
Journal of Machine Learning Research 17 (2016) 1-49 Submitted 5/14; Revised 1/16; Published 5/16

SPSD Matrix Approximation vis Column Selection:
Theories, Algorithms, and Extensions

Shusen Wang wssatzju@gmail.com
Department of Statistics
University of California at Berkeley
Berkeley, CA 94720

Luo Luo ricky@sjtu.edu.cn

Zhihua Zhang∗ zhihua@sjtu.edu.cn

Department of Computer Science and Engineering

Shanghai Jiao Tong University

800 Dong Chuan Road, Shanghai, China 200240

Editor: Inderjit Dhillon

Abstract

Symmetric positive semidefinite (SPSD) matrix approximation is an important problem
with applications in kernel methods. However, existing SPSD matrix approximation meth-
ods such as the Nyström method only have weak error bounds. In this paper we conduct
in-depth studies of an SPSD matrix approximation model and establish strong relative-error
bounds. We call it the prototype model for it has more efficient and effective extensions,
and some of its extensions have high scalability. Though the prototype model itself is not
suitable for large-scale data, it is still useful to study its properties, on which the analysis
of its extensions relies.

This paper offers novel theoretical analysis, efficient algorithms, and a highly accurate
extension. First, we establish a lower error bound for the prototype model and improve the
error bound of an existing column selection algorithm to match the lower bound. In this
way, we obtain the first optimal column selection algorithm for the prototype model. We
also prove that the prototype model is exact under certain conditions. Second, we develop
a simple column selection algorithm with a provable error bound. Third, we propose
a so-called spectral shifting model to make the approximation more accurate when the
eigenvalues of the matrix decay slowly, and the improvement is theoretically quantified. The
spectral shifting method can also be applied to improve other SPSD matrix approximation
models.

Keywords: Matrix approximation, matrix factorization, kernel methods, the Nyström
method, spectral shifting

1. Introduction

The kernel methods are important tools in machine learning, computer vision, and data
mining (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). However, for two
reasons, most kernel methods have scalability difficulties. First, given n data points of d
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dimension, generally we need O(n2d) time to form the n×n kernel matrix K. Second, most
kernel methods require expensive matrix computations. For example, Gaussian process
regression and classification require inverting some n× n matrices which costs O(n3) time
and O(n2) memory; kernel PCA and spectral clustering perform the truncated eigenvalue
decomposition which takes Õ(n2k) time1 and O(n2) memory, where k is the target rank of
the decomposition.

Besides high time complexities, these matrix operations also have high memory cost and
are difficult to implement in distributed computing facilities. The matrix decomposition and
(pseudo) inverse operations are generally solved by numerical iterative algorithms, which go
many passes through the matrix until convergence. Thus, the whole matrix had better been
placed in main memory, otherwise in each iteration there would be a swap between memory
and disk, which incurs high I/O costs and can be more expensive than CPU time. Unless
the algorithm is pass-efficient, that is, it goes constant passes through the data matrix, the
main memory should be at least the size of the data matrix. For two reasons, such iterative
algorithms are expensive even if they are performed in distributed computing facilities such
as MapReduce. First, the memory cost is too expensive for each individual machine to
stand. Second, communication and synchronization must be performed in each iteration of
the numerical algorithms, so the cost of each iteration is high.

Many matrix approximation methods have been proposed to make kernel machines scal-
able. Among them the Nyström method (Nyström, 1930; Williams and Seeger, 2001) and
random features (Rahimi and Recht, 2008) are the most efficient and widely applied. How-
ever, only weak results are known (Drineas and Mahoney, 2005; Gittens and Mahoney,
2013; Lopez-Paz et al., 2014). Yang et al. (2012) showed that the Nyström method is likely
a better choice than random features, both theoretically and empirically. However, even
the Nyström method cannot attain high accuracy. The lower bound in (Wang and Zhang,
2013) indicates that the Nyström method costs at least Ω(n2k/ε) time and Ω(n1.5k0.5ε−0.5)
memory to attain 1 + ε Frobenius norm error bound relative to the best rank k approxima-
tion.

In this paper we investigate a more accurate low-rank approximation model proposed
by Halko et al. (2011); Wang and Zhang (2013), which we refer to as the prototype model.
For any symmetric positive semidefinite (SPSD) matrix K ∈ Rn×n, the prototype model
first draws a random matrix P ∈ Rn×c and forms a sketch C = KP, and then computes
the intersection matrix

U? = argmin
U

‖K−CUCT ‖2F = C†K(C†)T ∈ Rc×c. (1)

Finally, the model approximates K by CU?CT . With this low-rank approximation at
hand, it takes time O(nc2) to compute the approximate matrix inversion and eigenvalue
decomposition. In the following we discuss how to form C and compute U?.

Column Selection vs. Random Projection. Although the sketch C = KP can
be formed by either random projection or column selection, when applied to the kernel
methods, column selection is preferable to random projection. As aforementioned, suppose
we are given n data points of d dimension. It takes time O(n2d) to compute the whole of the
kernel matrix K, which is prohibitive when n is in million scale. Unfortunately, whatever

1. The Õ notation hides the logarithm terms and the data-dependent spectral gap parameter.
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existing random projection technique is employed to form the sketch C, every entry of K
must be visited. In contrast, by applying data independent column selection algorithms such
as uniform sampling, we can form C by observing only O(nc) entries of K. At present all the
existing column selection algorithms, including our proposed uniform+adaptive2 algorithm,
cannot avoid observing the whole of K while keeping constant-factor bound. Nevertheless,
we conjecture that our uniform+adaptive2 algorithm can be adapted to satisfy these two
properties simultaneously (see Section 5.4 for discussions in detail).

The Intersection Matrix. With the sketch C at hand, it remains to compute the
intersection matrix. The most straightforward way is (1), which minimizes the Frobenius
norm approximation error. However, this approach has two drawbacks. First, it again
requires the full observation of K. Second, the matrix product C†K costs O(n2c) time.
The prototype model is therefore time-inefficient. Fortunately, Wang et al. (2015) recently
overcame the two drawbacks by solving (1) approximately rather than optimally. Wang
et al. (2015) obtained the approximate intersection matrix Ũ in O(nc3/ε) time while keeping

‖K−CŨCT ‖2F ≤ (1 + ε) min
U
‖K−CUCT ‖2F (2)

with high probability.
With the more efficient solution, why is it useful to study the exact solution to the

prototype model (1)? On the one hand, from (2) we can see that the quality of the approxi-
mation depends on the prototype model, thus improvement of the prototype model directly
applies to the more efficient model. On the other hand, for medium-scale problems where
K does not fit in memory, the prototype model can produce high quality approximation
with reasonable time expense. The experiment on kernel PCA in Section 6.3 shows that
the prototype model is far more accurate than the Nyström method. For the above two
reasons, we believe the study of the prototype model is useful.

1.1 Contributions

Our contributions mainly include three aspects: theoretical analysis, column selection al-
gorithms, and extensions. They are summarized as follows.

1.1.1 Contributions: Theories

Kumar et al. (2009); Talwalkar and Rostamizadeh (2010) previously showed that the Nyström
method is exact when the original kernel matrix is low-rank. In Section 4.1 we show that
the prototype model exactly recovers the original SPSD matrix under the same conditions.

The prototype model with the near-optimal+adaptive column sampling algorithm sat-
isfies 1+ε relative-error bound when c = O(k/ε2) (Wang and Zhang, 2013). It was unknown
whether this upper bound is optimal. In Section 4.2 we establish a lower error bound for
the prototype model. We show that at least 2k/ε columns must be chosen to attain 1 + ε
bound. In Theorem 3 we improve the upper error bound of the near-optimal+adaptive
algorithm to O(k/ε), which matches the lower bound up to a constant factor.

1.1.2 Contributions: Algorithms

In Section 5 we devise a simple column selection algorithm which we call the uniform+adaptive2

algorithm. The uniform+adaptive2 algorithm is more efficiently and more easily imple-
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mented than the near-optimal+adaptive algorithm of Wang and Zhang (2013), yet its error
bound is comparable with the near-optimal+adaptive algorithm. It is worth mentioning
that our uniform+adaptive2 algorithm is the adaptive-full algorithm of (Figure 3, Kumar
et al., 2012) with two rounds of adaptive sampling, and thus our results theoretically justify
the adaptive-full algorithm.

1.1.3 Contributions: Extension

When the spectrum of a matrix decays slowly (that is, the c + 1 to n largest eigenvalues
are not small enough), all of the low-rank approximations are far from the original kernel
matrix. Inspired by Zhang (2014), we propose a new method called spectral shifting (SS)
to make the approximation still effective even when the spectrum decays slowly. Unlike
the low-rank approximation K ≈ CUCT , the spectral shifting model approximates K by
K ≈ C̄UssC̄T + δssIn, where C, C̄ ∈ Rn×c, U,Uss ∈ Rc×c, and δss ≥ 0. When the spectrum
of K decays slowly, the term δssIn helps to improve the approximation accuracy. In Section 7
we describe the spectral shifting method in detail.

We highlight that the spectral shifting method can naturally apply to improve other
kernel approximation models such as the memory efficient kernel approximation (MEKA)
model (Si et al., 2014). Experiments demonstrate that MEKA can be significantly improved
by spectral shifting.

1.2 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we define the notation.
In Section 3 we introduce the motivations of SPSD matrix approximation and define the
SPSD matrix approximation models. Then we present our work—theories, algorithms, and
extension—respectively in Sections 4, 5, and 7. In Section 6 we conduct experiments to
compare among the column sampling algorithms. In Section 8 we empirically evaluate the
proposed spectral shifting model. All the proofs are deferred to the appendix.

2. Notation

Let [n] = {1, . . . , n}, and In be the n×n identity matrix. For an m×n matrix A = [aij ],
we let ai: be its i-th row, a:i be its i-th column, and use ai to denote either row or column
when there is no ambiguity. Let A1 ⊕A2 ⊕ · · · ⊕Aq be the block diagonal matrix whose
the i-th diagonal block is Ai. Let ‖A‖F = (

∑
i,j a

2
ij)

1/2 be the Frobenius norm and ‖A‖2 =
maxx 6=0 ‖Ax‖2/‖x‖2 be the spectral norm.

Letting ρ = rank(A), we write the condensed singular value decomposition (SVD) of A
as A = UAΣAVT

A, where the (i, i)-th entry of ΣA ∈ Rρ×ρ is the i-th largest singular value
of A (denoted σi(A)). Unless otherwise specified, in this paper “SVD” means the condensed
SVD. We also let UA,k and VA,k be the first k (< ρ) columns of UA and VA, respectively,
and ΣA,k be the k× k top sub-block of ΣA. Then the m× n matrix Ak = UA,kΣA,kV

T
A,k

is the “closest” rank-k approximation to A.

If A is normal, we let A = UAΛAUT
A be the eigenvalue decomposition, and denote the

i-th diagonal entry of ΛA by λi(A), where |λ1(A)| ≥ · · · ≥ |λn(A)|. When A is SPSD, the
SVD and the eigenvalue decomposition of A are identical.
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Table 1: Comparisons among the matrix approximation models in Section 3.2 and Sec-
tion 3.3. Here “#Entries” denotes the number of entries of K required to observe.
The costs of column selection is not counted; they are listed separately in Table 2.

Time Memory #Entries Theory

Prototype O(n2c) O(nc) n2 1 + ε relative-error
Faster O(nc3/ε) O(nc) nc2/ε 1 + ε relative-error
Nyström O(nc2) O(nc) nc weak
SS the same to “prototype” stronger than “prototype”
Faster SS the same to “faster” unknown

Based on SVD, the matrix coherence of the columns of A relative to the best rank-k
approximation is defined as µk = n

k maxj
∥∥(VA,k)j:

∥∥2

2
. Let A† = VAΣ−1

A UT
A be the Moore-

Penrose inverse of A. When A is nonsingular, the Moore-Penrose inverse is identical to the
matrix inverse. Given another n× c matrix C, we define PC(A) = CC†A as the projection
of A onto the column space of C and PC,k(A) = C · argminrank(X)≤k ‖A − CX‖F as the
rank restricted projection. It is obvious that ‖A− PC(A)‖F ≤ ‖A− PC,k(A)‖F .

3. SPSD Matrix Approximation Models

In Section 3.1 we provide motivating examples to show why SPSD matrix approximation is
useful. In Section 3.2 we formally describe low-rank approximation models. In Section 3.3
we describe the spectral shifting model. In Table 1 we compare the matrix approximation
models defined in Section 3.2 and Section 3.3.

3.1 Motivations

Let K be an n×n kernel matrix. Many kernel methods require the eigenvalue decomposition
of K or solving certain linear systems involving K.

• Spectral clustering, kernel PCA, and manifold learning need to perform the rank k
eigenvalue decomposition which costs Õ(n2k) time and O(n2) memory.

• Gaussian process regression and classification both require solving this kind of linear
systems:

(K + αIn)b = y, (3)

whose solution is b? = (K + αIn)−1y. Here α is a constant. This costs O(n3) time
and O(n2) memory.

Fortunately, if we can efficiently find an approximation in the form

K̃ = LLT + δIn ≈ K,

where δ ≥ 0 and L ∈ Rn×l with l � n, then the eigenvalue decomposition and linear
systems can be approximately solved in O(nl2) time and O(nl) space in the following way.
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Algorithm 1 Computing the Prototype Model in O(nc+ nd) Memory.

1: Input: data points x1, · · · ,xn ∈ Rd, kernel function κ(·, ·).
2: Compute C and C†; // In O(nc+ nd) memory and O(ncd+ nc2) time
3: Form a c× n all-zero matrix D; // In O(nc) memory and O(nc) time
4: for j = 1 to n do
5: Form the j-th column of K by kj = [κ(x1,xj), · · · , κ(xn,xj)]

T ;
6: Compute the j-th column of D by dj = C†kj ;
7: Delete kj from memory;
8: end for
9: // Now the matrix D is C†K

10: // The loop totaly costs O(nc+ nd) memory and O(n2d+ n2c) time
11: Compute U = D(C†)T ; // In O(nc) memory and O(nc2) time
12: return C and U (= C†K(C†)T ).

• Approximate Eigenvalue Decomposition. Let L = UΣVT be the SVD and U⊥ be the
orthogonal complement of U. Then the full eigenvalue decomposition of K̃ is

K̃ = U(Σ2 + δIl)U
T + U⊥(δIn−l)U

T
⊥.

• Approximately Solving the Linear Systems. Here we use a more general form: K̃ =
LLT + ∆, where ∆ is a diagonal matrix with positive diagonal entries. Then

b? = (K + αIn)−1y ≈ (LLT + ∆ + αIn)−1y = (LLT + ∆′)−1y

= ∆′
−1

y −∆′
−1

L︸ ︷︷ ︸
n×l

(Il + LT∆′
−1

L)−1︸ ︷︷ ︸
l×l

LT∆′
−1︸ ︷︷ ︸

l×n

y.

Here the second equality is obtained by letting ∆′ = ∆ +αIn, and the third equality
follows by the Sherman-Morrison-Woodbury matrix identity.

The remaining problem is to find such matrix approximation efficiently while keeping K̃
close to K.

3.2 Low-Rank Matrix Approximation Models

We first recall the prototype model introduced previously and then discuss its approximate
solutions. In fact, the famous Nyström method (Nyström, 1930; Williams and Seeger, 2001)
is an approximation to the prototype model. Throughout this paper, we let P ∈ Rn×c be
random projection or column selection matrix and C = KP be a sketch of K. The only
difference among the discussed models is their intersection matrices.

The Prototype Model. Suppose we have C ∈ Rn×c at hand. It remains to find
an intersection matrix U ∈ Rc×c. Since our objective is to make CUCT close to K, it is
straightforward to optimize their difference. The prototype model computes the intersection
matrix by

U? = argmin
U

‖K−CUCT ‖2F = C†K(CT )† ∈ Rc×c. (4)
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With C at hand, the prototype model still needs one pass through the data, and it costs
O(n2c) time. When applied to kernel methods, the memory cost is O(nc + nd) (see Al-
gorithm 1), where n is the number of data points and d is the dimension. The prototype
model has the same time complexity as the exact rank k eigenvalue decomposition, but it
is more memory-efficient and pass-efficient.

Halko et al. (2011) showed that when P is a standard Gaussian matrix and c = O(k/ε),
the prototype model attains 2 + ε error relative to ‖K −Kk‖2F . Wang and Zhang (2013)
showed that when C contains c = O(k/ε2) columns selected by the near-optimal+adaptive
sampling algorithm, the prototype model attains 1 + ε relative error. In Section 5.2 we
improve the result to c = O(k/ε), which is near optimal.

Faster SPSD matrix Approximation Model. Wang et al. (2015) noticed that (4)
is a strongly over-determined linear system, and thus proposed to solve (4) by randomized
approximations. They proposed to sample s = O(c

√
n/ε) � n columns according to the

row leverage scores of C, which costs O(nc2) time. Let S ∈ Rn×s be the corresponding
column selection matrix. They proposed the faster SPSD matrix approximation model
which computes the intersection matrix by

Ũ = argmin
U

∥∥ST (K−CUCT )S
∥∥2

F
= (STC)†︸ ︷︷ ︸

c×s

(STKS)︸ ︷︷ ︸
s×s

(CTS)†︸ ︷︷ ︸
s×c

∈ Rc×c. (5)

The faster model visits only s2 = O(nc2/ε) = o(n2) entries of K, and the time complexity
is O(nc2 + s2c) = O(nc3/ε). The following error bound is satisfied with high probability:

‖K−CŨCT ‖2F ≤ (1 + ε) min
U
‖K−CUCT ‖2F .

This implies that if C is such a high quality sketch that the prototype model satisfies 1 + ε
relative-error bound, then the faster SPSD matrix approximation model also satisfies 1 + ε
relative-error bound.

The Nyström Method. The Nyström method is a special case of the faster SPSD
matrix approximation model, and therefore it is also an approximate solution to (4). If we
let the two column selection matrices S and P be the same, then (5) becomes

Ũ = argmin
U

∥∥PT (K−CUCT )P
∥∥2

F
= (PTKP)†︸ ︷︷ ︸

c×c

(PTKP)︸ ︷︷ ︸
c×c

(PTKP)†︸ ︷︷ ︸
c×c

= (PTKP)†︸ ︷︷ ︸
c×c

.

The matrix (PTKP)† is exactly the intersection matrix of the Nyström method. The
Nyström method costs only O(nc2) time, and it can be applied to million-scale problems
(Talwalkar et al., 2013). However, its accuracy is low. Much work in the literature has
analyzed the error bound of the Nyström method, but only weak results are known (Drineas
and Mahoney, 2005; Shawe-Taylor et al., 2005; Kumar et al., 2012; Jin et al., 2013; Gittens
and Mahoney, 2013). Wang and Zhang (2013) even showed that the Nyström method
cannot attain 1 + ε relative-error bound unless c ≥ Ω(

√
nk/ε). Equivalently, to attain 1 + ε

bound, the Nyström would take Ω(n2k/ε) time and Ω(n1.5k0.5ε−0.5) memory.

3.3 Spectral Shifting Models

We propose a more accurate SPSD matrix approximation method called the spectral shifting
model. Here we briefly describe the model and its fast solution. The theoretical analysis is
left to Section 7.
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The Spectral Shifting (SS) Model. As before, we let P ∈ Rn×c be a column
selection matrix and C̄ = K̄P, where K̄ = K or K̄ = K − δ̄In for some parameter δ̄ ≥ 0.
We approximate K by C̄UssC̄T + δssIn, where(

Uss, δss
)

= argmin
U,δ

∥∥K− C̄UC̄T − δIn
∥∥2

F
. (6)

This optimization problem has closed-form solution (see Theorem 6)

δss =
1

n− rank(C̄)

(
tr(K)− tr

(
C̄†KC̄

))
,

Uss = C̄†K(C̄†)T − δss(C̄T C̄)†,

which can be computed in O(n2c) time and O(nc) memory. Later we will show that the SS
model is more accurate than the prototype model.

Faster Spectral Shifting Model. The same idea of Wang et al. (2015) also applies
to the SS model (14). Specifically, we can draw another column selection matrix S ∈ Rn×s
and solve (

Ũss, δ̃ss
)

= argmin
U,δ

∥∥ST (K− C̄UC̄T − δIn
)
S
∥∥2

F

= argmin
U,δ

∥∥STKS− (ST C̄)U(ST C̄)T − δIs
∥∥2

F
.

Similarly, it has closed-form solution

δ̃ss =
1

s− rank(ST C̄)

[
tr
(
STKS

)
− tr

(
(ST C̄)†(STKS)(ST C̄)

)]
,

Ũss = (ST C̄)†(STKS)(C̄TS)† − δ̃ss(C̄TSST C̄)†.

In this way, the time cost is merely O(s2c). However, the theoretical properties of this
model are yet unknown. We do not conduct theoretical or empirical study of this model;
we leave it as a future work,

4. Theories

In Section 4.1 we show that the prototype model is exact when K is low-rank. In Section 4.2
we provide a lower error bound of the prototype model.

4.1 Theoretical Justifications

Let P be a column selection matrix, C = KP be a sketch, and W = PTKP be the
corresponding submatrix. Kumar et al. (2009); Talwalkar and Rostamizadeh (2010) showed
that the Nyström method is exact when rank(W) = rank(K). We present a similar result
in Theorem 1.

Theorem 1 The following three statements are equivalent: (i) rank(W) = rank(K), (ii)
K = CW†CT , (iii) K = CC†K(C†)TCT .

Theorem 1 implies that the prototype model and the Nyström method are equivalent
when rank(W) = rank(K); that is, the kernel matrix K is low rank. However, it holds in
general that rank(K)� c ≥ rank(W), where the two models are not equivalent.
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4.2 Lower Bound

Wang and Zhang (2013) showed that with c = O(k/ε2) columns chosen by the near-
optimal+adaptive sampling algorithm, the prototype model satisfies 1 + ε relative-error
bound. We establish a lower error bound in Theorem 2, which shows that at least c ≥ 2kε−1

columns must be chosen to attain the 1+ε bound. This indicates there exists a gap between
the upper bound in (Wang and Zhang, 2013) and our lower bound, and thus there is room
of improvement. The proof of Theorem 2 is left to Appendix B.

Theorem 2 (Lower Bound of the Prototype Model) Whatever column sampling al-
gorithm is used, there exists an n × n SPSD matrix K such that the error incurred by the
prototype model obeys:∥∥K−CU?CT

∥∥2

F
≥ n− c

n− k

(
1 +

2k

c

)
‖K−Kk‖2F .

Here k is an arbitrary target rank, c is the number of selected columns, and U? = C†K(C†)T .

5. Column Sampling Algorithms

In Section 5.1 we introduce the column sampling algorithms in the literature. In Sec-
tion 5.2 we improve the bound of the near-optimal+adaptive sampling algorithm (Wang
and Zhang, 2013), and the obtained upper bound matches the lower bound up to a con-
stant factor. In Section 5.3 we develop a more efficient column sampling algorithm which we
call the uniform+adaptive2 algorithm. In Section 5.4 we discuss the possibility of making
uniform+adaptive2 more scalable.

5.1 Related Work

Column selection is an important matrix sketching approach that enables expensive matrix
computations to be performed on much a smaller matrix. The column selection problem has
been widely studied in the theoretical computer science community (Boutsidis et al., 2014;
Mahoney, 2011; Guruswami and Sinop, 2012; Woodruff, 2014) and the numerical linear
algebra community (Gu and Eisenstat, 1996; Stewart, 1999), and numerous algorithms
have been devised and analyzed. Here we focus on some provable algorithms studied in the
theoretical computer science community.

The adaptive sampling algorithm devised by Deshpande et al. (2006) (see Algorithm 2)
is the most relevant to this paper. The adaptive sampling algorithm has strong error
bound (Deshpande et al., 2006; Wang and Zhang, 2013; Boutsidis et al., 2014) and good
empirical performance (Kumar et al., 2012). Particularly, Wang and Zhang (2013) proposed
an algorithm that combines the near-optimal column sampling algorithm (Boutsidis et al.,
2014) and the adaptive sampling algorithm (Deshpande et al., 2006). They showed that by
selecting c = O(kε−2) columns of K to form C, it holds that

E
∥∥K−C

(
C†K(C†)T

)
CT
∥∥
F
≤ (1 + ε)‖K−Kk‖F .

This error bound was the tightest among all the feasible algorithms for SPSD matrix ap-
proximation.

9



Wang, Luo, and Zhang

Algorithm 2 The Adaptive Sampling Algorithm.

1: Input: a residual matrix B ∈ Rn×n and number of selected columns c (< n).
2: Compute sampling probabilities pj = ‖b:j‖22/‖B‖2F for j = 1, · · · , n;
3: Select c indices in c i.i.d. trials, in each trial the index j is chosen with probability pj ;
4: return an index set containing the indices of the selected columns.

5.2 Near Optimal Column Selection for SPSD Matrix Approximation

The error bound of near-optimal+adaptive can be improved by a factor of ε by exploiting
the latest results of Boutsidis and Woodruff (2014). Using the same algorithm except
for different c2 (i.e. the number of columns selected by adaptive sampling), we obtain the
following stronger theorem. Recall from Theorem 2 that the lower bound is c ≥ Ω

(
2kε−1(1+

o(1))
)
. Thus the near-optimal+adaptive algorithm is optimal up to a constant factor. The

proof of the theorem is left to Appendix 3.

Theorem 3 (Near-Optimal+Adaptive) Given a symmetric matrix K ∈ Rn×n and a
target rank k, the algorithm samples totally c = 3kε−1

(
1 + o(1)

)
columns of K to construct

the approximation. Then

E
∥∥K−C

(
C†K(C†)T

)
CT
∥∥
F
≤ (1 + ε)‖K−Kk‖F .

The algorithm costs O
(
n2c+ nk3ε−2/3

)
time and O(nc) memory in computing C.

Despite its optimal error bound, the near-optimal+adaptive algorithm lacks of practi-
cality. The implementation is complicated and difficult. Its main component—the near-
optimal algorithm (Boutsidis et al., 2014)—is highly iterative and therefore not suitable for
parallel computing. Every step of the near-optimal algorithm requires the full observation
of K and there is no hope to avoid this. Thus we propose to use uniform sampling to replace
the near-optimal algorithm. Although the obtained uniform+adaptive2 algorithm also has
quadratic time complexity and requires the full observation of K, there may be some way
to making it more efficient. See the discussions in Section 5.4.

5.3 The Uniform+Adaptive2 Column Sampling Algorithm

In this paper we propose a column sampling algorithm which is efficient, effective, and
very easy to be implemented. The algorithm consists of a uniform sampling step and two
adaptive sampling steps, so we call it the uniform+adaptive2 algorithm. The algorithm is
described in Algorithm 3 and analyzed in Theorem 4. The proof is left to Appendix D.

It is worth mentioning that our uniform+adaptive2 algorithm is a special instance of the
adaptive-full algorithm of (Kumar et al., 2012, Figure 3). The adaptive-full algorithm con-
sists of random initialization and multiple adaptive sampling steps. Using multiple adaptive
sampling steps can surely reduce the approximation error. However, the update of sampling
probability in each step is expensive, so we choose to do only two steps. The adaptive-full
algorithm of (Kumar et al., 2012, Figure 3) is merely a heuristic scheme without theoretical
guarantee; our result provides theoretical justification for the adaptive-full algorithm.
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Algorithm 3 The Uniform+Adaptive2 Algorithm.

1: Input: an n×n symmetric matrix K, target rank k, error parameter ε ∈ (0, 1], matrix
coherence µ.

2: Uniform Sampling. Uniformly sample

c1 = 20µk log
(
20k
)

columns of K without replacement to construct C1;
3: Adaptive Sampling. Sample

c2 = 17.5k/ε

columns of K to construct C2 using the adaptive sampling algorithm (Algorithm 2)
according to the residual K− PC1(K);

4: Adaptive Sampling. Sample
c3 = 10k/ε

columns of K to construct C3 using the adaptive sampling algorithm (Algorithm 2)
according to the residual K− P[C1, C2](K);

5: return C = [C1,C2,C3].

Theorem 4 (Uniform+Adaptive2) Given an n×n symmetric matrix K and a target
rank k, let µk denote the matrix coherence of K. Algorithm 3 samples totally

c = O
(
kε−1 + µkk log k

)
columns of K to construct the approximation. The error bound∥∥K−C

(
C†K(C†)T

)
CT
∥∥
F
≤
(
1 + ε

)∥∥K−Kk

∥∥
F

holds with probability at least 0.7. The algorithm costs O(n2c) time and O(nc) space in
computing C.

Remark 5 Theoretically, Algorithm 3 requires computing the matrix coherence of K in
order to determine c1 and c2. However, computing the matrix coherence is as hard as
computing the truncated SVD; even the fast approximation approach of Drineas et al. (2012)
is not feasible here because K is a square matrix. The use of the matrix coherence here
is merely for theoretical analysis; setting the parameter µ in Algorithm 3 to be exactly the
matrix coherence does not certainly result in the highest accuracy. Empirically, the resulting
approximation accuracy is not sensitive to the value of µ. Thus we suggest setting µ in
Algorithm 3 as a constant (e.g. 1), rather than actually computing the matrix coherence.

Table 2 presents comparisons between the near-optimal+adaptive algorithm and our
uniform+adaptive2 algorithm over the time cost, memory cost, number of passes through
K, the number of columns required to attain 1 + ε relative-error bound, and the hardness
of implementation. Our algorithm is more time-efficient and pass-efficient than the near-
optimal+adaptive algorithm, and the memory costs of the two algorithms are the same.
To attain the same error bound, our algorithm needs to select c = O

(
kε−1 + µkk log k

)
columns, which is a little larger than that of the near-optimal+adaptive algorithm.
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Table 2: Comparisons between the two sampling algorithms.
Uniform+Adaptive2 Near-Optimal+Adaptive

Time O(n2c) O(n2c+ nk3ε−2/3)
Memory O

(
nc
)

O
(
nc
)

#Passes 2 4
#Columns O

(
kε−1 + µkk log k

)
O
(
kε−1)

Implement Easy to implement Hard to implement

Algorithm 4 The Incomplete Uniform+Adaptive2 Algorithm.

1: Input: part of an n× n symmetric matrix K.
2: Uniform Sampling. Uniformly sample c1 columns of K without replacement to con-

struct C1;
3: Adaptive Sampling. Uniformly sample o(n) columns of K to form K′; then sample
c2 columns of K′ to construct C2 using the adaptive sampling algorithm (Algorithm 2)
according to the residual K′ − PC1(K′);

4: Adaptive Sampling. Uniformly sample o(n) columns of K to form K′′; then sample
c3 columns of K′′ to construct C3 using the adaptive sampling algorithm (Algorithm
2) according to the residual K′′ − P[C1, C2](K

′′);
5: return C = [C1,C2,C3].

5.4 Discussions

The two algorithms discussed in the above have strong theoretical guarantees, but they are
not efficient enough for large-scale applications. First, their time complexities are quadratic
in n. Second, they require the full observation of K. In fact, at present no existing column
selection algorithm satisfies the three properties simultaneously:

1. the time and memory costs are O(n);

2. only O(n) entries of K need to be observed;

3. relative-error bound holds in expectation or with high probability.

It is interesting to find such an algorithm, and it remains an open problem.

Nevertheless, uniform+adaptive2 is a promising column selection algorithm for it may
be adapted to satisfy the above three properties. The drawback of uniform+adaptive2 is
that computing the adaptive sampling probability costs quadratic time and requires the full
observation of K. There may be remedies for this problem. The adaptive-partial algorithm
in (Kumar et al., 2012) satisfies the first two properties, but it lacks theoretical analysis.
Another possibility is to first uniformly sample o(n) columns and then down-sample to
O(k/ε) columns by adaptive sampling, which we describe in Algorithm 4. In this way,
the first two properties can be satisfied, and it may be theoretically explained under the
incoherent matrix assumption. We do not implement such heuristics for their theoretical
property is completely unknown and they are beyond the scope of this paper.
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Table 3: A summary of the datasets for kernel approximation.
Dataset MNIST Letters PenDigit Cpusmall Mushrooms
#Instance 60, 000 15, 000 10,992 8, 192 8, 124
#Attribute 780 16 16 12 112
γ (η = 0.5) ≈ 1.50 0.155 0.045 0.031 0.850
γ (η = 0.9) ≈ 2.30 0.290 0.073 0.057 1.140
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2
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Near−Optimal+Adaptive (Prototype)

(f) Legend.

Figure 1: The ratio c
n against the error ratio defined in (8). In each subfigure, the left

corresponds to the RBF kernel matrix with η = 0.5, and the right corresponds to
η = 0.9, where η is defined in (7).

6. Experiments on the Column Sampling Algorithms

We empirically conduct comparison among three column selection algorithms—uniform
sampling, uniform + adaptive2, and the near-optimal + adaptive sampling algorithm.

13



Wang, Luo, and Zhang

0.02 0.03 0.04 0.05 0.06 0.07
0

200

400

600

800

1000

1200

c/n

T
im

e
 (

s
)

(a) MNIST.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

100

200

300

400

500

T
im

e
 (

s
)

c/n

(b) Letters.

0.02 0.05 0.08 0.11 0.14 0.170.17
0

50

100

150

200

250

T
im

e
 (

s
)

c/n

(c) PenDigit.

0 0.05 0.1 0.15 0.2
0

500

1000

1500

T
im

e
 (

s
)

c/n

(d) Cpusmall.

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

120

T
im

e
 (

s
)

c/n

(e) Mushroom.

Uniform Sampling (Nystrom)

Uniform Sampling (Prototype)

Uniform+adaptive
2
 (Nystrom)

Uniform+adaptive
2
 (Prototype)

Near−Optimal+Adaptive (Nystrom)

Near−Optimal+Adaptive (Prototype)

(f) Legend.

Figure 2: The growth of the average elapsed time in c
n .

6.1 Experiment Setting

We perform experiments on several datasets collected on the LIBSVM website2 where the
data are scaled to [0,1]. We summarize the datasets in Table 3.

For each dataset, we generate a radial basis function (RBF) kernel matrix K defined
by kij = exp(− 1

2γ2
‖xi − xj‖22). Here γ > 0 is the scaling parameter; the larger the scaling

parameter γ is, the faster the spectrum of the kernel matrix decays (Gittens and Mahoney,
2013). The previous work has shown that for the same dataset, with different settings of γ,
the sampling algorithms have very different performances. Instead of setting γ arbitrarily,
we set γ in the following way.

Letting p = d0.05ne, we define

η ,

∑p
i=1 λ

2
i (K)∑n

i=1 λ
2
i (K)

=
‖Kp‖2F
‖K‖2F

, (7)

which denotes the ratio of the top 5% eigenvalues of the kernel matrix K to the all eigen-
values. In general, a large γ results in a large η. For each dataset, we use two different
settings of γ such that η = 0.5 or η = 0.9.

The models and algorithms are all implemented in MATLAB. We run the algorithms on
a workstation with Intel Xeon 2.40GHz CPUs, 24GB memory, and 64bit Windows Server
2008 system. To compare the running time, we set MATLAB in single thread mode by the
command “maxNumCompThreads(1)”. In the experiments we do not keep K in memory.
We use a variant of Algorithm 1—we compute and store one block, instead of one column,
of K at a time. We keep at most 1, 000 columns of K in memory at a time.

2. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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We set the target rank k to be k = dn/100e in all the experiments unless otherwise
specified. We evaluate the performance by

Approximation Error = ‖K− K̃‖F /‖K‖F , (8)

where K̃ is the approximation generated by each method.
To evaluate the quality of the approximate rank-k eigenvalue decomposition, we use

misalignment to indicate the distance between the true eigenvectors Uk (n × k) and the
approximate eigenvectors Ṽk (n× k):

Misalignment =
1

k

∥∥Uk − ṼkṼ
T
k Uk

∥∥2

F
∈ [0, 1]. (9)
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Figure 3: The number of selected columns c against the misalignment (log-scale) defined
in (9). In each subfigure, the left corresponds to the RBF kernel matrix with
η = 0.5, and the right corresponds to η = 0.9, where η is defined in (7).

6.2 Matrix Approximation Accuracy

In the first set of experiments, we compare the matrix approximation quality using the
Frobenius norm approximation error defined in (8) as the metric.
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Figure 4: The elapsed time (log-scale) against the misalignment (log-scale) defined in (9).
In each subfigure, the left corresponds to the RBF kernel matrix with η = 0.5,
and the right corresponds to η = 0.9, where η is defined in (7).

Every time when we do column sampling, we repeat each sampling algorithm 10 times
and record the minimal approximation error of the 10 repeats. We report the average
elapsed time of the 10 repeat rather than the total elapsed time because the 10 repeats can
be done in parallel on 10 machines. We plot c against the approximation error in Figure 1.
For the kernel matrices with η = 0.9, we plot c against the average elapsed time in Figure 2;
for η = 0.5, the curve of the running time is very similar, so we do not show it.

The results show that our uniform+adaptive2 algorithm achieves accuracy comparable
with the near-optimal+adaptive algorithm. Especially, when c is large, these two algorithms
have virtually the same accuracy, which agrees with our analysis: a large c implies a small
error term ε, and the error bounds of the two algorithms coincide when ε is small. As for
the running time, we can see that our uniform+adaptive2 algorithm is much more efficient
than the near-optimal+adaptive algorithm.

Particularly, the MNIST dataset has 60, 000 instances, and the 60, 000× 60, 000 kernel
matrix K does not fit in memory. The experiment shows that neither the prototype model
nor the uniform+adaptive2 algorithm require keeping K in memory.
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6.3 Kernel Principal Component Analysis

In the second set of experiment, we apply the kernel approximation methods to approxi-
mately compute the rank k = 3 eigenvalue decomposition of the RBF kernel matrix. We use
the misalignment defined in (9) as the metric, which reflects the distance between the true
and the approximate eigenvectors. We report the average misalignment of the 20 repeats.
We do not conduct experiments on the MNIST dataset because the true eigenvectors are
too expensive to compute.

To evaluate the memory efficiency, we plot c against the misalignment in Figure 3.
The results show that the two non-uniform sampling algorithms are significantly better
than uniform sampling. The performance of our uniform+adaptive2 algorithm is nearly the
same to the near-optimal+adaptive algorithm.

To evaluate the time efficiency, we plot the elapsed time against the misalignment in
Figure 4. Though the uniform sampling algorithm is the most efficient in most cases, its
accuracy is unsatisfactory. In terms of time efficiency, the uniform+adaptive2 algorithm is
better than the near-optimal+adaptive algorithm.

The experiment on the kernel PCA shows that the prototype model with the uniform +
adaptive2 column sampling algorithm achieves the best performance. Though the Nyström
method with uniform sampling is the most efficient, its resulting misalignment is worse by
an order of magnitude. Therefore, when applied to speedup eigenvalue decomposition, the
Nyström method may not be a good choice, especially when high accuracy is required.

6.4 Separating the Time Costs

Besides the total elapsed time, the readers may be interested in the time cost of each
step, especially when the data do no fit in memory. We run the Nyström method and the
prototype model, each with uniform+adaptive2 column sampling algorithm, on the MNIST
dataset with γ = 2.3 (see Table 3). Notice that the 60, 000× 60, 000 kernel matrix does not
fit in memory, so we keep at most 1, 000 columns of the kernel matrix in memory at a time.
We set c = 50 or 500 and repeat the procedure 20 times and record the average elapsed
time. In Figure 5 we separately show the time costs of the uniform+adaptive2 algorithm
and the computation of the intersection matrices. In addition, we separate the time costs of
evaluating the kernel functions and all the other computations (e.g. SVD of C and matrix
multiplications).

We can see from Figure 5 that when K does not fit in memory, the computation of the
kernel matrix contributes to the most of the computations. By comparing the two subfigures
in Figure 5, we can see that as c increases, the costs of computing the kernel matrix barely
change, but the costs of other matrix operations significantly increase.

7. The Spectral Shifting Model

All the low-rank approximation methods work well only when the bottom eigenvalues of K
are near zero. In this section we develop extensions of the three SPSD matrix approximation
models to tackle matrices with relatively big bottom eigenvalues. We call the proposed
method the spectral shifting (SS) model and describe it in Algorithm 5. We show that the
SS model has stronger error bound than the prototype model.
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Figure 5: The time costs (s) of the uniform+adaptive2 algorithm and the computation of
the intersection matrices.

Algorithm 5 The Spectral Shifting Method.

1: Input: an n× n SPSD matrix K, a target rank k, the number of sampled columns c,
the oversampling parameter l.

2: // (optional) approximately do the initial spectral shifting
3: Ω←− n× l standard Gaussian matrix;
4: Q←− the l orthonormal basis of KΩ ∈ Rn×l;
5: s←− sum of the top k singular values of QTK ∈ Rl×n;
6: δ̃ = 1

n−k
(
tr(K)− s

)
≈ δ̄;

7: K̄← K− δ̃In ∈ Rn×n;
8: // perform sketching, e.g. random projection or column selection
9: C̄ = K̄P, where P is an n× c random projection or selection matrix;

10: Optional: replace C̄ by its orthonormal bases;
11: // compute the spectral shifting parameter and the intersection matrix

12: δss ←− 1
n−rank(C̄)

(
tr(K)− tr

(
C̄†KC̄

))
;

13: Uss ←− C̄†K(C̄†)T − δss(C̄T C̄)†;
14: return the approximation K̃ss

c = C̄UssC̄T + δssIn.

In Section 7.1 we formulate the SS model. In Section 7.2 we study SS from an op-
timization perspective. In Section 7.3 we show that SS has better error bound than the
prototype model. Especially, with the near-optimal+adaptive column sampling algorithm,
SS demonstrates much stronger error bound than the existing matrix approximation meth-
ods. In Section 7.4 we provide an efficient algorithm for computing the initial spectral
shifting term. In Section 7.5 we discuss how to combine spectral shifting with other kernel
approximation methods.
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7.1 Model Formulation

The spectral shifting (SS) model is defined by

K̃ss
c = C̄UssC̄T + δssIn. (10)

Here δss ≥ 0 is called the spectral shifting term. This approximation is computed in three
steps. Firstly, (approximately) compute the initial spectral shifting term

δ̄ =
1

n− k

(
tr(K)−

k∑
j=1

σj(K)

)
, (11)

and then perform spectral shifting K̄ = K− δ̄In, where k ≤ c is the target rank. This step
is optional. Due to Theorem 6 and Remark 7, SS is better than the prototype model even
if δ̄ = 0; however, without this step, the quantity of the improvement contributed by SS
is unknown. Secondly, draw a column selection matrix P and form the sketch C̄ = K̄P.
Finally, with C̄ at hand, compute δss and Uss by

δss =
1

n− rank(C̄)

(
tr(K)− tr

(
C̄†KC̄

))
,

Uss = C̄†K(C̄†)T − δss(C̄T C̄)†. (12)

We will show that K̃ss
c is positive (semi)definite if K is positive (semi)definite.

However, when the bottom eigenvalues of K are small, the computed spectral shifting
term is small, where there is little difference between SS and the prototype model, and the
spectral shifting operation is not advised.

7.2 Optimization Perspective

The SS model is an extension of the prototype model from the optimization perspective.
Given an SPSD matrix K, the prototype model computes the sketch C = KP and the
intersection matrix

U? = C†K(C†)T = argmin
U

‖K−CUCT ‖2F . (13)

Analogously, with the sketch C̄ = K̄P = KP− δ̄P at hand, SS is obtained by solving(
Uss, δss

)
= argmin

U,δ

∥∥K− C̄UC̄T − δIn
∥∥2

F
, (14)

obtaining the intersection matrix Uss and the spectral shifting term δss. By analyzing the
optimization problem (14), we obtain the following theorem. Its proof is in Appendix E.

Theorem 6 The pair (δss,Uss) defined in (12) is the global minimizer of problem (14),
which indicates that using any other (δ,U) to replace (δss,Uss) results in a larger ap-
proximation error. Furthermore, if K is positive (semi)definite, then the approximation
C̄UssC̄T + δssIn is also positive (semi)definite.

19



Wang, Luo, and Zhang

Remark 7 The optimization perspective indicates the superiority of SS. Suppose we skip
the initial spectral shifting step and simply set δ̄ = 0. Then C̄ = C. If the constraint δ = 0
is to the optimization problem (14), then (14) will become identical to the prototype model
(13). Obviously, adding this constraint will make the optimal objective function value get
worse, so the optimal objective function value of (14) is always less than or equal to (13).
Hence, without the initial spectral shifting step, SS is still more accurate than the prototype
model.

7.3 Error Analysis

The following theorem indicates that the SS model with any spectral shifting term δ ∈ (0, δ̄]
has a stronger bound than the prototype model. The proof is in Appendix F.

Theorem 8 Suppose there is a sketching matrix P ∈ Rn×c such that for any n×n symmet-
ric matrix A and target rank k (� n), by forming C = AP, the prototype model satisfies
the error bound ∥∥A−CC†A(C†)TCT

∥∥2

F
≤ η

∥∥A−Ak

∥∥2

F

for certain η > 0. Let K be any n×n SPSD matrix, δ̃ ∈ (0, δ̄] be the initial spectral shifting
term where δ̄ is defined in (11), K̄ = K− δ̃In, C̄ = K̄P, and K̃ss

c be the SS model defined
in (10). Then ∥∥K− K̃ss

c

∥∥2

F
≤ η

∥∥K̄− K̄k‖2F ≤ η
∥∥K−Kk‖2F .

We give an example in Figure 6 to illustrate the intuition of spectral shifting. We use the
toy matrix K: an n×n SPSD matrix whose the t-th eigenvalue is 1.05−t. We set n = 100 and
k = 30, and hence δ̄ = 0.064. From the plot of the eigenvalues we can see that the “tail” of
the eigenvalues becomes thinner after the spectral shifting. Specifically, ‖K−Kk‖2F = 0.52
and ‖K̄−K̄k‖2F ≤ 0.24. From Theorem 8 we can see that if ‖K−CC†K(C†)TCT ‖F ≤ 0.52η,
then ‖K− K̃ss

c ‖F ≤ 0.24η. This indicates that SS has much stronger error bound than the
prototype model.
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Figure 6: We plot the eigenvalues of K in Figure 6(a) and K̄ = K− δ̄I100 in Figure 6(b).
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The following theorem shows an error bound of the SS model, which is stronger than
the prototype model, especially when the bottom n−k eigenvalues of K are big. The proof
is in Appendix F.

Theorem 9 Suppose there is a sketching matrix P ∈ Rn×c such that for any n × n sym-
metric matrix A and target rank k (� n), by forming the sketch C = AP, the prototype
model satisfies the error bound∥∥A−CC†A(C†)TCT

∥∥2

F
≤ η

∥∥A−Ak

∥∥2

F

for certain η > 0. Let K be any n×n SPSD matrix, δ̄ defined in (11) be the initial spectral
shifting term, and K̃ss

c be the SS model defined in (10). Then

∥∥K− K̃ss
c

∥∥2

F
≤ η

(∥∥K−Kk

∥∥2

F
−
[∑n

i=k+1 λi(K)
]2

n− k

)
.

If C̄ contains the columns of K̄ sampled by the near-optimal+adaptive algorithm in
Theorem 3, which has the strongest bound, then the error bound incurred by SS is given
in the following corollary.

Corollary 10 Suppose we are given any SPSD matrix K and we sample c = O(k/ε)
columns of K̄ to form C̄ using the near-optimal+adaptive column sampling algorithm (The-
orem 3). Then the inequality holds:

E
∥∥K− K̃ss

c

∥∥2

F
≤ (1 + ε)

(
‖K−Kk‖2F −

[∑n
i=k+1 λi(K)

]2
n− k

)
.

Here we give an example to demonstrate the superiority of SS over the prototype model,
the Nyström method, and even the truncated SVD of the same scale.

Example 1 Let K be an n × n SPSD matrix such that λ1(K) ≥ · · · ≥ λk(K) > θ =
λk+1(K) = · · · = λn(K) > 0. By sampling c = O(k) columns by the near-optimal+adaptive
algorithm (Theorem 3), we have that∥∥K− K̃ss

c

∥∥2

F
= 0

and that

(n− c)θ2 =
∥∥K−Kc

∥∥2

F
≤
∥∥K− K̃proto

c

∥∥2

F
≤
∥∥K− K̃nys

c

∥∥2

F
.

Here K̃proto
c and K̃nys

c respectively denote the approximation formed by the prototype model
and the Nyström method. In this example the SS model is far better than the other models
if we set θ as a large constant.
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7.4 Approximately Computing δ̄

The SS model uses δ̄ as the initial spectral shifting term. However, computing δ̄ according
to (11) requires the partial eigenvalue decomposition which costs O(n2k) time and O(n2)
memory. For large-scale data, one can simply set δ̄ = 0; Remark 7 shows that SS with
this setting still works better than the prototype model. For medium-scale data, one can
approximately compute δ̄ by the algorithm devised and analyzed in this subsection.

We depict the algorithm in Lines 2–6 of Algorithm 5. The performance of the approxi-
mation is analyzed in the following theorem.

Theorem 11 Let δ̄ be defined in (11) and δ̃, k, l, n be defined in Algorithm 5. The following
inequality holds:

E
[∣∣δ̄ − δ̃∣∣ / δ̄] ≤ k/

√
l,

where the expectation is taken w.r.t. the Gaussian random matrix Ω in Algorithm 5. Lines 2–
6 in Algorithm 5 compute δ̃ in O(n2l) time and O(nl) memory.

Here we empirically evaluate the accuracy of the approximation to δ̄ (Lines 2–6 in
Algorithm 5) proposed in Theorem 11. We use the RBF kernel matrices with the scaling
parameter γ listed Table 3. We use the error ratio |δ̄ − δ̃|/δ̄ to evaluate the approximation
quality. We repeat the experiments 20 times and plot l/k against the average error ratio in
Figure 7. Here δ̃, l, and k are defined in Theorem 11. We can see that the approximation
of δ̄ has high quality: when l = 4k, the error ratios are less than 0.03 in all cases, no matter
whether the spectrum of K decays fast or slow.
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Figure 7: The ratio l
k against the error |δ̄− δ̃|/δ̄. In each subfigure, the left corresponds to

the RBF kernel matrix with η = 0.5, and the right corresponds to η = 0.9, where
η is defined in (7).

7.5 Combining with Other Matrix Approximation Methods

There are many other matrix approximation approaches such as the ensemble Nyström
method (Kumar et al., 2012) and MEKA (Si et al., 2014). In fact, the key components
of the ensemble Nyström method and MEKA are the Nyström method, which can be
straightforwardly replaced by other matrix approximation methods such as the SS model.
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The ensemble Nyström method improves the Nyström method by running the
Nyström method t times and combine the samples to construct the kernel approximation:

K̃ens
t,c =

t∑
i=1

µ(i)C(i)W(i)†C(i)T ,

where µ(1), · · · , µ(t) are the weights of the samples, and a simple but effective strategy is to
set the weights as µ(1) = · · · = µ(t) = 1

t . However, the time and memory costs of computing
C and U are respectively t times as much as that of its base method (e.g. the Nyström
method), and the ensemble Nyström method needs to use the Sherman-Morrison-Woodbury
formula t times to combine the samples. When executed on a single machine, the accuracy
gained by the ensemble may not worth the t times more time and memory costs.

MEKA is reported to be the state-of-the-art kernel approximation method. It exploits
the block-diagonal structure of kernel matrices, and outputs an n× c sparse matrix C
and a c × c small matrix U such that K ≈ CUCT . MEKA first finds the blocks by
clustering the data into b clusters and permutes the kernel matrix accordingly. It then
approximates the diagonal blocks by the Nyström method, which can be replaced by other
methods. It finally approximates the off-diagonal blocks using the diagonal blocks. If the
kernel matrix is partitioned into b2 blocks, only b blocks among the b2 blocks of C are
nonzero, and the number of nonzero entries of C is at most nnz(C) = nc/b. MEKA is
thus much more memory efficient than the Nyström method. If we use the SS model to
approximate the diagonal blocks, then the resulting MEKA approximation will be in the
form K ≈ CUCT + δ1I⊕ · · · ⊕ δbI, where δi corresponds to the i-th diagonal block.

8. Empirically Evaluating the Spectral Shifting Model

We empirically evaluate the spectral shifting method by comparing the following kernel
approximation models in terms of approximation quality and the generalization performance
on Gaussian process regression.

• The Nyström method with the uniform+adaptive2 algorithm.

• The prototype model with the uniform+adaptive2 algorithm.

• The memory efficient kernel approximation (MEKA) method (Si et al., 2014), which
approximates the diagonal blocks of the kernel matrix by the Nyström method. We
use the code released by the authors with default settings.

• The spectral shifting (SS) model with the uniform+adaptive2 algorithm.

• SS+MEKA: the same to MEKA except for using SS, rather than the Nyström method,
to approximate the diagonal blocks.

Since the experiments are all done on a single machine, the time and memory costs of the
ensemble Nyström method (Kumar et al., 2012) are t times larger. It would be unfair to
directly do comparison with the ensemble Nyström method.
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Figure 8: The memory cost against approximation error. Here “nnz” is number of nonzero
entries in the sketch, namely, nnz(C) + nnz(U). In each subfigure, the left cor-
responds to the RBF kernel matrix with η = 0.5, and the right corresponds to
η = 0.9, where η is defined in (7).

8.1 Experiments on Approximation Accuracy

We conduct experiments using the same setting as in Section 6.1. To demonstrate the effect
of spectral shifting, we only consider a kernel matrix with slowly decaying spectrum. Thus
we set η (defined in (7)) relatively small: η = 0.5 and η = 0.9. When η is near one, the
spectral shifting term becomes near zero, and spectral shifting makes no difference.

We present the results in two ways: (1) Figure 8 plots the memory usage against the
approximation error, where the memory usage is proportional to the number of nonzero
entries of C and U; (2) Figure 9 plots the elapsed time against the approximation error.
The results have the following implications.

• Using the spectral shifting technique is better than without using it: SS and SS+MEKA
are more accurate than the prototype model and MEKA, respectively. The advantage
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Figure 9: The elapsed time (log-scale) against the approximation error. In each subfig-
ure, the left corresponds to the RBF kernel matrix with η = 0.5, and the right
corresponds to η = 0.9, where η is defined in (7).

of spectral shifting is particularly obvious when the spectrum of K decays slowly, i.e.
when η = 0.5.

• SS and SS+MEKA are the best among the compared methods according to our ex-
periments. Especially, if a high-quality approximation in limited memory is desired,
SS+MEKA should be the best choice.

• The kernel matrix of the MNIST dataset is 60, 000× 60, 000, which does not fit in the
24GB memory. This shows that the compared methods and sampling algorithm do
not require keeping K in memory.

In addition, we conduct experiments on the large-scale dataset—covtype—which has
581,012 data instances. We compare among the Nyström method, MEKA, and MEKA+SS.
The experiment setting is slightly different from the ones in the above. For each of the four
methods, we use uniform sampling to select columns. As for the MEKA based methods, we
set the number of clusters to be 30 (whereas the default is 10) to increase scalability. As
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Figure 10: The experiments on the covtype dataset. We plot the memory cost against
approximation error and plot the elapsed time (log-scale) against the approxi-
mation error.

Table 4: Summary of datasets for Gaussian process regression
Plant White Wine Red Wine Concrete Energy (Heat) Energy (Cool) Housing

#Instance 9,568 4,898 1,599 1,030 768 768 506
#Attribute 4 11 11 8 8 8 13

γ 0.1 1 1 1 0.5 0.5 1
σ2 0.1 0.01 0.01 0.0002 0.0005 0.001 0.005

for the spectral shifting method, we do not perform the initial spectral shifting. The results
are plotted in Figure 10. The results show the effectiveness and scalability of the spectral
shift method.

8.2 Experiments on Gaussian Process Regression

We apply the kernel approximation methods to Gaussian process regression (GPR). We
assume that the training set is {(x1, y1), ..., (xn, yn)}, where xi ∈ Rd are input vectors and
yi ∈ R are the corresponding outputs. GPR is defined as

y = u+ f(x) + ε, ε ∼ N (0, σ2),

where f(x) follows a Gaussian process with mean function 0 and kernel function κ(·, ·).
Furthermore, we define the kernel matrix K ∈ Rn×n, where the (i, j)-th entry of K is
κ(xi,xj).

For a test input x∗, the prediction is given by

ŷ∗ = kT (x∗)(K + σ2I)−1y,

where y = [y1, . . . , yn]T and k(x∗) = [κ(x∗,x1), . . . , κ(x∗,xn)]T . We apply different kernel
approximation methods to approximate K and approximately compute (K + σ2I)−1y ac-
cording to Section 3.1. We evaluate the generalization performance using the mean squared
error:

MSE =
1

m

m∑
i=1

(yi∗ − ŷi∗)2,
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Figure 11: The results on Gaussian process regression. In the figures “nnz” is number of
nonzero entries in the sketch, that is, nnz(C) + nnz(U).

where yi∗ is the real output of the i-th test sample and m is the number of test samples.

We conduct experiment on seven datasets summarized in Table 4. We use the Gaussian
RBF kernel and tune two parameters: the variance σ2 and the kernel scaling parameter γ.
Recall that there are seven compared methods and eight datasets, so the time cost would
be daunting if we use cross-validation to find σ and γ for each method on each dataset.
Thus we perform a five-fold cross-validation without using kernel approximation to pre-
determine the two parameters σ and γ, and the same parameters are used for all the kernel
approximation methods. We list the obtained parameters in Table 4.

For each of the compared methods, we randomly hold 80% samples for training and the
rest for test; we repeat this procedure 50 times and record the average MSE, the average
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Figure 12: The results on Gaussian process regression.

elapsed time, and the average of the number of nonzero entries in the sketch. We plot
nnz(C)+nnz(U)

n2 against MSE in Figure 11 and the elapsed time against MSE in Figure 12.

Using the same amount of memory, our SS model achieves the best performance on
the Plant, Red Wine, Energy (Cool), and Energy (Heat) datasets. On the Concrete and
Housing datasets, using spectral shifting leads better results unless c is unreasonably large
(e.g. c > 0.1n). However, using the same amount of time, the compared methods have
competitive performance.

MEKA and SS+MEKA in general work very well, but they are numerically unstable on
some of the randomly partitioned training data. On the White Wine, Housing, and Concrete
datasets, MATLAB occasionally reports errors of numerical instability in approximating
the off-diagonal blocks of K by solving some linear systems; when such happens, we do
not report the corresponding test errors in the figures. MEKA and SS+MEKA are also
sometimes unstable on the Plant and Red Wine datasets, though MATLAB does not report
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error. Although MEKA and SS+MEKA have good performance in general, the numerical
instability makes MEKA and SS+MEKA perform very poorly on a few among the 50
randomly partitioned training/test data, and consequently the average test errors become
large. This problem can get avoided by repeating MEKA multiple times and choose the
one that is stable. However, this will significantly increase the time cost.

9. Conclusions

We have provided an in-depth study of the prototype model for SPSD matrix approximation.
First, we have shown that with c = O(k/ε) columns sampled by the near-optimal+adaptive
algorithm, the prototype model attains 1 + ε Frobenius norm relative-error bound. This
upper bound matches the lower bound up to a constant factor. Second, we have devised
a simple column selection algorithm called uniform+adaptive2. The algorithm is efficient
and very easy to implement, and it has near-optimal relative-error bound. Third, we have
proposed an extension called the spectral shifting (SS) model. We have shown that SS has
much stronger error bound than the low-rank approximation models, especially when the
bottom eigenvalues are not sufficiently small.

Although the prototype model is not very time-efficient, we can resort to the approximate
method provided by Wang et al. (2015) to obtain a faster solution to the prototype model.
This faster solution requires only linear time and linear memory. The theoretical analysis of
the fast solution heavily relies on that of the prototype model, so our established results are
useful even if the prototype model itself is not the working horse in real-world applications.
In addition, we have shown that the fast solution can also be naturally incorporated with
the spectral shifting method.
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Appendix A. Proof of Theorem 1

Proof Suppose that rank(W) = rank(K). We have that rank(W) = rank(C) = rank(K)
because

rank(K) ≥ rank(C) ≥ rank(W). (15)

Thus there exists a matrix X such that

[
KT

21

K22

]
= CXT =

[
WXT

K21X
T

]
,
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and it follows that K21 = XW and K22 = K21X
T = XWXT . Then we have that

K =

[
W (XW)T

XW XWXT

]
=

[
I
X

]
W
[

I XT
]

, (16)

CW†CT =

[
W

XW

]
W† [ W (XW)T

]
=

[
I
X

]
W
[

I XT
]

. (17)

Here the second equality in (17) follows from WW†W = W. We obtain that K = CW†C.
Then we show that K = CC†K(C†)TCT .

Since C† = (CTC)†CT , we have that

C† =
(
W(I + XTX)W

)†
W [I , XT ],

and thus

C†K(C†)TW

=
(
W(I + XTX)W

)†
W(I + XTX)

[
W(I + XTX)W

(
W(I + XTX)W

)†
W
]

=
(
W(I + XTX)W

)†
W(I + XTX)W,

where the second equality follows from Lemma 12 because (I + XTX) is positive definite.
Similarly we have

WC†K(C†)TW = W
(
W(I + XTX)W

)†
W(I + XTX)W = W.

Thus we have

CC†K(C†)TC =

[
I
X

]
WC†K(C†)TW

[
I XT

]
=

[
I
X

]
W
[

I XT
]

. (18)

It follows from Equations (16) (17) (18) that K = CW†CT = CC†K(C†)TCT .

Conversely, when K = CW†CT , it holds that rank(K) ≤ rank(W†) = rank(W). It
follows from (15) that rank(K) = rank(W).

When K = CC†K(C†)TCT , we have rank(K) ≤ rank(C). Thus there exists a matrix
X such that [

KT
21

K22

]
= CXT =

[
WXT

K21X
T

]
,

and therefore K21 = XW. Then we have that

C =

[
W
K21

]
=

[
I
X

]
W,

so rank(C) ≤ rank(W). Apply (15) again we have rank(K) = rank(W).

Lemma 12 XTVX
(
XTVX

)†
XT = XT for any positive definite matrix V.
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Proof The positive definite matrix V have a decomposition V = BTB for some nonsingular
matrix B. It follows that

XTVX
(
XTVX

)†
XT = (BX)T

(
BX

(
(BX)T (BX)

)†)
(BX)TB(BTB)−1

= (BX)T
(
(BX)T

)†
(BX)T (BT )−1 = (BX)T (BT )−1 = XT .

Appendix B. Proof of Theorem 2

In Section B.1 we provide several key lemmas, and then in Section B.2 we prove Theorem 2
using Lemmas 14 and 15.

B.1 Key Lemmas

Lemma 13 provides a useful tool for expanding the Moore-Penrose inverse of partitioned
matrices, and the lemma will be used to prove Lemma 15 and Theorem 2.

Lemma 13 (see Ben-Israel and Greville, 2003, Page 179) Given a matrix X ∈ Rm×n of
rank c, let it have a nonsingular c × c submatrix X11. By rearrangement of columns and
rows by permutation matrices P and Q, the submatrix X11 can be bought to the top left
corner of X, that is,

PXQ =

[
X11 X12

X21 X22

]
.

Then the Moore-Penrose inverse of X is

X† = Q

[
Ic
TT

] (
Ic + TTT

)−1
X−1

11

(
Ic + STS

)−1 [
Ic ST

]
P,

where T = X−1
11 X12 and S = X21X

−1
11 .

Lemmas 14 and 15 will be used to prove Theorem 2.

Lemma 14 (Wang and Zhang, 2013, Lemma 19) Given n and k, we let B be an n
k ×

n
k

matrix whose diagonal entries equal to one and off-diagonal entries equal to α ∈ [0, 1). Let
A be the n× n block-diagonal matrix

A = B⊕B⊕ · · · ⊕B︸ ︷︷ ︸
k blocks

. (19)

Let Ak be the best rank-k approximation to A. Then

‖A−Ak‖F = (1− α)
√
n− k.

Lemma 15 Let B be the n× n matrix with diagonal entries equal to one and off-diagonal
entries equal to α and B̃ be its rank c approximation formed by the prototype model. Then

‖B− B̃‖2F ≥ (1− α)2(n− c)
(

1 +
2

c
− (1− α)

1 + o(1)

αcn/2

)
.
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Proof Without loss of generality, we assume the first c column of B are selected to construct
C. We partition B and C as:

B =

[
W BT

21

B21 B22

]
and C =

[
W
B21

]
.

Here the matrix W can be expressed by W = (1− α)Ic + α1c1
T
c . We apply the Sherman-

Morrison-Woodbury matrix identity

(X + YZR)−1 = X−1 −X−1Y(Z−1 + RX−1Y)−1RX−1

to compute W−1, and it follows that

W−1 =
1

1− α
Ic −

α

(1− α)(1− α+ cα)
1c1

T
c . (20)

We expand the Moore-Penrose inverse of C by Lemma 13 and obtain

C† = W−1
(
Ic + STS

)−1 [
Ic ST

]
where

S = B21W
−1 =

α

1− α+ cα
1n−c1

T
c .

It is easily verified that STS =
(

α
1−α+cα

)2
(n− c)1c1Tc .

Now we express the approximation by the prototype model in the partitioned form:

B̃ = CC†B
(
C†
)T

CT

=

[
W
B21

]
W−1

(
Ic + STS

)−1 [
Ic ST

]
B

[
Ic
S

] (
Ic + STS

)−1
W−1

[
W
B21

]T
=

[ (
Ic + STS

)−1

B21W
−1
(
Ic + STS

)−1

] [
Ic ST

]
B

[
Ic
S

][ (
Ic + STS

)−1

B21W
−1
(
Ic + STS

)−1

]T
. (21)

We then compute the submatrices
(
Ic + STS

)−1
and B21W

−1
(
Ic + STS

)−1
respectively

as follows. We apply the Sherman-Morrison-Woodbury matrix identity to compute
(
Ic +

STS
)−1

. We obtain

(
Ic + STS

)−1
=

(
Ic +

( α

1− α+ cα

)2
(n− c)1c1Tc

)−1

= Ic − γ11c1
T
c , (22)

where

γ1 =
n− c

nc+
(

1−α
α

)2
+ 2(1−α)c

α

.

It follows from (20) and (22) that

W−1
(
Ic + STS

)−1
= (γ2Ic − γ31c1

T
c )(Ic − γ11c1

T
c ) = γ2Ic + (γ1γ3c− γ1γ2 − γ3)1c1

T
c ,
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where

γ2 =
1

1− α
and γ3 =

α

(1− α)(1− α+ αc)
.

It follows that

B21W
−1
(
Ic + STS

)−1
= α

(
γ1γ3c

2 − γ3c− γ1γ2c+ γ2

)
1n−c1

T
c , γ1n−c1

T
c , (23)

where

γ = α
(
γ1γ3c

2 − γ3c− γ1γ2c+ γ2

)
=

α(αc− α+ 1)

2αc− 2α− 2α2c+ α2 + α2cn+ 1
. (24)

Since B21 = α1n−c1
T
c and B22 = (1− α)In−c + α1n−c1

T
n−c, it is easily verified that

[
Ic ST

]
B

[
Ic
S

]
=
[

Ic ST
] [ W BT

21

B21 B22

] [
Ic
S

]
= (1− α)Ic + λ1c1

T
c , (25)

where

λ =
α(3αn− αc− 2α+ α2c− 3α2n+ α2 + α2n2 + 1)

(αc− α+ 1)2

It follows from (21), (22), (23), and (25) that

B̃ =

[
Ic − γ11c1

T
c

γ1n−c1
T
c

](
(1− α)Ic + λ1c1

T
c

)[ Ic − γ11c1
T
c

γ1n−c1
T
c

]T
,

[
B̃11 B̃T

21

B̃21 B̃22

]
,

where

B̃11 = (1− α)Ic +
[
(1− γ1c)(λ− λγ1c− (1− α)γ1)− (1− α)γ1

]
1c1

T
c

= (1− α)Ic + η11c1
T
c ,

B̃21 = ÃT
12 = γ(1− γ1c)(1− α+ λc)1n−c1

T
c = η21n−c1

T
c ,

B̃22 = γ2c(1− α+ λc)1n−c1
T
n−c = η31n−c1

T
n−c,

where

η1 = (1− γ1c)(λ− λγ1c− (1− α)γ1)− (1− α)γ1,

η2 = γ(1− γ1c)(1− α+ λc),

η3 = γ2c(1− α+ λc),

By dealing with the four blocks of B̃ respectively, we finally obtain that

‖B− B̃‖2F = ‖W − B̃11‖2F + 2‖B21 − B̃21‖2F + ‖B22 − B̃22‖2F
= c2(α− η1)2 + 2c(n− c)(α− η2)2

+(n− c)(n− c− 1)(α− η3)2 + (n− c)(1− η3)2

= (n− c)(α− 1)2

(
1 +

2

c
−
(
1 + o(1)

) 1− α
αcn/2

)
.
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B.2 Proof of the Theorem

Now we prove Theorem 2 using Lemma 15 and Lemma 14. Let C consist of c columns
sampled from A and Ĉi consist of ci columns sampled from the i-th block diagonal matrix
in A. Without loss of generality, we assume Ĉi consists of the first ci columns of B. Then
the intersection matrix U is computed by

U = C†A
(
CT
)†

=
[
Ĉ1 ⊕ · · · ⊕ Ĉk

]†[
B⊕ · · · ⊕B

][
ĈT

1 ⊕ · · · ⊕ ĈT
k

]†
= Ĉ†1B

(
Ĉ†1
)T ⊕ · · · ⊕ Ĉ†kB

(
Ĉ†k
)T

.

Let Ã be the approximation formed by the prototype model. Then

Ã = CUCT = Ĉ1Ĉ
†
1B
(
Ĉ†1
)T

ĈT
1 ⊕ · · · ⊕ ĈkĈ

†
kB
(
Ĉ†k
)T

ĈT
k ,

and thus the approximation error is

∥∥A− Ã
∥∥2

F
=

k∑
i=1

∥∥∥B − ĈiĈ
†
iB
(
Ĉ†i
)T

ĈT
i

∥∥∥2

F

≥ (1− α)2
k∑
i=1

(p− ci)
(

1 +
2

ci
− (1− α)

(1 + o(1)

αcip/2

))

= (1− α)2

( k∑
i=1

(p− ci) +
k∑
i=1

2(p− ci)
ci

(
1− (1− α)(1 + o(1))

αp

))
≥ (1− α)2(n− c)

(
1 +

2k

c

(
1− k(1− α)(1 + o(1))

αn

))
,

where the former inequality follows from Lemma 15, and the latter inequality follows by
minimizing over c1, · · · , ck. Finally the theorem follows by setting α → 1 and applying
Lemma 14.

Appendix C. Proof of Theorem 3

Proof Sampling c1 = 2kε−1
(
1 + o(1)

)
columns of K by the near-optimal algorithm of

Boutsidis et al. (2014) to form C1 ∈ Rn×c1 , we have that

E
∥∥K− PC1,k(K)

∥∥2

F
≤ (1 + ε)

∥∥K−Kk

∥∥2

F
.

Applying Lemma 3.11 of Boutsidis and Woodruff (2014), we can find a much smaller matrix
U1 ∈ Rn×k with orthogonal columns in the column space of C1 such that∥∥K−U1U

T
1 K
∥∥2

F
≤
∥∥K− PC1,k(K)

∥∥2

F
.

(We do not actually compute U1 because the adaptive sampling algorithm does not need
to know U1.) Because the columns of U1 are all in the columns space of C1, we have that∥∥K−C1C

†
1K
∥∥2

F
≤
∥∥K−U1U

T
1 K
∥∥2

F
. Combining the above inequalities we obtain

E
∥∥K−C1C

†
1K
∥∥2

F
≤ E

∥∥K−U1U
T
1 K
∥∥2

F
≤
∥∥K− PC1,k(K)

∥∥2

F
.
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Given C1, we use adaptive sampling to select c2 = kε−1 rows of K to form C2 and
denote C = [C1,C2]. Since the columns of U1 are all in the columns space of C1, Lemma
17 of Wang and Zhang (2013) can be slightly modified to show∥∥K−C1C

†
1K(CT )†CT

∥∥2

F
≤

∥∥K−U1U
T
1 K(CT )†CT

∥∥2

F
.

By the adaptive sampling theorem of Wang and Zhang (2013) we have

E
∥∥K−C1C

†
1K(CT )†CT

∥∥2

F
≤ E

∥∥K−U1U
T
1 K(CT )†CT

∥∥2

F

≤
∥∥K−U1U

T
1 K
∥∥2

F
+
k

c2

∥∥K−K(CT
1 )†CT

1

∥∥2

F

≤
(

1 +
k

c2

)∥∥K−U1U
†
1K
∥∥2

F

≤ (1 + ε)
∥∥K− PC1,k(K)

∥∥2

F
, (26)

where the expectation is taken w.r.t. C2, and the last inequality follows by setting c2 =
k/ε. Here the trick is bounding E

∥∥K−U1U
T
1 K(CT )†CT

∥∥2

F
rather than directly bounding

E
∥∥K−C1C

†
1K(CT )†CT

∥∥2

F
; otherwise the factor k

c2
would be c1

c2
= 2kε−1(1+o(1))

c2
. This is the

key to the improvement. It follows that

E
∥∥K−C1C

†
1K(CT )†CT

∥∥2

F
≤ (1 + ε)E

∥∥K− PC1,k(K)
∥∥2

F

≤ (1 + ε)2
∥∥K−Kk

∥∥2

F
,

where the first expectation is taken w.r.t. C1 and C2, and the second expectation is taken
w.r.t. C1. Applying Lemma 17 of Wang and Zhang (2013) again, we obtain

E
∥∥K−CC†K(CT )†CT

∥∥2

F
≤ E

∥∥K−C1C
†
1K(CT )†CT

∥∥2

F
≤ (1 + ε)2

∥∥K−Kk

∥∥2

F
.

Hence totally c = c1 + c2 = 3kε−1
(
1 + o(1)

)
columns suffice.

Appendix D. Proof of Theorem 4

In this section we first provide a constant factor bound of the uniform sampling, and then
prove Theorem 4 in the subsequent subsections.

D.1 Tools for Analyzing Uniform Sampling

This subsection provides several useful tools for analyzing column sampling. The matrix
S ∈ Rn×s is a column selection matrix if each column has exactly one nonzero entry; let
(ij , j) be the position of the nonzero entry in the j-th column. Let us add randomness to
column selection. Suppose we are given the sampling probabilities p1, · · · , pn ∈ (0, 1) and∑

i pi = 1. In each round we pick one element in [n] such that the i-th element is sampled
with probability pi. We repeat the procedure s times, either with or without replacement,
and let i1, · · · , is be the selected indices. For j = 1 to s, we set

Sij ,j =
1
√
spij

. (27)
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The following lemma shows an important property of arbitrary column sampling. The proof
mirrors the leverage score sampling bound in (Woodruff, 2014).

Lemma 16 Let U ∈ Rn×k be any fixed matrix with orthonormal columns. The column se-
lection matrix S ∈ Rn×s samples s columns according to arbitrary probabilities p1, p2, · · · , pn.
Assume that

max
i∈[n]

‖ui:‖22
pi

≤ α

and α ≥ 1. When s ≥ α6+2η
3η2

log(k/δ), it holds that

P
{∥∥Ik −UTSSTU

∥∥
2
≥ η

}
≤ δ.

Proof We can express Ik = UTU as the sum of size k × k and rank one matrices:

Ik = UTU =
n∑
i=1

uTi:ui:

where ui: ∈ R1×k is the i-th row of U. The approximate matrix product can be expressed
as

UTSSTU =

s∑
j=1

S2
ij ,ju

T
ij :uij : =

s∑
j=1

1

spij
uTij :uij :.

We define the symmetric random matrices

Zij =
1

spij
uTij :uij : −

1

s
Ik

for j = 1 to s. Whatever the sampling distribution is, it always holds that

EZij =
n∑
q=1

pq

( 1
√
spq

)2
uTq:uq: −

n∑
q=1

pq
1

s
Ik =

1

s
Ik −

1

s
Ik = 0. (28)

Thus Zij has zero mean. Let Z be the set

Z =

{
1

s
Ik −

1

sp1
uT1:u1:, · · · ,

1

s
Ik −

1

spn
uTn:un:

}
.

Clearly, Zi1 , · · · , Zis are sampled from Z, and

UTSSTU− Ik =
s∑
j=1

Zij .

Therefore we can bound its spectral norm using the matrix Bernstein. Elementary proof of
the matrix Bernstein can be found in Tropp (2015).
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Lemma 17 (Matrix Bernstein) Consider a finite sequence {Zi} of independent, ran-
dom, Hermitian matrices with dimension k. Assume that

EZi = 0 and max
i
‖Zi‖2 ≤ L

for each index i. Introduce the random matrix Y =
∑

i Zi. Let v(Y) be the matrix variance
statistics of the sum:

v(Y) =
∥∥∥EY2

∥∥∥
2

=
∥∥∥∑

i

EZ2
i

∥∥∥
2
.

Then

P
{
λmax(Y) ≥ η

}
≤ k · exp

(
−η2/2

v(Y) + Lη/3

)
.

To apply the matrix Bernstein, it remains to bound the variance of
∑s

j=1 Zij and to
bound L = maxj∈[s] ‖Zij‖2. We have that

EZ2
ij = E

( 1

spij
uTij :uij : −

1

s
Ik

)2

=
1

s2

[
E
( 1

pij
uTij :uij :

)2
− 2E

( 1

pij
uTij :uij :

)
+ Ik

]
=

1

s2

[ n∑
q=1

(
pq

( 1

pq

)2
uTq:uq:u

T
q:uq:

)
− 2Ik + Ik

]

= − 1

s2
Ik +

1

s2

n∑
q=1

‖uq:‖22
pq

uTq:uq:.

The variance is defined by

v ,

∥∥∥∥ s∑
j=1

EZ2
ij

∥∥∥∥
2

=
1

s

∥∥∥∥− Ik +
n∑
q=1

‖uq:‖22
pq

uTq:uq:

∥∥∥∥
2

≤ 1

s
(α− 1).

Here the inequality is due to the definition of α and

−Ik +
n∑
q=1

‖uq:‖22
pq

uTq:uq: � −Ik +
n∑
q=1

αuTq:uq: = (−1 + α)Ik.

In addition, L = maxj∈[s] ‖Zij‖2 can be bounded by

L = max
j∈[s]
‖Zij‖2 = max

j∈[s]

∥∥∥∥1

s
Ik −

1

spij
uTij :uij :

∥∥∥∥
2

≤ max
i∈[n]

∥∥∥∥1

s
Ik −

1

spi
uTi:ui:

∥∥∥∥
2

≤ 1

s
+ max

i∈[n]

∥∥∥∥ 1

spi
uTi:ui:

∥∥∥∥
2

=
1

s
+ max

i∈[n]

‖ui:‖22
spi

≤ 1

s
(α+ 1).

Finally, the lemma follows by plugging v and L in the matrix Bernstein.

Theorem 18 shows an important property of uniform sampling. It shows that when the
number of sampled columns is large enough, all the singular values of UTSSTU are within
1± η with high probability.
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Theorem 18 Let U ∈ Rn×k be any fixed matrix with orthonormal columns and µ(U) be its
row coherence. Let S ∈ Rn×s be an uniformly sampling matrix. When s ≥ µ(U)k 6+2η

3η2
log(k/δ),

it hold that

P
{∥∥UTSSTU− Ik

∥∥
2
≥ η

}
≤ δ.

Proof Since
‖uq:‖22
pq

= n‖uq:‖22 ≤ kµ(U) for all q ∈ [n], the theorem follows from Lemma 16.

The following lemma was established by Drineas et al. (2008). It can be proved by
writing the squared Frobenius norm as the sum of scalars and then taking expectation.

Lemma 19 Let A ∈ Rn×k and B ∈ Rn×d be any fixed matrices and S ∈ Rn×s be the
column sampling matrix defined in (27). Assume that the columns are selected randomly
and pairwisely independently. Then

E
∥∥∥ATB−ATSSTB

∥∥∥2

F
≤ 1

s

n∑
i=1

1

pi

∥∥ai:∥∥2

2

∥∥bi:∥∥2

2
.

Theorem 20 follows from Lemma 19 and shows another important property of uniform
sampling.

Theorem 20 Let U ∈ Rn×k be any fixed matrix with orthonormal columns and B ∈ Rn×d
be any fixed matrix. Use the uniform sampling matrix S ∈ Rn×s and set s ≥ kµ(U)

εδ . Then
it holds that

P
{∥∥UTB−UTSTSB

∥∥2

F
≥ ε‖B‖2F

}
≤ δ.

Proof We have shown that ‖uq:‖22/pq ≤ kµ(U) for all q = 1 to n. It follows from Lemma 19
that

E
∥∥∥UTB−UTSSTB

∥∥∥2

F
≤ 1

s

n∑
i=1

kµ(U)
∥∥bi:∥∥2

2
=

kµ(U)

s
‖B‖2F .

The theorem follows from the setting of s and the Markov’s inequality.

The following lemma is very useful in analyzing randomized SVD.

Lemma 21 Let M ∈ Rm×n be any matrix. We decompose M by M = M1 + M2 such that
rank(M1) = k. Let the right singular vectors of M1 be V1 ∈ Rn×k. Let S ∈ Rn×c be any
matrix such that rank(VT

1 S) = k and let C = MS ∈ Rm×c. Then∥∥M−C(VT
1 S)†VT

1

∥∥2

ξ
≤

∥∥M2

∥∥2

ξ
+ σ−2

min(VT
1 SSTV1)

∥∥M2SSTV1

∥∥2

ξ

for ξ = 2 or F .
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Proof Boutsidis et al. (2014) showed that∥∥M−C(VT
1 S)†VT

1

∥∥2

ξ
≤

∥∥M2

∥∥2

ξ
+
∥∥M2S(VT

1 S)†
∥∥2

ξ
.

Since YT (YYT )† = Y† for any matrix Y, it follows that∥∥M2S(VT
1 S)†

∥∥2

ξ
=
∥∥M2S(VT

1 S)T (VT
1 SSTV1)†

∥∥2

ξ

≤
∥∥M2SSTV1

∥∥2

ξ

∥∥(VT
1 SSTV1)†

∥∥2

2
=
∥∥M2SSTVT

1

∥∥2

ξ
σ−2

min(VT
1 SSTV1),

by which the lemma follows.

D.2 Uniform Sampling Bound

Theorem 22 shows that uniform sampling can be applied to randomized SVD. Specifically,
if C consists of c = O(kµk/ε + kµk log k) uniformly sampled columns of A, then ‖A −
PC,k(A)‖2F ≤ (1 + ε)‖A − Ak‖2F holds with high probability, where µk is the column
coherence of Ak.

Theorem 22 Let A ∈ Rm×n be any fixed matrix, k (� m,n) be the target rank, and
µk be the column coherence of Ak. Let S ∈ Rm×c be a uniform sampling matrix and
C = AS ∈ Rm×c. When c ≥ µkk ·max{20 log(20k), 45/ε},

min
rank(X)≤k

∥∥A−CX
∥∥2

F
≤
(
1 + ε

)
‖A−Ak‖2F .

holds with probability at least 0.9.

Proof Let Vk ∈ Rn×k contain the top k right singular vectors of A. Obviously µk is the
row coherence of Vk. We apply Theorem 18 with δ = 0.05, η = 1/3, s = 20µkk log(20k)
and obtain

P
{
σmin(VT

k SSTVk) ≤ 2/3
}
≤ 0.05.

We then apply Theorem 20 with δ = 0.05 and s = 45µkk/ε and obtain

P
{∥∥UTSTS(A−Ak)

∥∥2

F
≥ 4

9
ε‖A−Ak‖2F

}
≤ 0.05.

It follows from Lemma 21 that

min
rank(X)≤k

‖A−CX‖2F ≤ ‖A−Ak‖2F + σ−2
min(VT

k SSTVk)
∥∥UTSTS(A−Ak)

∥∥2

F

≤ (1 + ε)‖A−Ak‖2F ,

where the latter inequality holds with probability at least 0.9 (due to the union bound).
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D.3 The Uniform+Adaptive Column Selection Algorithm

In fact, running adaptive sampling only once yields a column sampling algorithm with 1+ ε
bound for any m× n matrix. We call it the uniform+adaptive column selection algorithm,
which is a part of the uniform+adaptive2 algorithm. Though the algorithm is irrelevant to
this work, we describe it in the following for it is of independent interest.

Theorem 23 (The Uniform+Adaptive Algorithm) Given an m × n matrix A, we
sample c1 = 20µkk log(20k) columns by uniform sampling to form C1 and sample additional
c2 = 17.5k/ε columns by adaptive sampling to form C2. Let C = [C1,C2]. Then the
inequality

min
rank(X)≤k

∥∥A−CX
∥∥2

F
≤ (1 + ε)

∥∥A−Ak

∥∥2

F

holds with probability at least 0.8.

Proof We apply Theorem 22 with ε = 0.75 and c1 = 20µkk log(20k) and obtain that

‖A−C1C
†
1A‖

2
F ≤ 1.75‖A−Ak‖2F

holds with probability at least 0.9.

Deshpande et al. (2006) showed that

E
[

min
rank(X)≤k

∥∥A−CX
∥∥2

F
− ‖A−Ak‖2F

]
≤ k

c2
‖A−C1C

†
1A‖

2
F .

It follows from Markov’s inequality that

min
rank(X)≤k

∥∥A−CX
∥∥2

F
− ‖A−Ak‖2F ≤

k

δ2c2
‖A−C1C

†
1A‖

2
F

holds with probability at least 1− δ2. We let δ2 = 0.1 and c2 = 17.5k/ε, and it follows that

min
rank(X)≤k

∥∥A−CX
∥∥2

F
≤ (1 + ε)‖A−Ak‖2F

holds with probability at least 0.8.

D.4 Proof of Theorem 4

We sample c1 = 20µkk log(20k) columns by uniform sampling to form C1 and sample
additional c2 = 17.5k/ε columns by adaptive sampling to form C2. Let Ĉ = [C1,C2]. It
follows from Theorem 23 that∥∥K− PĈ,k(K)

∥∥2

F
≤ (1 + ε)

∥∥K−Kk

∥∥2

F

holds with probability at least 0.8.
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Let C = [Ĉ,C3] where C3 consists of c3 columns of K chosen by adaptive sampling.
Then

E
∥∥K−CC†K(CT )†CT

∥∥2

F
≤ E

∥∥K− ĈĈ†K(CT )†CT
∥∥2

F

≤
(

1 +
k

c3

)∥∥K− PĈ,k(K)
∥∥2

F
,

where the former inequality follows from Lemma 17 of Wang and Zhang (2013), and the
latter inequality follows from (26). It follows from Markov’s inequality that

∥∥K−CC†K(CT )†CT
∥∥2

F
−
∥∥K− PĈ,k(K)

∥∥2

F
≤ k

δ3c3

∥∥K− PĈ,k(K)
∥∥2

F

holds with probability at least 1− δ3. We set δ3 = 0.1 and c3 = 10k/ε, Then∥∥K−CC†K(CT )†CT
∥∥2

F
≤ (1 + ε)

∥∥K− PĈ,k(K)
∥∥2

F
≤ (1 + ε)2

∥∥K−Kk

∥∥2

F
,

where the former inequality holds with probability 1 − δ3, and the latter inequality holds
with probability 0.8− δ3 = 0.7.

Appendix E. Proof of Theorem 6

In Section E.1 we derive the solution to the optimization problem (14). In Section E.2 we
prove that the solutions are global optimum. In Section E.3 we prove that the resulting
solution is positive (semi)definite when K is positive (semi)definite.

E.1 Solution to the Optimization Problem (14)

We denote the objective function of the optimization problem (14) by

f(U, δ) =
∥∥K− C̄UC̄T − δIn

∥∥2

F
.

We take the derivative of f(U, δ) w.r.t. U to be zero

∂f(U, δ)

∂U
=

∂

∂U
tr(C̄UC̄T C̄UC̄T − 2KC̄UC̄T + 2δC̄UC̄T )

= 2C̄T C̄UC̄T C̄− 2C̄TKC̄ + 2δC̄T C̄ = 0,

and obtain the solution

Uss = (C̄T C̄)†(C̄TKC̄− δssC̄T C̄)(C̄T C̄)†

= (C̄T C̄)†C̄TKC̄(C̄T C̄)† − δss(C̄T C̄)†C̄T C̄(C̄T C̄)†

= C̄†K(C̄†)T − δss(C̄T C̄)†.

Similarly, we take the derivative of f(U, δ) w.r.t. δ to be zero

∂f(U, δ)

∂δ
=

∂

∂δ
tr(δ2In − 2δK + 2δC̄UC̄T ) = 2nδ − 2tr(K) + 2tr(C̄UC̄T ) = 0,
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and it follows that

δss =
1

n

(
tr(K)− tr(C̄UssC̄T )

)
=

1

n

(
tr(K)− tr

(
C̄C̄†K(C̄†)T C̄T

)
+ δsstr

(
C̄(C̄T C̄)†C̄T

))
=

1

n

(
tr(K)− tr

(
C̄T C̄C̄†K(C̄†)T

)
+ δsstr

(
C̄C̄†

))
=

1

n

(
tr(K)− tr

(
C̄TK(C̄†)T

)
+ δssrank(C̄)

)
,

and thus

δss =
1

n− rank(C̄)

(
tr(K)− tr

(
C̄†KC̄)

))
.

E.2 Proof of Optimality

The Hessian matrix of f(U, δ) w.r.t. (U, δ) is

H =


∂2f(U, δ)

∂vec(U)∂vec(U)T
∂2f(U, δ)

∂vec(U)∂δ

∂2f(U, δ)

∂δ∂vec(U)T
∂2f(U, δ)

∂δ2

 = 2

[
(C̄T C̄)⊗ (C̄T C̄) vec(C̄T C̄)

vec(C̄T C̄)T n

]
.

Here ⊗ denotes the Kronecker product, and vec(A) denotes the vectorization of the matrix
A formed by stacking the columns of A into a single column vector. For any X ∈ Rc×c and
b ∈ R, we let

q(X, b) =
[
vec(X)T b

]
H

[
vec(X)
b

]
= vec(X)T

(
(C̄T C̄)⊗ (C̄T C̄)

)
vec(X) + 2b vec(C̄T C̄)T vec(X) + nb2

= vec(X)T vec
(
(C̄T C̄)X(C̄T C̄)

)
+ 2b vec(C̄T C̄)T vec(X) + nb2

= tr(XT C̄T C̄XC̄T C̄) + 2b tr(C̄T C̄X) + nb2.

Let C̄XC̄T = Y ∈ Rn×n. Then

q(X, b) = tr(C̄XT C̄T C̄XC̄T ) + 2b tr(C̄XC̄T ) + nb2

= tr(YTY) + 2b tr(Y) + nb2

=
n∑
i=1

n∑
j=1

y2
ij + 2b

n∑
l=1

yll + nb2

=
∑
i 6=j

y2
ij +

n∑
l=1

(yll + b)2

≥ 0,

which shows that the Hessian matrix H is SPSD. Hence f(Uss, δss) is the global minimum
of f .
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E.3 Proof of Positive (Semi)Definite

We denote the thin SVD of C̄ by C̄ = UC̄ΣC̄VT
C̄

and let U⊥
C̄

be the orthogonal complement
of UC̄. The approximation is

K̃ = C̄UssC̄T + δssIn = C̄
(
C̄†K(C̄†)T − δss(C̄T C̄)†

)
C̄T + δssIn

= C̄
(
C̄†K(C̄†)T

)
C̄T + δss

(
In − C̄(C̄T C̄)†C̄T

)
= UC̄UT

C̄KUC̄UT
C̄ + δss

(
In −UC̄UT

C̄

)
= UC̄UT

C̄KUC̄UT
C̄ + δssU⊥C̄(U⊥C̄)T . (29)

The first term is SPSD because K is SPSD. The second term is SPSD if δss is nonnegative.
We have

δss = tr(K)− tr
(
C̄†KC̄

)
= tr(K)− tr

(
C̄C̄†K

)
= tr

(
K−UC̄UT

C̄K
)

= tr
[
U⊥C̄(U⊥C̄)TK

]
= tr

[
U⊥C̄(U⊥C̄)TU⊥C̄(U⊥C̄)TK

]
= tr

[
U⊥C̄(U⊥C̄)TKU⊥C̄(U⊥C̄)T

]
≥ 0.

To this end, we have shown SPSD.
Then we assume K is positive definite and prove that its approximation formed by SS

is also positive definite. Since U⊥
C̄

(U⊥
C̄

)TKU⊥
C̄

(U⊥
C̄

)T is SPSD, its trace is zero only when

it is all-zeros, which is equivalent to K = UC̄UT
C̄

KUC̄UT
C̄

. However, this cannot hold if
K has full rank. Therefore δss > 0 holds when K is positive definite. When K is positive
definite, the c× c matrix UT

C̄
KUC̄ is also positive definite. It follows from (29) that

K̃ = C̄UssC̄T + δssIn =
[

UC̄ U⊥
C̄

] [ UT
C̄

KUC̄ 0

0 δssIn−c

] [
UT

C̄
(U⊥

C̄
)T

]
.

Here the block diagonal matrix is positive definite, and thus K̃ is positive definite.

Appendix F. Proof of Theorem 8 and Theorem 9

Directly analyzing the theoretical error bound of the SS model is not easy, so we formulate
a variant of SS called the inexact spectral shifting (ISS) model and instead analyze the
error bound of ISS. We define ISS in Section F.1 and prove Theorem 8 and Theorem 9 in
Section F.2 and F.3, respectively. In the following we let K̃ss

c and K̃iss
c be respectively the

approximation formed by the two models.

F.1 The ISS Model

ISS is defined by
K̃iss
c = C̄ŪC̄T + δIn, (30)

where δ > 0 is the spectral shifting term, and C̄ŪC̄T is the prototype model of K̄ = K−δIn.
It follows from Theorem 6 that ISS is less accurate than SS in that∥∥K− K̃ss

c

∥∥
F
≤
∥∥K− K̃iss

c

∥∥
F
,

thus the error bounds of ISS still hold if K̃iss
c is replaced by K̃ss

c .
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We first show how to set the spectral shifting term δ. Since C̄ŪC̄T is the approximation
to K̄ formed by the prototype model, it can holds with high probability that∥∥K− K̃iss

c

∥∥
F

=
∥∥K− δ̄In − C̄ŪC̄T

∥∥
F

=
∥∥K̄− C̄ŪC̄T

∥∥
F
≤ η

∥∥K̄− K̄k

∥∥
F

for some error parameter η. Apparently, for fixed k, the smaller the error ‖K̄ − K̄k‖F is,
the tighter error bound the ISS has; if ‖K̄ − K̄k‖F ≤ ‖K −Kk‖F , then ISS has a better
error bound than the prototype model. Therefore, our goal is to make ‖K̄− K̄k‖F as small
as possible, so we formulate the following optimization problem to compute δ:

min
δ≥0

∥∥K̄− K̄k

∥∥2

F
; s.t. K̄ = K− δIn.

However, since K̄ is in general indefinite, it requires all of the eigenvalues of K to solve
the problem exactly. Since computing the full eigenvalue decomposition is expensive, we
attempt to relax the problem. Considering that

∥∥K̄− K̄k

∥∥2

F
= min
|J |=n−k

∑
j∈J

(
σj(K)− δ

)2 ≤ n∑
j=k+1

(
σj(K)− δ

)2
, (31)

we seek to minimize the upper bound of ‖K̄− K̄k‖2F , which is the right-hand side of (31),
to compute δ, leading to the solution

δ̄ =
1

n− k

n∑
j=k+1

σj(K) =
1

n− k

(
tr(K)−

k∑
j=1

σj(K)

)
. (32)

If we choose δ = 0, then ISS degenerates to the prototype model.

F.2 Proof of Theorem 8

Theorem 6 indicates that ISS is less accurate than SS, thus∥∥K−K̃ss
c

∥∥
F
≤
∥∥K−K̃iss

c

∥∥
F

=
∥∥K−δ̄In−C̄C̄†K̄(C̄†)T C̄T

∥∥
F

=
∥∥K̄−C̄C̄†K̄(C̄†)T C̄T

∥∥
F
.

Theorem 8 follows from the above inequality and the following theorem.

Theorem 24 Let K be any n × n SPSD matrix, δ̄ be defined in (32), and K̄ = K − δIn.
Then for any δ ∈ (0, δ̄], the following inequality holds:∥∥K̄− K̄k

∥∥2

F
≤
∥∥K−Kk

∥∥2

F
.

Proof Since the righthand side of (31) is convex and δ̄ is the minimizer of the righthand
of (31), for any δ ∈ (0, δ̄], it holds that

n∑
j=k+1

(
σj(K)− δ

)2 ≤ n∑
j=k+1

(
σj(K)− 0

)2
=
∥∥K−Kk

∥∥2

F
.

Then the theorem follows by the inequality in (31).
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F.3 Proof of Theorem 9

Since ‖K− K̃ss
c ‖F ≤ ‖K− K̃iss

c ‖F , Theorem 9 follows from Theorem 25.

Theorem 25 Suppose there is a sketching matrix P ∈ Rn×c such that for any n× n sym-
metric matrix S and target rank k (� n), by forming the sketch C = SP, the prototype
model satisfies the error bound∥∥S−CC†S(C†)TCT

∥∥2

F
≤ η

∥∥S− Sk
∥∥2

F
.

Let K be any n×n SPSD matrix, δ̄ defined in (32) be the initial spectral shifting term, and
K̃iss
c be the ISS approximation defined in (30). Then

∥∥K− K̃iss
c

∥∥2

F
≤ η

(∥∥K−Kk

∥∥2

F
−
[∑n

i=k+1 λi(K)
]2

n− k

)
.

Proof The error incurred by SS is∥∥K− K̃ss
c

∥∥2

F
=

∥∥(K̄ + δ̄In
)
−
(
C̄ŪC̄T + δ̄In

)∥∥2

F
=
∥∥K̄− C̄ŪC̄T

∥∥2

F

≤ η
∥∥K̄− K̄k

∥∥2

F
= η

n∑
i=k+1

σ2
i

(
K̄
)

= η
n∑

i=k+1

λi
(
K̄2
)
.

Here the inequality follows from the assumption. The i-th largest eigenvalue of K̄ is λi(K)−
δ̄, so the n eigenvalues of K̄2 are all in the set {(λi(K)− δ̄)2}ni=1. The sum of the smallest
n− k of the n eigenvalues of K̄2 must be less than or equal to the sum of any n− k of the
eigenvalues, thus we have

n∑
i=k+1

λi
(
K̄2
)
≤

n∑
i=k+1

(
λi(K)− δ̄

)2

=
n∑

i=k+1

λ2
i (K)− 2

n∑
i=k+1

δ̄λi(K) + (n− k)(δ̄)2

= ‖K−Kk‖2F −
1

n− k

[ n∑
i=k+1

λi(K)

]2

,

by which the theorem follows.

Appendix G. Proof of Theorem 11

Proof Let K̃ = Q(QTK)k, where Q is defined in Line 4 in Algorithm 5. Boutsidis et al.
(2014) showed that

E‖K− K̃‖2F ≤ (1 + k/l) ‖K−Kk‖2F , (33)

where the expectation is taken w.r.t. the random Gaussian matrix Ω.
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It follows from Lemma 26 that

‖σK − σK̃‖
2
2 ≤ ‖K− K̃‖2F ,

where σK and σK̃ contain the singular values in a descending order. Since K̃ has a rank at
most k, the k + 1 to n entries of σK̃ are zero. We split σK and σK̃ into vectors of length
k and n− k:

σK =

[
σK,k

σK,−k

]
and σK̃ =

[
σK̃,k

0

]
and thus

‖σK,k − σK̃,k‖
2
2 + ‖σK,−k‖22 ≤ ‖K− K̃‖2F . (34)

Since ‖σK,−k‖22 = ‖K−Kk‖2F , it follows from (33) and (34) that

E‖σK,k − σK̃,k‖
2
2 ≤

k

l
‖σK,−k‖22.

Since ‖x‖2 ≤ ‖x‖1 ≤
√
k‖x‖2 for any x ∈ Rk, we have that

E
∥∥σK,k − σK̃,k

∥∥
1
≤ k√

l

∥∥σK,−k
∥∥

1
.

Then it follows from (32) and Line 6 in Algorithm 5 that

E
∣∣δ̄ − δ̃∣∣ = E

[
1

n− k

∣∣∣∣ k∑
i=1

σi(K)−
k∑
i=1

σi(K̃)

∣∣∣∣
]

≤ 1

n− k
E
∥∥σK,k − σK̃,k

∥∥
1
≤ k√

l

1

n− k
∥∥σK,−k

∥∥
1

=
k√
l
δ̄.

Lemma 26 Let A and B be n×n matrices and σA and σB contain the singular values in
a descending order. Then we have that

‖σA − σB‖22 ≤ ‖A−B‖2F .

Proof It is easy to show that

‖A−B‖2F = tr(ATA) + tr(BTB)− 2tr(ATB)

=

n∑
i=1

σ2
i (A) +

n∑
i=1

σ2
i (B)− 2tr(ATB). (35)

We also have

tr(ATB) ≤
n∑
i=1

σi(A
TB) ≤

n∑
i=1

σi(A)σi(B), (36)
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where the first inequality follows from Theorem 3.3.13 of Horn and Johnson and the second
inequality follows from Theorem 3.3.14 of Horn and Johnson. Combining (35) and (36) we
have that

‖A−B‖2F ≥
n∑
i=1

(
σ2
i (A) + σ2

i (B)− 2σi(A)σi(B)

)
= ‖σA − σB‖22,

by which the theorem follows.
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