
Journal of Machine Learning Research 17 (2016) 1-26 Submitted 6/14; Revised 5/15; Published 4/16

A Consistent Information Criterion for Support Vector
Machines in Diverging Model Spaces

Xiang Zhang xzhang23@ncsu.edu
Yichao Wu wu@stat.ncsu.edu
Department of Statistics
North Carolina State University
Raleigh, NC 27695, USA

Lan Wang wangx346@umn.edu
Department of Statistics
The University of Minnesota
Minneapolis, MN 55455, USA

Runze Li rzli@psu.edu

Department of Statistics and The Methodology Center

The Pennsylvania State University

University Park, PA 16802-2111, USA

Editor: Jie Peng

Abstract

Information criteria have been popularly used in model selection and proved to possess nice
theoretical properties. For classification, Claeskens et al. (2008) proposed support vector
machine information criterion for feature selection and provided encouraging numerical
evidence. Yet no theoretical justification was given there. This work aims to fill the gap and
to provide some theoretical justifications for support vector machine information criterion
in both fixed and diverging model spaces. We first derive a uniform convergence rate for the
support vector machine solution and then show that a modification of the support vector
machine information criterion achieves model selection consistency even when the number
of features diverges at an exponential rate of the sample size. This consistency result can
be further applied to selecting the optimal tuning parameter for various penalized support
vector machine methods. Finite-sample performance of the proposed information criterion
is investigated using Monte Carlo studies and one real-world gene selection problem.

Keywords: Bayesian Information Criterion, Diverging Model Spaces, Feature Selection,
Support Vector Machines

1. Introduction

We consider binary classification using linear support vector machines (SVMs). It is well
known that the standard SVM uses all features while constructing the classification rule. In
the extreme case of regression that the number of features is much larger than the sample
size, if the true model is non-sparse, no method can identify the truth correctly due to the
limited information from the data. This is the so-called curse of dimensionality. In many
important applications, however, it is reasonable to simplify the problem by assuming the
true model to be sparse. For example, in cancer classification using genomic data where the
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number of probes (or genes) can be tens of thousands and the number of patient samples is
typically only a few dozens, biologists find it plausible to assume that only a small subset of
genes are relevant. In this case, it is more desirable to build a classifier based only on those
relevant genes. Yet in practice, it is largely unknown which genes are relevant and this calls
for feature selection methods. The potential benefits of feature selection include reduced
computational burden, improved prediction performance and simple model interpretation.
See Guyon and Elisseeff (2003) for more discussions. Our goal in this paper is consistent
feature selection for the SVM.

There has been a rich literature on feature selection for the SVM. Weston et al. (2000)
proposed a scaling method to select important features. Guyon et al. (2002) suggested
the SVM recursive feature elimination (SVM RFE) procedure. It has been shown that the
SVM can be fitted in the regularization framework using the hinge loss and the L2 penalty
(Wahba et al., 1999). Thereafter various forms of penalized SVMs have been developed for
simultaneous parameter estimation and feature selection. Bradley and Mangasarian (1998),
Zhu et al. (2004) and Wegkamp and Yuan (2011) studied properties of the L1 penalized
SVM. Wang et al. (2006) proposed SVM with a combination of L1 and L2 penalties. Zou
and Yuan (2008) considered the L∞ penalized SVM when there is prior knowledge about the
grouping information of features. Zhang et al. (2006) and Becker et al. (2011) suggested
SVM with a non-convex penalty in the application of gene selection. Though all these
methods target selecting the best subset of features, theoretical justification about how well
the selected subset is estimating the true model is still largely underdeveloped. Recently
Zhang et al. (2014) showed that the SVM penalized with a class of non-convex penalties
enjoys the oracle property (Fan and Li, 2001), that is, the estimated classifier behaves as if
the subset of all relevant features is known a priori. Yet this model selection consistency
result relies heavily on the proper choice of the involved tuning parameter which is often
selected by cross-validation in practice. However, Wang et al. (2007) showed that the
generalized cross-validation criterion can lead to overfitting even with a very large sample
size.

Information criteria such as AIC (Akaike, 1973) and BIC (Schwarz, 1978) have been
used for model selection and their theoretical properties have been well studied, see Shao
(1997), Shi and Tsai (2002) and references therein. It is well understood that the BIC can
identify the true model consistently when the dimensionality is fixed. The idea of combining
information criterion with support vector machine to select relevant features was first pro-
posed in Claeskens et al. (2008). They proposed the SVM information criterion (SVMICL)
and provided some encouraging numerical evidence. Yet its theoretical properties, such as
model selection consistency, have not been investigated.

In this paper, we propose a consistent SVM information criterion for model selection
in the diverging model spaces. We first fill the gap by providing theoretical justification
for the criterion SVMICL proposed in Claeskens et al. (2008). Our results show that this
information criterion is model selection consistent in the fixed dimensional model space, but
it can be too liberal when the candidate model space is diverging. To remedy this problem,
a modified information criterion for high dimensional case (SVMICH) is introduced. The
extension of model selection consistency from SVMICL to SVMICH is a challenging prob-
lem. The point-wise consistency of SVM solution is enough to justify the model selection
consistency if the number of candidate models is fixed. Nevertheless, in the diverging model
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spaces the probabilities for favoring an underfitted or overfitted model by the information
criterion can accumulate at a very fast speed and alternative techniques are required. We
develop the uniform consistency of SVM solution which has not been carefully studied in
the literatures. Based on the uniform convergence rate, we prove that the new information
criterion possesses model selection consistency even when the number of features diverges
at an exponential rate of the sample size. That is, with probability arbitrarily close to
one, we can identify the true model from all the underfitted or overfitted models in the
diverging model spaces. To the best of our knowledge, this is the first result of model selec-
tion consistency for the SVM. We further apply this information criterion to the problem
of tuning parameter selection in penalized SVMs. The proposed support vector machine
information criterion can be computed easily after fitting the SVM with computation cost
much lower than resampling methods like cross-validation. Simulation studies and real
data examples confirm the superior performance of the proposed method in terms of model
selection consistency and computational scalability.

In Section 2 we define the support vector machine information criterion. Its theoretical
properties are studied in Section 3. Sections 4 and 5 present numerical results on simula-
tion examples and real-world gene selection datasets, respectively. We conclude with some
discussions in Section 6.

2. Support vector machine information criterion

In this paper we use normal font for scalars and bold font for vectors or matrices. Consider
a random pair (X, Y ) with XT = (1, X1, . . . , Xp) = (1, (X+)T ) ∈ R(p+1) and Y ∈ {1,−1}.
Let {(Xi, Yi)}ni=1 be a set of training data independently drawn from the distribution of
(X, Y ). Denote β to be a (p+1)-dimensional vector of interest with βT = (β0, β1, . . . , βp) =
(β0, (β

+)T ) ∈ R(p+1). Let || · || be the Euclidean norm operator of a vector. The goal of
linear SVM is to estimate a hyperplane defined by XTβ = 0 via solving the optimization
problem

min
β

{
C

n∑
i=1

ξi +
1

2
||β+||2

}
(1)

subject to the constraints that ξi ≥ 0 and YiX
T
i β ≥ 1− ξi for all i = 1, . . . , n, where C > 0

is a tuning parameter. This can be written equivalently into an unconstrained regularized
empirical loss minimization problem:

min
β

{ 1

n

n∑
i=1

H(YiX
T
i β) +

λn
2
||β+||2

}
, (2)

where H(t) = (1 − t)+ is the hinge loss function, (z)+ = max(z, 0) and λn > 0 is a tuning
parameter with C = (nλn)−1.

Following the definition in Koo et al. (2008), we denote (β∗)T = (β∗0 , β
∗
1 , . . . , β

∗
p) =

(β∗0 , (β
∗+)T ) ∈ R(p+1) to be the true parameter value that minimizes the population hinge

loss. That is,

β∗ = arg min
β

E(1− YXTβ)+.

3



Xiang Zhang, Yichao Wu, Lan Wang and Runze Li

Note that β∗ is not necessarily always the same as the Bayes rule. However, it gives the opti-
mal upper bound of the risk of the 0-1 loss through convex relaxation and its sparsity struc-
ture is exactly the same as the one of Bayes rule in special cases such as linear discriminant
analysis. For more discussions see Zhang et al. (2014). Denote S = {j1, . . . , jd} ⊂ {1, . . . , p}
to be a candidate model, XT

i,S = (1, Xi,j1, . . . , Xi,jd), β
T
S = (β0, βj1, . . . , βjd) and |S| the car-

dinality of S. The subset of all relevant features is defined by S∗ = {j : 1 ≤ j ≤ p, β∗j 6= 0}.
We assume that the truth β∗ is sparse (i.e., most of its components are exactly zero). De-
note q = |S∗| which characterizes the sparsity level. We assume that q is fixed and does
not depend on n. In this paper, we consider the diverging model spaces in which the di-
mensionality p = pn is allowed to increase with n and can be potentially much larger than
n. We also assume that λn → 0 as n→∞ and only consider the non-separable case in the
limit to ensure the uniqueness of the truth β∗. Here by non-separable, we mean that the
two classes cannot be linearly separated from each other.

To identify the true model S∗, Claeskens et al. (2008) proposed an information criterion
for SVM (denoted by SVMICL) based on the slack variables {ξi}ni=1. That is,

SVMICL(S) =
n∑
i=1

ξi + |S| log(n),

where {ξi}ni=1 are obtained from (1) only using the variables in S. This information criterion
is equivalent to

SVMICL(S) =
n∑
i=1

(1− YiXT
i,Sβ̂S)+ + |S| log(n), (3)

where β̂S = arg min{1/n
∑n

i=1(1 − YiX
T
i,SβS)+ + λn/2||β+

S ||2}. It is evident that the
SVMICL directly follows the spirit of BIC. Claeskens et al. (2008) fixed C = 1 in (1)
and found minor difference for different choices of C, which is equivalent to λn = 1/n
in (2). To be consistent with the work in Claeskens et al. (2008), we also consider this
choice of λn in this paper. There are two potential drawbacks of this information criterion.
First, though supported with numerical findings, theoretical properties of SVMICL, such
as model selection consistency, are largely unknown even under the assumption of a fixed
p. Second, in many real world datasets where the dimension can be much larger than the
sample size, it would be more appropriate to consider the model selection problem in the
framework of diverging model spaces. This extension from low dimensions to high dimen-
sions can greatly change the theoretical properties of the information criterion. Chen and
Chen (2008) showed that the ordinary BIC for linear regression cannot identify the true
model consistently in the diverging p case. Wang et al. (2009) showed that the ordinary
BIC fails to select a consistent shrinkage level in penalized least squares regression with
a diverging p. Such results in the literature suggest that SVMICL may also suffer from
inconsistency in high dimensions and alternative criterion is needed.

To overcome these issues, we propose a modified support vector machine information
criterion for model selection in a high dimensional model space (denote by SVMICH). This
criterion is adpated from SVMICL and defined as

SVMICH(S) =
n∑
i=1

(1− YiXT
i,Sβ̂S)+ + Ln|S| log(n), (4)
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where β̂S = arg min{1/n
∑n

i=1(1−YiXT
i,SβS)++λn/2||β+

S ||2} and Ln is a constant sequence
that diverges to infinity. Note that if Ln is a non-diverging constant then this reduces to
SVMICL in the limit. We will show that SVMICH possesses the nice property of model se-
lection consistency even when p increases at an exponential rate of n. Compared to SVMICL

in Claeskens et al. (2008), our information criterion SVMICH adds larger penalty to the
size of the selected subset and behaves more conservatively. As we will see, this additional
preference for simpler models plays an important role in consistent model selection when
we are searching over diverging model spaces.

We make two remarks about SVMICH . First, the choice of Ln in (4) is flexible. It is not
a tuning parameter and does not need to be chosen by computationally intensive methods
such as cross-validation. We will show that a wide spectrum of Ln can lead to a consistent
information criterion. This is further confirmed in our simulations and real data analysis
where we examine different choices of Ln. Therefore the computation cost of SVMICH is
the same as SVMICL and much lower than cross-validation. Second, it is possible to define
the information criterion as the log-transformed version, that is

log(

n∑
i=1

(1− YiXT
i,Sβ̂S)+) + Ln|S| log(n)/n

which is scalar invariant. It can be shown the model selection consistency still holds for this
definition. However, we follow the advice from Guyon et al. (2002) to standardize variables
before training SVM and as a consequence we automatically have scalar invariance of the
sum of slack variables. To be consistent with SVMICL defined in Claeskens et al. (2008),
we take definition (4) in our paper.

3. Theoretical results

3.1 Notations and conditions

To facilitate technical proofs, we introduce some additional notation. Denote L(β) = E(1−
YXTβ)+. Recall that β∗ = arg minβ L(β). Let S(β) = −E[1(1 − YXTβ ≥ 0)YX], where
1(·) is the indicator function. Also define H(β) = E[δ(1− YXTβ)XXT ], where δ(·) is the
Dirac delta function. Koo et al. (2008) showed that under some regularity conditions, S(β)
and H(β) behave like the gradient and Hessian matrix of L(β), respectively. Furthermore
we denote f+ and f− to be the densities of X+ ∈ Rp conditioning on Y = 1 and Y = −1,
respectively.

Given the dimension p, the number of candidate models is 2p− 1. When p is very large,
we cannot afford to calculate SVMICH(S) for all possible subsets. Instead, we only search
for the best model in a restricted model space. To be more specific, we denote Ŝ the model
chosen by SVMICH such that

Ŝ = arg minS:|S|≤Mn
SVMICH(S), (5)

where Mn is a sequence of positive integers that bounds the size of the restricted model
space from above. In this paper, we consider Mn = O(nκ) for some constant 0 < κ < 1/2,
that is, we only consider the candidate model with the size diverges slower than

√
n. One

motivation for this choice of Mn is the “bet on sparsity” principle (Hastie et al., 2001).
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Note that by Lemma 1 of Zhang et al. (2014), if the number of relevant features diverges
faster than

√
n, the true parameter β∗ cannot be estimated consistently even with the oracle

information of the true model S∗. Therefore, there is no need to consider those models with
sizes increasing faster than

√
n as in general no method would work for them even when the

true underlying model is known. Notice also that it is possible to prove the model selection
consistency without the restricted model space. However, this would requires pn = o(

√
n),

which cannot diverge very fast with the sample size.

We now present the technical conditions that are needed for studying the theoretical
properties of SVMICH .

(A1) f+ and f− are continuous and have some common support in Rp.

(A2) |Xj | ≤M <∞ for some positive constant M and 1 ≤ j ≤ p.
(A3) For all S ∈ {S : |S| ≤ Mn, S ⊇ S∗}, λmax(E(Xi,SXT

i,S)) ≤ c1, where λmax(·) is the
largest eigenvalue of a matrix and c1 > 0 is a constant.

(A4) The densities of XT
i,S∗β∗S∗ conditioning on Y = 1 and Y = −1 are uniformly

bounded away from zero and infinity at the neighborhood of XT
i,S∗β∗S∗ = 1 and XT

i,S∗β∗S∗ =
−1, respectively.

(A5) Mn = O(nκ) for some constant 0 < κ < 1/2.

(A6) pn = O(exp(nγ)) for some constant 0 < γ < (1− 2κ)/5.

(A7) For all S ∈ {S : |S| ≤ Mn, S ⊇ S∗}, there exist some positive constants c2 and c3

such that λmin(H(βS)) ≥ c2 and λmax(H(βS)) = O(|S|) over the set {β : ||β − β∗|| ≤ c3},
where λmin(·) is the smallest eigenvalue of a matrix.

(A8) For all S ∈ {S : |S| ≤ Mn, S ⊇ S∗}, λmax(H(β∗S)) log(pn) = o(Ln log(n)),
Ln log(n) = o(n).

Conditions (A1) is required so that S(β) and H(β) are well-defined, see Koo et al.
(2008) for more details. Condition (A2) is assumed in the literature of high dimensional
model selection consistency as in Wang et al. (2012) and Lee et al. (2014). Condition (A3)
on the largest eigenvalue is similar to the sparse Riesz condition (Zhang and Huang, 2008)
and is often assumed for model selection consistency in the diverging p scenario (Chen and
Chen, 2008; Yuan, 2010; Zhang, 2010). Note that the lower bound on the eigenvalue of
the covariance matrix of XS is not specified. Condition (A4) assumes that as the sample
size increases, there is enough information around the non-differentiable point of the hinge
loss function. This condition is also required for model selection consistency of non-convex
penalized SVM in high dimensions (Zhang et al., 2014). Condition (A6) specifies that p is
allowed to diverge at an exponential rate of n. Conditions (A7) requires that the Hessian
matrix is well-behaved. More specifically, (A7) requires a lower bound on the smallest
eigenvalue of the Hessian matrix in the neighborhood of the true value. Koo et al. (2008)
gave sufficient conditions for the positive-definiteness of the Hessian matrix at the true value
and showed these conditions hold under the setting of Fisher’s linear discriminant analysis
with a fixed model size. Condition (A8) specifies the rate requirement of Ln in (4).

3.2 Consistency of SVMICL for a fixed p

In this section we assume that the dimension p is fixed and study the theoretical properties
of SVMICL. Let Ω = {S : |S| ≤ M} be the candidate model space where M is a positive
number. Furthermore, when p is fixed, the total number of candidate models is also fixed.
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Note that, to prove the model selection consistency of SVMICL, we need to show that

Pr( inf
S∈Ω,S 6=S∗

SVMICL(S) > SVMICL(S∗))→ 1

as n → ∞. By the fact that Ω is a fixed model space, it is sufficient to show the result
point-wisely in the model space, that is,

Pr(SVMICL(S) > SVMICL(S∗))→ 1 (6)

for every S ∈ {S : S ∈ Ω, S 6= S∗}. This point-wise version greatly simplifies the proof.
Recall that β̂S = arg min{1/n

∑n
i=1(1−YiXT

i,SβS)+ +λn/2||β+
S ||2}. As we will show in the

appendix, it suffices to conclude (6) with the condition that β̂S is a consistent estimator
of β∗S whenever the candidate subset S includes the true subset S∗. By Theorem 1 of Koo
et al. (2008), we have ||β̂S −β∗S || = Op(n

−1/2) for every fixed S ⊃ S∗ under the assumption
of fixed p. Therefore the point-wise consistency holds. The result is summarized in Lemma
1.

Lemma 1 Assuming p is a fixed number and λn = 1/n. Under conditions (A1)-(A4) and
(A6)-(A7), we have

Pr(Ŝ = S∗)→ 1

as n→∞, where Ŝ = arg minS:|S|≤M SVMICL(S).

3.3 Consistency of SVMICH for a diverging p

The proof becomes much more involved when p is diverging, especially when p diverges
much faster than O(

√
n). Let Ω = {S : |S| ≤ Mn}, Ω+ = {S : |S| ≤ Mn, S ⊃ S∗, S 6= S∗}

and Ω− = {S : |S| ≤ Mn, S 6⊃ S∗}, where Ω+ and Ω− are spaces of overfitted and un-
derfitted models, respectively. Though the information criterion for the fixed model space
can differentiate the true model from an arbitrary candidate model, this point-wise result
is not sufficient for the overall consistency if the problem requires searching uniformly over
a diverging model space. That is, even if (6) holds for every S ∈ Ω, we still cannot conclude
model selection consistency, as the probability of favoring an overfitted or underfitted can-
didate model rather than the true model can accumulate at very fast speed if the number
of candidate models is diverging and hence lead to inconsistent model selection. To control
the overall failing probability, we need a uniform convergence rate of SVM solution β̂S over
the diverging model space Ω. Note that Ω = Ω+∪{S∗}∪Ω−. It turns out that the uniform
convergence rate of β̂S over S ∈ Ω+ is sufficient for the technical proof. We summarize the
uniform rate in Lemma 2 below.

Lemma 2 Under conditions (A1)-(A7) and λn = 1/n, we have

sup
S:|S|<Mn,S⊃S∗

||β̂S − β∗S || = Op(
√
|S| log(p)/n).

This uniform convergence rate of SVM solution is far from being a trivial result. Recently
Zhang et al. (2014) showed that ||β̂S −β∗S || = Op(

√
|S|/n) for a specific diverging model S

which satisfies S ⊃ S∗ and |S| = o(
√
n). Although it is an extension of Theorem 1 in Koo
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et al. (2008) to the diverging p case, it is still only a point-wise result and cannot be applied
directly to bound the overall failing probability. Not surprisingly, the uniform convergence
rate in Lemma 2 is slower by a factor

√
log(p), which is the price we pay to search over

the candidate model space uniformly. In fact, this additional term is the main reason for
adding the extra penalty Ln in SVMICH .

We now give an intuitive explanation why SVMICL can fail in the diverging model
space. Consider all the overfitted models in Ω+. We have the following decomposition

inf
S∈Ω+

SVMICL(S)− SVMICL(S∗)

= inf
S∈Ω+

{ n∑
i=1

(1− YiXT
i,Sβ̂S)+ −

n∑
i=1

(1− YiXT
i,S∗β∗S)+ + (|S| − |S∗|) log(n)

}
. (7)

Note that the difference of the sum of hinge loss can be negative and the difference of model
size is always positive. We will show in the appendix that the difference of the sum of
hinge loss is of order Op(n||β̂S − β∗S ||2) under some regularity conditions. For fixed p, it
implies that the difference of model size dominates for large n and the sign of (7) is always
positive in the limit. For diverging p, however, this is not always the case. By Lemma 2,
the difference of hinge loss in (7) is of order O(|S| log(p)) and the difference of model size is
of order O(|S| log(n)), thus the sign of (7) can be negative in the limit. Therefore even if we
have a very large sample size, SVMICL may still favoring the models that are overfitted due
to the slower uniform convergence rate of SVM solution. Because SVMICL can be viewed
as directly following the spirit of ordinary BIC, this result agrees with the findings reported
in Chen and Chen (2008) that BIC can be too liberal in high dimensional model selection.
Here by liberal, we mean that there is a positive probability that an overfitted model is
more favored than the true model by the information criterion even with an infinite sample
size.

For SVMICH , we can do a similar decomposition as in (7) for all the overfitted models

inf
S∈Ω+

SVMICH(S)− SVMICH(S∗)

= inf
S∈Ω+

{ n∑
i=1

(1− YiXT
i,Sβ̂S)+ −

n∑
i=1

(1− YiXT
i,S∗β∗S)+ + Ln(|S| − |S∗|) log(n)

}
. (8)

Note that the extra term Ln diverges to infinity and the sign of (8) in the limit is determined
by the difference of model size, which is always positive. That is, SVMICH can identify the
true model from all the overfitted models for sufficiently large n. This result is summarized
in Lemma 3.

Lemma 3 Under conditions (A1)-(A8) and λn = 1/n, we have

Pr( inf
S:S∈Ω+

SVMICH(S) > SVMICH(S∗))→ 1.

as n→∞.

To conclude the model selection consistency, we also need to consider all the underfitted
models. This requires a different analysis because for every underfitted model S ∈ Ω−, the
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difference of the model size |S| − |S∗| can be negative and thus the decomposition in (7) is
not helpful. However, one can always add relevant features to the underfitted model and
study the enlarged model instead. To be more specific, for every S ∈ Ω−, one can always
create the enlarged model S̃ such that S̃ = S∪S∗. Note that S̃ is either an overfitted model
or the true model. The model S̃ which includes all the signals bridges the underfitted and
overfitted model space through the simple fact

inf
S:S∈Ω−

SVMICH(S)− SVMICH(S∗)

= inf
S:S∈Ω−

{[SVMICH(S)− SVMICH(S̃)] + [SVMICH(S̃)− SVMICH(S∗)]}.

By Lemma 3, in the limit the difference SVMICH(S̃) − SVMICH(S∗) is non-negative for
every S ∈ Ω− (could be exactly 0). Note also that the difference between S and S̃ is at least
one missing relevant feature. According to the assumption that the signals do not diminish
to 0 as sample size increases, one can show the model with more signals always produces
a strictly smaller sum of hinge loss in the limit. That is, for sufficiently large n, we always
have

n∑
i=1

(1− YiXT
i,Sβ̂S)+ −

n∑
i=1

(1− YiXT
i,S̃

β̂S̃)+ ≥ C > 0

for every S ∈ Ω− and some constant C does not depend on S. Then we arrive at the
following result for the underfitted model space.

Lemma 4 Under conditions (A1)-(A8) and λn = 1/n, we have

Pr( inf
S:S∈Ω−

SVMICH(S) > SVMICH(S∗))→ 1.

as n→∞.

By combing Lemma 3 and Lemma 4, we can conclude the model selection consistency
of SVMICH in the diverging model space.

Theorem 5 Under conditions (A1)-(A8) and λn = 1/n, we have

Pr(Ŝ = S∗)→ 1.

as n, p→∞, where Ŝ = arg minS:|S|≤Mn
SVMICH(S).

3.4 Application to tuning parameter selection in penalized SVMs

Theorem 1 states that SVMICH can identify the true model from Ω. However, in practice it
can be very time-consuming and even infeasible to calculate SVMICH(S) for every S ∈ Ω.
One possible approach is to form a solution path via penalized SVM and only consider
the candidate models on the path. The idea of using solution path has been shown to
greatly reduce the computation burden, see Mazumder et al. (2011). For the solution path
of penalized SVM, Hastie et al. (2004) studied the L1 penalized SVM and showed that the
solution path is piece-wise linear in C which is the regularization parameter in (1).

Model selection on the solution path is essentially a tuning parameter selection problem.
Recently, several methods have been proposed for choosing the tuning parameter based
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on the BIC-type information criterion, including Wang et al. (2009) for penalized linear
regression, Kawano (2012) for bridge regression, Lee et al. (2014) for penalized quantile
regression and Fan and Tang (2013) for penalized generalized linear model. Following the
ideas therein, we propose to choose the shrinkage level of penalized SVMs based on the

modified support vector machine information criterion. Let β̂
T

λn = (β̂λn,0, β̂λn,1, . . . , β̂λn,p)
be the solution to some penalized SVM with a tuning parameter λn. That is,

β̂λn = arg min
β

{ 1

n

n∑
i=1

(1− YiXT
i β)+ +

p∑
j=1

pλn(βj)
}
, (9)

where pλn(·) is some penalty function with a tuning parameter λn. Denote Ŝλn = {j : 1 ≤
j ≤ p, β̂λn,j 6= 0}. We define the information criterion for choosing tuning parameter λn as

SVMICH(λn) =
n∑
i=1

(1− YiXT
i β̂λn)+ + Ln|Ŝλn | log(n),

where Ln is defined in SVMICH(S). The selected tuning parameter is the one that minimizes
the information criterion and results in the model size within the restricted model space,
that is,

λ̂n = arg min
λ:|Ŝλ|≤Mn

SVMICH(λ).

This information criterion for selecting tuning parameter can be applied to various
penalized approaches for sparse SVMs. Note that the feature selection consistency of the
SCAD penalized SVM is shown to rely on the proper choice of the tuning parameter (Zhang
et al., 2014), where resampling procedure such as five-fold cross-validation is commonly
used in practice. As we will also show in our numerical findings in Section 4.2, the proposed
information criterion SVMICH(λn) usually select the shrinkage level that leads to the correct
model size. The tuning parameter selected by cross-validation, however, is more likely to
be under-penalized and lead to an overfitted model. Furthermore, the cross-validation is
more computationally intensive than information criterion and hence less desirable when
the number of features is large.

4. Simulations

In this section we study the finite-sample performance of SVMICH . We are interested
in the model selection ability of SVMICH(S) and the tuning parameter selection ability
of SVMICH(λn). We also examine the effect of different choices of Ln in the definition
of SVMICH . For all simulations, we consider the rates log(log(n)),

√
log(n), log(n) and

n−1/3 for Ln. We compare with SVMICL in Claeskens et al. (2008) and the extended
Bayesian information criterion (EBIC) proposed in Chen and Chen (2008). Note that EBIC
is originally proposed for model selection in the diverging model space in the framework
of regression and it has not been applied into classification problem. However, the main
strategy therein is to add an additional term log(

( p
|S|
)
) log(n) in the BIC penalty, where( p

|S|
)

is the number of |S| combinations chosen from p items. We modify EBIC for model

10
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selection of SVM by selecting the model S that minimizes the criterion

n∑
i=1

(1− YiXT
i,Sβ̂S)+ + |S| log(n) + log

(( p

|S|

))
log(n).

This modification essentially follows the idea in Chen and Chen (2008) and we are interested
in its finite-sample performance compared with SVMICH .

To investigate these issues, we conduct the SCAD penalized SVM, which has been
shown to enjoy the model selection consistency for a properly chosen tuning parameter
(Zhang et al., 2014). That is, given a specific λn, we solve (9) with pλn(·) being the SCAD
penalty defined in Fan and Li (2001). The corresponding optimization problem is a non-
convex one, for which the local linear approximation (LLA) algorithm (Zou and Li, 2008)
is implemented in all our numerical studies. To be more specific, for step t ≥ 1, given the

solution β̂
(t−1)

= (β̂
(t−1)
0 , . . . , β̂

(t−1)
p )T at the previous step, we update by solving

β̂
(t)

= arg min
β
{ 1

n

n∑
i=1

(1− YiXT
i β)+ +

p∑
j=1

p′λn(|β̂(t−1)
j |)|βj |},

where p′λn(·) denotes the derivative of pλn(·). Note that each update step can be easily recast
as a linear programming (LP) problem and efficiently solved by many popular solvers. In

this paper we take the initial value {β̂
(0)

: β̂
(0)
j = 0, 0 ≤ j ≤ p} and claim convergence if the

value ||β̂
(t−1)

− β̂
(t)
|| is small enough.

4.1 Model selection of SVMICH(S)

In this subsection we study the model selection ability of SVMICH(S). The data are
generated from two models. The first model is adapted from Fisher’s linear discriminant
analysis (LDA) and the second model is related to probit regression.

• Model 1: Pr(Y = 1) = Pr(Y = −1) = 0.5, X|(Y = 1) ∼ MN(µ,Σ), X|(Y =
−1) ∼MN(−µ,Σ), q = 4, µ = (0.25, 0.25, 0.25, 0.25, 0, . . . , 0)T ∈ Rp, Σ = (σij) with
nonzero elements σii = 1 for i = 1, 2, · · · , p and σij = ρ = −0.2 for 1 ≤ i 6= j ≤ q.
The Bayes rule is given by sign(X1+X2+X3+X4) with Bayes error 21.4%.

• Model 2: X ∼MN(0p,Σ), Σ = (σij) with nonzero elements σii = 1 for i = 1, 2, · · · , p
and σij = ρ = 0.4|i−j| for 1 ≤ i 6= j ≤ q, Pr(Y = 1) = Φ(XTβ) where Φ(·) is the
CDF of the standard normal distribution, q = 4, β = (0.8, 0.8, 0.8, 0.8, 0, . . . , 0)T . The
Bayes rule is sign(0.57X1+0.34X2+0.34X3+0.57X4) with Bayes error 11.5%.

For both models, we construct the solution path using SCAD penalized SVM for can-
didate models with |S| ≤Mn = 50. Our goal is to check how different information criteria
evaluate and select the optimal model from all the candidate models on the solution path.
We consider three different (n, p) combinations with p ranging from 2000 to 4000 and n is
only one tenth of p. Note that Model 1 is a very noisy model with high Bayes error and
Model 2 is less noisy but with moderate correlation between the relevant features. We use
200 replications to see the variations of the results. The columns “Correct”, “Underfit” and
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“Overfit” summarize the percentages over 200 replications for correct model selection, over-
fitting and underfitting, respectively. The numbers under columns “Signal” and “Noise”
are the average numbers of selected relevant and irrelevant features, respectively. We also
generate an independent dataset with sample size 10000 to evaluate the test error. Numbers
in parentheses are the corresponding standard errors.

Table 1 summarizes the model selection results of SVMICL, SVMICH and the criterion
proposed in Chen and Chen (2008) for Model 1. For all (n, p) combinations, SVMICH

shows uniformly higher percentages to identify the correct model than SVMICL regardless
of the choices of Ln. It can be seen that in the cases p is much larger than n, SVMICL

behaves too liberal and tends to select an overfitted model. Note that SVMICH also has a
significantly lower testing error than SVMICL in all settings even when SVMICL includes
slightly more signals in the model. This agrees with the findings in Fan and Fan (2008) that
the accumulation of the noises can greatly blur the prediction power. Though the SVMICH

with different Ln all performs better than SVMICL, their performances are not exactly the
same. For the criteria with a more aggressive penalty on the model size such as log(n)
and n−1/3, there are considerable underfitting when the sample size is small (n = 200).
As the sample size increases, the difference of Ln decreases. This suggests that although
asymptotically the choice of Ln can lie in a wide range of spectrums, for small sample sizes
some choices of Ln can be too conservative and may not be much better than SVMICL

which is too liberal. In general, we find Ln =
√

log(n) seems to be a reasonable choice for
many scenarios.

Another interesting finding is the comparison to the criterion following the spirit in Chen
and Chen (2008). Though its theoretical property has not been investigated, the empirical
results suggest that it performs similar to SVMICH with Ln =

√
log(n) in finite samples.

In fact, by using the approximation that
( p
|S|
)
≈ p|S| when p is much larger than |S|, one

can easily show that

log(n)|S| log(log(n)) < log(n)|S|+ log(n) log
(( p

|S|

))
< log(n)|S| log(n)

for n < p < 103n and a very wide range of n. This provides some evidence that the criterion
directly adapted from Chen and Chen (2008) behaves more libearal than SVMICH with
Ln = log(n) but is more aggressive than SVMICH with Ln = log(log(n)).

Table 2 summarizes the model selection results for Model 2. The SVMICH with
log(log(n)) and

√
log(n) as Ln perform uniformly better than SVMICL and the criterion

in Chen and Chen (2008) for all scenarios. Due to the correlations among the signals, the
more aggressive choices of Ln suffer from considerable underfitting. Again our empirical
results suggest that Ln =

√
log(n) seems to be an appropriate choice for a wide range of

problems.

4.2 Tuning parameter selection of SVMICH(λ)

In this subsection we examine the tuning parameter selection ability of SVMICH(λ). The
data is generated from the following model.

• Pr(Y = 1) = Pr(Y = −1) = 0.5, X|(Y = +1) ∼ MN(µ,Σ), X|(Y = −1) ∼
MN(−µ,Σ), q = 5, µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0 . . . , 0) ∈ Rp, Σ = (σij) = 1p nonzero

12
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Table 1: Simulation results for Model 1 over 200 replications
Method C(%) O(%) U(%) Signal Noise Test Error(%)

n = 200, p = 2000
SVMICL 0.0 100.0 0.0 4.0 11.1 30.7(0.3)
SVMICH(Ln = log(log(n))) 34.0 64.0 2.0 3.8 1.6 25.4(0.3)

SVMICH(Ln =
√

log(n)) 48.0 38.0 14.0 3.6 1.0 26.1(0.4)
SVMICH(Ln = log(n)) 31.5 23.5 45.0 3.0 0.8 29.6(0.5)

SVMICH(Ln = n−1/3) 29.5 23.5 47.0 2.9 0.8 29.7(0.5)
Chen&Chen 47.0 26.5 26.5 3.3 0.8 27.5(0.5)

n = 300, p = 3000
SVMICL 2.0 98.0 0.0 4.0 14.1 28.7(0.3)
SVMICH(Ln = log(log(n))) 69.0 31.0 0.0 4.0 0.4 22.5(0.1)

SVMICH(Ln =
√

log(n)) 93.0 6.5 0.5 4.0 0.1 22.1(0.1)
SVMICH(Ln = log(n)) 69.5 3.5 27.0 3.5 0.1 25.1(0.4)

SVMICH(Ln = n−1/3) 53.5 3.5 43.0 3.3 0.1 26.6(0.4)
Chen&Chen 95.0 4.5 0.5 4.0 0.1 22.1(0.1)

n = 400, p = 4000
SVMICL 4.0 96.0 0.0 4.0 12.6 26.9(0.3)
SVMICH(Ln = log(log(n))) 77.5 22.5 0.0 4.0 0.3 22.2(0.1)

SVMICH(Ln =
√

log(n)) 95.5 4.5 0.0 4.0 0.1 21.9(0.1)
SVMICH(Ln = log(n)) 95.0 1.0 4.0 3.9 <0.1 22.4(0.1)

SVMICH(Ln = n−1/3) 71.0 1.0 28.0 3.5 <0.1 25.0(0.4)
Chen&Chen 98.5 1.0 0.5 4.0 <0.1 22.0(0.1)

elements σii = 1 for i = 1, 2, · · · , p and σij = ρ = −0.2 for 1 ≤ i 6= j ≤ q. The Bayes
rule is sign(2.67X1+2.83X2+3X3+3.17X4+3.33X5) with Bayes error: 6.3%.

We consider p = 2000 and 3000 and n = 10−1p. Once the data is generated, we construct
the solution path of SCAD penalized SVM on a fine grid of λ for candidate models with
|S| ≤Mn = 50. We then choose the best λ based on the definition of SVMICH(λ). Similarly
as the simulations for model selection, we compare with SVMICL(λ) and the criterion in
Chen and Chen (2008). We also implement five-fold cross-validation (denoted by 5-CV)
and an adjusted version of five-fold cross-validation version (denoted by 5-CV Adj.). The
adjusted 5-CV selects the most parsimonious model with MSE less than one standard error
above the regular 5-CV. It is known that the adjusted 5-CV performs better than regular
5-CV in terms of selection consistency. An independent dataset with sample size 10000
is generated to evaluate the test error. This procedure is repeated for 100 replications to
study the variations of the results.

Table 3 summarizes the tuning parameter selection results. It can be seen that the tuning
parameter selected by SVMICL often leads to seriously overfitted models. As the sample size
increases, SVMICH with all choices of Ln have a much higher chance to identify the correct
model than SVMICL. The tuning parameter selected by SVMICH with Ln =

√
log(n)

seems to give the most appropriate level of regularization to the model. It is not surprising
that this SVMICH leads to great prediction power in these high dimensional cases. The
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Table 2: Simulation results for Model 2 over 200 replications
Method C(%) O(%) U(%) Signal Noise Test Error(%)

n = 200, p = 2000
SVMICL 3.0 96.0 1.0 3.8 5.2 19.2(0.2)
SVMICH(Ln = log(log(n))) 31.0 31.5 37.5 3.3 0.5 17.2(0.2)

SVMICH(Ln =
√

log(n)) 25.0 2.5 72.5 3.0 0.1 18.0(0.2)
SVMICH(Ln = log(n)) 0.0 0.0 100.0 1.9 0.0 22.1(0.2)

SVMICH(Ln = n−1/3) 0.0 0.0 100.0 1.9 0.0 22.1(0.2)
Chen&Chen 1.0 0.0 99.0 2.2 0.0 20.4(0.2)

n = 300, p = 3000
SVMICL 6.5 93.5 0.0 4.0 7.4 18.0(0.2)
SVMICH(Ln = log(log(n))) 65.0 23.0 12.0 3.8 0.3 15.0(0.1)

SVMICH(Ln =
√

log(n)) 70.5 4.0 25.5 3.7 <0.1 15.3(0.1)
SVMICH(Ln = log(n)) 0.0 0.0 100.0 2.0 0.0 21.0(0.1)

SVMICH(Ln = n−1/3) 0.0 0.0 100.0 2.0 0.0 21.5(0.2)
Chen&Chen 33.5 0.5 66.0 3.1 <0.1 17.3(0.2)

n = 400, p = 4000
SVMICL 9.0 91.0 0.0 4.0 6.9 17.2(0.2)
SVMICH(Ln = log(log n)) 82.0 16.5 1.5 4.0 0.2 14.5(0.1)

SVMICH(Ln =
√

log(n)) 89.0 2.5 8.5 3.9 <0.1 14.5(0.1)
SVMICH(Ln = log(n)) 0.0 0.0 100.0 2.2 0.0 20.1(0.1)

SVMICH(Ln = n−1/3) 0.0 0.0 100.0 2.1 0.0 20.8(0.1)
Chen&Chen 74.0 0.5 25.5 3.7 <0.1 15.2(0.1)

performances of five-fold cross-validation and its adjusted version are slightly worse than
those of SVMICH with Ln fixed at log(log(n)) and

√
log(n). Notice that the computation

burden of selecting tuning parameter via information criterion is much lower than cross-
validation. This makes our proposed information criteria desirable especially in the case
with very large p.

5. Real data examples

5.1 MAQC-II breast cancer data

In this section we consider a real-world example from the breast cancer dataset which is
part of the MicroArray Quality Control (MAQC)-II project. The preprocessed data can be
downloaded from GEO databases with accession number GSE20194. There are 278 patient
samples in the data and each is described by 22283 genes. Among the 278 samples, 164
patients have positive estrogen receptor (ER) status and 114 have negative ER status. Our
goal is to predict the biological endpoint labeled by ER status and pick up the relevant
genes.

We randomly choose 50 samples from positive ER status and 50 samples from negative
ER status as the training data. The remaining 114 positive and 64 negatives are used
for evaluating the prediction error, resulting in a test data of 178 patients. The data are
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Table 3: Results for tuning parameter selection over 100 replications
Method C(%) O(%) U(%) Signal Noise Test Error(%)

n = 200, p = 2000
SVMICL 12 88 0 5.0 2.7 9.6(0.2)
SVMICH(Ln = log(log(n))) 78 22 0 5.0 0.3 7.4(0.1)

SVMICH(Ln =
√

log(n)) 97 3 0 5.0 <0.1 7.0(0.1)
SVMICH(Ln = log(n)) 64 0 36 4.3 0.0 11.5(0.7)

SVMICH(Ln = n−1/3) 58 0 42 4.1 0.0 12.5(0.8)
Chen&Chen 98 0 2 4.9 0.0 7.2(0.2)
5-CV 44 56 0 5.0 1.5 7.6(0.1)
5-CV Adj. 67 33 0 5.0 0.9 7.5(0.1)

n = 300, p = 3000
SVMICL 29 71 0 5.0 3.1 8.8(0.2)
SVMICH(Ln = log(log n)) 94 6 0 5.0 0.1 6.9(0.1)

SVMICH(Ln =
√

log(n)) 100 0 0 5.0 0.0 6.8(0.1)
SVMICH(Ln = log(n)) 96 0 4 4.9 0.0 7.1(0.1)

SVMICH(Ln = n−1/3) 90 0 10 4.8 0.0 7.7(0.3)
Chen&Chen 100 0 0 5.0 0.0 6.8(0.1)
5-CV 58 42 0 5.0 1.0 7.2(0.1)
5-CV Adj. 76 24 0 5.0 0.7 7.1(0.1)

standardized before fitting the classifier. To reduce the computation burden, only 3000 genes
with largest absolute values of the two sample t-statistics are used. Such simplification has
been considered in Cai and Liu (2011). Though only 3000 genes are used, the classification
result is satisfactory. We implement the SCAD penalized SVM to construct the solution
path and set the range of λ as {2−15, 2−14, . . . , 23}. The models on the solution path are
selected by SVMICL (equivalent to Ln = 1), SVMICH with Ln at log(log(n)),

√
log(n) and

log(n), the criterion adapted from Chen and Chen (2008), five-fold cross-validations and
its adjusted version. This procedure is repeated for 200 replications. The corresponding
standard errors are summarized in parentheses. Notice that the 3000 genes with the largest
absolute values of t-statistics are pre-selected only using the training data to avoid overfitting
so they may be different across the 200 random partitions of the data.

Table 4 summarizes the averages and standard errors for MAQC-II breast cancer data.
The criterion SVMICH(λ) performs uniformly better than SVMICL(λ) regardless of the
choice of Ln. It can be easily seen that SVMICL(λ) leads to overfitted models in this
dataset and has a significant higher misclassification rate. This is in accordance with the
theoretical findings in Section 3 that SVMICL can be too liberal when the sample size is
not comparable to the number of features, while SVMICH is a consistent model selection
criterion. For this dataset, SVMICH with Ln at

√
log(n) and log(n) and the criterion

from Chen and Chen (2008) perform the best and are slightly better than cross-validation
methods. As in previous arguments, the criterion adapted from the EBIC in Chen and Chen
(2008) performs similarly as SVMICH with Ln between log(log(n)) and log(n) for a wide
range of combinations of n and p. Figure 1 summarizes the distributions of test errors over
the 200 random partitions of the data for different methods. Note that SVMICH is a more
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Figure 1: Test error for MAQC-II breast cancer datasets over 200 random partitions
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stable method than cross-validations across the partitions of the data. Furthermore, cross-
validation based on data resampling is more computationally intensive and this discrepancy
is expected to increase dramatically if we take all the genes into consideration, which makes
the cross-validation less feasible than information criterion method.

Table 4: Results for MAQC-II breast cancer datasets over 200 random partitions
Method Size Test Error(%)

SVMICL 4.0 18.5(0.4)
SVMICH(Ln = log(log n)) 1.7 11.5(0.4)

SVMICH(Ln =
√

log(n)) 1.2 9.9(0.2)
SVMICH(Ln = log(n)) 1.1 9.6(0.2)
Chen&Chen 1.1 9.6(0.2)
5-CV 7.7 10.8(0.3)
5-CV Adj. 5.1 10.1(0.2)

6. Discussion

In this paper we consider model selection information criterion for support vector machines
in the diverging model space. We show that the information criterion proposed in Claeskens
et al. (2008) is consistent when the number of features is fixed but can be too liberal if the
dimensionality is diverging. A new support vector machine information criterion is proposed
for model selection in high dimensions. Based on the uniform convergence rate, we prove
that the new information criterion enjoys the model selection consistency even when the
number of variables diverges exponentially fast with the sample size. We also link this
information criterion to tuning parameter selection for penalized support vector machines.
The proposed information criterion is more scalable and easier to compute than resampling
techniques such as cross-validation. Simulations and real data examples confirm the model
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selection consistency and the ability of selecting tuning parameter when the number of
features is much larger than the sample size.

There are several issues yet to be investigated. In this paper we assume that the size
of the true model is fixed and the smallest signal does not diminish to zero as the sample
size increases. Minimum signal condition has been used in many papers including Fan and
Peng (2004) and Fan and Lv (2011). It seems that our condition is stronger than theirs. It
is possible to relax this condition. We could possibly assume that q = qn diverges with n
such that qn = O(na1) for some 0 ≤ a1 < 1/2. Then we can allow the minimum magnitude
of the nonzero-signal to diminish to zero at an appropriate rate such as min1≤j≤qn |β∗j | >
an−(1−a2)/2 for some constant a > 0 and 2a1 < a2 ≤ 1. In general, the condition we impose
on min1≤j≤qn |β∗j | is intertwined with the conditions on q and the matrix X, which would
be the same for any other high-dimensional regression problem. For a detailed discussion
on the beta-min condition in the setting of Lasso regression, we refer to Section 7.4 of
Bühlmann et al. (2011). Another direction of interest is to extend the information criterion
to nonlinear support vector machine. It is well known that the linear support vector machine
can be easily extended to nonlinear feature space using the “kernel trick”. Note that
it is possible to extend the results in this paper to reproducing kernel Hilbert space with
polynomial kernels. For Gaussian radial basis kernels, however, the direct generalization can
be problematic as the corresponding reproducing kernel Hilbert space is infinite dimensional.
A refined definition of the size of model will be needed in that case and will lead to a more
comprehensive study of support vector machine information criterion.
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Appendix A.

In this appendix we prove the following results from Section 3.2:
Lemma 1 Assuming p is a fixed number and λn = 1/n. Under conditions (A1)-(A4) and
(A6)-(A7), we have

Pr(Ŝ = S∗)→ 1

as n→∞, where Ŝ = arg minS:|S|≤M SVMICL(S).

Proof. Under regularity conditions, Koo et al. (2008) showed β̂S is root-n consistent in
fixed p case for every S ∈ {S : |S| ≤ Mn}. This pointwise result is enough for Lemma 1
since the model space is fixed. The proof is then similar to Lemma 3 and Lemma 4 for
diverging p with the uniform convergence rate

√
|S| log(p)/n substituted by

√
n
−1

and thus
is omitted here.

Lemma 2 Under conditions (A1)-(A7) and λn = 1/n, we have

sup
S:|S|<Mn,S⊃S∗

||β̂S − β∗S || = Op(
√
|S| log(p)/n).

Proof. Recall that β̂S = arg minβS{1/n
∑n

i=1(1 − YiX
T
i,SβS)+ + λn/2||β+

S ||2}. We will
show that for any 0 < η < 1, there exists a large constant 4 such that for sufficient large n,

Pr( inf
|S|≤Mn,S⊃S∗

inf
||u||=4

lS(β∗S +
√
|S| log(p)/nu) > lS(β∗S)) > 1− η

where lS(βS) = 1/n
∑n

i=1(1 − YiXT
i,SβS)+ + λn/2||β+

S ||2. By the convexity of the hinge

loss, this implies that with probability 1 − η, we have supS:|S|≤Mn,S⊃S∗ ||β̂S − β∗S || ≤
4
√
|S| log(p)/n and thus Lemma 2 holds.

Notice that we can decompose lS(β∗S +
√
|S| log(p)/nu)− lS(β∗S) as

lS(β∗S +
√
|S| log(p)/nu)− lS(β∗S)

=1/n

n∑
i=1

{(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+ − (1− YiXT

i,Sβ
∗
S)+}

+ λn/2||β∗+S +
√
|S| log(p)/nu+||2 − λn/2||β∗+S ||

2. (10)

By the fact ||β∗+S +
√
|S| log(p)/nu+||2 − ||β∗+S ||2 ≤ 4|S|

√
log(p)|S|/n and λn = 1/n, the

difference of penalty terms in (10) is n−1|S|o(1). Denote

gi,S(u) =(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+ − (1− YiXT

i,Sβ
∗
S)+

+
√
|S| log(p)/nYiX

T
i,Su1(1− YiXT

i,Sβ
∗
S ≥ 0)

+E[(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+]− E[(1− YiXT

i,Sβ
∗
S)+].

It can easily checked that E[gi,S(u)] = 0 for {S : |S| ≤Mn, S ⊃ S∗} by the definition of β∗S
and S(β∗) = 0 . Next we consider the difference of hinge loss in (10), which can be further
composed as

1/n
n∑
i=1

{(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+ − (1− YiXT

i,Sβ
∗
S)+} = 1/n(An +Bn),
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where

An =

n∑
i=1

gi,S(u)

and

Bn =

n∑
i=1

{
−
√
|S| log(p)/nYiX

T
i,Su1(1− YiXT

i,Sβ
∗
S ≥ 0)

+E[(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+]− E[(1− YiXT

i,Sβ
∗
S)+]

}
.

The rest of the proof consists of three steps. Step 1 will show

sup
|S|≤Mn,S⊃S∗

sup
||u||=4

|An| = |S|op(1).

Step 2 will show inf |S|≤Mn,S⊃S∗ inf ||u||=4Bn dominates the terms of order |S|op(1) . Step
3 will complete the proof by showing inf |S|≤Mn,S⊃S∗ inf ||u||=4Bn > 0 for sufficient large n
and 4.

Step 1: The main tool to prove this uniform rate is the covering number introduced in
Van Der Vaart and Wellner (1996). It suffices to show that

Pr( sup
|S|≤Mn,S⊃S∗

sup
||u||=4

|S|−1|
n∑
i=1

gi,S(u|) > ε)→ 0

for any ε > 0. Notice that the hinge loss satisfies Lipschitz condition and by condition (A3)
maxi ||Xi,S || = Op(

√
|S| log(n)). It can be easily shown that

|S|−1gi,S(u) ≤ 34|S|−1
√
|S| log(p)/nmax

i
||Xi,S ||

and thus sup|S|≤Mn,S⊃S∗ sup||u||=4 |S|−1gi,S(u) = op(1). By Lemma 2.5 of van de Geer

(2000), the ball {u : ||u|| ≤ 4} in R|S|+1 can be covered by N balls with radius δ where
N ≤ ((44 + δ)/δ)|S|+1. Denote u1, . . . ,uN the centers of the N balls. By the fact that
sup|S|≤Mn,S⊃S∗

√
|S| log(p)/nmaxi ||Xi,S || = Op(1), we can take δ = (nC)−1|S| for some

large constant C such that

min
1≤k≤N

sup
|S|≤Mn,S⊃S∗

sup
||u||=4

|S|−1|
n∑
i=1

gi,S(u)−
n∑
i=1

gi,S(uk)|

≤ sup
|S|≤Mn,S⊃S∗

34n|S|−1
√
|S| log(p)/nmax

i
||Xi,S ||δ ≤ ε/3 (11)

with probability tending to one. Based on (11), it can be easily shown

Pr( sup
|S|≤Mn,S⊃S∗

sup
||u||=4

|S|−1|
n∑
i=1

gi,S(u)| > ε)

≤
∑

|S|≤Mn,S⊃S∗

N∑
k=1

Pr(|S|−1|
n∑
i=1

gi,S(uk)| > ε/2)
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and
∑n

i=1 gi,S(uk) is sum of independent zero-mean random variables. Notice that

(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+ − (1− YiXT

i,Sβ
∗
S)+

+
√
|S| log(p)/nYiX

T
i,Su1(1− YiXT

i,Sβ
∗
S ≥ 0) = 0

when we have |1− YiXT
i,Sβ

∗
S | >

√
|S| log(p)/nmaxi ||Xi,S ||4. Thus we have

n∑
i=1

E[gi,S(uk)]2 =
n∑
i=1

Var(gi,S(uk))

≤
n∑
i=1

E[(2
√
|S| log(p)/nYiX

T
i,Suk)21(|1− YiXT

i,Sβ
∗
S | ≤

√
|S| log(p)/nmax

i
||Xi,S ||4)].

(12)

By the bounded largest eigenvalue condition in (A3), we have

n∑
i=1

E{[2
√
|S| log(p)/nYiX

T
i,Suk)]2 ≤ C|S| log(p).

By the bounded conditional density condition (A4), we have

Pr(|1− YiXT
i,Sβ

∗
S | ≤

√
|S| log(p)/nmax

i
||Xi,S ||4) ≤ C|S| log n

√
log(p)/n.

Then based on (12) and Cauchy inequality, we have

n∑
i=1

E[gi,S(uk)]2 ≤ C|S|2 log n(log(p))3/2n−1/2.

Then applying Bernstein inequality and condition (A6), we arrive

∑
|S|≤Mn,S⊃S∗

N∑
k=1

Pr(|S|−1|
n∑
i=1

gi,S(uk)| > ε/2)

≤ exp{Mn log(p)} exp(N) exp{−C(log(n))−1(log(p))−3/2n1/2} → 0

as n→∞. This completes the proof of Step 1.
Step 2: First notice that

|
n∑
i=1

YiX
T
i,Su1(1− YiXT

i,Sβ
∗
S ≥ 0)| ≤ (|S|+ 1)1/24 max

0≤j≤p
|
n∑
i=1

YiXij,S1(1− YiXT
i,Sβ

∗
S ≥ 0)|.

(13)
Note that E[YiXij,S1(1− YiXT

i,Sβ
∗
S ≥ 0)] = 0 for 0 ≤ j ≤ p by the definition of S(β∗). By

Lemma 14.24 of Bühlmann et al. (2011), we also have

max
0≤j≤p

|
n∑
i=1

YiXij,S1(1− YiXT
i,Sβ

∗
S ≥ 0)| = Op(

√
n log(p)). (14)
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By Taylor expansion of hinge loss function at β∗S , we have

n∑
i=1

{E[(1− YiXT
i,S(β∗S +

√
|S| log(p)/nu))+]− E[(1− YiXT

i,Sβ
∗
S)+]}

=0.5|S| log(p)uTH(β∗S + t
√
|S| log(p)/nu)u (15)

for some 0 < t < 1. As shown by Koo et al. (2008), under condition (A1) and (A2), H(β)
is element-wise continuous at β∗S , thus

H(β∗S + t
√
|S| log p/nu) = H(β∗S) + op(1).

It can be easily shown by (13), (14), (15) and condition (A7), 0.5|S| log(p)uTH(β∗S)u dom-
inates other terms in Bn for sufficient large 4. This completes the proof of Step 2.

Step 3: Notice that 0.5|S| log(p)uTH(β∗S)u > 0 by condition (A7). Recall that the dif-
ference of penalty terms in (10) is n−1|S|o(1). Therefore 0.5|S| log puTH(β∗S)u dominates
all the other terms in (10) for sufficient large n and 4, which completes the proof.

Lemma 3 Under conditions (A1)-(A8) and λn = 1/n, we have

Pr( inf
S:S∈Ω+

SVMICH(S) > SVMICH(S∗))→ 1.

as n→∞.
Proof. By definition we have

inf
S∈Ω+

SVMICH(S)− SVMICH(S∗)

= inf
S∈Ω+

{ n∑
i=1

(1− YiXT
i,Sβ̂S)+ −

n∑
i=1

(1− YiXT
i,S∗β̂S∗)+ + (|S| − |S∗|) log(n)Ln

}
.

Similar to the proof of Lemma 2, it can be shown that |
∑n

i=1(1− YiXT
i,Sβ̂S)+ −

∑n
i=1(1−

YiX
T
i,S∗β̂S∗)+| is dominated by |S| log(p)uTH(β∗S)u with probability tending to one. By

conditions (A6)-(A8), we have

|
n∑
i=1

(1− YiXT
i,Sβ̂S)+ −

n∑
i=1

(1− YiXT
i,S∗β̂S∗)+| < (|S| − |S∗|) log(n)Ln

for sufficient large n. Notice that infS∈Ω+ |S| − |S∗| > 0, which completes the proof.

Lemma 4 Under Conditions (A1)-(A8) and λn = 1/n, we have

Pr( inf
S:S∈Ω−

SVMICH(S) > SVMICH(S∗))→ 1.

as n→∞.
Proof. For S ∈ Ω−, consider the set S̃ with additional signals such that S̃ = S∪S∗. Notice

SVMICH(S)−SVMICH(S∗) = SVMICH(S)−SVMICH(S̃) + SVMICH(S̃)−SVMICH(S∗)
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for S ∈ Ω−. Since |S∗| does not diverge with n, we have |S̃| < 2Mn for sufficiently large
n and it can easily seen that Lemma 3 still holds for S̃ with any S ∈ Ω−. Therefore with
high probability we have SVMICH(S̃)− SVMICH(S∗) ≥ 0. Thus it suffices to show

Pr( inf
S∈Ω−

{SVMICH(S)− SVMICH(S̃)} > 0)→ 1

as n→∞. Notice that

1/n{SVMICH(S)− SVMICH(S̃)}

=1/n
n∑
i=1

(1− YiXT
i,Sβ̂S)+ − 1/n

n∑
i=1

(1− YiXT
i,S̃

β̂S̃)+ + 1/n(|S| − |S̃|) log(n)Ln

and by condition (A8) 1/n(|S| − |S̃|) log(n)Ln → 0, it suffices to show

inf
S∈Ω−

{1/n
n∑
i=1

(1− YiXT
i,Sβ̂S)+ − 1/n

n∑
i=1

(1− YiXT
i,S̃

β̂S̃)+} ≥ C

for some constant C > 0 that does not depend on S.
Recall that β̂S = (β0,S , β1,S , . . . , β|S|,S)T ∈ R|S|+1. Denote β̂S,S̃ ∈ R|S̃|+1 such that

the intercept equals to β0,S , the j-th element equals to βj,S if j ∈ S and 0 if j /∈ S for all
j ∈ S̃. Denote also δ = minj∈S∗ |β∗j | the smallest signal. Then it can be easily seen that

||β̂S,S̃ − β∗
S̃
|| > δ. By Lemma 2 we also have ||β̂S̃ − β∗

S̃
|| < ε for arbitrary ε and sufficient

large n. Therefore there exists β̄S̃ = aβ̂S̃ + (1− a)β̂S,S̃ for some 0 < a < 1 such that

||β̄S̃ − β∗
S̃
|| = ∆,

where ∆ is a positive constant such that ∆ < c3 where c3 is defined in condition (A7). By
the definition of β̂S̃ and the convexity of hinge loss function we have

1/n
n∑
i=1

(1− YiXT
i,S̃

β̄S̃)+ + λn/2||β̄
+
S̃
||2

<a{1/n
n∑
i=1

(1− YiXT
i,S̃

β̂S̃)+ + λn/2||β̂
+

S̃ ||2}

+ (1− a){1/n
n∑
i=1

(1− YiXT
i,Sβ̂S,S̃)+ + λn/2||β̂

+

S,S̃ ||2}

<1/n
n∑
i=1

(1− YiXT
i,S̃

β̂S,S̃)+ + λn/2||β̂
+

S,S̃ ||2

=1/n

n∑
i=1

(1− YiXT
i,Sβ̂S)+ + λn/2||β̂

+

S ||2. (16)

By λn = n−1 we have

λn/2||β̄
+
S̃
||2 − λn/2||β̂

+

S ||2 ≤ Cλn(||β̂
+

S̃ ||2 + ||β̂
+

S ||2)→ 0 (17)
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as n → ∞. Similar to the proof of Lemma 2, under condition (A6) and (A8), it can be
shown

1/n

n∑
i=1

(1−YiXT
i,S̃

β̂S̃)+−1/n

n∑
i=1

(1−YiXT
i,S̃

β∗
S̃

)+ ≤ 1/nC|S̃| log(p)λmax(H(β∗
S̃

))→ 0 (18)

as n→∞. Notice that

inf
S∈Ω−

{1/n
n∑
i=1

(1− YiXT
i,S̃

β̄S̃)+ − 1/n

n∑
i=1

(1− YiXT
i,S̃

β∗
S̃

)+}

≥1/n
{

inf
S∈Ω−

nE[(1− YiXT
i,S̃

β̄S̃)+ − (1− YiXT
i,S̃

β∗
S̃

)+]

− sup
S∈Ω−

{|
n∑
i=1

(1− YiXT
i,S̃

β̄S̃)+ −
n∑
i=1

(1− YiXT
i,S̃

β∗
S̃

)+ − nE[(1− YiXT
i,S̃

β̄S̃)+ − (1− YiXT
i,S̃

β∗
S̃

)+]|}
}
.

Similar to the proof of Lemma 2, it can be shown

sup
S∈Ω−

{|
n∑
i=1

(1− YiXT
i,S̃

β̄S̃)+ −
n∑
i=1

(1− YiXT
i,S̃

β∗
S̃

)+ − nE[(1− YiXT
i,S̃

β̄S̃)+ − (1− YiXT
i,S̃

β∗
S̃

)+]|}

=Op(|
n∑
i=1

YiX
T
i,S̃

(β̄S̃ − β∗
S̃

)1(1− YiXT
i,Sβ

∗
S̃
≥ 0)|) = Op(

√
n|S̃| log(p)). (19)

By Taylor expansion of hinge loss function, we have

E[(1− YiXT
i,S̃

β̄S̃)+ − (1− YiXT
i,S̃

β∗
S̃

)+] ≥ 0.5λmin(H(β̃
∗
S̃))∆2 > 0, (20)

where β̃
∗
S̃ lies in the set defined in condition (A7). By (16)-(20), we have

inf
S∈Ω−

{1/n
n∑
i=1

(1− YiXT
i,Sβ̂S)+ − 1/n

n∑
i=1

(1− YiXT
i,S̃

β̂S̃)+} ≥ 0.5λmin(H(β∗
S̃

))∆2 > 0

for sufficient large n, which completes the proof.

Theorem 5 Under conditions (A1)-(A8) and λn = 1/n, we have

Pr(Ŝ = S∗)→ 1.

as n, p→∞, where Ŝ = arg minS:|S|≤Mn
SVMICH(S).

Proof. The proof can be easily checked by combing the results from Lemma 3 and Lemma
4 and thus is omitted here.
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