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Abstract

In this paper, we study flat and hierarchical classification strategies in the context of large-
scale taxonomies. Addressing the problem from a learning-theoretic point of view, we
first propose a multi-class, hierarchical data dependent bound on the generalization error
of classifiers deployed in large-scale taxonomies. This bound provides an explanation to
several empirical results reported in the literature, related to the performance of flat and
hierarchical classifiers. Based on this bound, we also propose a technique for modifying
a given taxonomy through pruning, that leads to a lower value of the upper bound as
compared to the original taxonomy. We then present another method for hierarchy pruning
by studying approximation error of a family of classifiers, and derive from it features used
in a meta-classifier to decide which nodes to prune. We finally illustrate the theoretical
developments through several experiments conducted on two widely used taxonomies.

Keywords: Large-scale classification, Hierarchical classification, Taxonomy adaptation,
Rademacher complexity, Meta-learning

1. Introduction

With the rapid surge of digital data in the form of text and images, the scale of problems
being addressed by machine learning practitioners is no longer restricted to the size of
training and feature sets, but is also being quantified by the number of target classes.
Classification of textual and visual data into a large number of target classes has attained
significance particularly in the context of Big Data. This is due to the tremendous growth in
data from various sources such as social networks, web-directories and digital encyclopedia.
Directory Mozilla, DMOZ (www.dmoz.org), Wikipedia and Yahoo! Directory (www.dir.
yahoo.com) are instances of such large scale textual datasets which consist of millions of
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c©2016 Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini, Cécile Amblard.



Babbar, Partalas, Gaussier, Amini and Amblard

Root

ArtsArts SportsSports

Movies Video Tennis Soccer

Players Fun

Arts

Theater Music

Drama Opera Pop Rock

Figure 1: DMOZ and Wikipedia Taxonomies

documents that are distributed among hundreds of thousand target categories. Directory
Mozilla, for instance, lists over 5 million websites distributed among close to 1 million
categories, and is maintained by close to 100,000 editors. In the more commonly used
Wikipedia, which consists of over 30 million pages, documents are typically assigned to
multiple categories which are shown at the bottom of each page. The Medical Subject
Heading (MESH) 1 hierarchy of the National Library of Medicine is another instance of a
large-scale classification system in the domain of life sciences. The target classes in such
large-scale scenarios typically have an inherent hierarchical structure among themselves.
DMOZ is in the form of a rooted tree where a traversal of path from root-to-leaf depicts
transformation of semantics from generalization to specialization. More generally parent-
child relationship can exist in the form of directed acyclic graphs, as found in taxonomies
such as Wikipedia. The tree and DAG relationship among categories is illustrated for
DMOZ and Wikipedia taxonomies in Figure 1.

Due to the sheer scale of the task of classifying data into target categories, there is a
definite need to automate the process of classification of websites in DMOZ, encyclopedia
pages in Wikipedia and medical abstracts in the MESH hierarchy. However, the scale of
the data also poses challenges for the classical techniques that need to be adapted in order
to tackle large-scale classification problems. In this context, one can exploit the taxonomy
of classes as in the divide-and-conquer paradigm in order to partition the input space.
Various classification techniques have been proposed for deploying classifiers in such large-
scale scenarios, which differ in the way they exploit the given taxonomy. These can be
broadly divided into four main categories :

• Hierarchical top-down strategy with independent classification problems at each node,

• Hierarchical top-down strategy on a simplified hierarchy, such as by partially flattening
the hierarchy,

• Ignoring the hierarchy information altogether and using flat classification that is,
training one classifier for each target class, and

• Using the taxonomy information for an appropriate loss-function design such as by
considering the distance between the true and predicted target class label.

In large-scale classification involving tens of thousand of target categories, the goal of a
machine learning practitioner is to achieve the best trade-off among the various metrics

1. https://www.nlm.nih.gov/mesh/
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of interest. Flat and top-down hierarchical classification perform significantly differently
on these metrics of interest which primarily include prediction accuracy, computational
complexity of training, space complexity of the trained model and complexity of prediction.

1.1 Prediction Accuracy

Our focus in this work is primarily on the prediction accuracy when dealing with large-
scale category systems. Hierarchical models for large scale classification, such as top-down
Pachinko-machine based methods, suffer from the drawback that they have to make many
decisions prior to reaching a final category, which leads to the error propagation phenomenon
causing a decrease in accuracy. This is mainly due to the fact that the top level classes in
large scale taxonomies are quite general. For example, Business and Shopping categories
in DMOZ (not shown in Figure 1 above) are likely to be confused while classifying a new
document. Moreover, since the classification is not recoverable, it leads to the phenomenon
of error propagation and hence degrades accuracy at the leaf level. On the other hand, flat
classifiers rely on a single decision including all the final categories, a single decision that is
however difficult to make as it involves many categories, which are potentially unbalanced.
It is thus very difficult to assess which strategy is better and there is no consensus, at the
time being, on to which approach, flat or hierarchical, should be preferred on a particular
category system. Furthermore, we explore the methods which learn to adapt the given
hierarchy of categories such that the resulting hierarchy leads to better classification in the
top-down Pachinko-machine based method. We also show that when dealing with large
number of power-law distributed categories, taxonomy adaptation by pruning some nodes
leads to better classification than building taxonomies from scratch.

1.2 Computational Complexity of Training and Prediction

When dealing with large-scale category systems, flat and hierarchical classification tech-
niques exhibit significant difference in their performance when compared on the basis of
computational complexity of training and prediction. In the pioneering work of Liu et al.
(2005), an extensive comparison of training time complexity for flat and hierarchical classi-
fication has been studied. Using the power-law distribution of documents among categories,
the authors analytically and empirically demonstrate that the training time of top-down
Pachinko machine classification strategy is orders of magnitude better than that for flat
classification.

In terms of complexity of prediction for flat classification when dealing with K target
categories, for every test instance one needs to evaluate the inner-product with O(K) weight
vectors in . This is much higher than the logarithmic computational complexity of prediction
in a top-down Pachinko-machine where only O(log(K)) weight-vectors need to be evaluated.
In view of this advantage for tree-based classifiers, there has been a surge in research works
on the techniques for automatically building taxonomy of target categories (Bengio et al.,
2010; Gao and Koller, 2011; Deng et al., 2011; Agrawal et al., 2013). The focus in these
works is to show that by building such tree-based taxonomy of categories, one can reduce
the complexity of prediction, while still maintaining good rates for accuracy of prediction.

Since the computational complexity of training and prediction has been studied in the
above works, and it has been already shown that top-down methods are more favorable
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as compared to flat method, we do not focus on these aspects explicitly in this paper.
Furthermore, in our recent work Babbar et al. (2014a), we present a quantitative analysis
of the fit to power-law distribution of documents among categories in large-scale category
systems, and show that space complexity of top-down classification methods is lower than
that of flat methods under conditions that typically hold in practice.

2. Contributions and Related Work

2.1 Contributions

One of the research challenges we address in this work is the study of flat versus hierarchical
classification in large-scale taxonomies from a learning-theoretic point of view, and the
consistency of the empirical risk minimization principle for the Pachinko-machine based
methods. This theoretical analysis naturally leads to a model selection problem. We extend
and elaborate further on our recent work Babbar et al. (2013a) to address the problem of
choosing between the two strategies. We introduce bounds based on Rademacher complexity
for the generalization errors of classifiers deployed in large-scale taxonomies. These bounds
explicitly demonstrate the trade-off that both flat and hierarchical classifiers face in large-
scale taxonomies.

Even though the given human-built taxonomies such as DMOZ and Yahoo! Directory
provide a good starting point to capture the underlying semantics of the target categories,
these may not be optimal, especially in the presence of large number of power-law distributed
categories. In the second part of our contributions, we then propose a strategy for taxonomy
adaptation which modifies the given taxonomy by pruning nodes in the tree to output a new
taxonomy which is better suited for the classification problem. In this part, we exploit the
generalization error bound developed earlier to build a criterion for Support Vector Machine
classifier, so as to choose the nodes to prune in a computationally efficient manner. We also
empirically show that adapting a given taxonomy leads to better generalization performance
as compared to the original taxonomy and the ones obtained by taxonomy construction
methods (Beygelzimer et al., 2009b; Choromanska and Langford, 2014). This difference is
particularly magnified in category systems in which categories are power-law distributed. As
discussed extensively in the work of Liu et al. (2005), power-law distribution of documents
among categories is a common phenomenon in most naturally occurring category systems
such as Yahoo! directory and Directory Mozilla.

In the third part, we present a more comprehensive approach for pruning the given
hierarchy that is applicable to both discriminative and generative classifiers. Towards this
end, we cover the Logistic Regression and Naive Bayes classifiers and present approxima-
tion error based bounds for their multi-class versions. Based on these bounds, we then
propose a meta-learning strategy for hierarchy pruning applicable for both discriminative
and generative classifiers. We perform a three-step procedure towards achieving hierarchy
pruning, (i) we make classifier specific theoretical analysis to identify the key features which
determine the variation in classification accuracy upon flattening, (ii) based on the features
obtained in the step above, we train a meta-classifier on a validation set, and finally, (iii)
the meta-classifier when presented with an unseen hierarchy and the corresponding training
data modifies it to output the desired hierarchy which leads to better classification accuracy.
Contrary to Dekel (2009) that reweighs the edges in a taxonomy through a cost sensitive
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loss function to achieve this goal, our simple pruning strategy modifies the taxonomy in an
explicit way.

Lastly, we empirically demonstrate and verify the theoretical findings for flat and hi-
erarchical classification on several large-scale taxonomies extracted from DMOZ and the
International Patent Classification (IPC) collections. The experimental results are in line
with results reported in previous studies, as well as with our theoretical developments. Sec-
ondly, we also study the impact of the two methods proposed for taxonomy adaptation by
pruning the hierarchy. Lastly, these strategies are also empirically compared against those
that build taxonomies from scratch such as LOMTree (Choromanska and Langford, 2014)
and FilterTree (Beygelzimer et al., 2009b).

2.2 Related Work

Large-scale classification, involving tens of thousand target categories, has assumed signifi-
cance in the era of Big data. Many approaches for classification of data in large number of
target categories have been proposed in the context of text and image classification. These
approaches differ in the manner in which they exploit the semantic relationship among cat-
egories. In similar vein, open challenges such as Large-scale Hierarchical Text Classification
(LSHTC) (Partalas et al., 2015) and Large Scale Visual Recognition Challenge (ILSVRC)2

(Russakovsky et al., 2014) have been organized in recent years.

Some of the earlier works on exploiting hierarchy among target classes for the purpose
of text classification has been studied by Koller and Sahami (1997) and Dumais and Chen
(2000). These techniques use the taxonomy to train independent classifiers at each node in
the top-down Pachinko Machine manner. Parameter smoothing for Naive Bayes classifier
along the root to leaf path was explored by McCallum et al. (1998). The work by Liu et al.
(2005) is one of first studies to apply hierarchical SVM to the scale with over 100,000 cate-
gories in Yahoo! directory. More recently, other techniques for large scale hierarchical text
classification have been proposed. Prevention of error propagation by applying Refined Ex-
perts trained on a validation was proposed by Bennett and Nguyen (2009). In this approach,
bottom-up information propagation is performed by utilizing the output of the lower level
classifiers in order to improve the classification of top-level classifiers. Another approach
to control the propagation of error in tree-based classifiers is to explore multiple root-to-
leaf paths as in beam-search (Norvig, 1992). In this respect, Fleuret and Geman (2001);
Sun et al. (2013) proposed such approaches. However, this increases the computationally
complexity of prediction especially in the presence of large-number of target categories and
hence these methods may not scale well for tens of thousand target categories. Deep Clas-
sification by Xue et al. (2008) proposes hierarchy pruning to first identify a much smaller
subset of target classes. Prediction of a test instance is then performed by re-training a
Naive Bayes classifier on the subset of target classes identified from the first step.

Using the taxonomy in the design of loss function for maximum-margin based approaches
have been proposed by Cai and Hofmann (2004); Dekel et al. (2004), where the degree of
penalization in mis-classification depends on the distance between the true and predicted
class in the hierarchy tree. Another recent approach by Dekel (2009) which proposes to make
the loss function design robust to class-imbalance and arbitrariness problems in taxonomy

2. http://www.image-net.org/challenges/LSVRC/
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structure. However, these approaches were applied to the datasets in which the number
of categories were limited to a few hundreds. Bayesian modeling of large scale hierarchical
classification has been proposed by Gopal et al. (2012) in which hierarchical dependencies
between the parent-child nodes are modeled by centering the prior of the child node at
the parameter values of its parent. Recursive-regularization based strategy for large-scale
classification has been proposed by Gopal and Yang (2013). The approaches presented in
the two studies above attempt to solve the problem wherein the number of categories are
in the range of tens of thousands. In both these works, the authors employ the intuition
that the weight vectors of a parent-child pair of nodes should be close to each other. This
can be enforced in the form of a prior in the Bayesian approach (Gopal et al., 2012) and
as a regularizer in the recursive regularization approach (Gopal and Yang, 2013). However,
on most of the large-scale datasets used in these papers, the accuracy performance (Micro-
F1) of the proposed approaches is close to the flat classification scheme for which ready
to use packages such as Liblinear are available. Another study related to our work is the
one of Narasimhan et al. (2015) that studies the consistency of hierarchical classification
algorithms with respect to the tree distance metric on the hierarchy tree of class labels.

Hierarchy simplification by flattening entire layer in the hierarchy has been studied
from an empirical view-point by Wang and Lu (2010); Malik (2009). These strategies
do not provide any theoretical justification for applying this procedure. Moreover, they
offer no clear guidelines regarding which layer in the hierarchy one should flatten. In
contrast, our strategy presented in this paper for taxonomy adaptation has the advantage
that, (i) it is based on a well-founded theoretical criteria, and (ii) it is applied in a node-
specific sense rather than to an entire layer. This strategy is also similar in spirit to the
approach presented in our another recent study Babbar et al. (2013b) which is motivated
from Perceptron Decision Trees (Bennett et al., 2000). The study by Weinberger and
Chapelle (2008) introduces a slightly different simplification of the hierarchy of classes, and
it achieves this by an embedding the classes and documents into a common space. Our
recent work Babbar et al. (2013b) for hierarchy simplification by pruning nodes in a large-
scale taxonomy is similar in spirit to the approach presented in this paper. Semi-supervised
approach for hierarchical classification in incomplete hierarchies has been presented in the
recent work of Dalvi and Cohen (2014). A post-processing approach for improving rare
categories detection in large-scale power-law distributed category systems is discussed in
the work by Babbar et al. (2014b).

Apart from accuracy, other important factors while evaluating the classification strate-
gies for large scale classification are training and prediction speed. Learning the hierarchy
tree from large number of classes in order to make faster prediction has also attained signif-
icance as explored in the recent works by Bengio et al. (2010); Beygelzimer et al. (2009a);
Gao and Koller (2011); Choromanska and Langford (2014). The aim in these approaches
is to achieve better prediction speed while maintaining the same classification accuracy as
flat classification. On the other end of the spectrum are flat classification techniques such
as employed by Perronnin et al. (2012) which ignore the hierarchy structure altogether.
These strategies are likely to perform well for balanced hierarchies with sufficient train-
ing instances per target class and not so well in truly large-scale taxonomies which suffer
from the problem of rare categories. In this respect, our work is unique in the sense that
by performing selective hierarchy pruning we improve accuracy over the fully hierarchical
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strategy. Furthermore, since the proposed pruning method maintains the overall hierar-
chical structure, it enjoys the computational advantages of better training and prediction
speed.

The remainder of the paper is organized as follows: In Section 2.2 we review the recently
proposed approaches in the context of large-scale hierarchical text classification. We intro-
duce the notations used in Section 3 and then study flat versus hierarchical strategies by
studying the generalization error bounds for classification in large-scale taxonomies. Taxon-
omy adaptation by pruning the hierarchy using the developed generalization error analyses
is given in Section 4. Approximation error for multi-class versions of Naive Bayes and Lo-
gistic Regression classifiers are presented in Section 5.1 and Section 5.2 respectively, and
the meta-learning based hierarchy pruning method is presented in Section 5.3. Section 6
illustrates these developments via experiments and finally, Section 7 concludes this study.

3. Flat versus Hierarchical Classification

In this section, we present the generalization error analysis for top-down hierarchical clas-
sification using the notion of Rademacher complexity for measuring the complexity of a
function class. This will motivate a criterion for choosing between flat and hierarchical
classification for a given category system. More importantly, the criterion will be based on
quantities that can computed from the training data.

3.1 A hierarchical Rademacher data-dependent bound

Let X ⊆ Rd be the input space and let V be a finite set of class labels. We further assume
that examples are pairs (x, v) drawn according to a fixed but unknown distribution D over
X×V . In the case of hierarchical classification, the hierarchy of classesH = (V,E) is defined
in the form of a rooted tree, with a root ⊥ and a parent relationship π : V \ {⊥} → V
where π(v) is the parent of node v ∈ V \ {⊥}, and E denotes the set of edges with parent
to child orientation. For each node v ∈ V \ {⊥}, we further define the set of its siblings
S(v) = {v′ ∈ V \{⊥}; v 6= v′∧π(v) = π(v′)} and its children D(v) = {v′ ∈ V \{⊥};π(v′) =
v}. The nodes at the intermediary levels of the hierarchy define general class labels while
the specialized nodes at the leaf level, denoted by Y = {y ∈ V : @v ∈ V, (y, v) ∈ E} ⊂ V ,
constitute the set of target classes. Finally for each class y in Y we define the set of its
ancestors P(y) defined as

P(y) = {vy1 , . . . , v
y
ky

; vy1 = π(y) ∧ ∀l ∈ {1, . . . , ky − 1}, vyl+1 = π(vyl ) ∧ π(vyky) =⊥}

For classifying an example x, we consider a top-down classifier making decisions at each
level of the hierarchy, this process sometimes referred to as the Pachinko machine selects
the best class at each level of the hierarchy and iteratively proceeds down the hierarchy. In
the case of flat classification, the hierarchy H is ignored, Y = V , and the problem reduces
to the classical supervised multi-class classification problem.

Our main result is the following theorem which provides a data-dependent bound on
the generalization error of a top-down multi-class hierarchical classifier. We consider here
kernel-based hypotheses, with K : X × X → R a PDS (positive definite symmetric) kernel
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and Φ : X → H its associated feature mapping function, defined as :

FB = {f : (x, v) ∈ X × V 7→ 〈Φ(x),wv〉 |W = (w1 . . . , w|V |), ||W||H ≤ B}

where W = (w1 . . . , w|V |) is the matrix formed by the |V | weight vectors defining the kernel-

based hypotheses, 〈., .〉 denotes the dot product, and ||W||H =
(∑

v∈V ||wv||2
)1/2

is the L2
H

group norm of W. We further define the following associated function class:

GFB
= {gf : (x, y) ∈ X × Y 7→ min

v∈P(y)
(f(x, v)− max

v′∈S(v)
f(x, v′)) | f ∈ FB}

For a given hypothesis f ∈ FB, the sign of its associated function gf ∈ GFB
directly

defines a hierarchical classification rule for f as the top-down classification scheme outlined
before simply amounts to: assign x to y iff gf (x, y) > 0. The learning problem we address
is then to find a hypothesis f from FB such that the generalization error of gf ∈ GFB

,

E(gf ) = E(x,y)∼D

[
1gf (x,y)≤0

]
, is minimal (1gf (x,y)≤0 is the 0/1 loss, equal to 1 if gf (x, y) ≤ 0

and 0 otherwise).
The following theorem sheds light on the trade-off between flat versus hierarchical clas-

sification. The notion of function class capacity used here is the empirical Rademacher
complexity (Bartlett and Mendelson, 2002; Meir and Zhang, 2003).

Theorem 1 Let S = ((x(i), y(i)))mi=1 be a dataset of m examples drawn i.i.d. according to
a probability distribution D over X × Y, and let A be a Lipschitz function with constant L
dominating the 0/1 loss; further let K : X ×X → R be a PSD (positive semi-definite) kernel
and let Φ : X → H be the associated feature mapping function. Assume that there exists
R > 0 such that K(x,x) ≤ R2 for all x ∈ X . Then, for all 1 > δ > 0, with probability at
least (1 − δ) the following hierarchical multi-class classification generalization bound holds
for all gf ∈ GFB

:

E(gf ) ≤ 1

m

m∑
i=1

A(gf (x(i), y(i))) +
8BRL√

m

∑
v∈V \Y

|D(v)|(|D(v)| − 1) + 3

√
ln(2/δ)

2m
(1)

where |D(v)| denotes the number of children of node v.

Proof Exploiting the fact that A dominates the 0/1 loss and using the Rademacher data-
dependent generalization bound presented in Theorem 4.9 of (Shawe-Taylor and Cristianini,
2004), one has:

E(x,y)∼D

[
1gf (x,y)≤0 − 1

]
≤ E(x,y)∼D [A ◦ gf (x, y)− 1]

≤ 1

m

m∑
i=1

(A(gf (x(i), y(i)))− 1) + R̂m((A − 1) ◦ GFB
,S) + 3

√
ln(2/δ)

2m

where R̂m denotes the empirical Rademacher complexity of (A−1)◦GFB
on S. As x 7→ A(x)

is a Lipschtiz function with constant L and (A − 1)(0) = 0, we further have:

R̂m((A − 1) ◦ GFB
,S) ≤ 2LR̂m(GFB

,S)
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with:

R̂m(GFB
,S) = Eσ

[
sup

gf∈GFB

∣∣∣∣∣ 2

m

m∑
i=1

σi gf (x(i), y(i))

∣∣∣∣∣
]

= Eσ

[
sup
f∈FB

∣∣∣∣∣ 2

m

m∑
i=1

σi min
v∈P(y(i))

(f(x(i), v)− max
v′∈S(v)

f(x(i), v′))

∣∣∣∣∣
]

where σis are independent uniform random variables which take value in {−1,+1} and are
known as Rademacher variables.

Let us define the mapping c from FB ×X × Y into V × V as:

c(f,x, y) = (v, v′) ⇒ (f(x, v′) = max
v′′∈S(v)

f(x, v′′))

∧ (f(x, v)− f(x, v′) = min
u∈P(y)

(f(x, u)− max
u′∈S(u)

f(x, u′)))

This definition is similar to the one given by Guermeur (2010) for flat multi-class classifi-
cation. Then, by construction of c:

R̂m(GFB
,S) ≤ 2

m
Eσ

 sup
f∈FB

∑
(v,v′)∈V 2,v′∈S(v)

∣∣∣∣∣∣
∑

i:c(f,x(i),y(i))=(v,v′)

σi(f(x(i), v)− f(x(i), v′))

∣∣∣∣∣∣


By definition, f(x(i), v) − f(x(i), v′) = 〈wv − wv′ ,Φ(x(i))〉 and using Cauchy-Schwartz in-
equality:

R̂m(GFB
,S) ≤ 2

m
Eσ

 sup
||W||H≤B

∑
(v,v′)∈V 2,v′∈S(v)

∣∣∣∣∣∣〈wv −wv′ ,
∑

i:c(f,x(i),y(i))=(v,v′)

σiΦ(x(i))〉

∣∣∣∣∣∣


≤ 2

m
Eσ

 sup
||W||H≤B

∑
(v,v′)∈V 2,v′∈S(v)

‖wv −wv′‖H

∥∥∥∥∥∥
∑

i:c(f,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H


≤ 4B

m

∑
(v,v′)∈V 2,v′∈S(v)

Eσ

∥∥∥∥∥∥
∑

i:c(f,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H


9
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Using Jensen’s inequality, and as, ∀i, j ∈ {l|c(f,x(l), y(l)) = (v, v′)}2, i 6= j,Eσ [σiσj ] = 0, we
get:

R̂m(GFB
,S) ≤ 4B

m

∑
(v,v′)∈V 2,v′∈S(v)

Eσ

∥∥∥∥∥∥
∑

i:c(f,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
2

H

1/2

=
4B

m

∑
(v,v′)∈V 2,v′∈S(v)

 ∑
i:c(f,x(i),y(i))=(v,v′)

∥∥∥Φ(x(i))
∥∥∥2

H

1/2

=
4B

m

∑
(v,v′)∈V 2,v′∈S(v)

 ∑
i:c(f,x(i),y(i))=(v,v′)

K
(
x(i),x(i)

)1/2

≤ 4B

m

∑
(v,v′)∈V 2,v′∈S(v)

(
mR2

)1/2
=

4BR√
m

∑
v∈V \Y

|D(v)|(|D(v)| − 1)

Plugging this bound into the first inequality yields the desired result. �
This generalization bound proves the consistency of the ERM principle for the Pachinko-

machine based method. Further, for flat multiclass classification, we recover the bounds by
Guermeur (2010) by considering a hierarchy containing a root node with as many children as
there are categories. Note that the definition of functions in GFB

subsumes the definition of
the margin function used for the flat multiclass classification problems by Guermeur (2010),
and that the factor 8L in the complexity term of the bound, instead of 4 by Guermeur (2010),
is due to the fact that we are using an L-Lipschitz loss function dominating the 0/1 loss in
the empirical Rademacher complexity. Krishnapuram et al. (2005) they provide PAC-Bayes
bounds, different to ours, for Bayes Voting classifiers and Gibbs classifier under a PAC-Bayes
setup (McAllester, 1998; Seeger, 2003). Lastly, Bartlett et al. (2005) have proposed tighter
bounds using local Rademacher complexities. Using such bounds would lead to replace
the term involving the complexity of the hierarchy in Theorem 1 by a term involving the
fixed point of a sub-root function that upper bounds local Rademacher averages. Such
a replacement, if it can lead to tighter bounds under some additional conditions, would
however miss the explanation provided below on the behaviors of flat and hierarchical
classifiers, an explanation that will be confirmed experimentally.

Flat vs hierarchical classification in large-scale taxonomies. The generalization
error is controlled in inequality (1) by a trade-off between the empirical error and the
Rademacher complexity of the class of classifiers. The Rademacher complexity term favors
hierarchical classifiers over flat ones, as any split of a set of category of size K in p parts
K1, · · · ,Kp (

∑p
i=1Ki = K) is such that

∑p
i=1K

2
i ≤ K2. On the other hand, the empirical

error term is likely to favor flat classifiers vs hierarchical ones, as the latter rely on a series
of decisions (as many as the length of the path from the root to the chosen category in Y)
and are thus more likely to make mistakes. This fact is often referred to as the propagation
error problem in hierarchical classification.

10
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On the contrary, flat classifiers rely on a single decision and are not prone to this
problem (even though the decision to be made is harder). When the classification problem
in Y is highly unbalanced, then the decision that a flat classifier has to make is difficult;
hierarchical classifiers still have to make several decisions, but the imbalance problem is less
severe on each of them. So, in this case, even though the empirical error of hierarchical
classifiers may be higher than the one of flat ones, the difference can be counterbalanced by
the Rademacher complexity term, and the bound in Theorem 1 suggests that hierarchical
classifiers should be preferred over flat ones.

On the other hand, when the data is well balanced, the Rademacher complexity term
may not be sufficient to overcome the difference in empirical errors due to the propagation
error in hierarchical classifiers; in this case, Theorem 1 suggests that flat classifiers should
be preferred to hierarchical ones. These results have been empirically observed in different
studies on classification in large-scale taxonomies and are further discussed in Section 6.

Similarly, one way to improve the accuracy of classifiers deployed in large-scale tax-
onomies is to modify the taxonomy by pruning (sets of) nodes (Wang and Lu, 2010). By
doing so, one is flattening part of the taxonomy and is once again trading-off the two terms
in inequality (1): pruning nodes leads to reduce the number of decisions made by the hier-
archical classifier while maintaining a reasonable Rademacher complexity. Motivated from
the Rademacher-based generalization error bound presented in Theorem 1, we now propose
a method for pruning nodes of the given taxonomy. The output of this procedure is a new
taxonomy which leads to improvement in classification accuracy when used for top-down
classification.

4. Hierarchy Pruning

In this section, we present a strategy aiming at adapting the given hierarchy of classes by
pruning some nodes in the hierarchy. An example of node pruning is shown in Figure 2.
The rationale and motivation behind adapting the given hierarchy H = (V,E) to the set of
input/output pair (x, y) is that

• Large-scale taxonomies, such as DMOZ and Yahoo! Directory, are designed with an
intent of better user-experience and navigability, and not necessarily for the goal of
classification,

• Taxonomy design is subject to certain degree of arbitrariness based on personal choices
and preferences of the editors. Therefore, many competing taxonomies may exist, and

• The large-scale nature of such taxonomies poses difficulties in manually designing
good taxonomies for classification.

The problem of pruning a hierarchy can be seen as a structure learning problem, where
one wants to learn a simplified structure from a given one. The main difficulty in solving
this problem is to identify the important features on which to base the decision to prune
a node or not. We first present in this section a straightforward strategy that behaves
well in practice but is nevertheless computationally expensive, prior to propose a ”lighter”
strategy based on the previous results. We will, in the next section (Section 5), introduce
new theoretical results that will help us identify important features for node pruning, and

11
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... ...

Pruning

Figure 2: The pruning procedure; the node in black is replaced by its children. In the figure
on the left, the gray nodes represent the siblings or sisters of node in black.

on which we will develop a greedy procedure to simplify a given hierarchy. The rationale
for a greedy approach here is that optimal pruning would require evaluations of 2k possible
prunings for k siblings, which is infeasible in practice.

4.1 Hierarchy Pruning based on validation estimate

The challenge in the pruning procedure is to identify promising nodes which when pruned
lead to improvement in classification accuracy. One of the simplest methods to identify
such nodes is by using a validation set to check if pruning a node improves classification
accuracy on that set by comparing it with accuracy obtained on the original taxonomy.
This can also be interpreted as follows:

Whether to prune a node v? =

{
Yes If classification improves on the validation set
No otherwise

Algorithm 1 Hierarchy pruning based on validation estimate

Require: A hierarchy G, Training set S and a validation set S ′
1: Train SVM classifier at each node of the tree G using the training set S
2: Evaluate the accuracy of the classifier-cascade G on the validation set
3: for v ∈ V do
4: Prune the node v and replace it by its children
5: Re-train SVM classifier at the impacted node of the tree G′
6: Evaluate the accuracy of the classifier-cascade G′ on the validation set
7: if Cross-validation accuracy is higher on G′ as compared to G then
8: Prune the node v
9: else

10: Do not prune the node v
11: end if
12: end for
13: return Pruned taxonomy G′

This simple strategy is algorithmically presented in Algorithm 1. In terms of prediction
accuracy, this method for pruning works reasonably well, however its main disadvantages
are the computational complexity and lack of generalizability to new but somewhat related

12



Learning Taxonomy Adaptation in Large-scale Classification

taxonomies. In section 6, we also present experimental results obtained by this pruning
strategy vis-à-vis other pruning methods presented later in this paper.

Computationally, this method requires (i) a trained cascade of top-down classifiers, (ii)
for every pruned node, re-training the parent of the pruned node, and (iii) for every such
node, evaluating the top-down performance on the validation set, which involves traversing
the root-to-leaf path of classifier evaluation along the taxonomy. Furthermore, the steps (ii)
and (iii) are to be repeated for every pruned node. Let Ctd−cas denotes the computational
complexity for training the cascade, Cv denotes the complexity for re-training of the parent
node after pruning the node v, and Cval denotes the complexity of evaluating the validation
set. Let |V |p denote the number of pruned nodes, then the complexity of the Algorithm
1 is Ctd−cas + |V |p × (Cv + Cval). Due to the linear dependence on the number of pruned
nodes, it becomes computationally expensive to prune a reasonably large number of nodes
and check if this would result in improvement in classification accuracy of the top-down
cascade. Furthermore, this process does not amount to a learning-based method for pruning
and hence needs to be employed from scratch for newer taxonomies, even though these
taxonomies may have similar characteristics to those encountered already.

To summarize, though quite simple, the above pruning method has the following disad-
vantages:

• This is a computationally expensive process to re-train the classifier at the pruned
nodes and then test the performance on the validation set. As a result, this may not
be applicable for large-scale taxonomies consisting of large number of internal nodes,

• This method does not amount to a learning-based strategy for pruning, and ignores
data-dependent information available at the nodes of the taxonomy, and

• This process needs to be repeated for each taxonomy encountered, and information
gained from taxonomy cannot be leveraged for newer taxonomies with similar char-
acteristics.

We now turn to another method for taxonomy adaptation by pruning which is based
on the generalization error analysis derived in Section 3.1. This method is computationally
efficient compared to that presented in Algorithm 1 and only requires a cascade of top-
down classifiers. Essentially, the criterion for pruning, which is related to the margin at
each node, can be computed while training the top-down cascade. This corresponds to only
the first step in Algorithm 1, and rest of the steps of evaluating on validation set are no
longer required. Therefore, in terms of computational complexity, the method proposed in
the next section has complexity of Ctd−cas.

4.2 Hierarchy Pruning based on generalization-error

In this section, we present a strategy for pruning which is theoretically well motivated and
is based on the generalization error bound for understanding the trade-off for flat and hi-
erarchical classification. In view of the generalization error bound derived in Theorem 1,
adapting the given taxonomy of classes aims at achieving a better trade-off between the em-
pirical error and the error attributed to Rademacher complexity. In other words, adapting
the given taxonomy H to the set of input output pairs (x, v) aims at achieving a lower value
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of the bound as compared to that attained by using the original hierarchy. For a node v with
parent π(v), pruning v and replacing it by its children will increase the number of children
of π(v) and hence the associated Rademacher complexity but will decrease the empirical
error along that path from root to leaf. Therefore, we need to identify those nodes in the
taxonomy for which increase in the Rademacher complexity is among the lowest so that a
better trade-off between the two error terms is achieved than in the original hierarchy. For
this purpose, we turn to the bound on the empirical Rademacher complexity of the function
class GFB

.
In the derivation of Theorem 1, the empirical Rademacher complexity was upper bounded

as follows:

R̂m(GFB
,S) ≤ 2

m
Eσ

 sup
||W||H≤B

∑
(v,v′)∈V 2,v′∈S(v)

‖wv −wv′‖H

∥∥∥∥∥∥
∑

i:c(f,x(i),y(i))=(v,v′)

σiΦ(x(i))

∥∥∥∥∥∥
H

 (2)

From the above bound, we define a quantity C(v) for each node v

C(v) =
∑

(v,v′)∈V 2,v′∈S(v)

‖wv −wv′‖H (3)

As one can note, the right hand side of the inequality (2) above provides an upper bound on
R̂m(GFB

,S) and one can meaningfully compare only the sibling nodes since these nodes have
the same training set. Thus, the explicit computation of expectation Eσ(.) with respect to
the Rademacher random variables and the computation of the inner product in the feature
space can be avoided. This motivates the definition of C(v) in equation (3), that can be
efficiently and effectively computed from the training data, and that represents a distance
of node v to its sibling nodes. It must be noted that C(v′), for a set of siblings {v′}, as
computed using equation 3 is different for each node v′.

C(v) is higher when wv is larger than wv′ (when measured in terms of L2-distance),
for all siblings v′ of v, or when wv is far away from wv′ (implying that the L2-norm of the
difference is large), or both. The first and last cases correspond to unbalanced classes, v
being the dominant class. In such cases, pruning v by replacing it by its children leads to a
more balanced problem, less prone to classification errors. Furthermore, as children of v are
based on the features in v, most of them will likely be far away from the siblings of v, and
the pruning, even though increasing the Rademacher complexity term, will decrease the
empirical error term and, likely, the generalization error. In the second case, pruning v will
lead to children that will again be, very likely, far away from the siblings of v. This pruning
thus does not introduce confusion between categories and reduces the problem related to
error propagations.

This suggests that an effective pruning algorithm must prune the nodes v in the taxon-
omy for which C(v) is maximal. In practice, we focus on pruning the nodes in the top-two
layers of the taxonomy. This is due to the following reasons:

• The categories in these levels represent generic concepts, such as Entertainment and
Sports in Yahoo! Directory, which are typically over-lapping in nature, and

• This is also shown in the plot in Figure 3 for the average confusion of the nodes Cavgv

for the different levels for two of the taxonomies used in our experiments. It shows
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that the confusion among the top-level nodes is much higher as compared to those in
the lower levels.

 6
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Figure 3: Cavgv plotted for various levels in the hierarchy Level 1 corresponds to
the top-most level.

Algorithm 2 The proposed method for hierarchy pruning based on Generalization Bound

Require: a hierarchy G, Training set S consisting of (x, y) pairs, x ∈ X and y ∈ Y
Train SVM classifier at each node of the tree
∆← 0
for v ∈ V do

Sort its child nodes v′ ∈ D(v) in decreasing order of C(v′)
Flatten 1st and 2nd ranked child nodes, say v′1 and v′2
∆ = C(v′1)− C(v′2)
vprev ← v′2 . Set the previous flattened node to v′2
for v′ ∈ V − {v′1, v′2}, (v, v′) ∈ E do

if C(vprev)− C(v′) < ∆ then
Flatten v′

∆← C(vprev)− C(v′)
vprev ← v′ . Set the previous flattened node to v′

else
break

end if
end for

end for
return Pruned taxonomy G′

The pruning process as an algorithmic procedure is shown in Algorithm 2, where the
variable ∆ is used to stop the pruning process in an inner iteration.
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The above criterion for pruning the nodes in a large-scale taxonomy is also similar in
spirit to the method introduced by Babbar et al. (2013b) which is motivated from the
generalization error analysis of Perceptron Decision Trees. As shown in the experiments on
large-scale datasets by using SVM and Logistic Regression classifiers, applying this strategy
outputs a new taxonomy which leads to better classification accuracy as compared to the
original taxonomy.

It may be noted that the pruning procedure adopts a conservative approach to avoid
excessive flattening of the taxonomy. It can be modified to prune the nodes more ag-
gressively by scaling the parameter ∆ after pruning of every node, and hence allow more
nodes to be pruned. However, irrespective of such design choice, this method based on the
generalization bound for pruning the hierarchy has two following disadvantages :

• Higher computational complexity since one needs to learn the weight vector wv for
each node v in the given taxonomy. As a result, the process of identifying these nodes
can be computationally expensive for large-scale taxonomies;

• It is restricted only to discriminative classifiers such as Support Vector Machines and
Logistic Regression.

Therefore, we next present a meta-learning based pruning strategy for hierarchy prun-
ing which avoids this initial training of the entire taxonomy, and is applicable to both
discriminative and generative classifiers.

5. Meta-learning based pruning strategy

In this section, we present a meta-learning based generic pruning strategy which is applicable
to both discriminative and generative classifiers. The meta-features for the instances are
derived from the analysis of the approximation error for multi-class versions of the two well-
known generative and discriminative classifiers: Naive Bayes and Logistic Regression. We
then show how this generalization error analysis of the classifier at each node is combined
when deployed in a typical top-down cascade of the hierarchy tree. Based on these analyses,
we identify the important features that control the variation of the generalization error and
determine whether a particular node should be flattened or not. We finally train a meta-
classifier based on these meta-features, which predicts whether replacing a node in the
hierarchy by its children (Figure 2) will improve the classification accuracy or not.

The remainder of this section is organized as follows:

1. In Section 5.1, we present asymptotic error bounds for Naive Bayes classifiers;

2. Asymptotic error bounds for Multinomial Logistic Regression classifiers are given in
Section 5.2;

3. We then develop in Section 5.3:

(a) A pruning bound for both types of classifiers;

(b) A meta-classifier for pruning nodes of a taxonomy, based on features derived
from both asymptotic error and pruning bounds.
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Theorem 2 below is recalled by Ng and Jordan (2001). Theorems 3 and 4 provide
multi-class versions of the bounds proposed by Ng and Jordan (2001) for the Naive Bayes
and Logistic Regression classifiers respectively. Lastly, Theorem 5 provides a hierarchical
generalization of these bounds for both classifiers. The features we are using to learn the
meta-classifier are derived from Theorem 5.

5.1 Asymptotic approximation error bounds for Naive Bayes

Let us first consider a multinomial, multiclass Naive Bayes classifier in which the predicted
class is the one with maximum posterior probability. The parameters of this model are
estimated by maximum likelihood and we assume here that Laplace smoothing is used to
avoid null probabilities. Our goal here is to derive a generalization error bound for this
classifier. To do so, we recall the bound for the binomial version (directly based on the
presence/absence of each feature in each document) of the Naive Bayes classifier for two
target classes (Theorem 4 of (Ng and Jordan, 2001)).

Theorem 2 For a two class classification problem in d dimensional feature space with m
training examples {(xi, yi)}mi=1 sampled from distribution D, let h and h∞ denote the clas-
sifiers learned from the training set of finite size m and its asymptotic version respectively.
Then, with high probability, the bound on misclassification error of h is given by

E(h) ≤ E(h∞) +G

(
O

(√
1

m
log d

))
(4)

where G(τ) represents the probability that the asymptotic classifier predicts correctly and
has scores lying in the interval (−dτ, dτ).

We extend here this result to the multinomial, multiclass Naive Bayes classifier, for a K
class classification problem with Y = {y1, . . . yK}. To do so, we first introduce the following
lemma, that parallels Lemma 3 of (Ng and Jordan, 2001):

Lemma 1 ∀yk ∈ Y, let P̂ (yk) be the estimated class probability and P (yk) its asymptotic
version obtained with a training set of infinite size. Similarly, ∀yk ∈ Y and ∀i, 1 ≤ i ≤ d, let
P̂ (wi|yk) be the estimated class conditional feature probability and P (wi|yk) its asymptotic
version (wi denotes the ith word of the vocabulary). Then, ∀ε > 0, with probability at least
(1− δ) we have :

|P̂ (yk)− P (yk)| < ε, |P̂ (wi|yk)− P (wi|yk)| < ε

with δ = Kδ0+d
∑K

k=1 δk, where δ0 = 2 exp(−2mε2) and δk = 2d exp(−2dkε
2). dk represents

the length of class yk, that is the sum of lengths (in number of occurrences) of all the
documents in class k.

The proof of this lemma directly derives from Hoeffding’s inequality and the union bound,
and is a direct extension of the proof of Lemma 3 given by Ng and Jordan (2001).

Let us now denote the joint log-likelihood of the vector representation of (a document)
x in class yk by l(x, yk) :

l(x, yk) = log

[
P̂ (yk)

d∏
i=1

P̂ (wi|yk)xi
]

(5)
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where xi represents the number of times word wi appears in x. The decision of the Naive
Bayes classifier for an instance x is given by:

h(x) = argmax
yk∈Y

l(x, yk) (6)

and the one for its asymptotic version by:

h∞(x) = argmax
yk∈Y

l∞(x, yk) (7)

Lemma 1 suggests that the predicted and asymptotic log-likelihoods are close to each other,
as the quantities they are based on are close to each other. Thus, provided that the asymp-
totic log-likehoods between the best two classes, for any given x, are not too close to each
other, the generalization error of the Naive Bayes classifier and the one of its asymptotic
version are close to each other. Theorem 3 below states such a relationship, using the fol-
lowing function that measures the confusion between the best two classes for the asymptotic
Naive Bayes classifier.

Definition 1 Let l1∞(x) = maxyk∈Y l∞(x, yk) be the best log-likelihood score obtained for x
by the asymptotic Naive Bayes classifier, and let l2∞(x) = maxyk∈Y\h∞(x) l∞(x, yk) be the
second best log-likelihood score for x. We define the confusion of the asymptotic Naive Bayes
classifier for a category set Y as:

GY(τ) = P(x,y)∼D(|l1∞(x)− l2∞(x)| < 2τ)

for τ > 0.

We are now in position to formulate a relationship between the generalization error of the
multinomial, multiclass Naive Bayes classifier and its asymptotic version.

Theorem 3 For a K class classification problem in d dimensional feature space with a
training set of size m, {x(i), y(i)}mi=1, x(i) ∈ X , y(i) ∈ Y, sampled from distribution D, let h
and h∞ denote the Naive Bayes classifiers learned from a training set of finite size m and
its asymptotic version respectively, and let E(h) and E(h∞) be their generalization errors.
Then, ∀ε > 0, one has, with probability at least (1− δY):

E(h) ≤ E(h∞) +GY(ε) (8)

with:

δY = 2K exp

(
−2ε2m

C(d+ dmax)2

)
+ 2d exp

(
−2ε2dmin

C(d+ dmax)2

)
where dmax (resp. dmin) represents the length (in number of occurrences) of the longest
(resp. shortest) class in Y, and C is a constant related to the longest document in X .

Proof Using Lemma 1 and a Taylor expansion of the log function, one gets, ∀ε > 0, ∀x ∈ X ,
∀k ∈ Y:

P

(
|l(x, yk)− l∞(x, yk)| <

√
C
ε

ρ0

)
> 1− δ
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where δ is the same as in Lemma 1,
√
C equals to the maximum length of a document

and ρ0 = mini,k{P (yk), P (wi|yk)}. The use of Laplace smoothing is important for the
quantities p(wi|yk), which may be null if word wi is not observed in class yk. The Laplace
smoother in this case leads to ρ0 = 1

d+dmax
. The log-likelihood functions of the multinomial,

multiclass Naive Bayes classifier and the one of its asymptotic version are thus close to each
other with high probability. The decision made by the trained Naive Bayes classifier and its
asymptotic version on a given x only differ if the distance between the first two classes of the
asymptotic classifier is less than two times the distance between the log-likelihood functions
of the trained and asymptotic classifiers. Thus, using the union bound, one obtains, with
probability at least (1− δ):

E(h) ≤ E(h∞) +GY

(
ε
√
C(d+ dmax)

)
Using a change of variable (ε′ = ε

√
C(d+ dmax)) and approximating

∑K
k=1 exp(−2dkε

2) by
exp(−2dminε

2), the dominating term in the sum, leads to the desired result. �

5.2 Asymptotic approximation error bounds for Multinomial Logistic
Regression

We now propose an asymptotic approximation error bound for a multiclass logistic regres-
sion (MLR) classifier. We first consider the flat, multiclass case (V = Y), and then show how
the bounds can be combined in a typical top-down cascade, leading to the identification of
important features that control the variation of these bounds.

Considering a pivot class y? ∈ Y, a MLR classifier, with parameters β = {βy0 , β
y
j ; y ∈

Y \ {y?}, j ∈ {1, . . . , d}}, models the class posterior probabilities via a linear function in
x = (xj)

d
j=1 ((see for example Hastie et al., 2001, p. 96)) :

P (y|x;β)y 6=y? =
exp(βy0 +

∑d
j=1 β

y
j xj)

1 +
∑

y′∈Y,y′ 6=y? exp(βy
′

0 +
∑d

j=1 β
y′

j xj)

P (y?|x;β) =
1

1 +
∑

y′∈Y,y′ 6=y? exp(βy
′

0 +
∑d

j=1 β
y′

j xj)

The parameters β are usually fit by maximum likelihood over a training set S of size m
(denoted by β̂m in the following) and the decision rule for this classifier consists in choosing
the class with the highest class posterior probability :

hm(x) = argmax
y∈Y

P (y|x, β̂m) (9)

The following lemma states to which extent the posterior probabilities with maximum like-
lihood estimates β̂m may deviate from their asymptotic values obtained with maximum
likelihood estimates when the training size m tends to infinity (denoted by β̂∞).

Lemma 2 Let S be a training set of size m and let β̂m be the maximum likelihood esti-
mates of the MLR classifier over S. Further, let β̂∞ be the maximum likelihood estimates of
parameters of MLR when m tends to infinity. For all examples x, let R > 0 be the bound
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such that ∀y ∈ Y\{y?}, exp(βy0 +
∑d

j=1 β
y
j xj) <

√
R; then for all 1 > δ > 0, with probability

at least (1− δ) we have:

∀y ∈ Y,
∣∣∣P (y|x, β̂m)− P (y|x, β̂∞)

∣∣∣ < d

√
R|Y|σ0

δm

where σ0 = maxj,y σ
y
j and (σyj )y,j represent the components of the inverse (diagonal) Fisher

information matrix at β̂∞ and are different from σi used in Section 3 wherein these repre-
sented Rademacher random variables.

Proof By denoting the sets of parameters β̂m = {β̂yj ; j ∈ {0, . . . , d}, y ∈ Y \{y?}}, and

β̂∞ = {βyj ; j ∈ {0, . . . , d}, y ∈ Y \{y?}}, and using the independence assumption and the
asymptotic normality of maximum likelihood estimates ((see for example Schervish, 1995,
p. 421)), we have, for 0 ≤ j ≤ d and ∀y ∈ Y \ {y?}:

√
m(β̂yj − βyj ) ∼ N(0, σyj ) where

the (σyj )y,i represent the components of the inverse (diagonal) Fisher information matrix

at β̂∞. Let σ0 = maxj,y σ
y
j . Then using Chebyshev’s inequality, for 0 ≤ j ≤ d and

∀y ∈ Y \{y?} we have with probability at least 1 − σ0/ε
2, |β̂yj − β

y
j | <

ε√
m

. Further ∀x
and ∀y ∈ Y\{y?}, exp(βy0 +

∑d
j=1 β

y
j xj) <

√
R; using a Taylor development of the functions

exp(x + ε) and (1 + x + εx)−1 and the union bound, one obtains that, ∀ε > 0 and y ∈ Y
with probability at least 1− |Y|σ0

ε2
:
∣∣∣P (y|x, β̂m)− P (y|x, β̂∞)

∣∣∣ < d
√

R
mε. Setting |Y|σ0

ε2
to δ,

and solving for ε gives the result. �
Lemma 2 suggests that the predicted and asymptotic posterior probabilities are close

to each other, as the quantities they are based on are close to each other. Thus, provided
that the asymptotic posterior probabilities between the best two classes, for any given x,
are not too close to each other, the generalization error of the MLR classifier and the one
of its asymptotic version should be similar. Theorem 4 below states such a relationship,
using the following function that measures the confusion between the best two classes for
the asymptotic MLR classifier defined as :

h∞(x) = argmax
y∈Y

P (y|x, β̂∞) (10)

For any given x ∈ X , the confusion between the best two classes is defined as follows.

Definition 2 Let f1
∞(x) = maxy∈Y P (y|x, β̂∞) be the best class posterior probability for x

by the asymptotic MLR classifier, and let f2
∞(x) = maxy∈Y\h∞(x) P (y|x, β̂∞) be the second

best class posterior probability for x. We define the confusion of the asymptotic MLR classifier
for a category set Y as:

GY(τ) = P(x,y)∼D(|f1
∞(x)− f2

∞(x)| < 2τ)

for a given τ > 0.

The following theorem states a relationship between the generalization error of a trained
MLR classifier and its asymptotic version.
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Theorem 4 For a multi-class classification problem in d dimensional feature space with a
training set of size m, {x(i), y(i)}mi=1, x(i) ∈ X , y(i) ∈ Y, sampled i.i.d. from a probability
distribution D, let hm and h∞ denote the multiclass logistic regression classifiers learned
from a training set of finite size m and its asymptotic version respectively, and let E(hm)
and E(h∞) be their generalization errors. Then, for all 1 > δ > 0, with probability at least
(1− δ) we have:

E(hm) ≤ E(h∞) +GY

(
d

√
R|Y|σ0

δm

)
(11)

where
√
R is a bound on the function exp(βy0 +

∑d
j=1 β

y
j xj), ∀x ∈ X and ∀y ∈ Y, and σ0 is

a constant.

Proof The difference E(hm)−E(h∞) is bounded by the probability that the asymptotic MLR
classifier h∞ correctly classifies an example (x, y) ∈ X × Y randomly chosen from D, while
hm misclassifies it. Using Lemma 2, for all δ ∈ (0, 1), ∀x ∈ X , ∀y ∈ Y, with probability at
least 1− δ, we have: ∣∣∣P (y|x, β̂m)− P (y|x, β̂∞)

∣∣∣ < d

√
R|Y|σ0

δm

Thus, the decision made by the trained MLR and its asymptotic version on an example (x, y)
differs only if the distance between the two predicted classes of the asymptotic classifier is
less than two times the distance between the posterior probabilities obtained with β̂m and

β̂∞ on that example; and the probability of this is exactly GY

(
d

√
R|Y|σ0
δm

)
, which upper-

bounds E(hm)− E(h∞). �
Note that the quantity σ0 in Theorem 4 represents the largest value of the inverse (di-

agonal) Fisher information matrix ((Schervish, 1995)), and thus corresponds to the inverse
of the smallest value of the (diagonal) Fisher information matrix, which corresponds to
the smallest amount of information one has on the estimation of each parameter β̂kj . This
smallest amount of information is in turn related to the length (in number of occurrences)
of the longest (resp. shortest) class in Y denoted respectively by dmax and dmin as, the
smaller they are, the larger σ0 is likely to be.

5.3 A learning based node pruning strategy

Let us now consider a hierarchy of classes and a top-down classifier making decisions at
each level of the hierarchy. A node-based pruning strategy can be easily derived from the
approximation bounds above. Indeed, any node v in the hierarchy H = (V,E) is associated
with three category sets: its sibling categories with the node itself S′(v) = S(v) ∪ {v},
its children categories, D(v), and the union of its siblings and children categories, denoted
F(v) = S(v) ∪D(v).

These three sets of categories are the ones involved before and after the pruning of node

v. Let us now denote by h
S′

v
m a classifier learned from a set of sibling categories of node v

and the node itself, and by hDv
m a classifier learned from the set of children categories of

node v (h
S′

v∞ and hDv
∞ respectively denote their asymptotic versions). The following theorem

is a direct extension of Theorems 3 and 4 to this setting.
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Figure 4: The pruning procedure for a candidate class node u (in black). After replacing
the candidate node by its children, the new category set YF(v) contains the classes
from both the daughter and the sister category sets of v.

Theorem 5 Using notations from both Theorems 3 and 4, ∀ε > 0, v ∈ V \ Y, one has:

E(hS
′
v

m ) + E(hDv
m ) ≤ E(hS

′
v∞ ) + E(hDv

∞ ) +GS′(v)(ε) +GD(v)(ε)

with probability at least 1 −
(
Rd2|S′(v)|σS′(v)

0
mS′(v)ε

2 +
Rd2|D(v)|σD(v)

0
mD(v)ε

2

)
for MLR classifiers and with

probability at least 1−
(
δS′(v) + δD(v)

)
for Naive Bayes classifiers, with δY defined in The-

orem 3.

{|Y`|,mY` , σY
`

0 , d`max, d
`
min;Y` ∈ {S′(v),D(v)}; } are constants related to the set of cate-

gories Y` ∈ {S′(v),D(v)} and involved in the respective bounds stated in Theorem 3 and
4. Denoting by hFv

m the classifier trained on the set F(v) and by hFv
∞ its asymptotic version,

Theorem 5 suggests that one should prune node v if:

GF(v)(ε) ≤ GS′(v)(ε) +GD(v)(ε) (12a)

and, for MLR classifiers:

|F(v)|σF(v)
0

mF(v)
≤ |S

′(v)|σS
′(v)

0

mS′(v)
+
|D(v)|σD(v)

0

mD(v)
(12b)

or, for Naive Bayes classifiers:

δF(v) ≤ δS′(v) + δD(v) (12c)

The above conditions for pruning a node v rely on the union bound and thus are not
likely to be exploitable in practice. They nevertheless exhibit the factors that play an
important role in assessing whether a particular trained classifier is close or not to its
asymptotic version. Following Definitions 1 and 2, GY(ε) is of the form:

GY(ε) = P(x,y)∼D(|g∞(x)− g∞(x)| < 2ε)

where g corresponds to the best log-likelihood for Naive Bayes classifiers or the best class
posterior for MLR classifiers. As it relies on the unknown distribution D and asymptotic
log-likelihood g∞(), GY(.) cannot be computed directly. It however measures the confusion
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Features for node v ∈ V
1. # of classes in level `, K` 2. Vocabulary size, d`

3. # of docs m` 4. d`min
5. d`max 6. m`

(d`+d`max)2

7.
d`min

(d`+d`max)2
8. cosinter(`)

9. KLinter(`)

Table 1: Features involved in the vector representation of a node v ∈ H = (V,E). As
` ∈ {F(v),D(v),S(v)}, we have in total 27 features associated with the different
category sets considered for flattening node u.

between categories and can thus be approximated by measures of the similarity between
classes. We propose here to estimate this confusion with two simple quantities: the average
cosine similarity of all the pairs of classes in Y, and the average symmetric Kullback-
Leibler divergences between all the pairs in Y according to class conditional multinomial
distributions. Each node v ∈ V when deployed with MLR and Naive Bayes classifiers can
then be characterized by factors shown in Table 1, which are involved in the estimation of
inequality (12) above.

The average cosine similarity and the average symmetric KL divergence are calculated
as follows for each pair of nodes (u, v) in level l:

cosinter(`) =
1

K`∑
k=1

K`∑
k′=1k′ 6=k

mu`k
mv`

k′

K`∑
k=1

K`∑
k′=1k′ 6=k

mu`k
mv`

k′
cos(u`k, v

`
k′)

KLinter(`) =
1

K`(K` − 1)

K`∑
k=1

K`∑
k′=1k′ 6=k

KL(Qu`k
||Qv`

k′
) +KL(Qv`

k′
||Qu`k),

where KL(Qu||Qv) denotes the Kullback-Leibler divergence between the class conditional
probability distributions of the features present in the two classes u and v:

KL(Qu||Qv) =
∑
w∈u,v

p(w|u) log
p(w|u)

p(w|v)

where p(w|u) denotes the probability of word/feature w in class u, taking smoothing
into account.

Algorithm 3 presents the process of learning the hierarchy pruning by learning a meta-
classifier from the meta-features as mentioned above. The procedure for collecting training
data associates a positive (resp. negative) class to a node if the pruning of that node leads
to a final performance increase (resp. decrease). A meta-classifier is then trained on these
features using a training set from a selected class hierarchy. After the learning phase, the
meta-classifier is applied to each node of a new hierarchy of classes so as to identify which
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Algorithm 3 The pruning strategy.

1: procedure Prune Hierarchy(a hierarchy H, a meta-classifier Cm)
2: clist[]← H.root; . Initialize with root node
3: while !clist.isEmpty() do
4: parent← clist.getNext()
5: list[]← Ch(parent); . Candidate children to merge
6: while !list.isEmpty() do
7: index← MERGE(parent,list,Cm); . Index of children to be merged
8: if index == −1 then
9: break;

10: end if
11: list.add(Ch(list[index])) . Move up the children of node list[index]
12: list.remove(index); . This node has been merged
13: end while
14: clist.add(Ch(clist[j])); . Adds next level parents
15: end while
16: export new hierarchy;
17: end procedure

nodes should be pruned. A simple strategy to adopt is then to prune nodes in sequence:
starting from the root node, the algorithm checks which children of a given node v should
be pruned (lines 6-13) by creating the corresponding meta-instance and feeding the meta-
classifier; the child that maximizes the probability of the positive class is then pruned; as
the set of categories has changed, we recalculate which children of v can be pruned, prune
the best one (as above) and iterate this process till no more children of v can be pruned;
we then proceed to the children of v and repeat the process. The function MERGE takes
as arguments the parent, the candidate children to be merged as well as the meta-classifier.
It returns the index of the child that should be merged. In case where the meta-classifier
does not identify any child eligible for merging then the pruning procedure continues with
the next parent in the list. The meta-classifier tries to predict whether pruning a specific
node will lead to an increase of the performance over 10%. That means that the classifier
may identify several candidate nodes and one of them will be selected for pruning.

6. Experimental Analysis

We start our discussion by presenting results on different hierarchical datasets with different
characteristics using MLR and SVM classifiers. The datasets we used in these experiments are
two large datasets extracted from the International Patent Classification (IPC) dataset3

and the publicly available DMOZ dataset from the second LSHTC challenge (LSHTC2)4.
Both datasets are multi-class; IPC is single-label and LSHTC2 multi-label with an average
of 1.02 categories per class. We created 5 datasets from LSHTC2 by splitting randomly
the first layer nodes (11 in total) of the original hierarchy in disjoint subsets. The classes

3. http://www.wipo.int/classifications/ipc/en/support/

4. http://lshtc.iit.demokritos.gr/
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Dataset # Tr. # Test # Classes # Feat. Depth CR Error ratio

LSHTC2-1 25,310 6,441 1,789 145,859 6 0.008 1.24
LSHTC2-2 50,558 13,057 4,787 271,557 6 0.003 1.32
LSHTC2-3 38,725 10,102 3,956 145,354 6 0.004 2.65
LSHTC2-4 27,924 7,026 2,544 123,953 6 0.005 1.8
LSHTC2-5 68,367 17,561 7,212 192,259 6 0.002 2.12
IPC 46,324 28,926 451 1,123,497 4 0.02 12.27

Table 2: Datasets used in our experiments along with the properties: number of train-
ing examples, test examples, classes and the size of the feature space, the
depth of the hierarchy and the complexity ratio of hierarchical over the flat case
(
∑

v∈V \Y |D(v)|(|D(v)| − 1)/|Y|(|Y| − 1)), the ratio of empirical error for hierar-
chical and flat models.

for the IPC and LSHTC2 datasets are organized in a hierarchy in which the documents
are assigned to the leaf categories only. Table 2 presents the characteristics of the datasets.

CR denotes the complexity ratio between hierarchical and flat classification, given by the

Rademacher complexity term in Theorem 1:
(∑

v∈V \Y |D(v)|(|D(v)| − 1)
)
/ (|Y|(|Y| − 1));

the same constants B, R and L are used in the two cases. As one can note, this complexity
ratio always goes in favor of the hierarchical strategy, although it is 2 to 10 times higher
on the IPC dataset, compared to LSHTC2-1,2,3,4,5. On the other hand, the ratio of
empirical errors (last column of Table 2) obtained with top-down hierarchical classification
over flat classification when using SVM with a linear kernel is this time higher than 1,
suggesting the opposite conclusion. The error ratio is furthermore really important on IPC
compared to LSHTC2-1,2,3,4,5. The comparison of the complexity and error ratios on
all the datasets thus suggests that the flat classification strategy may be preferred on IPC,
whereas the hierarchical one is more likely to be efficient on the LSHTC datasets. This is
indeed the case, as is shown below.

To test our simple node pruning strategy, we learned binary classifiers aiming at deciding
whether to prune a node, based on the node features described in the previous section. The
label associated to each node in this training set is defined as +1 if pruning the node
increases the accuracy of the hierarchical classifier by at least 0.1, and -1 if pruning the
node decreases the accuracy by more than 0.1. The threshold at 0.1 is used to avoid too
much noise in the training set. The meta-classifier is then trained to learn a mapping from
the vector representation of a node (based on the above features) and the labels {+1;−1}.
We used the first two datasets of LSHTC2 to extract the training data while LSHTC2-3,
4, 5 and IPC were employed for testing.

The procedure for collecting training data is repeated for the MNB, MLR and SVM classifiers
resulting in three meta-datasets of 119 (19 positive and 100 negative), 89 (34 positive and
55 negative) and 94 (32 positive and 62 negative) examples respectively. For the binary
classifiers, we used AdaBoost with random forest as a base classifier, setting the number
of trees to 20, 50 and 50 for the MNB, MLR and SVM classifiers respectively and leaving the
other parameters at their default values. Several values have been tested for the number
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of trees ({10, 20, 50, 100 and 200}), the depth of the trees ({unrestricted, 5, 10, 15, 30,
60}), as well as the number of iterations in AdaBoost ({10, 20, 30}). The final values were
selected by cross-validation on the training set (LSHTC2-1 and LSHTC2-2) as the ones
that maximized accuracy and minimized false-positive rate in order to prevent degradation
of accuracy. For example, Table 6 presents the true positive and false positive rates for the
two classes for the meta-dataset of MLR.

Class TP rate FP rate

Prune (+1) 0.737 0.020
Do not prune (-1) 0.980 0.263

Table 3: True positive and false positive rates for the MLR meta-daset (119 examples).

We consider three different classifiers which include Multinomial Naive Bayes (MNB),
Multi-class Logistic Regression (MLR) and Support Vector Machine (SVM) classifiers. The
configurations of the taxonomy that we consider are fully flat classifier (FL), fully hierar-
chical (FH) top-down Pachinko machine, a random pruning (RN), and the two proposed
pruning methods which include (i) Bound-based pruning strategy (PR-B) given in Section
4 and (ii) Meta-learning based pruning strategy (PR-M) proposed in Algorithm 3. For
the PR-M pruning method, our experimental setup involves two scenarios: (i) The meta-
classifier is trained over one kind of DMOZ hierarchy (LSHTC2-1, and LSHTC-2) and
tested over another DMOZ hierarchy (LSHTC-3, LSHTC-4 and LSHTC-5), such that both
sets have similar characteristics, and secondly, (ii) The meta-classifier is trained over one
set of DMOZ hierarchy (LSHTC2-1, and LSHTC-2) and tested over IPC hierarchy which
is derived from a different domain (patent classification) such that both sets have much
less common characteristics. In this sense, our meta-classifier could learn to learn over one
doamin and apply the learnt knowledge to another domain. For the random pruning we
restrict the procedure to the first two levels and perform randomly prune 4 nodes (this is
the average number of nodes that are pruned in the PR-M and PR-B strategies). We also
present results for another pruning strategy proposed in our earlier work (Babbar et al.,
2013b) which is based on error analysis of Perceptron Decision Trees (Bennett et al., 2000),
and is referred to as PR-P. The results for the naive pruning method based on estimate on
a validation set (as described in Section 4.1) are also presented, and referred to as PR-V.
For each dataset we perform 5 independent runs for the random pruning and we record the
best performance. For MLR and SVM, we use the LibLinear library (Fan et al., 2008) and
use squared hinge-loss with L2-regularized versions, setting the penalty parameter C by
cross-validation.

6.1 Flat versus Hierarchical classification

The classification error results on the test set of LSHTC2-3,4,5 and IPC are reported in
Table 4. On all LSHTC datasets flat classification performs worse than the fully hierarchy
top-down classification, for all classifiers. These results are in line with complexity and
empirical error ratios for SVM estimated on different collections and shown in table 2 as well
as with the results obtained in Liu et al. (2005); Dumais and Chen (2000) over the same type
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LSHTC2-3 LSHTC2-4 LSHTC2-5 IPC

MNB MLR SVM MNB MLR SVM MNB MLR SVM MNB MLR SVM

FL 73.0↓↓ 52.8↓↓ 53.5↓↓ 84.9↓↓ 49.7↓↓ 50.1↓↓ 83.9↓↓ 54.2↓↓ 54.7↓↓ 67.2↓↓ 54.6 46.6
RN 61.9↓↓ 49.3↓↓ 51.7↓↓ 70.5↓↓ 47.8↓↓ 48.4↓↓ 69.0↓↓ 53.2↓↓ 53.6↓ 64.3↓↓ 54.7↓ 50.2↓↓

FH 62.0↓↓ 48.4↓↓ 49.8↓↓ 68.3↓ 47.3↓↓ 47.6↓ 65.6↓ 52.6↓ 52.7 64.4↓ 55.2↓ 51.3↓↓

PR-V 61.7 48.2 49.5 65.9 46.7 46.6 67.7 52.3 52.2 63.7 54.6 50.3
PR-B - 48.1 49.5 - 46.6 46.5 - 52.2 52.2 - 54.5 50.5
PR-M 61.3 48.0 49.3 65.4 46.9 47.2 67.8 52.2 52.3 63.9 54.4 50.7
PR-P - 48.3 49.6 - 46.6 46.8 - 52.4 52.3 - 54.5 50.9

Table 4: Error results across all datasets. Bold typeface is used for the best results. Sta-
tistical significance (using micro sign test (s-test) as proposed in (Yang and Liu,
1999)) is denoted with ↓ for p-value<0.05 and with ↓↓ for p-value<0.01.
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Figure 5: Number of classes (on X-axis) which have the specified number of documents (on
Y-axis) for LSHTC2-3 dataset and IPC dataset

of taxonomies. Further, the work by Liu et al. (2005) demonstrated that class hierarchies
on LSHTC datasets suffer from rare categories problem, i.e., 80% of the target categories
in such hierarchies have less than 5 documents assigned to them. The value for Macro-F1
measure which weighs all leaf-level classes equally (in contrast to Micro-F1 which weighs
each example in the test set equally) is given in Table 5. Macro-F1 measure is particularly
interesting when dealing with datasets consisting of rare-categories, which is typically the
case in most naturally occurring category systems such as DMOZ and Wikipedia.

As a result, flat methods on such datasets face unbalanced classification problems which
results in smaller error ratios; hierarchical classification should be preferred in this case. On
the other hand, for hierarchies such as the one of IPC, which are relatively well balanced
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LSHTC2-3 LSHTC2-4 LSHTC2-5 IPC

MNB MLR SVM MNB MLR SVM MNB MLR SVM MNB MLR SVM

FL 17.1↓↓ 31.1↓↓ 31.6 ↓↓ 15.1↓↓ 33.1 ↓↓ 32.9↓↓ 15.0↓↓ 29.2↓↓ 29.1↓↓ 25.8 ↓↓ 47.9 51.2
RN 20.2↓↓ 32.2↓↓ 31.9↓ 19.2↓ 33.6 ↓ 33.2↓↓ 18.1↓ 29.9↓↓ 29.9↓↓ 26.1 ↓ 45.2↓↓ 47.8↓↓

FH 22.1↓ 32.8↓ 32.2 20.1↓ 34.1↓ 33.7↓ 18.9↓ 30.5↓ 30.7 26.2 ↓ 44.2↓ 46.5↓

PR-V 22.3 33.0 32.1 21.2 34.6 34.3 19.4 31.7 31.7 26.4 48.1 48.1
PR-B - 33.1 32.3 - 34.7 34.4 - 31.8 31.9 - 48.1 47.9
PR-M 22.4 33.2 32.4 21.2 34.8 34.3 19.3 31.7 31.8 26.5 48.2 48.7
PR-P - 33.0 32.2 - 34.4 34.3 - 31.6 31.5 - 48.0 47.6

Table 5: Macro-F1 results across all datasets. Bold typeface is used for the best results.
Statistical significance (using macro-level t-test as proposed in (Yang and Liu,
1999)) is denoted with ↓ for p-value<0.05 and with ↓↓ for p-value<0.01.

and do not suffer from the rare categories phenomenon, flat classification performs at par or
even better than hierarchical classification. The difference in the distribution of data among
leaf-level categories for the LSHTC datasets and IPC dataset is illustrated in Figure 5
on log-log scale. As one can note, in most categories IPC have a lot (from tens to few
hundreds) of documents which belong to them as denoted by the triangles. On the other
hand, LSHTC2-3 dataset has a lot of classes with a small number (1 or 2) of documents
as shown by the high concentration of solid dots near the Y-axis. In this respect, the fit to
power-law distribution of documents among categories in large-scale taxonomies has also
been studied recently (Babbar et al., 2014a). The relative performance between the flat
and top-down approaches on the two kinds of datasets is in agreement with the conclusions
obtained in recent studies in which the datasets considered do not have rare categories and
are more well-balanced (Bengio et al., 2010; Gao and Koller, 2011; Perronnin et al., 2012;
Deng et al., 2011).

We would also like to mention that using the top-down classification for mono-label
prediction, we obtained an accuracy of 36.6% on the original LSHTC2 dataset. On the
other hand, the top approach was a neural network based approach which used the echo-
state network, and achieved an accuracy of 38.8%. Unlike the participants in LSHTC
whose goal was to maximize the accuracy by using techniques such as ensemble methods
and feature engineering, our goal in this work is to theoretical analyze flat versus hierarchical
classification and extend the framework for performing taxonomy adaptation. Furthermore,
the original LSHTC2 dataset was mildly multi-label, and since our top-down prediction
algorithm predicts only a single label, we would loose some performance as compared to
algorithms which are aimed towards making multi-label predictions.

6.2 Effect of pruning

The proposed hierarchy pruning strategies aim to adapt the given taxonomy structure
for better classification while maintaining the ancestor-descendant relationship between a
given pair of nodes. We compare the four pruning strategies, (i) first, based on estimation

28



Learning Taxonomy Adaptation in Large-scale Classification

on a validation set (PR-V) as given in Section 4.1, (ii) second, based on minimizing the
Rademacher-based generalization error bound (PR-B) as given in Section 4.2, (iii) third,
based on meta-learning (PR-M) as described in Section 5, and (iv) fourth, based on a
method presented by Babbar et al. (2013b) (PR-P) against the random pruning (RN) and
fully hierarchical (FH) classification. As shown in Table 4, the proposed pruning strategies
lead to statistically significant better results for all three classifiers compared to both the
original taxonomy and a randomly pruned one. Since Rademacher-bound based pruning
strategy, PR-B, is similar to PR-P proposed by Babbar et al. (2013b), they have almost
similar performance on most datasets. A similar result is reported by Wang and Lu (2010)
through a pruning of an entire layer of the hierarchy, which can be seen as a generalization,
even though empirical in nature, of the pruning strategy retained here. Another interesting
approach to modify the original taxonomy is presented by Zhang et al. (2006). In this study,
three other elementary modification operations are considered, again with an increase of
performance. It is also worth noticing that the pruning strategy based on estimation on a
validation set also leads to improvement in classification accuracy. However, as discussed
earlier, the method is computationally expensive and unlike the meta-learning based pruning
method, this does not amount to a learning algorithm which can be applied to unseen but
similar taxonomies.

For MNB classifier, one can notice that the proposed pruning method (PR-M) based on
meta-learning has the best performance in all datasets achieving significantly better results
compared to its rivals. This shows that flattening the hierarchy can boost the performance,
even in situations where the fully hierarchical classifier is better than its flat version (this
is the case for all the datasets considered for MNB). The random pruning achieves slightly
better accuracies than FH in LSHTC2-3 and IPC datasets, but is in general in between
the performance of the flat classifier and its fully hierarchical version. Statistical significance
tests report significant differences in favor of the proposed approach for pruning. We also
observe that all hierarchical methods consistently outperform the flat case. This is an
expected result as the flat MNB classifier suffers from the problem of unbalanced data. The
difference between the performance of the flat MNB classifier and its hierarchical versions is
less marked for the IPC dataset.

For MLR and SVM classifiers, both pruning approaches have better performance in all
datasets compared to its rivals, the difference being significant in all cases but with the flat
classifier on IPC. One can also notice that due to the balanced nature of the IPC dataset,
the performance of the flat classifier is close to that of hierarchical methods. For the same
reason, random pruning is also more effective in the IPC dataset as compared to other
datasets. Comparing the respective behaviors of the MLR and SVM against MNB, one can
note that MLR and SVM are more robust to variations in the taxonomy as compared to MNB.
This is reflected in much lesser variation in the accuracy for these classifiers under different
configurations of the hierarchy. Lastly, and not surprisingly, the performance of MLR and
SVM are much better than that of MNB on all the datasets considered here.

Here we would like to stress that we follow a greedy strategy in both the pruning methods
(PR-B and PR-M) which rank the sibling nodes in the order these should be pruned. In
case of PR-B, this is measured using the confusion C(v) for each node and for PR-M,
this is given by the confidence of the meta-classifier which return this as a probability
estimate. This is due to the fact that picking up the optimal subset of nodes to prune from
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all possible subsets of children nodes (say K ′) would require considering all possible 2K
′

subsets. Furthermore, considering all possible orders to pick the nodes one-by-one would
require considering all possible permutations of ordering. Both of these have exponential
computational complexity in the number of children nodes.
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Figure 6: Accuracy performance with respect to the number of pruned nodes for MNB on
different test sets.

6.3 Effect of number of pruned nodes for meta-learning based pruning
strategy

For studying how the performance changes according to the number of pruned nodes, we
record the accuracy of the proposed pruning method for 1 to 4 number of prunings. Note
that pruning of nodes is done in sequence and is not independent. The results for both
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Figure 7: Accuracy performance with respect to the number of pruned nodes for MLR (down)
on different test sets.

MNB and MLR are depicted in Figures 6 and 7, with a comparison to the FH method. The
comparison with SVM is not explicitly shown as its behavior is similar to MLR classifier.

Interestingly, across all datasets, the proposed method has better performance than FH
for all number of pruning nodes for both MNB and MLR. This shows that the proposed method
is able to select appropriate nodes in the hierarchy for pruning. Additionally, we note that
in the majority of cases the first pruned node provides a higher increase in accuracy than the
following nodes. This is an expected behavior as the first prunings are typically performed
at the upper level and thus tend to have a higher impact (as they will be used in more in
the classification of more documents) than the nodes pruned done at lower levels. We want
to stress here the fact that the performance with respect to the number of pruned nodes is
affected by several factors, as the accuracy of the meta-classifier, the level of the hierarchy
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Dataset Logistic Hinge

PR-M LOMTree FilterTree PR-M LOMTree FilterTree

LSHTC2-3 48.1 60.6 60.3 49.3 60.2 59.8
LSHTC2-4 46.9 72.7 73.6 47.2 72.7 72.6
LSHTC2-5 52.2 72.0 72.7 52.3 70.5 71.0
IPC 54.4 73.9 65.1 50.7 68.8 67.1

Table 6: Comparison of classification errors for the proposed pruning method (PR-M) with
approaches that build the hierarchical structure.

where the nodes are pruned and their sequence. For example, in dataset LSHTC2-4
(Figure 6), there is a drop of performance after the first flattening which we believe is due
to false positives provided by the meta-classifier. As shown for MLR in Figure 7 and across
all datasets that the behavior of the pruning method is more stable without decrease in the
final performance.

6.4 Building Taxonomy

We also compare the proposed method with approaches that construct a hierarchy with
logarithmic depth over the labels of the problem. Such methods are extremely useful in
cases where there is no hierarchical structured information available. More specifically, we
compare with LOMTree (Choromanska and Langford, 2014) and FilterTree (Beygelzimer
et al., 2009b), both implemented in the Vowpal Wabbit open source system.5 LOMTree
creates binary trees assigning each time the examples to the two respective children of a
parent node. When the algorithm decides to create a leaf node it assigns the target label
from Y that corresponds to the most frequent one amongst the examples reaching that node.
On the other hand FilterTree follows a bottom-up partition process. For both methods we
experiment with hinge and logistic loss functions using different step sizes ({0.15, 0.25, 0.5,
0.75, 1, 2, 4, 8}) and up to 32 passes through the data. For the LOMTree we use different
settings for final number of non-leaf nodes and for the swap resistance. Finally, for both
methods we use bit precision of 30.

Table 6.4 presents the error rate for the pruning algorithm PR-M and the tree approaches
LOMTree and FilterTree across all the datasets for logistic and hinge loss functions. In all
cases PR-M which is based on the provided hierarchy outperforms the tree construction
approaches having a large difference in their errors. The results strongly indicate that
in the cases where the hierarchy is provided it is preferable to use in order to perform
logarithmic prediction rather than constructing it as it leads to loss of accuracy.

7. Conclusion

We have studied in this paper flat and hierarchical classification strategies from a learning-
theoretic view point in the context of large-scale taxonomies, through error generalization

5. http://hunch.net/vw
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bounds of multiclass, hierarchical classifiers. The first theorem we have introduced provides
an explanation to several empirical results related to the performance of such classifiers. We
also introduced two methods to simplify a taxonomy by selectively pruning some of its nodes,
(i) by exploiting the bound developed in the first theorem, and (ii) by designing a meta-
learning technique which is based on the features derived from the approximation-error
based generalization bounds proposed in Sections 5.1 and 5.2. The experimental results
reported here (as well as in other papers) are in line with our theoretical developments and
justify the pruning strategy adopted.

In addition to theoretically addressing the flat versus top-down classification for large-
scale taxonomies, the focus of this work is also on the problem of aligning the taxonomy of
classes to the set of input-output pairs. This can be useful in designing better taxonomies for
large-scale classification problems. Lastly, this suggests that our theoretical development
can also be exploited to grow a hierarchy of classes from a (large) set of categories, as
has been done in several studies (like for example Bengio et al. (2010); Choromanska and
Langford (2014)). We plan to explore this in future work.
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