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Abstract

Nonparametric regression for large numbers of features (p) is an increasingly important
problem. If the sample size n is massive, a common strategy is to partition the feature
space, and then separately apply simple models to each partition set. This is not ideal when
n is modest relative to p, and we propose an alternative approach relying on random com-
pression of the feature vector combined with Gaussian process regression. The proposed
approach is particularly motivated by the setting in which the response is conditionally
independent of the features given the projection to a low dimensional manifold. Condi-
tionally on the random compression matrix and a smoothness parameter, the posterior
distribution for the regression surface and posterior predictive distributions are available
analytically. Running the analysis in parallel for many random compression matrices and
smoothness parameters, model averaging is used to combine the results. The algorithm can
be implemented rapidly even in very large p and moderately large n nonparametric regres-
sion, has strong theoretical justification, and is found to yield state of the art predictive
performance.

Keywords: Compressed regression; Gaussian process; Gaussian random projection;
Large p; Manifold regression.

1. Introduction

With recent technological progress, it is now routine in many disciplines to collect data
containing large numbers of features, ranging from thousands to millions. To account
for complex nonlinear relationships between the features and the response, nonparametric
regression models are employed. For example,

y = µ0(x) + ε, ε ∼ N(0, σ2),

where x ∈ Rp, µ0(·) is the unknown regression function and ε is a residual. When p is
large, estimating µ0 can lead to a statistical and computational curse of dimensionality.
One strategy for combatting this curse is dimensionality reduction via variable selection or
(more broadly) subspace learning, with the high-dimensional features replaced with their
projection to a d-dimensional subspace or manifold with d � p. In many applications,
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the relevant information about the high-dimensional features can be encoded in such low
dimensional coordinates.

There is a vast frequentist literature on subspace learning for regression, typically em-
ploying a two stage approach. In the first stage, a dimensionality reduction technique is
used to obtain lower dimensional features that can “faithfully” represent the higher di-
mensional features. Examples include principal components analysis and more elaborate
methods that accommodate non-linear subspaces, such as isomap (Tenenbaum et al., 2000)
and Laplacian eigenmaps (Belkin and Niyogi, 2003; Guerrero et al., 2011). Once lower di-
mensional features are obtained, the second stage uses these features in standard regression
and classification procedures as if they were observed initially. Such two stage approaches
rely on learning the manifold structure embedded in the high dimensional features, which
adds unnecessary computational burden when inferential interest lies mainly in prediction.

Another thread of research focuses on prediction using divide-and-conquer techniques.
As the number of features increases, the problem of finding the best splitting attribute
becomes intractable, so that CART (Breiman et al., 1984), MARS and multiple tree models,
such as Random Forest (Breiman, 2001), cannot be efficiently applied. A much simpler
approach is to apply high dimensional clustering techniques, such as metis, cover trees and
spectral clustering. Once the observations are clustered into a few groups, simple models
(glm, Lasso etc) are fitted in each cluster (Zhang et al., 2013). Such methods are sensitive to
clustering, do not characterize predictive uncertainty, and may lack efficiency, an important
consideration outside the n� p setting. There is also a recent literature on scaling up sparse
optimization methods, such as Lasso, to large p and n settings relying on algorithms that
can exploit multiple processors in a distributed manner e.g., (Boyd et al., 2011). However,
such methods are yet to be developed for non-linear manifold regression, which is the central
focus of this article.

This naturally motivates Bayesian models that simultaneously learn the mapping to
the lower-dimensional subspace along with the regression function in the coordinates on
this subspace, providing a characterization of predictive uncertainties. Tokdar et al. (2010)
proposes a logistic Gaussian process approach, while Reich et al. (2011) use finite mixture
models for sufficient dimension reduction. Page et al. (2013) propose a Bayesian nonpara-
metric model for learning of an affine subspace in classification problems. These approaches
have the disadvantages of being limited to linear subspaces, lacking scalability beyond a
few dozen features and having potential sensitivity to features corrupted with noise. There
is also a literature on Bayesian methods that accommodate non-linear subspaces, ranging
from Gaussian process latent variable models (GP-LVMs) (Lawrence, 2005) for probabilis-
tic nonlinear PCA to mixture factor models Chen et al. (2010). However, such methods
similarly face barriers in scaling up to large p and/or n. There is a heavy computational
price for learning the number of latent variables, the distribution of the latent variables,
and the mapping functions while maintaining identifiability restrictions.

Recently, Yang and Dunson (2013) show that this computational burden can be largely
bypassed by using usual Gaussian process (GP) regression without attempting to learn the
mapping to the lower-dimensional subspace. They showed that when the features lie on
a d-dimensional manifold embedded in the p-dimensional feature space with d � p and
the regression function is not highly smooth, the optimal rate can be obtained using GP
regression with a squared exponential covariance in the original high-dimensional feature
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space. This is an exciting theoretical result, which provides motivation for the approach
in this article, which is focused on scalable Bayesian nonparametric regression in large p
settings. For broader applicability than Yang and Dunson (2013), we accommodate features
that are contaminated by noise and hence do not lie exactly on a low-dimensional manifold.
In addition, we facilitate computational efficiency by bypassing MCMC and reducing matrix
inversion bottlenecks via random projections. Sensitivity to the random projection and to
tuning parameters is reduced through the use of Bayesian model averaging. The proposed
approach that accommodates all these features is coined as the compressed Gaussian process
(CGP).

Snelson and Ghahramani (2012) also considered manifold regression for big data, com-
prising feature vectors via pre-multiplying with a short and fat projection matrix. Their
approach involves estimating a total of (M + p)m parameters in a feature compression ma-
trix and input points, with M the number of input points, leading to intractability as p
increases. We demonstrate substantial advantages of our random compression approach in
Section 5 in terms of computational scalability and predictive performance. In addition, SG
lacks theory guarantees, while we show that CGP has a minimax optimal adaptive conver-
gence rate dependent only on the true manifold dimension (assumed small). Calandra et al.
(2014) instead use a neural network-like mapping of the input space, requiring non-convex
optimization in high-dimensions. Scaling to moderate n, such as n ∼ 5, 000 − 10, 000, is
problematic. Other manifold regression methods (see Bickel and Li, 2007; Aswani et al.,
2011) either lack scalability even for moderate p and n, or fail to characterize predictive
uncertainties.

Section 2 proposes the model and computational approach in large p settings. Section 3
describes extensions to moderately large n, and Section 4 develops theoretical justification.
Section 5 contains simulation examples relative to state-of-the-art competitors. Section 6
presents an image data application, and Section 7 concludes the paper with a discussion.

2. Compressed Gaussian process regression

This section details out compressed Gaussian process model with the associated prior and
posterior distributions of the parameters.

2.1 Model

For subjects i = 1, . . . , n, let yi ∈ Y denote a response with associated features xi =
(xi1, . . . , xip)

′ = (zi1, . . . , zip)
′ + (δi1, . . . , δip)

′ = zi + δi, zi ∈ M, δi ∈ Rp, where M is a
d-dimensional manifold embedded in the ambient space Rp. We assume that the response
y ∈ Y is continuous. The measured features do not fall exactly on the manifold M but are
corrupted by noise. We assume a compressed nonparametric regression model

yi = µ
(
Ψxi

)
+ εi, εi ∼ N(0, σ2), (1)

with the residuals modeled as Gaussian with variance σ2, though other distributions in-
cluding heavy-tailed ones can be accommodated. Ψ is an m × p matrix that compresses
p-dimensional features to dimension m. Following a Bayesian approach, we choose a prior
distribution for the regression function µ and residual variance σ2, while randomly generat-
ing Ψ following precedence in the literature on feature compression (Maillard and Munos,
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2009; Fard et al., 2012; Guhaniyogi and Dunson, 2013). These earlier approaches differ
from ours in focusing on parametric regression. We independently draw elements {Ψij} of
Ψ from N(0, 1), and then normalize the rows using Gram-Schmidt orthogonalization.

We assume that µ ∈ Hs is a continuous function belonging to Hs, a Holder class with
smoothness s. To allow µ to be unknown, we use a Gaussian process (GP) prior, µ ∼
GP(0, σ2κ) with the covariance function chosen to be squared exponential

κ(xi,xj ;λ) = exp
(
−λ||xi − xj ||2

)
, (2)

with λ a smoothness parameter and || · ||2 the Euclidean norm. To additionally allow the
residual variance σ2 and smoothness λ to be unknown, we let

σ2 ∼ IG(a, b), λd ∼ Ga(a0, b0),

with IG() and Ga() denoting the inverse-gamma and gamma densities, respectively. The
powered gamma prior for λ is motivated by the result of van der Vaart and van Zanten
(2009) showing minimax adaptive rates of n−s/(2s+p) for a GP prior with squared exponential
covariance and powered gamma prior. This is the optimal rate for nonparametric regression
in the original p-dimensional ambient space. The rate can be improved to n−s/(2s+d) when
xi ∈M, withM a d-dimensional manifold. Yang and Dunson (2013) shows that a GP prior
with powered gamma prior on the smoothness can achieve this rate. In practice, replacing
the powered gamma prior for λ with a gamma prior has essentially no impact on the results
in examples we have considered.

In many applications, features may not lie exactly on M due to noise and corruption
in the data. We apply random compression in (1) to de-noise the features, obtaining Ψxi
much more concentrated near a lower-dimensional subspace than the original xi. With
this enhanced concentration, the theory in Yang and Dunson (2013) suggests excellent
performance for an appropriate GP prior. In addition to de-noising, this approach has the
major advantage of bypassing estimation of a geodesic distance along the unknown manifold
M between any two data points xi and xi′ .

2.2 Posterior form

Let µ = (µ(Ψx1), ..., µ(Ψxn))′ and K1 = (κ(Ψxi,Ψxj ;λ))ni,j=1. The prior distribution on

µ, σ2 induces a normal-inverse gamma (NIG) prior on (µ, σ2),

(µ |σ2) ∼ N(0, σ2K1), σ
2 ∼ IG(a, b),

leading to a NIG posterior distribution for (µ, σ2) given y,Ψx, λ. In the special case in
which a, b→ 0, we obtain Jeffrey’s prior and the posterior distribution is

µ |y ∼ tn(m,Σ) (3)

σ2 |y ∼ IG(a1, b1), (4)

where a1 = n/2, b1 = y′ (K1 + I)−1 y/2, m =
[
I +K−11

]−1
y, Σ = (2b1/n)

[
I +K−11

]−1
,

and tν(m,Σ) denotes a multivariate-t distribution with ν degrees of freedom, mean m and
covariance Σ.

4



Compressed Gaussian Process for Manifold Regression

Hence, the exact posterior distribution of (µ, σ2) conditionally on (Ψ, λ) is available

analytically. The predictive of y∗ = (y∗1, ..., y
∗
npred

)′ given X∗ =
(
x∗

′
1 , ...,x

∗′
npred

)′
and Ψ, λ

for new npred subjects marginalizing out (µ, σ2) over their posterior distribution is available
analytically as

y∗|x∗1, ...,x∗npred
,y ∼ tn

(
µpred, σ

2
pred

)
, (5)

where Kpred = {κ(x∗i ,x
∗
j ;λ)}npred

i,j=1 , Kpred,1 = {κ(x∗i ,xj ;λ)}i=npred,j=n
i=1,j=1 , K1,pred = K ′pred,1,

µpred = Kpred,1 (I +K1)
−1 y, σ2pred = (2b1/n)

[
I +Kpred −Kpred,1 {I +K1}−1K1,pred

]
.

2.3 Model averaging

The approach described in the previous section can be used to obtain a posterior distribution
for µ and a predictive distribution for y∗ = (y∗1, ..., y

∗
npred

) given X∗ for a new set of npred
subjects conditionally on the m× p random projection matrix Ψ and the scaling parameter
λ. To accomplish robustness with respect to the choice of (Ψ, λ) and the subspace dimension
m, following Guhaniyogi and Dunson (2013), we propose to generate s random matrices
having different m, s and λ from the marginal posterior distribution, (Ψ(l), λ(l)), l = 1, ..., s,
and then use model averaging to combine the results. To make matters more clear, let
Ml, l = 1, . . . , s, represent (1) with ml number of rows. Corresponding to the model Ml,
we denote Ψ, λ, µ and σ2 by Ψ(l), λ(l), µ(l) and σ2(l) respectively. Given Ψ(l), we draw
a few λ1, ..., λk randomly from U(3/dmax, 3/dmin) where dmax = maxi,j ||xi − xj ||2 and
dmin = mini,j ||xi − xj ||2. Next we use the fact that the marginal posterior distribution of
λ|Ψ(l),y is given by

f(λ|y,Ψ(l)) ∝ 1

|K1 + I|
1
2

2
n
2 Γ(n2 )[

y′ (K1 + I)−1 y
]n

2
(
√

2π)n
× π(λ),

where π(λ) is the prior distribution of λ. Clearly, a discrete approximation of λ|Ψ(l),y is

given by
∑k

i=1wiδλi , where wi = f(λi|y,Ψ(l))∑k
j=1 f(λj |y,Ψ

(l))
and δλi is the Dirac Delta function at λi.

Finally, λ(l) is drawn from
∑k

i=1wiδλi . Although Section 4 shows minimax optimality of
CGP with λd ∼ Gamma(a, b), we use d = 1 in practical implementations with no practical
loss in cases we have considered.

Let M = {M1, . . . ,Ms} denote the set of models corresponding to different random
projections, D = {(yi,xi), i = 1, . . . , n} denote the observed data, and y∗ denote the data
for future subjects with features X∗. Then, the predictive density of y∗ given X∗ is

f(y∗|X∗,D) =
s∑
l=1

f(y∗|X∗,Ml,D)P (Ml | D), (6)

where the predictive density of y∗ given X∗ under projection Ml is given in (9) and the
posterior probability weight on projection Ml is

P (Ml | D) =
P (D |Ml)P (Ml)∑s
h=1 P (D |Mh)P (Mh)

.
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Assuming equal prior weights for each random projection, P (Ml) = 1/s. In addition, the
marginal likelihood under Ml is

P (D |Ml) =

∫
P (D |Ml,µ

(l), σ2(l))π(µ(l), σ2(l)). (7)

After a little algebra, one observes that for (1) with (µ |σ2) ∼ N(0, σ2K1), π(σ2) ∝ 1
σ2 ,

P (D |Ml) =
1

|K1 + I|
1
2

2
n
2 Γ(n2 )[

y′ (K1 + I)−1 y
]n

2
(
√

2π)n
.

Plugging in the above expressions in (6), one obtains the posterior predictive distribution
as a weighted average of t densities. Given that the computation over different sets of Ψ, λ
are not dependent on each other, the calculations are embarrassingly parallel with a trivial
expense for combining. The main computational expense comes from the inversion of an
n×n matrix under the lth random projection. There is a vast literature on obtaining rapid
approximations to such inversions under low rank assumptions. In the next section, we
describe one such approach for enabling scaling to moderate n. Other recent methods can
be easily substituted to scale to very large or massive n.

3. Scaling to moderately large n

Fitting (1) using model averaging requires computing inverses and determinants of covari-
ance matrices of the order n × n. In problems with even moderate n, this adds a heavy
computational burden of the order of O(n3). Additionally, as dimension increases, matrix
inversion becomes more unstable with the propagation of errors due to finite machine preci-
sion. This problem is further exacerbated if the covariance matrix is nearly rank deficient.

To address such issues, existing solutions rely on approximating µ(·) by another process
µ̃(·), which is more tractable computationally. One popular approach constructs µ̃(·) as a
finite basis approximation via kernel convolution (Higdon, 2002) or kalman filtering (Wikle
and Cressie, 1999). Alternatively, one can let µ̃(·) = µ(·)η(·), where η(·) is a Gaussian pro-
cess having compactly supported correlation function that essentially makes the covariance
matrix of (µ̃(x1), ...., µ̃(xn)) sparse (Kaufman et al., 2008), facilitating inversion through
efficient sparse solvers.

Banerjee et al. (2008) proposes a low rank approach that imputes µ(·) conditionally
on a few knot-points, closely related to subset of regressor methods in machine learning
(Smola and Schölkopf, 2000). Subsequently, Finley et al. (2009) in statistics and Snelson
and Ghahramani (2006) in machine learning report bias in both variance and length-scale
parameter estimation which affects predictive estimates for the proposed approaches (Baner-
jee et al., 2008; Smola and Schölkopf, 2000). They also suggest possible remedies for bias
adjustments. To avoid sensitivity to knot selection in the low rank approaches, Banerjee
et al. (2013) approximates µ(·) using µ̃(·) = E[µ(·) |Φµ(X)] + εΦ(·), with Φ an m × n,
m � n random matrix with Φij ∼ N(0, 1). εΦ(x) are independent feature specific noises
with εΦ(x) ∼ N(0, var(µ(x))− var(µ̃(x))), which are introduced for bias correction similar
to Finley et al. (2009). There is a parallel literature on nearest neighbor Gaussian processes
which is built upon approximating a multivariate high dimensional Gaussian distribution
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by a product of lower dimensional conditional distributions. Such an idea was first pursued
by Vecchia (1988) and Stein et al. (2004), and has recently gained traction in the computer
experiments literature (Gramacy and Apley, 2015) and in spatial geo-statistics (Emery,
2009; Stroud et al., 2014; Datta et al., 2014). Some of the recent versions of the this idea
are found to be amenable to parallel computations as well.

We adapt Banerjee et al. (2013) from usual GP regression to our compressed manifold
regression setting. In particular, let

y = µ̃Φ (Ψx) + εΦ(Ψx) + ε, ε ∼ N(0, σ2), (8)

where µ̃Φ(Ψx) = E[µ(Ψx) |Φµ(XΨ′)], εΦ(Ψx) |σ2 ∼ N(0, σ2ε (x)),

σ2ε (x) = σ2
[
κ(Ψx,Ψx;λ)− (Φkx)′ {ΦK1Φ

′}−1 (Φkx)
]

and

kx = (κ(Ψx,Ψx1;λ), ...., κ(Ψx,Ψxn;λ))′. DenotingH1 = diag(K1−K1Φ
′(ΦK1Φ

′)−1ΦK1)+
I and H2 = K1Φ

′(ΦK1Φ
′)−1Φ, marginal posterior distributions of µ and σ2 are available

in analytical forms

µ |y ∼ tn(mRGP ,ΣRGP ), σ2 |y ∼ IG(a2, b2),

where a2 = n/2, b2 = y′ (H1 +H2K1)
−1 y/2, mRGP =

[
H ′2H

−1
1 H2 +K−11

]−1
H ′2H

−1
1 y,

ΣRGP = (2b2/n)
[
H ′2H

−1
1 H2 +K−11

]−1
. Owing to the special structure of ΣRGP and

mRGP , n× n matrix inversion can be efficiently achieved by Sherman-Woodbury-Morrison
matrix inversion technique.

Attention now turns to prediction from (8). The predictive of y∗ = (y∗1, ..., y
∗
npred

)′ given

X∗ =
(
x∗

′
1 , ...,x

∗′
npred

)′
and Ψ, λ for new npred subjects marginalizing out (µ, σ2) over their

posterior distribution is available analytically as

y∗|x∗1, ...,x∗npred
,y ∼ tn

(
µpred, σ

2
pred

)
, (9)

where Kpred = {κ(x∗i ,x
∗
j ;λ)}npred

i,j=1 , Kpred,1 = {κ(x∗i ,xj ;λ)}i=npred,j=n
i=1,j=1 , K1,pred = K ′pred,1,

H3 = I+diag(Kpred−Kpred,1Φ
′(ΦK1Φ)−1ΦK1,pred), µpred = Kpred,1H

′
2 (H1 +H2K1)

−1 y,
σ2pred = (2b1/n)

[
H3 +Kpred,1Φ

′(ΦK1Φ
′)−1ΦK1,pred −Kpred,1H

′
2(H1 +H2K1)

−1H2K1,pred

]
.

Evaluating the above expression requires inverting matrices of order mΦ ×mΦ. Model av-
eraging is again employed to limit sensitivity over the choices of Ψ, λ. Following similar
calculations as in Section 2.3, model averaging weights are found to be

P (D |Ml) =
1

|H2K1 +H1|
1
2

2
n
2 Γ(n2 )[

y′ (H2K1 +H1)
−1 y

]n
2

(
√

2π)n
.

Model averaging is performed on a wide interval of possible m values determined by the
“compressed sample size” mΦ and p, analogous to Section 2.3.

Although we focus in this article on using the Banerjee et al. (2013) approach within
CGP for scaling to moderately large n, alternative low rank or scalable approximations to
Gaussian processes can be substituted essentially without complication. For example, there
has been a recent emphasis on methods that break the data into exhaustive and mutually
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exclusive subsets (Parikh and Boyd, 2011), run computation separately for each subset and
then combine the results; such methods have been applied to GPs (Deisenroth and Ng,

2015) and have complexity that scales as O
((

n
K

)3)
, where K is the number of subsets.

Choosing K large enough, with this approach, one can compute CGP with moderate sized
subset in each processor followed by combining inferences from different subsets. This can
be further reduced by using low rank approximations to the GPs within each subset.

An important question that remains is how much information is lost in compressing
the high-dimensional feature vector to a much lower dimension? In particular, one would
expect to pay a price for the huge computational gains in terms of predictive performance or
other metrics. We address this question in two ways. First we argue satisfactory theoretical
performance in prediction in a large p asymptotic paradigm in Section 4. Then, we will
consider practical performance in finite samples using simulated and real data sets.

4. Convergence analysis

This section provides theory supporting the excellent practical performance of the proposed
method. In our context the feature vector x is assumed to be x = z + δ, z ∈ M, δ ∈ Rp.
Compressing the feature vector results in compressing z and the noise followed by their
addition, Ψx = Ψz+ Ψδ. The following two directions are used to argue that compression
results in near optimal inference.

(A) When features lie on a manifold a two stage estimation procedure (compression followed
by a Gaussian process regression) leads to optimal convergence properties. This is used
to show that using {Ψzi}ni=1 as features in the Gaussian process regression yields the
optimal rate of convergence.

(B) Noise compression through Ψ mitigates the deleterious effect of noise in x on the
resulting performance.

Let µ0(·) and µ(·) be the true and the fitted regression functions respectively. Define
ρ(µ, µ0)

2 = 1
n

∑n
i=1(µ(xi) − µ0(xi))2 as the distance between µ, µ0 under a fixed design.

When the design is random, let ρ(µ, µ0)
2 =

∫
M(µ(x) − µ0(x))2F (dx), where F is the

marginal distribution of the features. Denote Π(·|y1, ..., yn) to be the posterior distribution
given y1, ..., yn. Then the interest lies in the rate at which the posterior contracts around
µ0 under the metric ρ(·, ·). This calls for finding a sequence {ζn}n≥1 of lower bounds such
that

Π(ρ(µ, µ0) > ζn | y1, ..., yn)→ 0, as n→∞. (10)

Definition: Given two manifolds M and N , a differentiable map f :M→N is called
a diffeomorphism if it is a bijection and its inverse f−1 : N →M is differentiable. If these
functions are r times continuously differentiable, f is called a Cr-diffeomorphism.

Our analysis builds on the following result (Theorem 2.3 in Yang and Dunson (2013)).

Theorem 1 Assume M is a d dimensional Cr1compact sub-manifold of Rp. Let G :M→
Rp be the embedding map so that G(M) ' M. Further assume T : Rp → Rm is a
dimensionality reducing map s.t. the restriction TM of T on G(M) is a Cr2-diffeomorphism
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onto its image. Then for any µ0 ∈ Cs with s ≤ min{2, r1 − 1, r2 − 1}, a Gaussian process
prior on µ with features {T (zi)}ni=1, zi ∈ M, leads to a posterior contraction rate at least
ζn = n−s/(2s+d) log(n)d+1.

This is a huge improvement upon the minimax optimal adaptive rate of n−s/(2s+p) without
the manifold structure in the features. We use the above result in our context. Define the
linear transformation T (z) = Ψz. Using properties of random projection matrix, we have
that, given κ ∈ (0, 1), if the projected dimension m > O(m

κ2
log(Cpκ−1) log(φ−1n )) then with

probability greater than 1−φn, the following relationship holds for every point zi, zj ∈M,

(1− κ)

√
m

p
||zi − zj || < ||T (zi)− T (zj)|| < (1 + κ)

√
m

p
||zi − zj ||, (11)

implying that T is a diffeomorphism onto its image with probability greater than (1− φn).
Define An = {Equation 11 holds} so that P (An) > 1− φn.

Π(d(µ, µ0) > ζn|y1, ..., yn) = Π(d(µ, µ0) > ζn|y1, ..., yn,An)P (An)

+ Π(d(µ, µ0) > ζn|y1, ..., yn,A′n)P (A′n)

< Π(d(µ, µ0) > ζn|y1, ..., yn,An) + P (A′n)

< Π(d(µ, µ0) > ζn|y1, ..., yn,An) + φn.

On An, T is a diffeomorphism. Therefore, Theorem 1 implies that with features {T (zi)}ni=1

Π(d(µ, µ0) > ζn|y1, ..., yn,An)→ 0. Finally, assuming φn → 0 yields Π(d(µ, µ0) > ζn|y1, ..., yn)→
0 with features {T (zi)}ni=1. This proves (A).

Let Ψ(l) be the l-th row of Ψ, l = 1, ...,m. Denote ∆ = [δ1 : · · · : δn] ∈ Rp×n and
assume zi is the i-th row of ∆. Using Lemma 2.9.5 in Van der Vaart and Wellner (1996),
we obtain

√
p

p∑
j=1

Ψljzj → N(0,Cov(z1)).

Therefore,
∑p

j=1 Ψljzj = Op(p
−1/2), reducing the magnitude of noise in the original features.

Hence (B) is proved. Thus, even if noise exists, asymptotic performance of {T (xi)}ni=1 will
be similar to {T (zi)}ni=1 in the GP regression (which by (A) has “optimal” asymptotic
performance).

5. Simulation Examples

We assess the performance of compressed Gaussian process (CGP) regression in a number
of simulation examples. We consider various numbers of features (p) and level of noise in the
features (τ) to study their impact on the performance. In all the simulations out of sample
predictive performance of the proposed CGP regression was compared to that of uncom-
pressed Gaussian process (GP), BART (Bayesian Additive Regression Trees) Chipman et al.
(2010), RF (Random Forests) Breiman (2001) and TGP (Treed Gaussian process) Gramacy
and Lee (2008). Unfortunately, with massive number of features, traditional BART, RF
and TGP are computationally prohibitive. Therefore, we consider compressed versions in
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which we generate a single projection matrix to obtain a single set of compressed features,
running the analysis with compressed features instead of original features. This idea leads
to compressed versions of random forest (CRF), Bayesian additive regression tree (CBART)
and Treed Gaussian process (CTGP). These methods entail faster implementation when the
number of features is massive.

As a default in these analyses, we use m = 60, which seems to be a reasonable choice
of upper bound for the dimension of the linear subspace to compress to. In addition, we
implement two stage GP (2GP) where the p-dimensional features are projected into smaller
dimension by using Laplacian eigenmap (Belkin and Niyogi, 2003; Guerrero et al., 2011) in
the first stage and then a GP with projected features is fitted in the second stage. We also
compared Lasso and partial least square regression (PLSR) to indicate advantages of our
proposed method over linear regularizing methods. However, in presence of strong nonlinear
relationship between the response and the features, Lasso and PLSR perform poorly and
hence results for them are omitted.

When n is moderately large ∼ 5000, to bypass heavy computational price associated
with CGP for inverting an n × n matrix, we employ a low rank approximation of the
compressed Gaussian process as described in Section 3. As an uncompressed competitor of
CGP in settings with moderately large n, efficient Gaussian random projection technique
Banerjee et al. (2013) is implemented. This is also referred to as the GP to avoid needless
confusion. Along with GP, CBART and CRF are included as competitors. CTGP with
moderately large n poses heavy computational burden and is, therefore, omitted.

As a more scalable competitor, we employ the popular two stage technique of clustering
the massive sample into a number of clusters followed by fitting simple model such as Lasso
in each of these clusters. To facilitate clustering of high dimensional features in the first
stage, we use the spectral clustering algorithm (Ng et al., 2001) described in Algorithm 1.
Once observations are clustered, separate Lasso is fitted in each of these clusters. Hence-

Algorithm 1 Spectral Clustering Algorithm

Input: features x1, ....,xn and the number of clusters required n.clust.

• Form the affinity matrix A ∈ Rn×n defined by Aij = exp
(
−||xi − xj ||2/2σ2

)
if i 6= j,

Aii = 0, for some judicious choice of σ2.
• Define D to be the diagonal matrix whose (i, i)-th entry is the sum of the elements

in the i-th row of A. Construct L = D−1/2AD−1/2.
• Find s1, ..., sn.clust be the eigenvectors corresponding to the n.clust largest eigenvalues

of L. Form the matrix S = [s1 : · · · : sn.clust] ∈ Rn×n.clust by stacking the eigenvectors
in column.
• Normalize so that each row of S has unit norm.
• Now treating each row of S as a point in Rn.clust cluster them into n.clust clusters

via K −means clustering.
• Finally assign xi in cluster j if the i th row of S goes to cluster j.

forth, we refer to this procedure as distributed supervised learning (DSL). Along with the
above methods, for large moderately n, we also implement the Bayesian analogue of sparse
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Gaussian process with dimension reduction (Snelson and Ghahramani, 2012), referred to as
the SG method.

The model averaging step in CGP requires choosing a window over the possible values
of m. When n is small, we adopt the choice suggested in Guhaniyogi and Dunson (2013) to
have a window of [d2log(p)e,min(n, p)], which implies that the number of possible models to
be averaged across is s = min(n, p)−d2log(p)e+ 1. When n is moderately large, we choose
the window of [d2log(p)e,min(mΦ, p)]. The number of rows of Φ is fixed at mΦ = 100 for
the simulation study with moderately large n. However, changing mΦ moderately does not
alter the performance of CGP.

5.1 Manifold Regression on Swiss Roll

To provide some intuition for our model, we start with a concrete example where the
distribution of the response is a nonlinear function of the coordinates along a swissroll, which
is embedded in a high dimensional ambient space. To be more specific, we sample manifold
coordinates, t ∼ U(3π2 ,

9π
2 ), h ∼ U(0, 3). A high dimensional feature x = (x1, ..., xp) is then

sampled following

x1 = t cos(t) + δ1, x2 = h+ δ2, x3 = t sin(t) + δ3, xi = δi, i ≥ 4, δ1, .., δp ∼ N(0, τ2).

Finally responses are simulated to have nonlinear and non-monotonic relationship with the
features

yi = sin(5πt) + h2 + εi, εi ∼ N(0, 0.022). (12)

Clearly, x and y are conditionally independent given θ, h, which is the low-dimensional
signal manifold. In particular, x lives on a (noise corrupted) swissroll embedded in a p-
dimensional ambient space (see Figure 1(a)), but y is only a function of coordinates along
the swissroll M (see Figure 1(b)).

The geodesic distance between two points in a swiss roll can be substantially different
from their Euclidean distance in the ambient space Rp. For example, in Figure 1(c) two
points joined by the line segment have much smaller Euclidean distance than geodesic
distance. Theorem 1 in Section 4 guarantees optimal performance when the compact sub-
manifold M is sufficiently smooth, so that the locally Euclidean distance serves as a good
approximation of the geodesic distance. The Swiss roll presents a challenging set up for
CGP, since points on M that are close in a Euclidean sense can be quite far in a geodesic
sense.

To assess the impact of the number of features (p) and noise levels of the features (τ)
on the performance of CGP, a number of simulation scenarios are considered in Table 1.
For each of these simulation scenarios, we generate multiple datasets and present predictive
inference such as mean squared prediction error (MSPE), coverage and lengths of 95%
predictive intervals (PI) averaged over all replicates.

In our experiments, y and X are centered. To implement LASSO, we use glmnet

(Friedman et al., 2009) package in R with the optimal tuning parameter selected through 10
fold cross validation. CRF, CBART and CTGP in R using randomForest (Liaw and Wiener,
2002), BayesTree (Chipman et al., 2009) and tgp (Gramacy, 2007) packages, respectively.
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Simulation sample size (n) no. of features (p) noise in the features (τ)

1 100 10,000 0.02
2 100 20,000 0.02
3 100 10,000 0.05
4 100 20,000 0.05
5 100 10,000 0.10
6 100 20,000 0.10

Table 1: Different Simulation settings for CGP.

x2

x1

0

x3
0

5

10

-5 0 5 10

0.511.522.53-10

-5

(a) noise corrupted swiss roll

t 0 0.5 1 1.5 2 2.5 3

y

h

6

0

2

4

6

8

8101214

(b) response vs. x1, x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10 −5 0 5 10

−
10

−
5

0
5

10

x1

x3

(c) swiss roll shown in 2d

Figure 1: Simulated features and response on a noisy Swiss Roll, τ = 0.05

5.1.1 MSPE Results

Predictive MSE for each of the simulation settings averaged over 50 simulated datasets is
shown in Table 2. Subscripted values represent bootstrap standard errors for the averaged
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MSPEs, calculated by generating 50 bootstrap datasets resampled from the MSPE values,
finding the average MSPE of each, and then computing their standard error.

Table 2 shows that feeding randomly compressed features into any of the nonparametric
methods leads to good predictive performance, while Lasso fails to improve much upon the
null model (not shown here). For both p = 10, 000 and 20, 000, when the swiss roll is cor-
rupted with low noise, CGP performs significantly better than GP, while CBART and CRF
provide competitive performance with GP. Increasing noise in the features results in dete-
riorating performances for all the competitors. CGP is an effective tool to reduce the effect
of noise in the features, but at a tipping point (depending on n) noise distorts the manifold
too much, and CGP starts performing similarly to GP. CRF and CTGP perform much
worse than CGP in high noise scenarios, while CBART produces competitive performance.
Two stage GP (2GP) performs much worse than all the other competitors; perhaps the two
stage procedure is considerably more sensitive to noise. Increasing number of features does
not alter MSPE for CGP significantly in presence of low noise, consistent with asymptotic
results showing posterior convergence rates depend on the intrinsic dimension ofM instead
of p when features are concentrated close to M. In the next section, we will study these
aspects with increasing sample size and noise in the features.

Noise in the feature
.02 .05 .10

p = 10000

CGP 4.090.08 5.490.08 7.030.11
GP 4.710.10 5.630.10 7.090.12
CRF 4.130.11 6.230.09 7.440.11
CBART 3.730.13 6.140.10 7.340.12
CTGP 4.240.14 7.130.11 7.720.14
2GP 5.720.15 6.550.13 7.850.16

p = 20000

CGP 4.430.07 6.210.10 7.280.13
GP 4.860.07 6.250.12 7.180.12
CRF 5.060.11 6.810.11 7.470.13
CBART 4.840.15 6.770.11 7.330.11
CTGP 5.590.11 7.400.11 7.510.15
2GP 6.050.10 6.690.13 7.090.19

Table 2: Performance comparisons for competitors in terms of mean squared prediction
errors (MSPE)

5.1.2 Coverage and Length of PIs

To assess if CGP is well calibrated in terms of uncertainty quantification, we compute cov-
erage and length of 95% predictive intervals (PI) of CGP along with all the competitors.
Although most frequentist methods such as CRF are unable to provide such coverage prob-
abilities in producing point estimates, we present a measure of predictive uncertainty for
those methods following the popular two stage plug-in approach, (i) estimate the regression
function in the first stage; (ii) construct 95% PI based on the normal distribution centered
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on the predictive mean from the regression model with variance equal to the estimated
variance in the residuals. Boxplots for coverage probabilities in all the simulation cases are
presented in Figure 2. Figure 3 presents median lengths of the 95% predictive intervals.

Both these Figures demonstrate that in all the simulation scenarios CGP, uncompressed
GP, 2GP and CBART result in predictive coverage of around 95%, while CRF suffers
from severe under-coverage. The gross under-coverage of CRF is attributed to the overly
narrow predictive intervals. Additionally, CTGP shows some under-coverage, with shorter
predictive intervals than CGP, GP, 2GP or CBART. CGP turns out to be an excellent
choice among all the competitors in fairly broad simulation scenarios. We consider larger
sample sizes and high noise scenarios in the next subsection.
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Figure 2: coverage of 95% PI’s for CGP, GP, CBART, CTGP, CRF, 2GP

5.2 Manifold Regression on Swiss roll for Larger Samples

To assess how the relative performance of CGP changes for larger sample size, we implement
manifold regression on swiss roll using methodologies developed in Section 3. For this
simulation example, a data generation scheme similar to Section 5.1 is used. Ideally, larger
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Figure 3: lengths of 95% PI’s for CGP, GP, CBART, CRF, CTGP, 2GP

sample size should lead to better predictive performance. Therefore, one would expect more
accurate prediction even with higher degree of noise in the features for larger sample size,
as long as there is sufficient signal in the data. To accommodate higher signal than in
Section 5.1, we simulate manifold coordinates as t ∼ U(3π2 ,

9π
2 ), h ∼ U(0, 5) and sample

responses as per (12). We also increase noise variability in the features for all the simulation
settings. Simulation scenarios are described in Table 3.

MSPE of all the competing methods are calculated along with their bootstrap standard
errors and presented in Table 4. Results in Table 4 provide more evidence supporting our
conclusion in Section 5.1. With smaller noise variance, CGP along with other compressed
methods outperform uncompressed GP and 2GP. However, when τ exceeds a certain limit,
the manifold structure is more and more distorted, with performance of all the competitors
worsening. In particular with increasing noise, performance of CGP and GP start becoming
more comparable. On the other hand, SG method faces computational issues for p ∼
10000− 20000 features. Therefore, we select only 500 features without disrupting the noisy
manifold structure. Even with many fewer features, SG performs worse than CGP with
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Simulation sample size (n) no. of features (p) noise in the features (τ)

1 5,000 10,000 .03
2 5,000 20,000 .03
3 5,000 10,000 .06
4 5,000 20,000 .06
5 5,000 10,000 .10
6 5,000 20,000 .10

Table 3: Different Simulation settings for CGP for large n.

MSPE 46.3, 52.2 for τ = 0.03, 0.1 respectively. Our investigation shows that the performance
of SG is quite competitive when p is less than a few dozen. However, as p increases over a few
hundreds, SG starts performing poorly. This is perhaps due to the fact that SG estimates
a large number of poorly identifiable parameters resulting in inaccurate estimation. CGP
with random compression of high dimensional features remarkably reduces the number of
parameters to be estimated. Comparing results from the last section it is quite evident that
with large samples, CGP is able to perform well even with very large number of features and
moderate variance of noise in the features. This shows the effectiveness of CGP for large p
and moderately large n when features are close to lying on a low-dimensional manifold.

In all the simulation scenarios, DSL is the best performer in terms of MSPE, consistent
with the routine use of DSL in large scale settings. However, the performance is extremely
sensitive to the choice of clusters. In real data applications often inaccurate clustering
leads to suboptimal performance, as will be seen in the data analysis. Additionally, we are
not just interested in obtaining a point prediction approach, but want to obtain methods
that provide an accurate characterization of predictive uncertainty. With this in mind, we
additionally examine coverage probabilities and lengths of 95% predictive intervals (PIs).
Boxplots for coverage probabilities of 95% PI’s are presented in Figure 4. Figure 5 presents

Noise in the feature
.03 .06 .10

p = 10, 000

CGP 0.560.06 1.060.03 2.180.08
GP 2.050.32 2.370.35 3.350.42
CRF 1.050.10 2.160.11 3.520.09
CBART 0.690.07 1.720.11 2.790.13
DSL 0.500.07 0.520.03 0.500.03
2GP 3.780.31 3.950.41 4.050.38

p = 20, 000

CGP 1.170.048 2.110.107 2.570.222
GP 1.980.418 2.330.321 2.780.330
CRF 1.460.070 2.760.224 3.880.224
CBART 1.220.092 2.530.151 3.840.192
DSL 0.480.015 0.450.014 0.570.078
2GP 3.840.581 4.100.370 4.530.481

Table 4: MSPE × 0.1 along with the bootstrap sd× 0.1 for all the competitors

lengths of 95% prediction intervals for all the competitors. As expected, CGP, GP, 2GP
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and CBART demonstrate better performance in terms of coverage. However, in low noise
cases CGP and CBART achieve similar coverage with a two fold reduction in the length
of PIs compared to GP or 2GP. CRF, like in the previous section, shows under-coverage
with narrow predictive intervals. The predictive interval for CGP is found to be marginally
wider than CBART with comparable coverage. With high noise, it becomes intractable to
recover the manifold structure and hence performance is affected for all the competitors. It
is observed that with high noise all approaches tend to have wider predictive intervals. DSL
presents overly narrow predictive intervals (not shown here) yielding severe under-coverage.
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Figure 4: coverage of 95% PI’s for CGP, GP, CRF, CBART, 2GP

5.3 Computation Time

One of the major motivations in developing CGP was to improve computational scalability
to large p settings. Clearly, the computational time for nonparametric estimation methods
such as BART, TGP or RF applied to the original data will become notoriously prohibitive
for large p, and hence we focus on comparisons with more scalable methods. The approach
of applying BART, RF and TGP to the compressed features, which is employed in CBART,
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Figure 5: lengths of 95% PI’s for CGP, GP, CBART, CRF, 2GP

CRF and CTGP respectively, is faster to implement. Using R code in a standard server, the
computing time for 2, 000 iterations of CBART for n = 100 and p = 10, 000, 20, 000 are only
7.21, 8.36 seconds, while CGP has run time of 7.48, 8.05 seconds, respectively. Increasing n
moderately, we find CBART and CGP have similar run time. CRF is a bit faster than both
of them, while CTGP has run time 37.64, 38.33 seconds for p = 10, 000, 20, 000 respectively.
For moderate n, 2GP is found to have similar run time as CBART.

With large n, CTGP is impractically slow and hence omitted in the comparison. GP
needs to calculate and store a distance matrix of p features. Apart from the storage bot-
tleneck, the computational complexity is O(n2p). CGP instead proposes calculating and
storing a distance matrix of m compressed features, with a computational complexity of
O(n2m). Computation time for CGP additionally depends on a number of factors, (i)
Gram Schmidt orthogonalization of m rows of m × p matrices, (ii) inverting an mΦ ×mΦ

matrix, (iii) multiplying n × p and p × m matrices. Along with these three steps, one
requires multiplying mΦ × n matrix Φ with n × n matrix K1 at each MCMC iteration
that incurs a computation complexity of order n2mΦ. Typically the computation complex-
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ity is dominated by n2 and hence scaling with sample size is computationally feasible for
about n ∼ 10000 observations. For much larger n, one can resort to distributed GP based
approaches as mentioned in Section 3. On the other hand, SPGP with dimensionality re-
duction (SG method) introduces exorbitantly large number of parameters even for moderate
p.

Figure 6 shows the computational speed comparison between CGP, GP, CBART and
CRF for various n and p. Computational speed is recorded assuming existence of a num-
ber of processors on which parallelization can be executed. As n increases, CGP enjoys
substantial computational advantage over competitors. The computational advantage is
especially notable over CBART and GP. Run times of DSL are also recorded for n = 5, 000
and p = 10, 000, 15, 000, 20, 000, 25, 000, 30, 000 and they are 449, 599, 737, 945, 1158 sec-
onds, respectively. Alternatively, 2GP involves creating adjacency matrices followed by
an eigen-decomposition of an n × n matrix. Both these steps are computationally de-
manding. We find 2GP takes 602, 723, 856, 983, 1108 seconds to run for n = 5000 and
p = 10000, 15000, 20000, 25000, 30000, respectively. Therefore, CGP can outperform even a
simple two stage estimation procedure such as DSL in terms of computational speed.

6. Application to Face Images

In our simulation examples, the underlying manifold is three dimensional and can be directly
visualized. In this section we present an application in which both the dimension and the
structure of the underlying manifold is unknown. The dataset consists of 698 images of
an artificial face and is referred to as the Isomap face data (Tenenbaum et al., 2000). A
few such representative images are presented in Figure 7. Each image is labeled with three
different variables: illumination-, horizontal- and vertical-orientation. Two dimensional
projections of the images are presented in the form of 64 × 64 pixel matrices. Intuitively,
a limited number of additional features are needed for different views of the face. This is
confirmed by the recent work of Levina and Bickel (2004); Aswani et al. (2011) where the
intrinsic dimensionality is estimated to be small from these images. More details about the
dataset can be found in http://isomap.stanford.edu/datasets.html.

We apply CGP and all the competitors to the dataset to assess relative performances.
To set up the regression problem, we consider horizontal pose angles (vary in [−750, 750])
of the images, after standardization, as the responses. The features are taken 64 × 64 =
4096 dimensional vectorized images for each sample. To simulate more realistic situations,
N(0, τ2) noise is added to each pixel of the images, with varying τ , to make predictive
inference more challenging from the noisy images. We carry out random splitting of the data
into n = 648 training cases and npred = 50 test cases and run all the competitors to obtain
predictive inference in terms of MSPE, length and coverage of 95% predictive intervals. To
avoid spurious inference due to small validation set, this experiment is repeated 50 times.

Table 5 presents MSPE for all the competing methods averaged over 50 experiments
along with their standard errors computed using 100 bootstrap samples. Note that,
because of the standardization, the null model yields MSPE 1. It is clear from Table 5 that
CGP along with its compressed competitors explain a lot of variation in the response. DSL
and 2GP are the worst performers in terms of MSPE. This is consistent with our experience
that, in the presence of a complex and unknown manifold structure along with noise, DSL
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Figure 6: Computational time in seconds for CGP, GP, CBART, CRF against log of the
number of features.

can be unreliable relative to CGP which tends to be more robust to the type of manifold
and noise level. GP also performs much worse than CGP and other compressed competitors
especially in presence of small amount of noise in the features. As the noise in the features
increases, performance of CGP and GP are found to be comparable. On the other hand
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Figure 7: Representative images from the Isomap face data.

τ CGP GP CBART CRF DSL 2GP

0.03 0.070.004 0.850.054 0.070.005 0.060.009 0.700.010 0.980.001
0.06 0.080.008 0.750.043 0.090.008 0.100.012 0.780.015 0.940.022
0.10 0.090.003 0.680.041 0.110.006 0.110.004 0.830.024 0.980.001

Table 5: MSPE and standard error (computed using 100 bootstrap samples) for all the
competitors over 50 replications

SG implemented with only a subset of 500 features yields much worse performance (MSPE
0.97, 0.98 for τ = 0.1, 0.03) respectively.

To see how well calibrated these methods are, Figure 8 provides coverage probabilities
along with the lengths of predictive intervals for all the competitors. It is evident from the
Figure that CGP, CBART, GP and 2GP yield excellent coverage. However, for CGP and
CBART this coverage is achieved with much narrower predictive intervals compared to GP
and 2GP. On the other hand, both CRF and DSL produce extremely narrow predictive
intervals resulting in severe under-coverage. In fact for τ = 0.03, 0.06, 0.10, length of 95%
predictive intervals for DSL are 0.13, 0.19, 0.21 respectively. Therefore, both in terms of
MSPE and predictive coverage, CGP does a good job. More importantly, these results
serve as a testimony of the robust performance demonstrated by compressed Bayesian non-
parametric methods (CGP being one of them) even in the presence of unknown and complex
manifold structure in the features.
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Figure 8: Left panel: Boxplot for coverage of 95% predictive intervals over 50 replications;
Right panel: Boxplot for length of 95% predictive intervals over 50 replications
for CGP, GP, 2GP, CBART, CRF. In the left and right panels y-axis corresponds
to the coverage and length respectively.

7. Discussion

The overarching goal of this article is to develop nonparametric regression methods that
scale to large/very large p and/or moderately large n ∼ 5000 when features lie on a noise
corrupted manifold. The statistical and machine learning literature is somewhat limited in
robust and flexible methods that can accurately provide predictive inference for large p with
moderately large sample size, while taking into account the geometric structure. We de-
velop a method based on nonparametric low-rank Gaussian process methods combined with
random feature compression to accurately characterize predictive uncertainties quickly, by-
passing the need to estimate the underlying manifold. The computational template exploits
model averaging to limit sensitivity of the inference to the specific choices of the random
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projection matrix Ψ. The proposed method is also guaranteed to yield minimax optimal
convergence rates.

There are many future directions motivated by our work. For example, the present work
uses Banerjee et al. (2013) that is less suitable for massive n. It is quite straightforward
to extend CGP to massive n by directly applying recently developed approaches for dis-
tributed computation in GP models (Deisenroth and Ng, 2015). Also the present work is
not able to estimate the true dimensionality of the noise corrupted manifold. Arguably, a
nonparametric method that can simultaneously estimate the intrinsic dimensionality of the
manifold in the ambient space would improve performance both theoretically and practi-
cally. One possibility is to simultaneously learn the marginal distribution of the features,
accounting for the low-dimensional structure. Other possible directions include adapting to
massive streaming data where inference is to be made online. Although random compres-
sion both in n and p provides substantial benefit in terms of computation and inference, it
might be worthwhile to learn the matrices Ψ, Φ while attempting to limit the associated
computational burden.
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