

Continuous proper losses are quasiconvex, canonically so, as the following result shows.

Proposition 17 Suppose ` : ∆n → Rn
+ is a continuous proper loss. Then its superprediction

set S` is convex and, for all p ∈ ∆n, the function fp(q) := L(p,q) = p′ · `(q) is quasi-convex.
Conversely, suppose fp(q) := p′ · `(q) is quasi-convex in q for all p ∈ ∆n. Then there is a unique
convex set S such that T` = S and ` is necessarily proper.

The proof is in Appendix B.6. Some (but not all) proper losses are in addition convex; this is
studied in more detail in Section 6.4 below.

Working with S` is problematic for characterising the existence of strictly proper composite
representations (essentially because while for a strictly proper loss `, `(∆n) is ∆n-strictly convex,
S` is not strictly convex (because of the flat spots at the extremes—bounded losses have super-
prediction sets with flats parallel to the axes by construction)1. We will thus characterise proper
and strictly proper composite representations in terms of properties of `(V ) rather than S`.

1. It turns out that by starting with the superprediction set, and defining the loss in terms of the (super-) gradient of
the (concave) support function of the superprediction set, these difficulties can be avoided (Williamson, 2014).
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Proposition 18 Suppose ` : V → Rn
+ is a continuous loss. ` has a proper composite represen-

tation if and only if `(V ) is ∆n-smooth. Additionally, ` is strictly proper composite if and only if
`(V ) is also ∆n-strictly convex.

The proof is in Section B.7.

6. Implications: Mixability, Admissibility, Minimaxity and Convexity

We now consider some of the implications that the proper composite representation has for
several previously studied properties of loss functions.

6.1 Mixability

Mixability is a fundamental property of a loss function in the study of “prediction with expert
advice.” In this setting learning takes place in fixed number of sequential rounds. Each round
a learner is presented with predictions some finite number of experts. The learner then makes a
prediction and the outcome for that round is revealed. The learner’s and experts’ predictions are
assessed using some predefined loss function and the aim of the learner is to incur a total loss
not much worse than the best expert – i.e., the one with the smallest total loss. The difference
between the learner’s total loss and that of the best expert is known as the regret. In his seminal
work, Vovk (1995) showed that no matter how the experts behave, there exists a strategy for the
learner (called the “aggregating algorithm”) that guarantees a regret bounded by lnK

η
where K is

the number of experts and η is a positive number called the mixability constant (defined below)
that only depends on the loss. Losses for which this constant is defined are called mixable.
Furthermore, this constant characterises when such a constant regret bound is possible. That is,
if a loss is not mixable then there is no strategy the learner can use to guarantee a constant regret
bound.

Formally, mixability of a loss ` is defined in terms of the convexity of a transformation of
the loss’s superprediction set S` (see Definition 15). We say that for η > 0 the η-exponentiated
superprediction set is the image of S` ⊂ Rn under the mapping Eη : Rn → Rn

+ defined by
Eη(x) := (e−ηxi)n

i=1. A loss ` is said to be η-mixable if its η-exponentiated superprediction
set is convex. The mixability of ` is the smallest value of η for which ` is η-mixable. For further
details, the reader is referred to papers by Vovk (1995); Kalnishkan and Vyugin (2008); Vovk
and Zhdanov (2009).

Recently, van Erven et al. (2012b)2 have shown that the mixability of a loss is related to the
curvature of the loss’s Bayes risk relative to the curvature of the Bayes risk for log loss. The
main result here builds on some of the insights from that work and shows that mixable losses
(under mild conditions) always have proper composite representations.

For α ∈ (0,1) we write ᾱ := 1−α . For x,y ∈ Rn, x≤ y⇔ (xi ≤ yi, ∀i ∈ [n]). We now give
a necessary condition for mixability.

2. An extension of this notion of mixability can be related to a natural convex duality (Reid et al., 2015).
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Lemma 19 Suppose ` : V → Rn
+, x0 = `(v0), x1 = `(v1) with x0 6= x1. For α ∈ (0,1), define

xα := ᾱx0 +αx1 and vα = ᾱv0 +αv1. If for some α

xα ≤ `(vα) (4)

then ` is not mixable.

Proof Pick some η > 0. Let fη(a) = e−ηa for a ∈ R so that for x ∈ Rn we have Eη(x) =
( fη(xi))

n
i=1. Observe that the function fη is strictly monotone decreasing (a < b⇒ fη(a) >

fη(b)) and strictly convex (ᾱ fη(a)+α fη(b) > fη(ᾱa+αb)). For i ∈ [n] set x0,i = `i(v0) and
x1,i = `i(v1). By assumption, we have

ᾱx0,i +αx1,i ≤ `i(ᾱv0 +αv1), ∀i ∈ [n],

which by strict monotonicity

⇒ fη(ᾱx0,i +αx1,i)≥ fη(`i(ᾱv0 +αv1)), ∀i ∈ [n],

and hence by strict convexity

⇒ ᾱ fη(x0,i)+α fη(x1,i)> fη(`i(ᾱv0 +αv1)), ∀i ∈ [n]

⇔ ᾱEη(`(v0))+αEη(`(v1))> Eη(`(ᾱv0 +αv1))

and thus ` is not mixable since we have witnessed the non-convexity of the η-exponentiated
superprediction set for `.

van Erven et al. (2012b) showed that (under some mild conditions) a proper loss λ and
the composite loss λ ψ obtained via the reference link ψ̄ (see Proposition 5) share the same
mixability constant. We now show that mixable losses always have strictly proper composite
representations.

Proposition 20 Suppose ` : V → Rn
+ is a ∆n-smooth continuous loss. If ` is mixable then ` has

a strictly proper composite representation.

Proof We prove the contrapositive. Lack of a strictly proper composite representation is equiv-
alent then to `(V ) being not ∆n-strictly convex. Suppose then that `(V ) is indeed not ∆n-strictly
convex. There are two possibilities to consider:

1. There exists p ∈ ∆n such that there is no x ∈ `(V ) such that `(V ) is supported by hβ
p at x

for some β ∈ R; or

2. There exists p∈∆n such that there exists v0,v1 ∈V , v0 6= v1, x0 = `(v0), x1 = `(v1), ∃β ∈
R, hβ

p supports `(V ) at x1 and x2.

Since `(V ) ⊂ [0,∞)n and ` is continuous (and hence `(V ) is closed), for all p ∈ ∆n there al-
ways exists x ∈ `(V ) such that hβ

p supports `(V ) at x. Thus under the hypothesis, case 2 must
always hold. Then by continuity of ` and the definition of a supporting hyperplane, there exists
α ∈ (0,1) such that (4) holds and so ` is not mixable.
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6.2 Admissibility

The above results are strongly related to the classical notion of admissibility (Ferguson, 1967;
Chernoff and Moses, 1986; Kiefer, 1987), which is particularly simple in our situation. We adapt
the terminology of Ferguson (1967) to be consistent with elsewhere in the present paper.

Definition 21 Suppose ` : V →Rn
+ is a loss. A prediction v1 ∈V is better than v2 ∈V if `(v1)≤

`(v2) and for some i ∈ [n], `i(v1) < `i(v2). A prediction v1 is equivalent to v2 if `(v1) = `(v2).
A prediction v ∈ V is admissible if there is no prediction better than v. If a prediction v ∈ V
is the Bayes-optimal for some distribution p, that is for all v ∈ V there exists p ∈ ∆n such that
v ∈ argminv̄∈V p′ · `(v̄), then we say v is strongly admissible.

Ferguson (1967, Theorem 1, page 60) states the following (which we present for invertible
losses, so that `(v1) = `(v2)⇒ v1 = v2).

Proposition 22 Suppose ` : V →Rn
+ is invertible and p ∈ ∆n. If v ∈ V is the unique prediction

such that L(p,v) = L(p), then v is admissible.

Proposition 18 then implies the following.

Corollary 23 Suppose ` : V → Rn
+ is continuous and invertible. If ` has a strictly proper com-

posite representation then all v ∈ V are admissible and strongly admissible.

Proof If ` has a strictly proper composite representation, then `(V ) is ∆n-strictly convex and
thus for all p ∈ ∆n there exists a unique x ∈ `(V ) such that hL(p)

p supports `(V ) at x. Thus
by Proposition 22, v such that `(v) = x is an admissible prediction. Furthermore, since `(V )
is ∆n-smooth, this previous argument actually holds for all v ∈ V and thus ` is admissible.
Furthermore, it follows directly from the definition of ∆n-smoothness that all v are strongly
admissible.

Proposition 24 If ` : V → Rn
+ is continuous and has a proper composite representation then

every prediction is admissible.

Proof We will prove the contrapositive: Suppose a continuous loss ` : V →Rn
+ is such that there

exist x0,x1 ∈ `(V ) with x1 better than x0. Then ` can not have a proper composite representation.
Observe that “x1 is better than x0” is equivalent to

∀i ∈ [n], e′i · (x0− x1)≥ 0

∃i ∈ [n], e′i · (x0− x1)> 0.

Consider two mutually exclusive and exhaustive cases:

1. e′i · (x0−x1)> 0, ∀i ∈ [n]. Then for all p ∈ ∆n, p′ · (x0−x1)> 0⇒ p′ ·x0 > p′ ·x1 and thus
`(V ) can not be supported at x0 by hβ

p for any p ∈ ∆n and thus `(V ) is not ∆n-smooth.

2. Alternatively suppose

e′i · (x0− x1)

{
= 0, i ∈ I ⊂ [n]
> 0, i ∈ [n]\ I

with 1≤ |I|< n. Consider the two mutually exclusive subcases over p ∈ ∆n:
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(a) pi > 0 for some i ∈ [n]\ I. Then p′ · (x0− x1)> 0 and `(V ) can not be supported at
x0 by hβ

p for any β ∈ R.

(b) pi− 0 for all i ∈ [n] \ I. Then p′ · (x0− x1) = 0 in which case `(V ) is supported by
hβ

p for some β at both x0 and x1.

In either of these subcases, the ∆n-smoothness condition is violated.

Thus in both cases we have shown `(V ) can not be ∆n-smooth and by Proposition 18 can not
have a proper composite representation.

As can be seen in Figure 6, there can be no hope of a converse: mere admissibility of every
prediction x ∈ `(V ) can not imply that ` has a proper composite representation.

However strong admissibility of every prediction implies `(V ) is ∆n-smooth and so if ` is
continuous, strong admissibility of every prediciton implies (via Proposition 18) that ` has a
proper composite representation.

The relationship between strict convexity of S` and admissibility is not new (Brown, 1981);
but the connection with our characterisation of composite proper losses is new.

We conclude that if ` is continuous and invertible and we desire that all predictions are
admissible, then it suffices to only consider losses with a proper composite representation. Con-
tinuous invertible losses that do not have a proper composite representation are “redundant” in
the sense that there are guaranteed to exist predictions that are not Bayes optimal for any true
distribution.

6.3 Minimaxity

We say a loss ` : V → Rn
+ is minimax if its conditional risk L(p,v) = p′ · `(v) satisfies

max
p∈∆n

min
v∈V

L(p,v) = min
v∈V

max
p∈∆n

L(p,v). (5)

Minimaxity of proper losses has been studied in a very general setting by Grünwald and Dawid
(2004) who showed the connection between robust Bayes procedures and maximum entropy;
confer classical results presented, for example, by Ferguson (1967). In this brief subsection we
point out some simple implications of our earlier results. Setting V = ∆n, oberve that for all
proper losses λ : ∆n → Rn

+, p 7→ Λ(p,q) = p′ · λ (q) is linear for all q ∈ ∆n, and if λ is also
continuous, by Proposition 17 q 7→ Λ(p,q) is quasi-convex for all p ∈ ∆n. It thus follows from
the minimax theorem of Sion (1958) that all continuous proper losses satisfy

max
p∈∆n

min
q∈∆n

Λ(p,q) = min
q∈∆n

max
p∈∆n

Λ(p,q) (6)

and are thus minimax.
Suppose ` = λ ψ = λ ◦ψ−1 : V → Rn

+ is a proper composite loss, with conditional risk
L(p,v) = Λ(p,ψ−1(v)). Since ψ−1 is invertible,

max
p∈∆n

min
v∈V

L(p,v) = max
p∈∆n

min
q∈∆n

Λ(p,q), (7)
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`1(v)

` 2
(v
)

qh L(v)q
= {x : x ·q=

L(v)}

S`

x1 = `(v1)

`(V )

x2 = `(v2)

x3 = `(v3)

`1(v)

` 2
(v
)

qh L(v)q
= {x : x ·q=

L(v)}

S`
`(V )

x2 = `(v2)

x3 = `(v3)

x1 = `(v1)

x4

Figure 6: Left: Illustration of a continuous loss ` (which can be presumed invertible) with a non-
convex superprediction set. For true probability q, v1 and v2 both are Bayes optimal
since q′ ·`(v1) = q′ ·`(v2) = L(v); thus hL(v1)

q = hL(v3)
q supports `(V ) at both x1 and x3.

The point x2 is never a member of a supporting hyperplane of `(V ) and is thus never
the Bayes optimal prediction for any q and so not strongly admissible. The green line
indicates the set of predictions that are not strongly admissible—they will never be
Bayes optimal for any q ∈ ∆n. Such predictions are, however, admissible, as can be
seen by the grey translated negative orthants centred at x1, x2 and x3 (each orthant
does not contain any other predictions “better than” them). All the other predictions
whose image lies in the black line are both admissible and strongly admissible. The
loss image `(V ) is not ∆n-smooth because there exist no p ∈ ∆n that supports `(V ) at
x2. Hence by Proposition 18, ` can not have a proper composite representation. Right:
Similar to the figure on the left, except there are now some predictions, such as x2,
which are not admissible: x4 is better than x2 as can be seen since x4 is contained in
the interior of the shifted negative orthant centred at x2. Note in this case the boundary
of the super-prediction set S` does not equal `(V ) (see the part of S` cross-hatched
in red). This loss can not have a proper composite representation by Proposition 24.

where by the relationship between q and v, argmin
v∈V

L(p,v) = ψ

(
argmin

q∈∆n
Λ(p,q)

)
. Similarly,

min
v∈V

max
p∈∆n

L(p,v) = min
q∈∆n

max
p∈∆n

Λ(p,q). (8)

Since λ is proper, Λ satisfies (6) which combined with (7) and (8) proves the following.

Proposition 25 Every continuous proper composite loss is minimax.

Note that this alone does not imply that all continuous proper composite losses are quasi-convex,
which would follow if ψ mapped convex sets to convex sets; however this can not be true in
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general in Rn because convexity preserving mappings must be affine (Webster, 1994, Theorem
7.3.7); confer (Meyer and Kay, 1973). Recall Proposition 17 showed the quasi-convexity of all
proper losses.

Proposition 25 means that the use of the classical minimax theorem by Abernethy et al.
(2009) in order to prove their main result for convex losses can be foregone; their result also
holds for arbitrary continuous proper composite losses.

6.4 Convexity

In order to computationally optimise models with respect to a loss function it is convenient if
the loss is convex. In this subsection we develop conditions for the convexity of multiclass
composite proper losses. We assume throughout this section that the loss and link are twice
differentiable. We start by proving some identities for their first and second derivatives.

6.4.1 TECHNICAL PRELIMINARIES

Suppose ` = λ ◦ψ−1 is composed of the proper loss λ : ∆n → Rn
+ and the inverse of the link

ψ : ∆n → V . In order to simplify the calculation of derivatives for the function ` : V → Rn
+

we will assume the set V is a flat, (n− 1)-dimensional, convex subset of Rn
+. We do so since

if V were some arbitrary manifold the extra definitions required to make sense of convexity
(e.g., in terms of geodesics) and derivatives on manifolds would obscure the gist of the results
below. Furthermore, little is lost either practically or theoretically by assuming a simple V .
In practice, predictions are usually vectors in Rn

+, and in theory one could always choose a
parametrisation of V in terms of some simpler space U and redefine the link via composition
with that parametrisation. Alternatively, since links must be invertible, a composite loss could
be defined by a choice of loss and choice of inverse link ψ−1 : V → ∆n for a V assumed to be
flat, etc.

Recalling the convention that ñ := n− 1, let v ∈ V fixed but arbitrary with corresponding
p̃ = ψ̃−1(v) where ψ̃(p̃) := ψ((p̃1, . . . , p̃ñ, pn)

′) with pn := ∑
ñ
i=1 p̃i is the induced function from

∆̃n to V . By the chain rule and the inverse function theorem, the derivatives for each of the
partial losses `i satisfy

D`i(v) = D
[
λi(ψ̃

−1(v))
]
= Dλi(p̃) · [Dψ̃(p̃)]−1 . (9)

We use en
i to denote the ith n-dimensional unit vector, en

i = (0, . . . ,0,1,0, . . . ,0)′ when
i ∈ [n], and define en

i = 0n when i > n. We can now write Dλi(p̃) in terms of the n× ñ ma-
trix Dλ (p̃) using Dλi(p̃) = (en

i )
′ ·Dλ (p̃). Now Dλ (p̃) = (Dλ̃ (p̃)′,Dλn(p̃)′)′, where λ̃ (p̃) =

(λ1(p̃), . . . ,λñ(p̃))′, and so

Dλi(p̃) = (en
i )
′ ·Dλ (p̃) = (en

i )
′ ·
(

Dλ̃ (p̃)
Dλn(p̃)

)
. (10)

Furthermore, since λ is proper, Lemma 6 of (van Erven et al., 2012b) means we can use the
relationship between a proper loss and its projected Bayes risk L̃ := L◦Π

−1
∆

to write

Dλ̃ (p̃) =W (p̃) ·HL̃(p̃) (11)

Dλn(p̃) = y(p̃)′ ·Dλ̃ (p̃) (12)
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where W (p̃) := Iñ−1ñ · p̃′ and where y(p̃) :=−p̃/pn(p̃) and pn(p̃) := 1−∑i∈[ñ] pi.
Thus, combining (10–12) we have for all i ∈ [ñ]

Dλi(p̃) = (eñ
i )
′ ·W (p̃) ·HL̃(p̃)

= ((eñ
i )
′− (eñ

i )
′ ·1ñ · p̃′) ·HL̃(p̃)

= (eñ
i − p̃)′ ·HL̃(p̃) (13)

and

Dλn(p̃) = y(p̃)′ ·W (p̃) ·HL̃(p̃)

=
−1

pn(p̃)
p̃′ · (Iñ−1ñ · p̃′) ·HL̃(p̃)

=
−1

pn(p̃)
(p̃′− (1− pn(p̃))p̃′) ·HL̃(p̃)

=−p̃′ ·HL̃(p̃). (14)

Finally, noting that by definition eñ
n = 0, (14) and (13) can be merged and combined with (9)

to obtain the following proposition.

Proposition 26 For all i ∈ [n], p̃ ∈ ˚̃
∆n (the relative interior of ∆̃n), and v = ψ̃(p̃),

D`i(v) =−
(
eñ

i − p̃
)′ ·κ(p̃) (15)

where
κ(p̃) :=−HL̃(p̃) · [Dψ̃(p̃)]−1 . (16)

Using the definition of the Hessian H`i = D[(D`i)
′] and the product rule (31) gives

D
[
(D`i(v))′

]
=Dv[

f (p̃)︷ ︸︸ ︷[
Dψ̃(p̃)′

]−1 ·HL̃(p̃)′ ·

g(p̃)︷ ︸︸ ︷(
eñ

i − p̃
)
]

=
((

eñ
i − p̃

)′⊗Iñ

)
·Dv[ f (p̃)′+(I1⊗ f (p̃)) ·D

(
eñ

i − ψ̃
−1(v)

)
=
((

eñ
i − p̃

)′⊗Iñ

)
·Dv

[
HL̃(p̃) · [Dψ̃(p̃)]−1

]
−
([

Dψ̃(p̃)′
]−1

HL̃(p̃)′
)
· [Dψ̃(p̃)]−1 ,

where Dv is used to indicate that the derivative is with respect to v even when the terms inside
the derivative are expressed using p̃. We have now established the following proposition.

Proposition 27 For all i ∈ [n], p̃ ∈ ˚̃
∆n, and v = ψ̃(p̃),

H`i(v) =−
((

eñ
i − p̃

)′⊗Iñ

)
·D
[
κ
(
ψ̃
−1(v)

)]
+
(
κ(p̃)′

)
· [Dψ̃(p̃)]−1 ,

where κ(p̃) is defined in (16).
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The product κ(p̃) := −HL̃(p̃) [Dψ̃(p̃)]−1 that appears in both propositions above can be
interpreted as the curvature of the Bayes risk function L̃ relative to the rate of change of the link
function ψ̃ . When the link function is the identity ψ̃(p̃) = p̃ (i.e. when we have a proper loss
directly) the expressions for the derivative and Hessian of each `i simplify to

D`i(p̃) = (eñ
i − p̃)′ ·HL̃(p̃) (17)

H`i(p̃) =
((

eñ
i − p̃

)′⊗Iñ

)
·D
[
HL̃(p̃)

]
−HL̃(p̃)′. (18)

The form of κ as the product of HL̃ and Dψ̃ suggests another simplification.

Definition 28 The canonical link function for a loss λ with Bayes risk L is defined via

ψ̃λ (p̃) :=−DL̃(p̃)′. (19)

We will show in section 8.1 that (19) is indeed guaranteed to be a legitimate link. The term κ

simplifies to κ(p̃) = Iñ since Dψ̃(p̃) =−D(DL̃(p̃)′) =−HL̃(p̃). For this choice of link function,
the first and second derivatives become considerably simpler.

Proposition 29 If λ : ∆n→Rn
+ is a proper loss and ψ̃λ is its associated canonical link then, for

all i ∈ [n], p̃ ∈ ˚̃
∆n, and v = ψ̃λ (p̃), the composite loss `= λ ◦ ψ̃ satisfies

D`i(v) = (eñ
i − p̃) (20)

H`i(v) =
[
HL̃(p̃)

]−1
. (21)

The simplified form of the Hessian above is established by noting that since κ(p̃) = Iñ we have
D[κ(ψ̃−1(v))] = 0 for all v ∈ V in Proposition 27.

The above propositions hold for any number of classes n. It is instructive (both here and
later in the paper) to examine the binary case where n = 2. In this case, Proposition 26 and
Proposition 27 reduce to

`′1(v) =−(1− p̃)κ(p̃) ; `′2(v) = p̃κ(p̃) (22)

`′′1(v) =
−(1− p̃)κ ′(p̃)+κ(p̃)

ψ̃ ′(p̃)
(23)

`′′2(v) =
p̃κ ′(p̃)+κ(p̃)

ψ̃ ′(p̃)
(24)

where κ(p̃) =− L̃′′(p̃)
ψ̃ ′(p̃) ≥ 0 and so d

dv κ(ψ̃−1(v)) = κ ′(p̃)
ψ̃ ′(p̃) .

6.4.2 CONDITIONS FOR CONVEXITY OF MULTICLASS COMPOSITE PROPER LOSSES

We will now consider when multiclass proper losses are convex, and give a characterisation in
terms of the corresponding Bayes risk which as we have seen is the natural way to parametrise
a loss. The results below are the multiclass generalisation of the characterisation of convexity
of binary composite losses (Reid and Williamson, 2010). In fact we obtain more general results
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even in the binary case because here we consider strongly convex losses. We will also show
how any non-convex proper loss can be made convex by suitable choice of a link function (the
canonical link)3.

For a convex set C ⊆ Rn, a loss ` : C→ Rn
+ is said to be convex if for all p ∈ ∆n, the map

C 3 v 7→ L(p,v) = p′ · `(v) is convex. That is, a loss is convex if, under any distribution p over
outcomes i ∈ [n], the expected loss Ei∼p[`i(v)] is convex in v. It is easy to see that ` is convex
if and only if `i : C→ R+ is convex for all i ∈ [n]. (The “if” part follows since a sum of convex
functions is convex; the “only if” follows by considering p = ei, for i ∈ [n].)

Definition 30 Suppose C ⊆ Rn is convex. A function f : C→ R is strongly convex on C with
modulus c≥ 0 if for all x,x0 ∈C, ∀α ∈ (0,1),

f (αx+(1−α)x0)≤ α f (x)+(1−α) f (x0)−
1
2

cα(1−α)‖x− x0‖2.

When c = 0 in the above definition, f is convex. The function f is strongly convex on C with
modulus c if and only if x 7→ f (x)− c

2‖x‖
2 is convex on C (Hiriart-Urruty and Lemaréchal, 2001,

page 73). Therefore, the maps v 7→ `i(v) are c-strongly convex if and only if H`i(v) < cIñ. By
applying Proposition 27 we obtain the following characterisation of the c-strong convexity of
the loss `.

Proposition 31 A proper composite loss ` = λ ◦ψ−1 is strongly convex with modulus c ≥ 0 if
and only if for all p̃ ∈ ˚̃

∆n and for all i ∈ [n]((
eñ

i − p̃
)
⊗Iñ
)
·D
(
κ
(
ψ̃
−1(v)

))
4 κ(p̃)′ · [Dψ̃(p̃)]−1− cIñ. (25)

We now consider the implications of Proposition 31 in two special cases: in the multiclass
case with canonical link, and in the binary case with the identity link.

Recall that the canonical link ψ̃` is chosen so that ψ̃(p̃) =−DL̃(p̃)′. This simplifies κ(p̃) to
the identity matrix Iñ so Dκ(p̃) = 0. In this case the above proposition reduces to the following
corollary.

Corollary 32 If `= λ ◦ψ−1 is defined so that ψ̃ =−DL̃′ then each map v 7→ `i(v) is c-strongly
convex if and only if

[
−HL̃(p̃)

]−1
< cIñ, or equivalently −HL̃(p̃)4 1

c Iñ.

An immediate consequence of this result is obtained by observing that the definiteness constraint
is always met when c = 0 since L̃ is always a concave function. Thus, using a canonical link
guarantees a proper composite loss is convex.

There is an upper definiteness condition analogous to that for strong convexity that has im-
plications for rates of convergence in numerical optimisation. Boyd and Vandenberghe (2004,
§9.1.2) show that if a twice differentiable function f : X → R satisfies

MI < H f (x)< mI

3. There are problems associated with the domain of definition of such link functions than need to be dealt with
(Kamalaruban et al., 2015).
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for all x ∈X ⊂ Rn then the value M
m is an upper bound on the condition number of H f , that is,

the ratio of maximum to minimum eigenvalue of H f . This value measures the eccentricity of
the sublevel sets of f and controls the rate at which optima of f are approached.

Applying this result to the Hessian of a composite loss ` with a canonical link shows that
the condition number bound is controlled by the Hessian of the Bayes risk of `. Specifically, if
the condition number is to be no more than M/m then 1

M < −HL̃(p̃) < 1
m for all p̃. In the case

that M = m and the condition number is 1, the only Hessian that satisfies these conditions is
HL̃(p̃) =−Iñ which is easily shown to be the Bayes risk for square loss. Thus, square loss is the
only canonical composite loss for which a condition number of 1 is possible.

In the binary case, when n = 2, (23) and (24) and the positivity of ψ̃ ′ simplify (25) to the
two conditions:

(1− p̃)κ ′(p̃) ≤ κ(p̃)− cψ̃ ′(p̃)
−p̃κ ′(p̃) ≤ κ(p̃)− cψ̃ ′(p̃)

}
, ∀p̃ ∈ (0,1).

Further assuming that ψ̃ is the identity link (ψ̃(v) = v) and letting w(p̃) :=−L̃′′(p̃) gives

w′(p̃) ≤ 1
1−p̃(w(p̃)− c))

w′(p̃) ≥ −1
p̃ (w(p̃)− c)

}
, ∀p̃ ∈ (0,1)

⇔ − 1
p̃
≤ w′(p̃)

w(p̃)− c
≤ 1

1− p̃
, ∀p̃ ∈ (0,1). (26)

The last equivalence is achieved by dividing through by w(p̃)− c which must necessarily be
positive since if it were not the final pair of inequalities would imply − 1

p̃ ≥
1

1−p̃ , a contradiction
given that p̃ ∈ [0,1]. Note that (26) reduces to (Reid and Williamson, 2010, Corollary 26) for
c = 0.

Observe that if g(p̃) := log(w(p̃)− c) then g′(p̃) = w′(p̃)
w(p̃)−c is the middle term in (26). This

allows a simplification of the inequality. Specifically, if we assume w(1
2) = 1 then

− 1
p̃
≤ g′(p̃) ≤ 1

1− p̃
, ∀p̃ ∈ (0,1)

⇒
∫ q

1
2

−1
p̃

d p̃ Q
∫ q

1
2

g′(p̃)d p̃ Q
∫ q

1
2

1
1− p̃

d p̃, ∀q ∈ (0,1)

⇔ − log(q)− log(2) Q g(q)− log(1− c) (27)

Q − log(2)− log(1−q), ∀q ∈ (0,1)

⇔ 1
2q

Q eg(q)−log(1−c) Q
1

2(1−q)
, ∀q ∈ (0,1)

which gives the following proposition purely in terms of w(p̃), rather than w(p̃) and its deriva-
tive.
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Figure 7: Graph of w(p̃) =−L̃′′(p̃) as a function of p̃ necessary for a suitably normalised binary
proper loss to be strongly convex with modulus c ∈ {0, 1

5 ,
2
5 ,

3
5 ,

4
5 ,1}. The regions Rc

are nested by subsethood so that R0 ⊃ R1/5 ⊃ R2/5 ⊃ R3/5 ⊃ R4/5 ⊃ R1, where R1 is
simply the dotted line (containing only the function w(c) = 1, ∀c∈ [0,1], which is the
weight function corresponding to squared loss). The palest shaded region corresponds
to R0, the allowable range of w(c) necessary for the corresponding proper loss to be
convex, and the darkest corresponds to R4/5.

Proposition 33 Let w(p̃) = −HL̃(p̃) = −L̃′′(p̃) and assume w(1/2) = 1. A proper binary loss
` : ∆2→ R2

+ is strongly convex with modulus c ∈ [0,1] only if

1
2 p̃

Q
w(p̃)− c

1− c
Q

1
2(1− p̃)

, ∀p̃ ∈ (0,1), (28)

where Q denotes ≤ for p̃≥ 1
2 and denotes ≥ for p̃≤ 1

2 .

When c = 0 (corresponding to ` being convex) this is equivalent to an expression by Reid and
Williamson (2010, Equation 31), where it was incorrectly claimed this condition was also suffi-
cient. Inequation 28 is illustrated in Figure 7.
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The above proposition only gives a necessary condition for strong convexity. (In addition
to w belonging to the specified region, w′(p̃) also needs to be suitably controlled). A sufficient
condition is useful for designing strongly convex proper losses. Observe that if

w(p̃) = exp
(∫ p̃

1/2
u(t)dt +K

)
+ c

where u : [0,1]→R and K,c ∈R, then ∂

∂ p̃ log(w(p̃)−c) = u(p̃). We require w(1/2) = 1 and so

exp
(∫ 1/2

1/2 u(t)dt +K
)
+ c = 1 and so eK = 1− c and

w(p̃) = (1− c)exp
(∫ p̃

1/2
u(t)dt

)
+ c (29)

satisfies (26) if

− 1
p̃
≤ u(p̃)≤ 1

1− p̃
, ∀p̃ ∈ (0,1), (30)

and hence the loss with weight function w is strongly convex with modulus c. Thus by choosing
u to satisfy (30) and constructing w via (29) one can design strongly convex proper binary losses.

One can ask whether equation (25) can be simplified in the n > 2 case by using a matrix
version of the logarithmic derivative trick in a manner similar to that used above when n = 2.
Such a result does exist (Horn and Johnson, 1991, Section 6.6.19) but it requires that (HL̃(p̃))−1

and D(HL̃(p̃)) commute for all p̃ ∈ ∆̃n, which is not generally the case.

7. Integral Representations of Proper Losses

Binary proper losses have an attractive integral representation that provides substantial insight
and is a useful tool for both designing losses and understanding the implications of different
choices of loss. Specifically, there exists a family of “extremal” loss functions (cost-weighted
generalisations of the 0-1 loss) parametrised by c ∈ [0,1] and defined for all η ∈ [0,1] by
`c
−1(η) := cJη ≥ cK and `c

1 := (1− c)Jη < cK. As shown by Buja et al. (2005) and Reid and
Williamson (2011), given these extremal functions, any proper binary loss ` can be expressed as
the weighted integral

`=
∫ 1

0
`c w(c)dc+ constant

with “weight function” w(c) =−L̃′′(c). This representation is a special case of a representation
from Choquet theory (Phelps, 2001; Simon, 2011) which characterises when every point in some
set can be expressed as a weighted combination of the “extremal points” of the set. Although
there is such a representation when n > 2, the difficulty is that the set of extremal points is
much larger and this rules out the existence of a nice small set of “primitive” proper losses
when n > 2, and consequently rules out an easy-to-work-with weight function parameterizing
all possible multiclass lossses in a manner analogous to the binary case. The rest of this section
makes this statement precise.

A convex cone K is a set of points closed under positive linear combinations. That is,
K = αK +βK for any α,β ≥ 0. A point f ∈K is extremal if f = 1

2(g+ h) for g,h ∈K
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implies ∃α ∈R+ such that g=α f . That is, f cannot be represented as a non-trivial combination
of other points in K . The set of extremal points for K will be denoted exK . Suppose U is a
bounded closed convex set in Rd , and Kb(U) is the set of convex functions on U bounded by 1,
then Kb(U) is compact with respect to the topology of uniform convergence. Bronshtein (1978,
Theorem 2.2) showed that the extremal points of the convex cone K (U) = {α f +βg : f ,g ∈
Kb(U),α,β ≥ 0} are dense (w.r.t. the topology of uniform convergence) in K (U) when d > 1.
This means for any function f ∈K (U) there is a sequence of functions (gi)i such that for all
i gi ∈ exK (U) and limi→∞ ‖ f − gi‖∞ = 0, where ‖ f‖∞ := supu∈U | f (u)|. We use this result to
show that the set of extremal Bayes risks is dense in the set of Bayes risks when n > 2.

In order to simplify our analysis, we restrict attention to fair proper losses. A loss is fair
if each partial loss is zero on its corresponding vertex of the simplex (`i(ei) = 0, ∀i ∈ [n]). A
proper loss is fair if and only if its Bayes risk is zero at each vertex of the simplex (in this case
the Bayes risk is also called fair). One does not lose generality by studying fair proper losses
since any proper loss is a sum of a fair proper loss and a constant vector.

The set of fair proper losses defined on ∆n form a closed convex cone, denoted Ln. The set
of concave functions which are zero on all the vertices of the simplex ∆n is denoted Fn and is
also a closed convex cone.

Proposition 34 Suppose n > 2. Then for any fair proper loss ` ∈Ln there exists a sequence
(`i)i of extremal fair proper losses (`i ∈ exLn) which converges almost everywhere to `.

The implication of this proposition is that the set of extremal multiclas proper losses is very
large. Some intuition can be gleaned from Figure 8 from which it is apparent that there is a
qualitative difference between the complexity of the set of extremal concave functions in one
dimension (corresponding to n = 2) and higher dimensions (n > 2). The proof of Proposition 34
requires the following lemma which relies upon the correspondence between a proper loss and
its Bayes risk (Proposition 8) and the fact that two continuous functions equal almost everywhere
are equal everywhere.

Lemma 35 If ` ∈ exLn then its corresponding Bayes risk L is extremal in Fn. Conversely, if
L ∈ exFn then all the proper losses ` with Bayes risk equal to L are extremal in Ln.

Proof We suppose that ` ∈ exLn and denote its Bayes risk by L(p) = p′ · `(p). Let F ,G ∈Fn

so that L = 1
2(F +G). Suppose f and g are proper losses whose Bayes risks are respectively

equal to F and G, then ∀p ∈ ∆n and almost everywhere in q (more precisely where L, F and G
are differentiable), L(p,q) = 1

2(G(p,q)+F(p,q)). Then ` = 1
2(g+ f ) almost everywhere, so

there exists α such as g = α` almost everywhere, hence G = αL almost everywhere and then
everywhere by continuity. So L is extremal in Fn.

Now suppose that the concave function L is extremal and let ` be a proper loss whose Bayes
risk is L. Then L(p,q) = p′ · `(q) = L(q)+ (p− q)′ ·A(q) where A(q) ∈ ∂L(q). Suppose that
there exist f ,g ∈Ln so that `= 1

2( f +g) almost everywhere, and have associated Bayes risks F
and G, respectively. Then L(p) = p′ · `(p) = p′ · 1

2( f (p)+g(p)) = 1
2(F +G) almost everywhere

so L = 1
2(F +G) everywhere by continuity. Since L is extremal we must have F = αL and so

f = α` where L is differentiable (and so almost everywhere). Thus ` is extremal in Ln.
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Figure 8: Complexity of extremal concave functions in two dimensions (corresponds to n = 3).
The figure shows the graph of an extremal concave function in two dimensions. The
lines below indicate where the slope changes. The pattern of these lines can be made
arbitrarily complex. This illustrates the fact (Proposition 34) that the set of extremal
concave functions is very large.

We also need a correspondence between the uniform convergence of a sequence of Bayes
risk functions and the convergence of their associated proper losses.

Lemma 36 Suppose L,Li ∈ Fn for i ∈ N and suppose ` and `i, i ∈ N are associated proper
losses. Then (Li)i converges uniformly to L if and only if (`i)i converges almost everywhere to `.

Proof We require two facts from convex analysis; confer (Hiriart-Urruty and Lemaréchal, 2001,
Theorems B.3.1.4 and D.6.2.7). If a sequence ( f i)i of convex functions f i converges point-
wise to f then: 1) the sequence converges uniformly on any compact domain; and 2) ∀ε > 0,
∂ f i(x) ⊂ ∂ f (x)+B(0,ε) for i large enough. Then the reverse implication of the lemma is a
direct consequence of the first result and the forward implication is obtained by considering the
set {x : ∀n, Li and L are differentiable at x} which is of measure 1.

Proof (Proposition 34) When n > 2 the simplex ∆n is isomorphic to a subset of Rd for d > 1.
Since Fn is a convex cone associated with the set of bounded concave functions (i.e., the fair
Bayes risks), (Bronshtein, 1978, Theorem 2.2) guarantees (with an appropriate change from
concavity to convexity) that exFn is dense in Fn w.r.t. the topology of uniform convergence.
Therefore, if ` ∈Ln there exists a sequence ( f i)i with f i ∈ exFn which converges uniformly to
the Bayes risk L of ` and so by Lemma 36 there is a corresponding sequence (`i)i of fair proper
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losses that converges almost everywhere to `. Lemma 35 guarantees that each `i is extremal in
Ln since each f i ∈ exFn and so we have shown there exists a sequence (`i)i with `i ∈ exLn

which converges to an ` which was arbitrary.

8. Tools for Designing Losses

In this section we show how the results developed above could be used to design losses for
particular purposes. There is no question about how this should be done “in principle” (Berger,
1985, Section 2.4). And even when not made explicit at the outset, all inference ultimately has
an implicit loss function that captures what matters to the end user, even if the original purpose
was to merely “gather information”, simply because in the end the “information” is acted upon
(DeGroot, 1962). Until now, the lack of convenient and canonical parametrisations of multi-
class loss functions has made the comparison of different loss functions, and their tuning for
specific applications, difficult.

In subsection 8.1, we show how to construct a parametric family of valid link functions from
a finite number of “base” links by effectively taking their convex combination. By composing
each link with a fixed proper loss, this immediately allows for the specification of a family of
losses with a fixed Bayes risk. This construction enables the creation of losses with a range of
optimisation characteristics (e.g., convexity, robustness) but a common statistical basis (i.e., the
same Bayes risk).

In subsection 8.2 we show how it is possible to build losses by building them up from con-
straints on their Bayes risk curves on the edges of the simplex. This allows a loss to be con-
structed by effectively specifying its behaviour on pairs of outcomes. We show how this obser-
vation can be used to create piecewise linear, proper losses for cost-sensitive misclassification.

Finally (subsection 8.3) we observe how link functions are in fact themselves very similar to
loss functions, and (subsection 8.4) we present some examples of proper composite losses from
the literature (where they were not expressed in the proper composite parametrisation)

8.1 Families of Losses with Fixed Bayes Risk

The theory developed above suggests that each choice of proper loss λ and link function ψ

results in an overall loss function with properties (e.g., convexity) that depend entirely on their
relationship to each other. Given these two “knobs” for parameterising a loss function, we can
begin to ask what kind of practical trade-offs are involved when selecting a composite loss as a
surrogate loss for a particular problem.

We now propose a simple scheme for constructing families of losses with the same Bayes
risk. This is achieved by fixing a choice of proper loss λ and creating a parameterised family
(described below) of link functions ψα for parameters α ∈ A. Since the Bayes risk is entirely
determined by λ any composite loss λ ◦ψ−1

α for α ∈ A will have Bayes risk L(p) = p′ ·λ (p).
Thus, we are able to examine the effect different choices of composite loss can have on a problem
without changing the essential underlying problem.4

4. Of course, this argument only holds in a point-wise analysis. That is, where choices for estimates p(x) can be
made independently. Once a restricted hypothesis class for the functions p is introduced the choice of link can
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In order to construct a parametric family of links we first choose some set of inverse link
functions I = {ψ−1

1 , . . . ,ψ−1
B } with a common domain, that is, ψ

−1
b : V → ∆n for a common n

and V . This collection will be called the basis set of link functions. We then take the convex hull
of I to form a set of inverse link functions Ψ−1 = co(I ). Each ψ−1 ∈Ψ−1 is then identified
with the unique α ∈ A = ∆B such that ∑

B
b=1 αbψ

−1
b = ψ−1. For this construction to be valid, it

it necessary to show that every such ψ−1 ∈ Ψ−1 is indeed an inverse link function, that is, it is
invertible.

The following proposition shows that it suffices to assume that all of the basis functions are
strictly monotone (see Equation 2).

Proposition 37 Every function ψ−1 in the set Ψ−1 = co(I ) is invertible whenever each basis
function in I is strictly monotone.

This result is a consequence of: 1) strict monotonicity being preserved under convex combina-
tion; and 2) strict monotonicity implies invertibility. The first claim is established by consider-
ing strictly monotone f and g and some α ∈ [0,1] and noting that if h = α f +(1−α)g then
(h(u)− h(v))′(u− v) = α( f (u)− f (v))′(u− v)+ (1−α)(g(u)− g(v))′(u− v) > 0. A strictly
monotone function f that is not invertible is impossible since if we have ( f (u)− f (v))′(u−v)> 0
for all u,v then a u 6= v such that f (u) = f (v) would lead to a contradiction.

Strictly monotone basis functions are easily obtained via canonical links for strictly proper
losses. By definition, a canonical link satisfies ψ̃ = −DL̃ for some Bayes risk function. Strict
properness guarantees L̃ is strictly concave (van Erven et al., 2012b, Lemma 1). Kachurovskii’s
theorem (Hiriart-Urruty and Lemaréchal, 2001, Theorem 4.1.4) states that the derivative of a
function is (strictly) monotone if and only if the function is (strictly) convex. Since ( f ( f−1(u))−
f ( f−1(v)))′( f−1(u)− f−1(v)) = (u− v)′( f−1(u)− f−1(v)) we see that strictly monotone func-
tions have strictly monotone inverses and we have established the following proposition.

Proposition 38 If λ is a strictly proper loss then its canonical link ψ̃λ = −DL̃ has a strictly
monotone inverse.

This result means that a set of basis links can be defined via a choice of strictly concave
Bayes risk functions. As an example, the class of Fisher-consistent margin losses proposed
by Zou et al. (2008) provides a flexible starting point for designing sets of link functions as
described above. They give explicit formulae for the inverse link for a composite loss defined by
a choice of convex function φ : R→R. Specifically, if the loss for predicting v ∈ V = {v ∈Rn :
∑i vi = 0} is given by `(v) = φ(v j) then its inverse link is ψ

−1
φ

(v) = 1
Zφ (v)

(
[φ ′(vi)]

−1
)n

i=1 where
Zφ (v) normalises the vector to lie in ∆n. Each choice of strictly convex φ gives a valid inverse
link which can be used as a basis function.

8.2 Piecewise Linear Multiclass Losses

We now build a family of conditional Bayes risks. Suppose we are given n(n−1)
2 concave

functions {Li1,i2 : ∆2 → R}1≤i1<i2≤n on ∆2, and we want to build a concave function L on ∆n

affect the minimal achievable risk. The interaction between the hypothesis class and the loss function is complex
(van Erven et al., 2015).
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which is equal to one of the given functions on each edge of the simplex (∀1 ≤ i1 < i2 ≤ n,
L(0, . . . ,0, pi1 ,0, . . . ,0, pi2 ,0, . . . ,0) = Li1,i2(pi1 , pi2)). This is equivalent to choosing a binary
loss function, knowing that the observation is in the class i1 or i2. The result below gives one
possible construction. (There exists an infinite number of solutions—one can simply add any
concave function equal to zero in each edge).

Lemma 39 Suppose we have a family of concave functions {Li1,i2 : ∆2→ R}1≤i1<i2≤n, then

L : ∆
n 3 p 7→ L((p1, . . . , pn)

′) = ∑
1≤i1<i2≤n

(pi1 + pi2)L
i1,i2

((
pi1

pi1 + pi2
,

pi2

pi1 + pi2

)′)
is concave and ∀1≤ i1 < i2 ≤ n, L((0, . . . ,0, pi1 ,0, . . . ,0, pi2 ,0, . . . ,0)

′) = Li1,i2((pi1 , pi2)
′).

Proof In order to show that L is concave it suffices to show that for g : ∆2→R concave, f : p ∈
∆n→ f (p) = (p1+ p2)g

(
p1

p1+p2
, p2

p1+p2

)
is concave, since a sum of concave functions is concave.

Let γ ∈ [0,1], p,q ∈ ∆n. Since g is concave, ∀α ∈ [0,1], ∀p,q ∈ ∆2, g
(

α

p1+p2
p+ 1−α

q1+q2
q
)
≥

αg
( p

p1+p2

)
+(1−α)g

( q
q1+q2

)
. Then with α = γ(p1+p2)

γ(p1+p2)+(1−γ)(q1+q2)
, we get f (γ p+(1− γ)q)≥

γ f (p)+(1− γ) f (q).
Moreover, L((0, . . . ,0, pi1 ,0, . . . ,0, pi2 ,0, . . . ,0)

′) = ∑i/∈{i1,i2} (pi1×0+ pi2×0)

+(pi1 + pi2)L
i1,i2

((
pi1

pi1+pi2
,

pi2
pi1+pi2

)′)
= Li1,i2((pi1 , pi2)

′), (p ∈ ∆n, so pi1 + pi2 = 1).

Using this family of Bayes risks, one can build a family of proper losses.

Lemma 40 Suppose we have a family of binary proper losses `i1,i2 : ∆2→ R2. Then

` : ∆
n 3 p 7→ `(p) =

(
j−1

∑
i=1

`i, j
−1

(
pi

pi + p j

)
+

n

∑
i= j+1

`i, j
1

(
p j

pi + p j

))n

j=1

∈ Rn
+

is a proper n-class loss such that

`i((0, . . . ,0, pi1 ,0, . . . ,0, pi2 ,0, . . . ,0)
′) =


`i1,i2

1 (pi1) i = i1
`i1,i2
−1 (pi1) i = i2

0 otherwise
.

Proof Use the correspondence between Bayes risk and proper losses and Lemma 39.

Observe that it is much easier to work at first with the Bayes risk and then using the correspon-
dence between Bayes risks and proper losses.

We have already seen (Section 7) that it is not possible to parametrise all extremal concave
functions in a tractable manner. However, for the sake of offering a range of knobs to the
designer to design losses, it could often suffice to use a subset of extremal losses. These will
all have polyhedral forms. A convex polytope is a compact convex intersection of a finite set of
half-spaces and is therefore the convex hull of its vertices. Let {ai}i be a finite family of affine
functions defined on ∆n. Now define the convex polyhedral function f by f (x) := maxi ai(x).
The set K := {Pi = {x ∈ ∆n : f (x) = ai(x)}} is a covering of ∆n by polytopes. Bronshtein (1978,
Theorem 2.1) shows that for f , Pi and K so defined, f is extremal if the following two conditions

33



WILLIAMSON, VERNET AND REID

are satisfied: 1) for all polytopes Pi in K and for every face F of Pi, F ∩∆n 6=∅ implies F has a
vertex in ∆n; 2) every vertex of Pi in ∆n belongs to n distinct polytopes of K. The set of all such
f is dense in K (U).

Using this result it is straightforward to exhibit some sets of extremal fair Bayes risks
{Lc(p) : c ∈ ∆n}. Two examples are when

Lc(p) =
n

∑
i=1

pi
ci ∏

j 6=i
J pi

ci
≤ p j

c j
K

or
Lc(p) =

∧
i∈[n]

1−pi
1−ci

.

Any convex combination of either of these families will be the Bayes risk of a proper fair
multiclass loss. Thus the convex combination of the elementary losses induced by such Lc(p)
will also be proper fair multiclass losses.

8.3 Parametrisation of Composite Losses

A composite loss `= λ ◦ψ−1 : V →Rn
+ is directly parametrised by the proper loss λ : ∆n→Rn

+

and the invertible link ψ : ∆n→ Rn. However we have seen (Section 4) that proper losses λ are
more nicely parametrised by their concave conditional Bayes risk Λ : ∆n → R, which being
scalar valued, are simpler objects to work with than λ . Although not every invertible function ψ

can be written as the gradient of an analogous convex function Ψ : ∆n→ R, by Kachurovskii’s
theorem (see Section 8.1) if for some Ψ : ∆n→ R, ψ = DΨ, then ψ is monotone (resp. strictly
monotone) if and only if Ψ is convex (resp. strictly convex). A link ψ is a gradient if and only
if Dψ is symmetric (so that HΨ is symmetric) as a Hessian needs to be.

Thus if one were willing to restrict oneself to links such that Dψ is symmetric, then a com-
posite loss ` can be parametrised by (Λ,Ψ), which are concave (resp. strictly convex) functions
from ∆n to R. The parametrisation of ψ via Ψ allows the specification of the canonical link as
that satisfying Ψ =−Λ.

8.4 Examples from Related Work

In this subsection we look at some existing candidate multiclass losses from the perspective of
proper composite representations. Not all such losses as the generalisation of hinge loss are so
representable, a prominent example being those introduced by Crammer and Singer (2001).

Zou et al. (2008) presented multi-category losses of the form `y( f ) = φ( fy) for f such that
∑y fy = 0 and φ ′(0) < 0 and φ ′′(t) ≥ 0 so that we have Fisher consistency and the inverse link

is 1/φ ′( f j)

∑i 1/φ ′( fi)
. As their examples of this class show, it is not always possible to write the link in

closed form, even if the inverse link can be (e.g., logit loss φ(t) = log(1+ et)).
The coherence functions of Zhang et al. (2009) are a separate class of surrogate functions

that emphasise the margin of a prediction:

`y(v) = T log

[
1+∑

i6=y
exp
(
T−1(1+ vi− vy

)]
.
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Figure 9: Illustration of the link function in the proper composite representation of the binary
coherence loss for T ∈ [0.1,4]. Blue corresponds to T = 0.1 and red to T = 4, with
there being 80 equal increments of T plotted.

We will illustrate some aspects of the present paper with reference to this parametrised family
of losses. For ease of calculation, we consider only n = 2 below, but the conclusions we draw
below hold for n > 2 also. In the binary case, this corresponds to a parametric family of margin
losses with margin function

φT (z) := T log
(

1+ exp
(

1− z
T

))
,

and thus φ ′T (z) =
e(1−z)/T

1+e(1−z)/T and one can check that gT (v) := − φ ′T (v)
φ ′T (−v) is strictly monotone con-

tinuous and φT is monotone for all T > 0 and thus by Corollary 12 there is a strictly proper
composite representation. Identifying `−1(v) with φ(−v) and `1(v) with φ(v) we can find for a
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Figure 10: Illustration of the conditional Bayes risk corresponding to the the binary coherence
loss for T ∈ [0.02,4] with blue corresponding to T = 0.02 and red to T = 4.

given p the v that minimises L(p,v) by solving

∂

∂v
L(p,v) = (1− p)φ ′T (−v)+ pφ

′
T (v) = 0

and obtain 1−p
p =−gT (v). Solving this for v (using Maple) we find the link function component

of the proper composite representation:

ψT (p) = T
(

ln
(

1
2(1− p)

(
2 peT−1− eT−1

+

√
4e2T−1 p2−4 pe2T−1−4 p2 + e2T−1

+4 p
)))

.

This is illustrated in Figure 9. Zou et al. (2008, Theorem 1) effectively compute ψ
−1
T for general

n. One can determine the proper component as

LT (p) = pφT (ψT (p))+(1− p)φT (−ψT (p))

which is plotted in Figure 10. One can glean further insight by considering the corresponding
weight function wT (p) :=−L′′T (p), which is plotted in Figure 11.
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Figure 11: Weight function of the proper loss component of the proper composite representation
of the binary coherence loss for T ∈ [0.02,4], where blue corresponds to T = 0.02
and red to T = 4.

The weight function view makes it clear how the proper component of the loss approaches
0-1 loss as T → 0. (The weight function for 0/1 loss is w(c) = δ (c− 1

2); note the convergence in
Figure 11 is not uniform, given the behaviour at 0 and 1.) Observe too that as well as the proper
loss varying with T , the associated link also varies (in a complex way—see Figure 9). Thus not
only is one varying the statistical properties of the loss (in a substantial way—when T is small,
the weight is centered near p = 1

2 , whereas for large T , a series expansion of wT (p) shows that

wT (p)≈ T
(

1
p +

1
1−p

)
+4. An alternative to this class of losses, would be to fix a link, and then
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vary the proper component. For a given model or hypothesis class F this has the advantage that
the effective hypothesis class {ψ−1 ◦ f : f ∈F} remains fixed, and only the (proper) loss varies.
The (Λ,Ψ) parametrisation of section 8.3 offers a convenient way to do this.

9. Conclusions

We have systematically studied multiclass composite losses. The results of the paper (sum-
marised below) show that this is an attractive parametrisation of multiclass losses. If one desires
all predictions be strongly admissible, then there is nothing lost in using the proper composite
representation. Since the link is only a reparametrisation, this means one still has the relationship
between losses and divergences as described by Garcı́a-Garcı́a and Williamson (2012).

The proper composite representation leads to a desirable separation of concerns, where the
inferential properties of the loss (such as its mixability) are governed by the proper loss, and
the convexity (necessary for numerical optimisation) is controlled by the link function. It thus
seems to be the best way to parametrise loss functions.

The key technical contributions of the paper are as follows.

• Relationship between prediction calibration and classification calibration, showing that
the latter can be seen as a “pointwise” version of the former (Section 3);

• Characterisation of multiclass proper losses in terms of their binary restrictions (Proposi-
tion 7);

• Every (multiclass) proper loss is quasi-convex (Proposition 17);

• Characterisation of which binary margin losses have a proper composite representation
(Corollary 12);

• Characterisation of when a multiclass loss has a proper composite representation and when
the representation is unique (Section 5.3);

• Relationship between the proper composite representation, mixability and admissibility
(Sections 6.1 and 6.2);

• Necessary conditions for strong convexity of multiclass proper losses in terms of their
corresponding Bayes risks (Proposition 31);

• Canonical links always convexify proper losses, and outline how this can help in the design
of losses (Proposition 32);

• The attractive (simply parametrised) integral representation for binary proper losses can
not be extended to the multiclass case (Section 7) ;

These results suggest that in order to design losses for multiclass prediction problems it is helpful
to use the composite representation, and design the proper part via the Bayes risk as suggested for
the binary case by Buja et al. (2005). The link function can be tuned to control the optimisation
properties of the loss. Merely requiring the loss to be convex confounds two seperate aspects of
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a loss: the shape of `(V ) which controls the predictive performance, and the parametrization of
`(V ) which affects the numerical optimisation of a loss.

There remain open questions. Perhaps the most practically important is the interaction be-
tween the loss and restricted hypothesis classes: typically one does not optimise conditionally,
one optimises the full expected risk with respect to a restricted function class F ⊂ Y X . The
question of how knowledge of F should influence the design of a loss remains open; some
initial work along these lines is the notion of “stochastic mixability” (van Erven et al., 2012a,
2015).
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Appendix A. Matrix Calculus

If A = [ai j] is an n×m matrix, vecA is the vector of columns of A stacked on top of each other.
The Kronecker product of an m×n matrix A with a p×q matrix B is the mp×nq matrix

A⊗B :=

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 .

We use the following properties of Kronecker products (Magnus and Neudecker, 1999, Chapter
2): (A⊗B)(C⊗D) = (AC⊗BD) for all appropriately sized A,B,C,D, and I1⊗A = A.

If f : Rn→ Rm is differentiable at c then the partial derivative of fi with respect to the jth
coordinate at c is denoted D j fi(c). The m×n matrix of partial derivatives of f is the Jacobian
of f and denoted

(D f (c))i, j := D j fi(c) for i ∈ [m], j ∈ [n].

If F is a matrix valued function DF(X) := D f (vecX) where f (X) = vecF(X).
We will require the product rule for matrix valued functions (Vetter, 1970; Fackler, 2005):

Suppose f : Rn→ Rm×p, g : Rn→ Rp×q so that ( f ×g) : Rn→ Rm×q. Then

D( f ×g)(x) = (g(x)′⊗Im) ·D f (x)+(Iq⊗ f (x)) ·Dg(x). (31)

The Hessian at x∈X ⊆Rn of a real-valued function f : X →R is the n×n real, symmetric
matrix of second derivatives at x

(H f (x)) j,k := Dk, j f (x) =
∂ 2 f

∂xk∂x j
.
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Note that the derivative Dk, j is in row j, column k. It is easy to establish that the Jacobian of the
transpose of the Jacobian of f is the Hessian of f . That is,

H f (x) = D
(
(D f (x))′

)
(32)

(Magnus and Neudecker, 1999, Chapter 10). If X ⊂ Rn and f : X → Rm is a vector-valued
function, then the Hessian of f at x ∈X is the mn× n matrix that consists of the Hessians of
the functions fi stacked vertically:

H f (x) :=

H f1(x)
...

H fm(x)

 .

Appendix B. Deferred Proofs

This appendix contains proofs of results in the main text that, due to their length or technicality,
are better presented outside the flow of the main text.

B.1 Proof of Lemma 1

1. We prove this by contradiction. Suppose p ∈ ∆n such that for all i ∈ [n], p /∈Ti(c). Then

p /∈T j1(c)⇒∃ j2 6= j1 such that
p j1

c j1
<

p j2

c j2

p /∈T j2(c)⇒∃ j3 6= j2 such that
p j2

c j2
<

p j3

c j3

and hence by repeating this argument

p /∈T jn(c)⇒∃ jn+1 6= jn such that
p jn

c jn
<

p jn+1

c jn+1

.

Thus we have n+1 indices j1, . . . , jn+1 belonging to [n] and therefore one is repeated ( jk)
and

p jk
c jk

<
p jk
c jk

which is a contradiction.

2. Obvious.

3. If p ∈
⋂n

i=1 Ti(c), then for all j ∈ [n], c j = ∑i pic j = ∑i p jci = p j. Thus p = c.

4. We prove this by contradiction. Suppose p 6= q such that for all c if p ∈ Ti(c) then q ∈
Ti(c). Observe that ∀ j ∈ [n], p ∈ T j(p), and so q ∈

⋂n
j=1 T j(q), and hence q = p, a

contradiction.

B.2 Proof of Proposition 9

Observe that
∂L(p) = {(s′,0)′+α1, s ∈ ∂ L̃(p̃), α ∈ R}. (33)
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Indeed (q̃− p̃)′ · s = (q− p)′ · ((s′,0)′+α1).
(⇐) We first assume that L is differentiable at p. We use the following result (Hiriart-Urruty

and Lemaréchal, 2001, page 203): If f is a convex function, then ∀ε > 0, ∃δ > 0, y∈B(x,δ )⇒
∂ f (y)⊂ ∂ f (x)+B(0,ε).

Assume ε > 0, then since L is differentiable at p̃, ∃δ̃ > 0, such that

∀q̃ ∈B(p̃, δ̃ ), ∀A(q̃) ∈ ∂ L̃(q̃), ||A(q̃)−DL̃(p̃)|| ≤ ε. (34)

Then there exists δ such that q∈B(p,δ ) implies p̃∈B(p̃, δ̃ ). Thus using (3) and (34), ∀i∈ [n],
∀q ∈B(p,δ ), for α1,α2 ∈ R,

`i(q)− `i(p) = L(q)+(ei−q)′ · ((A(q̃)′,0)′+α11)−
(L(p)+(ei− p)′ · ((DL(p̃)′,0)′+α21)),

= L(q)−L(p)+(ẽi− q̃)′ ·A(q̃)− (ẽi− p̃)′ ·DL(p̃)+ γ, ∀A(q̃) ∈ ∂ L̃(q̃),

where A(q̃) ∈ ∂ L̃(q̃), and

γ =−(ei−q)′ ·α11+(ei− p)′ ·α21=−α1 +α1q′ ·1+α2−α2 p′ ·1
=−α1 +α1 +α2−α2 = 0

and so

`i(q)− `i(p) = L(q)−L(p)+(ẽi− q̃)′ · (A(q̃)−DL(p̃))+(p̃− q̃)′ ·DL(p̃).

By continuity of L, ||L(q)− L(p)|| < ε for small enough δ . Furthermore by (34), ||A(q̃)−
DL̃(p̃)|| ≤ 0 and ||p̃− q̃|| ≤ ε . Hence ||`i(q)−`i(p)|| ≤ ε +ε +δ which can be made arbitrarily
small by suitable choice of ε . Thus `i is continuous for all i ∈ [n] and so ` is continuous.

(⇒) Assume that L is not differentiable at p ∈ ∆̊n. Thus there exists two different supergra-
dients at p: A(p̃) and B(p̃). Assume that one of these supergradients, A(p̃), is the one associated
to the loss ` in the sense that for all i ∈ [n] `i(p) = L(p)+(ẽi− p̃)′ ·A(p̃).

Suppose that ∀i ∈ [n],

(ei− p)′ · ((A(p̃)′,0)′+α11)≤ (ei− p)′ · ((B(p̃)′,0)′+α21), α1,α2 ∈ R. (35)

Thus

∑
i∈[n]

qi(ei− p)′ · ((A(p̃)′,0)′+α11)≤ ∑
i∈[n]

qi(ei− p)′ · ((B(p̃)′,0)′+α21), ∀q ∈ ∆
n, α1,α2 ∈ R

⇔ (q− p)′ · ((A(p̃)′,0)′+α11) ≤ (q− p)′ · ((B(p̃)′,0)′+α21), ∀q ∈ ∆
n,α1,α2 ∈ R

⇔ (q̃− p̃)′ ·A(p̃) ≤ (q̃− p̃)′ ·B(p̃), ∀q̃ ∈ ∆̃
n. (36)

Since p ∈ ∆̊n we can choose q̃1 and q̃2 ∈ ∆̃n such that q̃1− p̃ = p̃− q̃2 and so the only way (36)
can hold is if

(q̃− p̃)′ ·A(p̃) = (q̃− p̃)′ ·B(p̃).
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Since p ∈ ∆̊n is arbitrary, we obtain that A(p̃) = B(p̃), a contradiction and so (35) must be false.
Thus there exists i ∈ [n] such that

(ei− p)′ · ((A(p̃)′,0)′+α11)> (ei− p)′ · ((B(p̃)′,0)′+α21), α1,α2 ∈ R.

Thus
∃i ∈ [n], (ẽi− p̃)′ ·A(p̃)> (ẽi− p̃)′ ·B(p̃). (37)

Let pη := p+η(ei− p) and denote by C(p̃η) the supergradient associated with ` at pη (that is,
`i(pη) = L(pη)+(ẽi− p̃η)

′ ·C)p̃η)). By definition of the supergradient,

L(pη)≤ L(p)+(p̃η − p̃)′ ·B(p̃) and L(p)≤ L(pη)+(p̃− p̃η)
′ ·C(p̃η).

Thus

L(pη) ≤ L(pη)+C(p̃η)
′ · (p̃− p̃η)+B(p̃)′ · (p̃η − p̃)

⇒ C(pη)
′ · (p̃η − p̃)′ ≤ B(p̃)′ · (p̃η − p̃)′.

But by definition of pη , p̃η − p̃ = p̃+η(ẽi− p̃)− p̃ = η(ẽi− p̃). Thus for η > 0,

C(p̃η)
′ · (ẽi− p̃) ≤ B(p̃)′ · (p̃− ẽi). (38)

Now `i(pη) = L(pη)+(ẽi− p̃η)
′ ·C(p̃η). Hence (38) implies

`i(pη)≤ L(pη)+(ẽi− p̃)′ ·B(p̃).

However limη↘0 pη = p and by continuity of L,

lim
η↘0

L(pη)+(ẽi− p̃)′ ·B(p̃) = L(p)+(ẽi− p̃)′ ·B(p̃)

< L(p)+(ẽi− p̃)′ ·A(p̃)

= `i(p) by (37).

Thus limη↘0 `i(pη)< `i(p) and so `i is not continuous at p and thus ` is not continuous at p.

B.3 Proof of Proposition 7

The proof shows the equivalence of statements 1 and 2 and, separately the equivalence of 1 and
3 and 1 and 4.

1⇒ 2: Suppose that ` is proper and p,q ∈ ∂∆n. Let L̃p,q denote the conditional risk associ-
ated with ˜̀p,q. Then

L̃p,q(η , η̂) =
(
ηq+(1−η)p

)′ · `(p+ η̂(q− p)
)
= L
(

p+η(q− p), p+ η̂(q− p)
)

≥L
(

p+η(q− p), p+η(q− p)
)
= L̃p,q(η ,η).

Hence ˜̀p,q is proper.
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p
q

p̃

q̃

∆n

Figure 12: Illustration of
proof of Proposi-
tion 7.

1⇐ 2: Suppose that ˜̀p,q is proper ∀p,q ∈ ∂∆n. Suppose
p,q ∈ ∆n. Then there exists p̃ and q̃ ∈ ∂∆n such that p = p̃+
η(q̃− p̃) and q = p̃ + η̂(q̃− p̃), where η , η̂ ∈ [0,1] (the line
passing through p and q cuts ∂∆n at p̃ and q̃; see Figure 12).
Then

L(p,q) = L̃ p̃,q̃(η , η̂)≥ L̃ p̃,q̃(η ,η) = L(p, p).

Hence ` is proper.
One can easily prove that 3⇒ 1 by taking h1 = 0.
For 3⇐ 1 we use a result of Lambert (2010, Proposition 1),

which tells us a binary probability estimation loss `b is proper
if and only if ∀η ≤ η1 ≤ η2 or η ≥ η1 ≥ η2, Lb(η ,η1) ≤ Lb(η ,η2) (the assumptions on the
statistic are checked in the binary case with the statistic function Γ : ∆2 3 p 7→ E(p) ∈ [0,1]).
We also know that if ` is proper then ∀p,q ∈ ∂∆n, ˜̀p,q (introduced in Proposition 7) is proper.
We assume that ` is proper, ∀p,q ∈ ∆n, ∀0 ≤ h1 ≤ h2, we introduce the projections p̃, q̃ ∈ ∂∆n

of p and q, then there exists η and µ such that p = p̃+η(q̃− p̃) and q = p̃+ µ(q̃− p̃). We
denote η1 = η +h1(µ−η) and η2 = η +h2(µ−η). Then the result of Lambert applied to ˜̀p,q

gives us L(p, p+h1(q− p))≤ L(p, p+h2(q− p)). One can adapt the proof in the case of strict
properness.

1⇒ 4: If ` is proper, p′ · `(q) = q′ · `(q) + (p− q)′ · `(q) = L(q) + (p− q)′ · `(q). Thus
∀q ∈ ∆n there exists A(q) such as L(p,q) = L(q)+ (p− q)′ ·A(q). Since ` is proper, ∀p ∈ ∆n,
0 ≤ L(p, p)− L(p,q) = L(q)− L(p)+ (p− q)′ ·A(q). Then A(q) is a supergradient of L = f
(which is concave) at q, and p′ · `(q) = f (q)+(p−q)′ ·A(q).

4⇒ 1: If there exists a function f concave and ∀q ∈ ∆n, there exists a supergradient A(q) ∈
∂ f (q) such that ∀p,q ∈ ∆n, p′ · `(q) = f (q)+(p−q)′ ·A(q). Then, L(p, p)−L(p,q) = f (p)−
f (q)+(p−q)′ ·A(q)≥ 0. Hence ` is proper.

B.4 Proof of Proposition 10

The proposition is a direct consequence of the characterization of differentiable binary proper
losses (Reid and Williamson, 2010). A differentiable binary loss λ is proper if and only if
−λ ′1(η)

1−η
=

λ ′−1(η)

η
≥ 0, ∀η ∈ (0,1).

Suppose the loss ` can be expressed as a proper composite loss: ` = λ ψ = λ ◦ψ−1 and so
λ = `◦ψ . Therefore for y ∈ {−1,1}, λ ′y(η) = ψ ′(η)`′y(ψ(η)). Then λ is proper and thus

−λ ′1(η)

1−η
=

λ ′−1(η)

η
, ∀η ∈ (0,1) (39)

⇔ − ψ ′(ψ−1(v))
1−ψ−1(v)

`′1(v) =
ψ ′(ψ−1(v))

ψ−1(v)
`′−1(v), ∀v ∈ V

⇔ ψ
′(ψ−1(v)) = 0 or `′−1(v) = `′1(v) = 0 or ψ

−1(v) =
`′−1(v)

`′−1(v)− `′1(v)
, ∀v ∈ V . (40)
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Since ψ is differentiable and invertible, ψ ′ cannot equal zero on an interval. By continuity, ψ−1

is uniquely defined on an interval I when ∀v1,v2 ∈ I, ∃v ∈ [v1,v2], `′1(v) 6= 0 or `′−1(v) 6= 0. If
I = V then ψ is unique and thus λ = `◦ψ is unique.

If `′1(v) = `′−1(v) = 0, ∀v ∈ [v1,v2] then one can choose any ψ|[v1,v2]
which is differentiable,

invertible and such that ψ is continuous in v1 and v2 and as `1 and `−1 are constant on [v1,v2],
λ (η) = `(ψ(η)) does not depend on ψ and so in any case λ is unique.

B.5 Proof of Proposition 11

The loss λ is proper if and only if (39) and −λ ′1(η) ≥ 0 and λ ′−1(η) ≥ 0. This is equivalent to
there exists an invertible ψ such that (40) holds and

−ψ
′(ψ−1(v))`′1(v)≥ 0 and ψ

′(ψ−1(v))`′−1(v)≥ 0, ∀v ∈ V . (41)

(⇒) Suppose ` has a composite representation with ψ strictly increasing and thus ψ ′(v)> 0 for
all v ∈ V and thus −`′1(v) ≥ 0 and `′−1(v) ≥ 0. Hence `1 is decreasing and `−1 is increasing.
By hypothesis, `′−1(v) 6= 0 or `′1(v) 6= 0. Furthermore ψ ′(v) can not equal zero except at isolated

points. Thus (40) implies ψ−1(v) = `′−1(v)
`′−1(v)−`′1(v)

= 1
1− f (v) and thus f is strictly increasing. (If

instead ψ was strictly decreasing, we can run the same argument to conclude `1 is increasing,
`−1 is decreasing and f is strictly decreasing.)
(⇐) Suppose `1 is decreasing, `−1 is increasing and f is strictly increasing. By setting ψ−1(v) =

1
1− f (v) , ψ−1 is invertible and (41) holds. The other case is analogous.

B.6 Proof of Proposition 17

Fix an arbitrary p ∈ ∆n. The function fp is quasi-convex if its α sublevel sets

Fα
p := {q ∈ ∆

n : p′`(q)≤ α}

are convex for all α ∈ R (Greenberg and Pierskalla, 1971). Fix an arbitrary α > L(p)i, and thus
Fα

p 6= /0. Let
Qα

p := {x ∈ Rn : p′x≤ α}

so Fα
p = {q ∈ ∆n : `(q) ∈ Qα

p}. Denote by

hβ
q := {x : x′ ·q = β}

the hyperplane in direction q ∈ ∆n with offset β ∈ R and by

Hβ
q := {x : x′ ·q≥ β}

the corresponding half-space. Since ` is proper, S` is supported at x = `(q) by the hyperplane
hL(q)

q and furthermore since S` is convex, S` =
⋂

q∈∆n HL(q)
q .

Let
V α

p :=
⋂

x∈`(∆n)∩Qα
p

HL(`−1(x))
`−1(x) =

⋂
q∈Fα

p

HL(q)
q
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`1(q)

` 2
(q
)

S`

z = `(q)

pQα
p

V α
p

q

`(∆n)

h L(q)

q
=
{x : x ·q

=
L(q)}

Figure 13: Illustration of proof of quasi-convexity of continuous proper losses (see text).

(see figure 13). Since V α
p is the intersection of halfspaces it is convex. Note that a given half-

space HL(q)
q is supported by exactly one hyperplane, namely hL(q)

q . Thus the set of hyperplanes
that support V α

p is {hL(q)
q : q ∈ Fα

p } If u ∈ Fα
p then there is a hyperplane in direction u that

supports V α
p and its offset is given by

σV α
p
(u) := inf

x∈V α
p

u′ · x = L(p)>−∞

whereas if u 6∈ Fα
p then for all β ∈ R, hβ

u does not support V α
p and hence σV α

p
(u) = −∞. Thus

we have shown (
u 6∈W α

p
)
⇔
(

σV α
p
(u) =−∞

)
.

Observe that σV α
p
(u) =−sV α

p
(−u) where sC(u) = supx∈C u′ · x is the support function of a set C.

It is known (Valentine, 1964, Theorem 5.1) that the “domain of definition” of a support function
{u ∈ Rn : sC(u) < +∞} for a convex set C is always convex. Thus Gα

p := {u ∈ ∆n : σV α
p
(u) >

−∞} = {u ∈ Rn : σV α
p
(u)>−∞}∩∆n is always convex because it is the intersection of convex

sets. Finally by observing that

Gα
p = {p ∈ ∆

n : `(p) ∈ `(∆n)∩Qα
p}= Fα

p

we have shown that Fα
p is convex. Since p ∈ ∆n and α ∈ R were arbitrary we have thus shown

that fp is quasi-convex for all p ∈ ∆n.
For the converse, the convexity of S comes from the contruction in the first part of this proof.

All that needs to be shown is uniqueness. Suppose then, for the sake of a contradiction, that
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a given quasi-convex fp corresponds to two distinct S1,S2. Then the corresponding support
functions sS1 6= sS2 and thus there exists u such that sS1(u) 6= sS2(u). Let xi be the point of
support of Si by a hyperplane with normal u. By assumption x1 6= x2. Suppose x1 and x2 do
not lie on a single hyperplane with normal p. Then there exists α such that hα

p seperates x1
and x2. Thus u ∈ domsS1∩Qα

p
but u 6∈ domsS2∩Qα

p
(or vice versa). Since Fα

p =−domsS1∩Qα
p

and
Fα

p = −domsS2∩Qα
p

we have a contradiction. In case x1,x2 do lie on a single hyperplane hα∗
p ,

one can argue (by the continuity of sS that there must exist a u∗, a convex combination of u and
p which induces support points that can be seperated as above.

B.7 Proof of Proposition 18

∆n-smooth ⇒ proper composite `: Suppose `(V ) is ∆n-smooth. Pick some x ∈ `(V ) with
x = `(v) for some v ∈ V (not necessarily unique because we have not assumed ` is invertible).
By assumption, there exists a unique p ∈ ∆n such that hβ

p supports `(V ) at x for some β ∈ R.
Define ψ to be the function such that ψ(p) = v. Since the corresponding p is unique, ψ is
invertible. Now

β = inf{b ∈ R : hb
p∩ `(V ) 6= /0}= p′ · `(v) = p′ · `(ψ(p)) = p′ ·λ (p).

Let λ := `◦ψ . We will show λ is proper. Observe that for each p ∈ ∆n

inf{b : hb
p∩ `(V ) 6= /0}= inf{p′ · `(v) : hp′·`(v)

p ∩ `(V ) 6= /0, v ∈ V }.

Thus p′ ·λ (p) = p′ · (`◦ψ)(p) = infv∈V p′ · `(v).
Since ψ : ∆n→ V is invertible,

inf
v∈V

p′ · `(v) = inf
v∈V

p′ · (λ ◦ψ
−1)(v) = inf

q∈∆n
p′ ·λ (q)

which we have shown above equals p′ ·λ (p). Thus λ is proper and ` has a proper composite
representation.

Proper composite `⇒ ∆n-smooth: Suppose ` = λ ◦ψ−1, where λ is proper. We need to
show that for all x ∈ `(V ) there is a unique p ∈ ∆n such that `(V ) is supported by hβ

p at x for
some β ∈ R.

Now pick an arbitrary v ∈ V which induces an arbitrary x = `(v) ∈ `(V ). Let p = ψ−1(v).
Then hL(p)

p supports `(V ) at x since λ is proper. Suppose there was another q 6= p, q ∈ ∆n such
that hL(q)

q supports `(V ) at x. But that would require that v = ψ(q) which is impossible since
v = ψ(p) and ψ is invertible. Thus p is unique and hence `(V ) is ∆n-smooth.

∆n-strict convexity ⇒ strict proper composite `: Let p ∈ ∆n. By invertibility of ` and
∆n-strict convexity of `(V ) there exists a unique v ∈ V such that there exists a hyperplane hβ

p

supporting `(V ) at `(v). Define ψ such that for all p ∈ ∆n, ψ(p) is this unique v. Since hβ
p

supports `(V ),
β = inf{b : hb

p∩ `(V ) 6= /0}= p′ · `(v) = p′ · `(ψ(p)).

By ∆n-smoothness of `(V ) for all v ∈ V there is a unique p∗ ∈ ∆n such that hβ

p∗ supports `(V )
at `(v). By continuity of ` and ∆n-strict convexity of `(V ), ψ is continuous. Let λ := ` ◦ψ .
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Observe that

inf{β : hβ
p ∩ `(V ) 6= /0}= inf{p′ · `(v) : hp′·`(v)

p ∩ `(V ) 6= /0, v ∈ V }.

Thus p′ · λ (p) = p′ · (` ◦ψ)(p) = infv∈V p′ · `(v). By ∆n-smoothness of `(V ), for all v ∈ V
there exists a unique p ∈ ∆n such that ψ(p) = v and thus ψ is invertible. Hence p′ · λ (p) =
infq∈∆n p′ · λ (q) and thus λ is proper. Since `(V ) is ∆n-strictly convex there exists a unique
point where hΛ(p)

p supports `(V ). Hence λ is strictly proper and we have shown that ` has a
strictly proper composite representation.

Strictly proper composite `⇒ ∆n-strictly convex: Suppose ` has a strictly proper compos-
ite representation `(v) = λ (ψ−1(v)). Pick p ∈ ∆n. By assumption, there exists v ∈ V such that
ψ−1(v) = p. Since λ is strictly proper, there is a unique q ∈ ∆n which minimises q 7→ p′ ·λ (q).
By invertibility of ψ , there thus exists a unique v ∈ V that minimises v 7→ p′ · `(v) and so there
is a unique x at which hβ

p supports `(V ) for some β ∈ R. Thus `(V ) is ∆n-strictly convex.
Now pick an arbitrary v ∈ V which induces an arbitrary x = `(v) ∈ `(V ). Let p = ψ−1(v).

Then hL(p)
p supports `(V ) at x since λ is proper. Suppose there was another q 6= p, q ∈ ∆n such

that hL(q)
q supports `(V ) at x. But that would require that v = ψ(q) which is impossible since

v = ψ(p) and ψ is invertible. Thus p is unique and `(V ) is ∆n-smooth.
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