
Journal of Machine Learning Research 17 (2016) 1-31 Submitted 1/14; Revised 8/15; Published 4/16

Addressing Environment Non-Stationarity by Repeating Q-learning
Updates∗

Sherief Abdallah SHARIO@IEEE.ORG
The British University in Dubai, P.O.Box 345015, Block 11, DIAC, Dubai, United Arab Emirates
University of Edinburgh, United Kingdom

Michael Kaisers KAISERS@CWI.NL

Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Maastricht University, The Netherlands

Editor: Jan Peters

Abstract
Q-learning (QL) is a popular reinforcement learning algorithm that is guaranteed to converge to op-
timal policies in Markov decision processes. However, QL exhibits an artifact: in expectation, the
effective rate of updating the value of an action depends on the probability of choosing that action.
In other words, there is a tight coupling between the learning dynamics and underlying execution
policy. This coupling can cause performance degradation in noisy non-stationary environments.

Here, we introduce Repeated Update Q-learning (RUQL), a learning algorithm that resolves
the undesirable artifact of Q-learning while maintaining simplicity. We analyze the similarities
and differences between RUQL, QL, and the closest state-of-the-art algorithms theoretically. Our
analysis shows that RUQL maintains the convergence guarantee of QL in stationary environments,
while relaxing the coupling between the execution policy and the learning dynamics. Experimental
results confirm the theoretical insights and show how RUQL outperforms both QL and the closest
state-of-the-art algorithms in noisy non-stationary environments.
Keywords: reinforcement learning, Q-learning, multi-agent learning, non-stationary environ-
ments

1. Introduction

Q-Learning (Watkins and Dayan, 1992), QL, is one of the most widely-used and widely-studied
learning algorithms due to its ease of implementation, intuitiveness, and effectiveness over a wide-
range of problems (Sutton and Barto, 1999). Although QL was originally designed for single-agent
domains, it has also been used in multi-agent settings with reasonable success (Claus and Boutilier,
1998). In addition, several gradient-based learning algorithms, which were invented specifically for
multi-agent interactions, rely on Q-learning as an internal component to estimate the values of dif-
ferent actions (Abdallah and Lesser, 2008; Bowling, 2005; Zhang and Lesser, 2010). In this paper,
we propose a novel algorithm that addresses important limitations of the Q-learning algorithm while
retaining Q-learning’s attractive simplicity. We show that our algorithm outperforms Q-learning and
closely related state-of-the-art algorithms in several noisy and non-stationary environments.

∗. An earlier version of this paper was presented at the International conference on Autonomous Agents and Multi-
Agent Systems (Abdallah and Kaisers, 2013).

c©2016 Sherief Abdallah and Michael Kaisers.

ABDALLAH AND KAISERS

The main problem that our algorithm addresses is what we refer to as the policy-bias of the
action value update. The policy-bias problem appears in Q-learning because the value of an action
is only updated when the action is executed. Consequently, the effective rate of updating an action
value directly depends on the probability of choosing the action for execution. If, hypothetically,
the reward information for all actions (at every state) were available at every time step, then the
update rule could be applied to all actions and the policy-bias would disappear. Let us refer to this
hypothetical update as the QL-ideal-update.1

It is important to note that the policy-bias problem is different from the exploration-exploitation
problem. To solve the exploration-exploitation problem, researchers optimize the execution policy
in order to balance exploration vs. exploitation. However, the policy-bias refers to the dependency
of the rate of updating an action’s value on the probability of selecting the corresponding action; this
dependency is not resolved by changing the policy. As previous research showed, the policy bias
may cause a temporary decrease in the probability of choosing optimal actions with higher expected
payoffs (Leslie and Collins, 2005; Kaisers and Tuyls, 2010; Wunder et al., 2010). This effect can
be more severe, as we show later, in noisy non-stationary environments where the environment
dynamics change over time.

Figure 1 illustrates the policy-bias problem using a very simple multi-armed-bandit domain.
The domain is stateless with only two actions, one giving the reward of -1 and the other giving
the reward of 1. For simplicity, let us assume the best value for the learning rate α, is 0.01 (as
we highlight in our experiments later, the best value of the learning rate depends on how noisy
the specific domain is). To measure the deviation between a learning algorithm and the QL-ideal-
update, we use RMSE: the root mean square error of the Q values (for all actions) compared to the
Q values of the QL-ideal-update over 1000 time steps. Figure 1 plots the RMSE of QL for different
learning rates and over different execution policies (the probability of choosing the first action),
which is fixed throughout the 1000 time steps.2 We can observe from the figure that the RMSE of
QL is minimal when the probability of choosing both actions are equal (pure exploration). However,
as the execution policy deviates from the uniform distribution (toward exploitation), the RMSE of
QL grows rapidly. It is also important to note that higher learning rate (α) will not lower the RMSE
of QL across different execution policies. The RMSE of our proposed algorithm, RUQL, is lower
across the different execution policies. In other words, even though our algorithm RUQL, similar to
QL, updates only the selected action, the dynamics of learning are very similar to QL-ideal-update
and therefore the Q values are close to the ideal values (as if all the actions are updated at every time
step).

The algorithm we propose here addresses the policy bias problem. The main idea of the Re-
peated Update Q-learning (RUQL) is to repeat the update of an action inversely proportional to the
probability of choosing that action. For example, if an action is to be chosen for execution only 10%
of the time, then the update of that action (when finally chosen) shall be repeated 1/0.1 or 10 times.
Consequently, every action will, in expectation, be updated an equal number of times. RUQL can
be approximated by a closed-form expression that removes the need to actually repeat the updates,

1. In practice, QL-ideal-update may lead to horrible performance (since we are executing suboptimal actions every time
step) and may be even impossible to achieve (in multi-state domains executing an action would change the state), but
hypothetically QL-ideal-update would lead to ideal estimates of the action values (Q).

2. More specifically, QL-ideal-update was run for 1000 time steps. Then QL with each of the various execution policies
was run for 1000 time steps. Then the squared error of Q-values were averaged over all actions, the root computed,
and then averaged again over all time steps.

2

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

Probability of choosing first action

QL, α=0.01
QL, α=0.02
QL, α=0.04

RUQL, α=0.01

Figure 1: RMSE of QL for different values of α, and RUQL plotted against the probability of choosing the
first action π(1). RUQL, approximated as in Theorem 1, has the lowest RMSE across different
policies.

as shown in Section 3. We show both theoretically and experimentally that the dynamics of RUQL
approximate the dynamics of QL-ideal-update (as if all the actions were updated every time step).
More importantly, RUQL outperforms both QL and the closest state-of-the-art, FAQL (Kaisers and
Tuyls, 2010), in noisy non-stationary settings.

In summary, the main contributions of this paper are:

• A new reinforcement learning algorithm, RUQL, which builds on the Q-learning algorithm
but does not suffer from the policy-bias problem.

• A mathematical derivation of a closed form of RUQL that makes the RUQL algorithm com-
putationally feasible.

• Theoretical analysis that shows how RUQL maintains the convergence guarantee of QL (in
stationary environments, and for tabular Q values), while having learning dynamics that are
better suited for non-stationary environments.

• Theoretical analysis that shows the similarities and differences between RUQL and the closely-
related state-of-the-art algorithm, FAQL (Kaisers and Tuyls, 2010).

• An extensive experimental study that confirms the theoretical analysis and compares the per-
formance of RUQL to QL, FAQL, and two other learning algorithms.

The following section presents the required background concepts covering Q-learning and related
algorithms. We then introduce the algorithm RUQL, followed by theoretical and experimental anal-
ysis. Finally, a summary and a discussion of the contributions conclude the article.

3

ABDALLAH AND KAISERS

2. Background

The Q-learning algorithm (Watkins and Dayan, 1992) is a model-free3 reinforcement learning al-
gorithm that is guaranteed to find the optimal policy for a given Markov Decision Process (MDP).
An MDP is defined by the tuple 〈S,A, P,R〉, where S is the set of states representing the system
and A(s) is the set of actions available to the agent at a given state s. The function P (s, a, s′)
is the transition probability function and quantifies the probability of reaching state s′ after exe-
cuting action a at state s. Finally the reward function, R(s, a, s′), gives the average reward an
agent acquires if the agent executes action a at state s and reaches state s′. The goal is then to
find the optimal policy π∗(s, a) which gives the probability of choosing every action a at every
state s in order to maximize the expected total discounted rewards. In other words, π∗(s, a) =
arg maxπ(s,a)E{

∑
t γ

trt|st=0 = s, at=0 = a}, where the parameter γ denotes the discount factor
that controls the relative value of future rewards. To solve the model, the action value function, Q, is
introduced where Q(s, a) =

∑
s′ P (s, a, s′) (R(s, a, s′) + γmaxa′ Q(s′, a′)). The Q function rep-

resents the expected total discounted reward if the agent starts at state s, executes action a, and then
follows the optimal policy thereafter. Intuitively, the function Qt(s, a) represents what the agent
believes, at time t, to be the worth of action a at state s. The optimal policy can then be defined
as π∗(s) = arg maxaQ(s, a). The Q-learning algorithm incrementally improves the action-value
function Q using the update equation

Qt+1(s, a)← Qt(s, a) + α

(
r + γ max

a′
Qt(s′, a′)−Qt(s, a)

)
. (1)

The parameter α is called the learning rate and controls the speed of learning. The variables r
and s′ refer to the immediate reward and the next state, both of which are observed after executing
action a at state s. Algorithm 1 illustrates how the Q-learning update equation is typically used in
combination with an exploration strategy that generates a policy from the Q-values.

Algorithm 1: Q-learning Algorithm

1 begin
2 Initialize function Q arbitrarily.
3 Observe the current state s.
4 repeat
5 Compute the policy π(s, a) from Q(s, a), balancing exploration and exploitation.
6 Choose an action a according to agent policy π(s, a).
7 Execute action a and observe the resulting reward r and the next state s′.
8 Update Q(s, a) using Equation 1.
9 Set s← s′.

10 until done
11 end

The agent needs to choose the next action considering that its current Q-values may still be
erroneous. The belief of an action to be inferior may be based on a crude estimate, and there may
be a chance that updating that estimate reveals the action’s superiority. Therefore, the function Qt

3. Q-learning does not require knowing the underlying stochastic reward or transition function of the MDP model.

4

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

in itself does not dictate which action an agent should choose in a given state (Step 5 in Algorithm
1). The policy π(s, a) of an agent is a function that specifies the probability of choosing action a at
state s. A greedy policy that only selects the action with the highest estimated expected value4 can
result in an arbitrarily bad policy, because if the optimal action initially has a low value ofQ it might
never be explored. To avoid such premature convergence on suboptimal actions, several definitions
of π have been proposed that ensure all actions (including actions that may appear sub-optimal)
are selected with non-zero probability. These definitions of π are often called exploration strategies
(Sutton and Barto, 1999). The two most common exploration strategies are ε-greedy exploration and
Boltzmann exploration. The ε-greedy exploration simply chooses a random action with probability
ε and otherwise (with probability 1-ε) chooses the action with the highest Q-value greedily. The
Boltzmann exploration strategy defines the policy π(s, a) as a function of Q-values and τ

πt(s, a) =
e
Qt(s,a)

τ∑
a′ e

Qt(s,a′)
τ

, (2)

where the tunable parameter τ is called the temperature.
We use Boltzmann exploration in our experiments, but with an additional parameter πmin, which

defines a threshold below which the probability of choosing an action can not fall. In a sense, this
combines the nice continuity of the Boltzmann exploration with the exploration guarantee of ε-
greedy exploration. This is implemented using a projection function (Zinkevich, 2003; Abdallah
and Lesser, 2008), which projects the policy to the closest valid policy with minimum exploration.

Regardless of the exploration strategy, the agent needs to gain information about the value of
each action at every state in order to become more certain over time that the action with the highest
estimate truly is the optimal action. However, an agent can only execute one action at a time and
the agent only receives feedback (reward) for the action that was actually executed. As a result,
in Q-learning, the rate of updating an action relies on the probability of choosing that action. The
theoretical comparison of updating one vs. all actions at each time step reveals that Q-learning
counter-intuitively decreases the probability of optimal actions under some circumstances, which
leads to drawbacks in non-stationary environments (Kaisers and Tuyls, 2010; Wunder et al., 2010).

Scaling the learning rate inversely proportional to the policy has been proposed to overcome
this limitation, thereby approximating the simultaneous updating of all actions every time a state
is visited. This concept has been initially studied to modify fictitious play (Fudenberg and Levine,
1998), and inspired two equivalent modifications of Q-learning named Individual Q-learning (Leslie
and Collins, 2005) and Frequency Adjusted Q-learning (FAQL) (Kaisers and Tuyls, 2010). FAQL
used the modified Q-learning update rule

Qt+1(s, a)← Qt(s, a) +
1

π(s, a)
α
(
r + γ max

a′
Qt(s′, a′)−Qt(s, a)

)
.

Thus, FAQL scales the learning rate for an action a to be inversely proportional to the probability
of choosing action a at a given state. This simple modification to the Q-learning update rule suffers
from a practical concern: the update rate becomes unbounded (approaches∞) as π(s, a) approaches
zero. Therefore, a safe-guard condition has to be added in practice (Kaisers and Tuyls, 2010)

Qt+1(s, a)← Qt(s, a) + min(1,
β

π(s, a)
)α
(
r + γ max

a′
Qt(s′, a′)−Qt(s, a)

)
. (3)

4. A greedy policy can be formally defined as πt(s, a) = 1 iff a = argmaxa′ Q
t(s, a′) and πt(s, a) = 0 otherwise.

5

ABDALLAH AND KAISERS

where β is a tuning parameter that safeguards against the cases where π(s, a) is close to zero. The
resulting algorithm is similar to Algorithm 1 but with Line 8 modified to use Equation 3 instead of
Equation 1.

While introducing parameter β does make FAQL applicable in practical domains, the intro-
duction of β also results in two undesirable properties. The first undesirable property is reducing
the effective learning rate (instead of α it is now αβ) and therefore reducing the responsiveness of
FAQL.5 The second and more important undesirable property is what we refer to as the β-limitation:
Once the probability of choosing an action, π(s, a), goes below β, FAQL behaves identical to the
original QL. In other words, FAQL suffers from the same policy-bias problem when the probability
of choosing an action becomes lower than β. This is problematic because the lower the probabil-
ity of choosing an action, the more important it is to adjust the learning rate (to account for the
infrequency of choosing that action). Our proposed algorithm RUQL does not suffer from these
limitations and we show in the experiments how this can improve performance in noisy and non-
stationary settings.

3. Repeated-Update Q-learning, RUQL

Our proposed algorithm is based on a simple intuitive idea. If an action is chosen with low prob-
ability π(s, a) then instead of updating the corresponding action value Q(s, a) once, we repeat the
update 1

π(s,a) times. Algorithm 2 shows the naive implementation of this idea. Line 8 is the only
difference between Algorithm 2 and Algorithm 1.

Algorithm 2: RUQL (Impractical Implementation)

1 begin
2 Initialize function Q arbitrarily.
3 Observe the current state s.
4 for each time step do
5 Compute the policy π using Q.
6 Choose an action a according to agent policy π.
7 Execute action a and observe the resulting reward r and the next state s′.
8 for i : 1 ≤ i ≤ b 1

π(s,a)c do
9 Update Q(s, a) using Equation 1.

10 end
11 Set s← s′.
12 end
13 end

This simple modification to the QL algorithm addresses the policy-bias, but it has two limita-
tions: (1) The repetition only works with 1

π(s,a) an integer, and (2) as π(s, a) gets lower, the number
of repetitions increases and quickly becomes unbounded as π(s, a) approaches zero. Unlike FAQL,
here the computation time (not the value of the update) is what becomes unbounded as π(s, a) ap-
proaches zero. In the remainder of this section we will derive a closed-form expression for the

5. In our experiments we take the effective learning rate into account when comparing FAQL to our algorithm RUQL,
setting αFAQL = βFAQL =

√
αRUQL.

6

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

RUQL algorithm. The closed-form expression removes the need for actually repeating any update
and therefore makes RUQL computationally feasible.

Theorem 1 The RUQL update rule can be approximated with an error of O(α2) as an instance of
QL with learning rate (step size) z given by the equation

zπt(s,a) = 1− [1− α]
b 1
π(s,a)

c
,

where α is a constant, denoting the learning rate of the underlying QL update equation being
repeated.

Proof
For convenience, let Qi(s, a) refer to the intermediary value of the Q function after i iterations

of the loop in Steps 8-10 in Algorithm 2. Before starting the loop, we have Q0(s, a) ← Qt(s, a),
i.e. before executing any iterations the value of Q(s, a) is set to the value of the previous time step
t. Upon finishing the loop we get Qt+1(s, a) = Qb 1

π(s,a)
c(s, a), or the new value of Q(s, a) at time

step t+ 1. Let us now trace the computation of Qt+1(s, a) = Qb 1
π(s,a)

c. After one iteration we have

Q1(s, a) = [1− α]Q0(s, a) + α[r + γ max
a′

Q0(s
′, a′)].

The second iteration results in

Q2(s, a) = [1− α]

(
[1− α]Q0(s, a) + α[r + γ max

a′
Q0(s

′, a′)]

)
+ α[r + γ max

a′
Q1(s

′, a′)]

= [1− α]2Q0(s, a) + [1− α]α[r + γ max
a′

Q0(s
′, a′)] + α[r + γ max

a′
Q1(s

′, a′)].

Similarly, after b 1
π(s,a)c iterations

Qb 1
π(s,a)

c(s, a) = [1− α]
b 1
π(s,a)

c
Q0(s, a) +

[1− α]
b 1
π(s,a)

c−1
α[r + γ max

a′
Q0(s

′, a′)] +

[1− α]
b 1
π(s,a)

c−2
α[r + γ max

a′
Q1(s

′, a′)] +

...

α[r + γ max
a′

Qb 1
π(s,a)

c−1(s
′, a′)].

It is important to keep in mind that all the above repeated updates occur at the same time step. It
is also worth noting that the updates are monotonic (i.e., either increasing or decreasing) between t
and t+ 1. In the following, the floor notation is dropped for notational convenience. There are four
cases that we need to consider (derivations are given in the Appendix):

Case 1, s′ 6= s, or
(
s′ = s and a 6= arg maxa′ Q

t(s, a′)

)
throughout the 1

π(s,a) iterations:

Qt+1(s, a) = [1− α]
1

π(s,a)Qt(s, a) +
[
1− (1− α)

1
π(s,a)

]
[r + γmax

a′
Qt(s′, a′)] (4)

7

ABDALLAH AND KAISERS

Case 2, s′ = s and a = arg maxa′ Q
t(s, a′) throughout the 1

π(s,a) iterations:

Qt+1(s, a) = [1− α(1− γ)]
1

π(s,a)

(
Qt(s, a)− r

1− γ

)
+

r

1− γ
(5)

Case 3, s′ = s and a 6= arg maxa′ Q
t(s, a′) until iteration i>: Since the update is monotonic, it-

eration i> can be determined, at which Qi(s, a) becomes larger than maxa′ Q
t(s, a′). Sub-

sequently, we can compute Qt+1(s, a) by applying the remaining updates 1
π(s,a) − i> to the

value of maxa′ Q
t(s, a′) according to Equation 5, since the updated action bears the maxi-

mum value for the remaining updates, i.e.,

Qt+1(s, a) = [1− α+ αγ]
1

π(s,a)
−i>

(
max
a′

Qt(s, a′)− r

1− γ

)
+

r

1− γ
.

Case 4, s′ = s and a = arg maxa′ Q
t(s, a′) until iteration i⊥: Similar to Case 3, let i⊥ be the

iteration at which Qi⊥(s, a) drops below maxa′ Q
t(s, a′). As a result, we can compute

Qt+1(s, a) by applying the remaining updates 1
π(s,a) − i⊥ to the value of maxa′ Q

t(s, a′)
according to Equation 4, i.e.

Qt+1(s, a) = [1−α]
1

π(s,a)
−i⊥ max

a′
Qt(s, a′)+

[
1− (1− α)

1
π(s,a)

−i⊥
]

[r+γmax
a′

Qt(s′, a′)].

The computation time complexity of i>, i⊥ and the update rule of RUQ-Learning is O(1), a signif-
icant improvement over the naive implementation in Algorithm 2 with unbounded time complexity.
However, the four cases and the corresponding update equations are not as simple as the original
Q-learning update equation (Equation 1) or even the FAQL update equation (Equation 3). The
following derivation will elucidate the difference between Equation 4 and Equation 5 and show
that it is insignificant for small learning rates, such that solely Equation 4 can be used as an ap-
proximation in all cases. Consider the Taylor series expansion of both equations at α = 0, using
(1− α)c = 1− cα+O(α2). In Case 2, when Qt(s, a) = maxa′ Q(s, a′), Equation 4 becomes

Qt+1(s, a) =

(
1− α

π(s, a)

)
Qt(s, a) +

α

π(s, a)
[r + γQt(s, a)] +O(α2)

=

(
1− α(1− γ)

π(s, a)

)
Qt(s, a) +

α

π(s, a)
r +O(α2),

while Equation 5 becomes

Qt+1(s, a) =

(
1− α(1− γ)

π(s, a)

)(
Qt(s, a)− r

1− γ

)
+

r

1− γ
+O(α2)

=

(
1− α(1− γ)

π(s, a)

)
Qt(s, a) +

α

π(s, a)
r +O(α2).

In brief, Case 1 requires to apply Equation 4 anyway, and other cases only require to change to
Equation 5 if Qt(s, a) = maxa′ Q(s, a′). However, given Qt(s, a) = maxa′ Q(s, a′) the lines
above show that the difference between the equations is O(α2), and hence negligible for small α,

8

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
M

S
E

Probability of choosing first action

QL
FAQL

RUQL, Exact
RUQL

Figure 2: RMSE of QL, FAQL, RUQL (exact) and RUQL (approximate) plotted against the probability of
choosing the first action π(1). RUQL, approximated as in Theorem 1, has the lowest RMSE
across different policies. The learning parameters are set as follows: α = 0.01 for QL and RUQL
and αFAQL = β =

√
α = 0.1.

since higher order terms become insignificant. Therefore, Equation 4 can be applied in all four
cases. In other words, RUQL can be approximated by

Qt+1(s, a) = [1− α]
1

π(s,a)Qt(s, a) +
[
1− (1− α)

1
π(s,a)

]
[r + γmax

a′
Qt(s′, a′)].

This equation can then replace Lines 8-10 in Algorithm 2 to produce a simple and efficient imple-

mentation of RUQL as an instance of QL with substitute learning rate zπt(s,a) = 1−[1−α]
1

πt(s,a) .

Algorithm 2 uses the floor notation, since fractional repetitions are not possible. However, the
approximation alleviates this limitation, hence we adopt zπt(s,a) = 1− [1−α]

1
π(s,a) without flooring

for both our experimental and theoretical analyses. The continuous and smooth definition of zπ will
simplify the theoretical analysis we conduct later. More importantly, such smooth definition will
handle fractions of 1/π more accurately. To illustrate this point we recall here the simple domain
we used in the introduction section. The RUQL update equation is trying to imitate the QL update
equation if (hypothetically) the agent can execute and update every action at every time step, or
what we referred to as QL-ideal-update in the introduction. Figure 2 plots the RMSE of QL, FAQL,
RUQL (exact) and RUQL (approximate) when compared to QL-ideal-update and using the same
settings of the multi-armed bandit problem we explained in the introduction section.

It is clear from the figure that RUQL (approximate) has the lowest RMSE across different values
of π(1). In other words, independent of the underlying execution (exploration) strategy, RUQL
results in action values that are the closest to the QL-ideal-update. Furthermore, as π(1) goes
beyond β in either direction the β limitation hits FAQL. Another interesting observation is that
the RMSE of RUQL (exact) is higher than the RMSE of RUQL (approximate). The reason is the

9

ABDALLAH AND KAISERS

inability of RUQL (exact) to handle partial iterations (i.e. if the ratio 1
π is not an integer). This

is also why the performance of RUQL (exact) is best when π(1) = 0.02, 0.1, 0.5, 0.9, and 0.98
(with an almost perfect match with RUQL-approximate) in a clear verification of the validity of our
approximation. At these points the boost in the learning rate that is given to the less probable action
(with probability 0.02,0.1, and 0.5) is based on 1

π which is an integer in these cases. The further
the probabilities are from these values, the further the RMSE of RUQL-exact from the RMSE of
RUQL-approximate.

4. Theoretical Analysis

This section analyzes RUQ-Learning by comparing it with two closely-related algorithms: the orig-
inal Q-learning and FAQL, the closest state of the art.

4.1 RUQL and QL

As stated by Theorem 1, RUQL can be approximated as an instance of QL with an effective learning

rate zπt(s,a) = 1− [1− α]
1

πt(s,a) . However, while (traditionally) the learning rate of Q-learning, α,
is independent of the policy, the effective learning rate of RUQL, z, is a function of the policy at the
particular state s and action a at the given time t. For example, a common definition of the learning
rate α(s, a, t) = 1

visits(s,a,t) , where visits(s, a, t) is the number of times the learning agent visited
state s and executed action a until time t. This is different from RUQL where the effective learning
rate z includes the policy. The inclusion of the policy in z creates a feedback loop: the effective
learning rate affects the learning which affects the policy which affects the effective learning rate.6

As we show later in the experimental analysis, this results in significantly different learning dynam-
ics (between RUQL and traditional QL) in non-stationary environments. In particular, we show that
increasing the learning rate α even by 100 folds does not change the dynamics of QL significantly.
On the other hand, using RUQL results in significantly different dynamics.

The dependence of the effective learning rate on the policy raises concerns of whether the con-
vergence of Q-learning in stationary environments still holds for RUQL. We revisit here the main
conditions for Q-learning convergence (Sutton and Barto, 1999), and consider whether the con-
ditions still hold for RUQL and under what assumptions. For the original Q-learning two condi-
tions concerning the learning rate need to be satisfied for convergence in MDPs:

∑
t αt = ∞ and∑

t (αt)
2 < ∞. The second condition requires that the learning rate decays over time, while the

first condition ensures that such decay is slow enough to allow the agent to learn the optimal Q
values. One possible definition of α that satisfies both conditions is αt = 1

t .
Extending the two conditions to RUQL, we substitute z for αt in the learning rate conditions to

get
∑

t zπt =∞ and
∑

t z
2
πt <∞. Expanding the first condition yields∑

t

(
1− [1− αt]

1
πt(s,a)

)
=∞.

Using polynomial expansion of z

zπt = 1− [1− αt]
1

πt(s,a) = 1−
(

1 +
1

πt(s, a)
(−αt) +O(α2

t)

)
=

αt
πt(s, a)

−O(α2
t).

6. In the case of a multi-agent system, this feedback loop is affected by other agents (because other agents affect the
individually learned policy).

10

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

Subsequently, omitting the higher order terms7 denoted by O(α2
t) and substituting in the first con-

dition leads to ∑
t

[
αt

1

πt(s, a)

]
=∞.

It is worth noting that πt(s, a) is bound away from zero since the sequence of updates proceeds over
solely those actions that are selected with positive probability. This implies that for any sequence
αt for which

∑
t αt = ∞, the first condition also holds for the effective learning rate zπ of RUQL,

since each summand is at least as large as before. We now move to the second condition:

∑
t

(
1− [1− αt]

1
πt(s,a)

)2

<∞.

Again using the polynomial expansion yields

∑
t

[
αt

1

πt(s, a)

]2
<∞.

Here we observe a clear distinction between RUQL and the original QL. Unlike the original Q-
learning, we need to impose restrictions on the policy to ensure the above condition. Let us denote
the minimum probability of choosing an action at a given time with εt = mins,a π

t(s, a) (which
reflects the exploration rate). We then need to ensure that∑

t

[αt
εt

]2
<∞.

To clarify how the above conditions can be used, consider the following example. Suppose we are
using ε-greedy exploration strategy and αt = 1

t , then one possible exploration rate that satisfies the
second condition is εt = 1

lg t .
8 Similarly, we can ensure minimum exploration using Boltzmann

exploration through updating the temperature τ using the learned action values (Achbany et al.,
2008).

It is worth noting that in practice, and particularly in non-stationary environments, the explo-
ration rate parameter (which is ε in ε-greedy and τ in Boltzmann) is usually held to small constant
values. In such cases, the second condition is trivially satisfied,9 which means RUQL is guaran-
teed to converge to the optimal Q values. Our experiments confirm that RUQL works well in these
environments.

4.2 RUQL and FAQL

Both RUQL and FAQL provide an algorithmic implementation to address the policy-bias of Q-
learning. The two algorithms resolve this problem in different ways: FAQL normalizes the learning
rate of the Q-learning update while RUQL repeats the Q-learning update rule. Despite their differ-
ence in implementation, RUQL learning dynamics are similar to FAQL learning dynamics when the

7. Omitting O(α2
t) is justified because αt is assumed to decay over time to establish convergence in stationary environ-

ments, and for small αt the first order term dominates diminishing higher order terms.
8. The series

∑
t

[
lg t
t

]2
is convergent using the Cauchy condensation test.

9. For constant exploration rates, εt is bound away from zero and can be replaced by a constant that represents the
minimum positive value it assumes. RUQL thus satisfies the condition for the same αt as QL.

11

ABDALLAH AND KAISERS

probability of choosing actions are larger than β, otherwise FAQL learning dynamics deviate from
RUQL learning dynamics. This can be shown through the following arguments.

Let ∆Qtalgorithm(s, a) = Qt+1(s, a)−Qt(s, a) denote the update step for each of the algorithms
FAQL and RUQL. Then the difference between the updates of FAQL and RUQL is dFAQL,RUQL =
∆QtFAQL(s, a)−∆QtRUQL(s, a) = (wπt(s,a)−zπt(s,a))et(s, a), where the Q-value error is denoted
by et(s, a) =

[
r + γQt(s′, amax)−Qt(s, a)

]
, wπt(s,a) = min(1, β

π(s,a))αFAQL represents FAQL’s

effective learning rate, and zπt(s,a) = 1− [1− αRUQL]
1

πt(s,a) represents RUQL’s effective learning

rate. Further working out the Taylor expansion at α = 0 of the term (1−αRUQL)
1

π(s,a) from RUQL’s
update equation yields

[1− αRUQL]
1

π(s,a) = 1−
αRUQL
π(s, a)

+O(α2
RUQL).

Therefore, the learning rate of RUQL can be simplified to.

zπt(s,a) = 1−
(

1−
αRUQL
π(s, a)

+O(α2
RUQL)

)
=
αRUQL
π(s, a)

+O(α2
RUQL).

If et(s, a) = 0, then both algorithms keep the Q-values unchanged, i.e.,

∆QtFAQL(s, a) = ∆QtRUQL(s, a) = 0.

Otherwise, the difference in updates can be rewritten for small learning rates αRUQL as

dFAQL,RUQL

et(s, a)
= wπt(s,a) − zπt(s,a) = min(1,

β

π(s, a)
)αFAQL −

αRUQL
π(s, a)

.

For β · αFAQL = αRUQL the two algorithms yield equal updates if π(s, a) ≥ β. However, when
π(s, a) < β the learning rates differ by αRUQL

β − αRUQL
π(s,a) , which is due to the β limitation of FAQL

as we mentioned before.

5. Related Work

Several modifications and extensions to Q-learning were proposed, such as individual Q-learning
(Leslie and Collins, 2005), the CoLF and CK heuristics (de Cote et al., 2006), and the utility-based
Q-learning (Moriyama et al., 2011). Some of the proposed extensions aimed at improving the per-
formance of Q-learning in specific domains (such as promoting cooperation in public good games
(de Cote et al., 2006; Moriyama et al., 2011)), rather than addressing the policy-bias limitation of
Q-learning. There also have been some works on modifying the learning rate α to speed up con-
vergence (George and Powell, 2006; Dabney and Barto, 2012; Mahmood et al., 2012). Most of
the proposed approaches defined different decaying functions for the learning rate (for example, as
a function of time or the number of visits to a state) that are independent of the underlying pol-
icy (George and Powell, 2006). More recent approaches proposed more sophisticated methods for

12

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

adapting the learning rate based on the error (Dabney and Barto, 2012; Mahmood et al., 2012).
None of the proposed approaches addressed the policy-bias problem.

Some learning algorithms specifically targeted non-stationary environments (da Silva et al.,
2006; Noda, 2010; Kaisers and Tuyls, 2010). One technique devised a mechanism for updating
the learning rate based on gradient descent (to minimize error) (Noda, 2010). Aside from being
more complex than our simple update equation, the approach could only handle stateless domains.
The RL-Context-Detection (RL-CD) algorithm (da Silva et al., 2006) was model-based and assumed
finite set of stationary contexts that the environment switches among. For each stationary context a
model was learned. This can be contrasted to our approach, which is model-free and tracks the non-
stationarity of the environment without assuming a finite set of contexts. This is important when the
non-stationarity is a result of an adaptive opponent (with potentially infinite contexts). The more
recently proposed Frequency Adjusted Q-Learning (Kaisers and Tuyls, 2010) aimed to address the
policy-bias limitation of Q-learning, but as we have shown, FAQL suffers from the β-limitation.

Q-learning was originally designed for single-agent environment, but yet performed adequately
in multi-agent environments. HyperQ-learning was proposed as an extension to Q-learning in order
to support multi-agent contexts (Tesauro, 2004). Unlike our approach, HyperQ attempts to learn
the opponents’ strategies without adapting the learning rate. We believe it is possible to integrate
RUQL with HyperQ, but it is beyond the scope of this paper and remains an interesting future
direction. Studying the dynamics of learning algorithms in multi-agent contexts has been an ac-
tive area of research (Abdallah and Lesser, 2008; Babes et al., 2008; Bowling and Veloso, 2002;
Claus and Boutilier, 1998; de Cote et al., 2006; Eduardo and Kowalczyk, 2009; Lazaric et al., 2007;
Leslie and Collins, 2005; Moriyama, 2009; Tuyls et al., 2006; Vrancx et al., 2008; Wunder et al.,
2010; Galstyan, 2013). The dynamics of Q-learning with Boltzmann exploration received attention
earlier due to the continuous nature of the Boltzmann exploration. One of the earliest analyses of
Q-learning assumed agents keep record of previous interactions and used Boltzmann exploration
strategies (Sandholm and Crites, 1996). More recent analysis of Q-learning with Boltzmann explo-
ration used evolutionary (replicator) dynamics (Kaisers and Tuyls, 2010; Lazaric et al., 2007; Tuyls
et al., 2006). Similarly, Q-learning with ε-greedy exploration has been analyzed theoretically in
stateless games (Eduardo and Kowalczyk, 2009; Wunder et al., 2010).

Another relevant and somewhat recent area of research is adversarial MDPs, where an oblivious
adversary may choose a new reward function (and possibly the transition probability function as
well) at each time step (Yu et al., 2009; Abbasi et al., 2013; Neu et al., 2010). A central assumption
in that work is that the agent observes the full reward function (not only the current reward sample),
and possibly the transition probability function once a change in the environment occurred. Fur-
thermore, some of the approaches could not handle deterministic environments, as a mixed policy
is assumed (Abbasi et al., 2013). Our approach (similar to Q-learning) does not make such strong
assumptions.

Aside from Q-learning and its variations and extensions, several reinforcement learning algo-
rithms have been proposed to optimize the exploration and achieve more efficient learning (Strehl
et al., 2009; Jaksch et al., 2010). Aside from being more complex than Q-learning and RUQL, the
algorithms that optimize exploration do not address the policy-bias problem. We view such algo-
rithms as complementary to RUQL, which reduces the coupling between the learning dynamics and
the underlying exploration strategy. Similar to the possible integration between RUQL and gradient-
based multi-agent learning algorithms, RUQL can also be integrated with algorithms that optimize
the exploration strategy.

13

ABDALLAH AND KAISERS

The remainder of this section explains the two algorithms DynaQ and Double Q in more de-
tail. These algorithms are more relevant to RUQL and serve as a benchmark comparison in our
experiments.

5.1 Dyna-Q (DynaQ)

The Dyna-Q learning algorithm (Sutton, 1990) integrated the use of a model with the traditional
Q-learning update. In its simplest form (which was used in the original paper experiments, as well
as our experiments), Dyna-Q can be expressed as shown in Algorithm 3. Note that we intentionally
framed DynaQ in such a way that highlights the similarities and differences with RUQL. From the
algorithm, we note that similar to the original RUQL, DynaQ repeats the Q-learning update using
the learned model. However, there are crucial differences. DynaQ repeats the updates independent
of the underlying policy, in clear contrast to RUQL which repeats the update inversely proportional
to the policy. Also there is no closed form equation that approximates DynaQ, and therefore it can
be orders of magnitudes slower than QL (depending on the value of parameter k). Our intuition is
that DynaQ is equivalent to uniformly increasing the effective learning rate, but we are not aware of
any thorough theoretical analysis of DynaQ that established such connection (unlike our theoretical
analysis of RUQL, which highlighted how RUQL affects the effective learning rate).

Algorithm 3: Dyna-Q

1 begin
2 Initialize function Q arbitrarily and list L to empty.
3 Observe the current state s.
4 for each time step do
5 Compute the policy π using Q.
6 Choose an action a according to agent policy π.
7 Execute action a and observe the resulting reward r and the next state s′.
8 Update Q using Equation 1 and the information 〈s, a, s′, r〉.
9 Add the experience tuple 〈s, a, s′, r〉 to L

10 for i : 1 ≤ i ≤ k do
11 retrieve an experience tuple 〈s, a, s′, r〉 uniformly at random from list L
12 Update Q using Equation 1 and the information 〈s, a, s′, r〉.
13 end
14 Set s← s′.
15 end
16 end

5.2 Double Q-Learning (DoubleQ)

An interesting recent variation of Q-learning is Double Q-learning (DQL) (Hasselt, 2010). DQL
attempts to address how Q-learning may overestimate action values due to the max operator in the
Q-learning equation. DQL counters overestimation of action values by maintaining two separate
action values estimates, QA and QB , for each state-action pair. Whenever an action value is to
be updated, either QA or QB is chosen uniformly at random to be updated. The update is done

14

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

using the traditional QL update equation, Equation 1, with only one difference: the max operator is
applied to the action values of the other table. For example, suppose we chose QA is to be updated,
then we apply Equation 6 as follows:

Qt+1
A (s, a)← QtA(s, a) + α

(
r + γ QtB(s′, a∗)−QtA(s, a)

)
, (6)

where a∗ = arg maxa′ Q
t
A(s′, a′). In other words, for the next state s′, the best action is determined

using the action value table to be updated. However, the value of the best action is determined
using the action value in the other table. It is important to note that DoubleQ is identical to QL in
stateless domains, where γ = 0. Therefore, the curve corresponding to DoubleQ in Figure 2 would
be identical to the QL curve (DoubleQ suffers from the same policy bias as QL, at least for stateless
domains).

6. Experimental Analysis

To ensure thorough evaluation of the RUQL algorithm, our analysis spans over several domains.
The first two domains focus on verifying the theoretical arguments that we have made in Section
4 using simple, single-state, and non-stationary domains. The first domain (Section 6.1) uses a
variation of the multi-armed-bandit problem to expose the effect of QL limitations in dynamic envi-
ronments. The second domain (Section 6.2) aims at verifying the equivalence of RUQL and FAQL
for sufficiently small values of the learning rate α. The subsequent three domains evaluate RUQL
in multi-state, non-stationary, and noisy domains.

6.1 Multi-Armed Bandit With Switching Means

In order to tease out the differences between RUQL and FAQL, we propose a simple variation of the
multi-armed bandit (MAB) problem (Robbins, 1952). Consider the basic MAB problem: an agent
can choose between two actions. Each action i has a mean payoff µi ∈ {0, 1} with some random
noise. Since the agent is not aware which action is the best (with expected payoff of 1), the agent
needs to explore the two actions while learning the expected returns for each action.

We made two modifications to the traditional MAB problem. The first modification is switching
the value of µ for the two actions every D time steps. In other words, having D = 500 means that
from time 0 to time 499 µ0 = 0 and µ1 = 1 then from time 500 to time 999 µ0 = 1 and µ1 = 0
and so on. Allowing µ to switch models a non-stationary environment. The second modification
is, instead of the usual Gaussian noise, we use an asymmetric noise signal. Let r0 be the sample
reward of the action with mean payoff of 0, and r1 be the sample reward of the action with mean
payoff of 1. The sample rewards r0 and r1 are defined as

r0 =

{
−1

1−p0 , with probability 1− p0.
1
p0
, otherwise (with probability p0),

r1 =

{
2

1−p1 , with probability 1− p1.
−1
p1
, otherwise (with probability p1),

where both p0 and p1 are parameters for controlling noise. The first thing to note here is that the
expected payoffs remain 0 and 1, respectively. The value of p1 determines how misleading the
optimal action can be. For instance, with p1 = 0.01 the optimal action provides (with very low

15

ABDALLAH AND KAISERS

probability) a payoff of -100, a payoff that is much lower than the expected payoff of the sub-
optimal action. This type of noise targets the policy bias weakness of Q-learning. Once the optimal
action receives such negative sample reward, and unless the learning rate is very small, the optimal
action will not be tried for a long time. However, if the learning rate is very small, then Q-learning
will respond poorly to changes in the environment. On the other hand, the value of p0 determines
how misleading the sub-optimal action can be. For example, with p0 = 0.01 the sub-optimal action
provides (with very low probability) a payoff of 100, which is much higher than the expected payoff
of the actual optimal action. This type of noise targets the weakness of the RUQL algorithm, which
gives a boost in the learning rate for infrequent actions.

The modified domain allows us to study two desired properties of learning algorithms: respond-
ing (quickly) to genuine change in the payoff mean of a particular action while resisting hasty
response to stochastic payoff samples. Our definition of noise also resembles realistic situations.
For example, the action of investing one’s own money in gambling resembles a sub optimal action
that has negative expected reward, while (very rarely) producing very high reward samples (very
low p0). Similarly, the action of investing money in stocks has positive expected reward with rare
significant losses. It is worth noting that several techniques were proposed specifically to solve the
non-stationary multi-armed bandit problem (Garivier and Moulines, 2011; Besbes et al., 2014). We
are using the multi-armed bandit problem as a simple domain to understand the benefits and limita-
tions of our approach. Our evaluation, therefore, include domains other than the multi-armed bandit
problem (some of which are multi-state domains).

We conducted the experiments over a range of parameter values, including D ∈ {250, 500,∞},
p0, p1 ∈ {0, 0.003, 0.01, 0.03, 0.1}, τ ∈ {0.1, 0.3, 1}, α ∈ {0.001, 0.01, 0.1, 1},10 and γ = 0. For
each combination we collected the average payoff over 2000 consecutive time steps. The initial Q
values are individually initialized randomly to either 0 or 1. Finally, statistical significance of the
difference in the mean is computed over 100 independent simulation runs, using two-tail two-sample
t-tests, where the null hypothesis is rejected at p-value 0.05.

In the absence of noise (p0 = p1 = 0), the only reason for change in a sampled payoff is the
switch of µ. Therefore, setting α = 1 achieves the best performance across the three algorithms,
rendering all of them equivalent. Interestingly, increasing the value of p0 (while the value of p1
remains zero) does not cause the setting α = 1 to be inferior. The reason is to be found in the QL
policy bias. Increasing p0 means that the suboptimal action will produce exceptionally high reward
very rarely. With α = 1, QL will naively, and from only one sample, think that the suboptimal
action is the optimal one. As a result, QL will almost certainly choose the suboptimal action the
following time step, which will most likely result in a disappointment. Therefore, QL will almost
immediately correct its expectation. The same goes for RUQL and FAQL with α = 1.

Table 1 shows the results for p1 = 0.01 and p0 = 0.01, for different values of D and α.
For each algorithm, we report the best average payoff it achieved across the different values of
the exploration parameter τ . Bold entries confirm the statistical significance of the outperforming
algorithm(s). For example, if only RUQL is bold, then this means RUQL outperforms both QL
and FAQL with statistical significance. If both RUQL and FAQL are bold, then this means both
algorithms outperform QL with statistical significance but there is no statistical significance regard-
ing the difference between FAQL and RUQL. Notice here the significant drop in performance for
high α. The drop is more severe for stationary environments, which may appear counter intuitive.

10. Note that these values of α are for QL and RUQL. For FAQL, we used the square root of these α values for both
αFAQ and βFAQ, so that FAQL has an effective learning rate αFAQ · βFAQ = α.

16

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

HHH
HHD
α

0.001 0.01 0.1 1

∞: QL 0.98 0.69 0.09 0.06
RUQL 0.97 0.89 0.09 0.06
FAQL 0.97 0.82 0.08 0.06

500: QL 0.51 0.58 0.37 0.53
RUQL 0.54 0.72 0.37 0.54
FAQL 0.53 0.70 0.37 0.53

250: QL 0.52 0.55 0.48 0.53
RUQL 0.52 0.62 0.48 0.53
FAQL 0.51 0.57 0.48 0.53

Table 1: The mean payoff for the MAB-switching game, with p0 = p1 = 0.01, and for different values
of D and α. The reported value in each cell is the best value we obtained across the different
values of the exploration rate τ . The first observation is the significant drop in performance when
α increases beyond 0.01. The policy bias results in the optimal action being rarely tried after the
optimal action receives a big penalty. For stationary environments (D =∞), RUQL’s performance
is comparable to QL with no statistically significant difference for α = 0.001. As alpha increases
to 0.01, the policy bias affects QL significantly, even in stationary environments. RUQL is affected
as well, but to a lesser degree. As alpha increases to 0.1 and above, the effect of noise becomes so
significant that all algorithms perform poorly. Furthermore, RUQL achieves superior performance
in non-stationary environments when D <∞.

What happens here is that when the optimal action receives the rare negative reward, if α is high,
then the corresponding Q value becomes much smaller than the Q-value of the suboptimal action,
making it very unlikely that the optimal action will ever be tried. When the environment becomes
non-stationary, QL’s performance improves simply because the suboptimal action becomes optimal
after the switch. RUQL reduces the severity of policy bias, which results in better performance in
non-stationary cases (D = 500 and D = 250). It is important to note also that in the presence
of noise, and for non-stationary environments, α should neither be too small nor too large. In this
experiment, α = 0.01 resulted in the most robust performance.

To have a closer look at the learning dynamics, Figure 3 illustrates a sample run with α =
0.01, D = 500, p1 = p0 = 0.01 and τ = 0.3. The figure compares the accumulated payoff
for the three algorithms, using the same random seed (hence the synchronized noise). The three
algorithms quickly learn to select Action 1, with payoff given by r1 (hence the steady increase in
the accumulated payoff). The first sudden drop in the accumulated payoff (around Time 50) is due
to the noise defined by r1. Notice slight gain of RUQL as a result of this noise. The reason is that the
sudden drop reduces the probability of choosing the optimal action. The reduction in the probability
results in subsequent small boost in the learning rate for RUQL (and FAQL), hence the quicker
recovery of both RUQL and FAQL against QL. Now consider Time 500, when the first switch of
the actions’ expected payoff occurs and now Action 1 generates payoff according to r0. We can see
that both RUQL and FAQL initially continue to choose Action 1 (initial drop in the accumulated
payoff). The probability of choosing Action 0, which is now the optimal action, is very low. RUQL
quickly recovers while FAQL (due to the β-limitation) takes longer time to recover. This results in
a bigger gain for RUQL.

17

ABDALLAH AND KAISERS

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 250 500 750 1000 1250 1500 1750 2000

A
c
c
u

m
u

la
te

d
 P

a
y
o

ff

Time

QL
RUQL
FAQL

Figure 3: Comparison of the accumulated payoff for the three algorithms in a sample run (with the same
random seed), using α = 0.01, D = 500, p1 = p0 = 0.01 and τ = 0.3.

D p0 = p1
HH

HHHAlg. 0.003 0.01 0.03 0.1

∞

QL 0.96 0.98 0.95 1
RUQL 0.98 0.97 0.97 1
FAQL 0.98 0.97 0.97 1

50
0

QL 0.56 0.58 0.55 0.72
RUQL 0.65 0.72 0.6 0.71
FAQL 0.62 0.70 0.6 0.71

25
0

QL 0.51 0.55 0.52 0.65
RUQL 0.58 0.62 0.56 0.64
FAQL 0.57 0.57 0.55 0.66

Table 2: The mean payoff for the MAB-switch game, for different values of D, p0 and p1. Each cell repre-
sents the average payoff, maximized over α and τ .

Table 2 compares the performance of the three algorithms for different levels of noise (pi) and
non-stationary environments (D). The performance reported for each algorithm is the maximum
over α and τ .11 We can observe here that for stationary environment, RUQL performs as well as QL,
with no statistical significance for the difference between the three algorithms. As the environment
becomes stationary and noisy, RUQL outperforms QL and FAQL with statistical significance for
several settings. Even for the cases where RUQL does not outperform QL (or FAQL), RUQL has
comparable performance with no-statistical significance of the difference.

6.2 Prisoner’s Dilemma Game

This section compares the (experimental) dynamics of Q-learning, FAQL, and RUQL in the Pris-
oner’s Dilemma game (PD). We are using the PD domain primarily for benchmarking, as it was

11. It is worth noting that for the majority of the cells, α = 0.01 and τ = 0.3 resulted in best performance for all three
algorithms.

18

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

used before in evaluating FAQL (Kaisers and Tuyls, 2010). Each agent is oblivious to the existence
of the other agent, therefore the domain can be viewed as a non-stationary environment from the
perspective of each individual agent. For all the three algorithms (QL, FAQL, RUQL) the tempera-
ture for Boltzmann exploration was set to τ = 0.1. The discount factor γ was set to 0. The learning
rate α was set at 10−6 for both Q-learning and RUQL, while for FAQL both α and β were set to
10−3. Table 3 shows the payoff values for the PD game. The above setting was used before in the
literature (Kaisers and Tuyls, 2010) and we use the same setting here for comparability.

c d
c 3,3 0,5
d 5,0 1,1

Table 3: The prisoner’s dilemma game with actions cooperate (c) and defect (d).

Figure 4 shows the dynamics of the three algorithms for three different initial value levels of
Q. The dynamics of Q-learning and FAQL are consistent with the results reported before (Kaisers
and Tuyls, 2010). It is worth noting that under pessimistic initial Q-values (centered around zero,
top row), Q-learning approaches the Pareto optimal joint action, and hence a strictly dominated
action, simply because it is initialized near this joint action, updates are self-reinforcing and low
initial values lead to extremely low exploration probabilities. Given infinite time, the algorithms
would converge to the Nash equilibrium, since the defection action would eventually catch up due
to its factual higher value against cooperation. In contrast, the dynamics of both FAQL and RUQL
show consistent behavior across different initializations, and they are very similar and close to the
dynamical system of the infinitesimal limit (approximating that all actions were updated at every
iteration), despite the conceptually different update equations. A plot of the infinitesimal limit is
omitted since it would be indistinguishable from FAQL and RUQL, but illustrations can be found in
related work (Kaisers and Tuyls, 2010).

To demonstrate that the effect of RUQL is not equivalent to simply scaling the learning rate of Q-
learning, Figure 5 shows the behavior dynamics of Q-learning when increasing the learning rate up
to 100 times. As we can see, the general gross features of the dynamics remain the same. Increasing
the learning rate only increases the step size in policy space without changing the expected direction.

6.3 1-Row Domain

This section presents a simple multi-state domain to test RUQL’s multi-state performance. The
domain is depicted in Figure 6 [a]. There are 10 total states, which are organized in one row (hence
the name). There are two actions: left and right. The agent starts at a random state (which is not
goal) and uses the two actions to reach the goal state depicted by ’G’. Each step yields a reward of
−1, and the expected reward for reaching the goal is

rg =

{
11

1−P , with probability 1− P
−1
P , otherwise (with probability P).

The domain is episodic. An episode starts from any random state that is not a terminal state. A
terminal state is either the goal, or the cell opposite from the goal. To study non-stationarity in the

19

ABDALLAH AND KAISERS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(a) Q-learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(b) FAQL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(c) RUQL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(d) Q-learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(e) FAQL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(f) RUQL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(g) Q-learning

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(h) FAQL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(i) RUQL

Figure 4: The learning dynamics of Q-learning (left), FAQL (middle), and RUQL (right) for the
PD game. Each figure plots the probability of defecting for Player 1 (x-axis) against the
probability of defecting for Player 2 (y-axis). The rows show the dynamics when the
initial Q-values are centered around 0, 2.5 and 5 (top, middle, bottom). For all figures,
the algorithms were allowed to run for 5 million time steps. The learning rate α was set
at 10−6 for both Q-learning and RUQL, while for FAQL both α and β were set to 10−3.
RUQL has dynamics very similar to FAQL, while Q-learning has erratic dynamics due to
its policy bias.

20

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(a) α = 0.000001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(b) α = 0.00001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(c) α = 0.0001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(d) α = 0.000001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(e) α = 0.00001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(f) α = 0.0001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(g) α = 0.000001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(h) α = 0.00001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

(i) α = 0.0001

Figure 5: The learning dynamics of Q-learning for different values of the learning rate α: 0.000001
(left), 0.00001 (middle), and 0.0001 (right) for the PD game. Each figure plots the prob-
ability of defecting for Player 1 (x-axis) against the probability of defecting for Player
2 (y-axis). The top row shows the dynamics when the initial Q-values are around 0, the
middle row shows the dynamics when the initial Q-values are around 2.5, and the bot-
tom row shows the dynamics when the initial Q-values are around 5. For all figures, the
algorithms were allowed to run for 5

α time steps.

21

ABDALLAH AND KAISERS

Figure 6: The two settings of the 1-row domain. G indicates the goal state.

domain, there are two settings (shown as [a] and [b] in Figure 6), where parameter D controls the
duration before the environment switches from one setting to another.
We conducted the experiments over a range of parameter values, including D ∈ {5000, 10000,∞},
P ∈ {0, 0.01, 0.1}, τ ∈ {0.008, 0.04, 0.2, 1, 5}, πmin ∈ {0, 0.01, 0.001}, γ = 1, and α ∈
{0.01, 0.04, 0.16, 0.64}.12 For each combination we collected the average payoff over 20000 con-
secutive time steps. The initial Q values are initialized to 0. Finally, statistical significance of the
difference in the mean is computed over 10 independent simulation runs, using two-tail two-sample
t-test, where the null hypothesis is rejected at p-value 0.05.

Table 4 compares the performance of the three algorithms for different levels of noise (P) and
non-stationary environments (D). The performance reported for each algorithm is the best over
the different values of πmin, α and τ . We can observe similar results to the stateless domain.
For noise-free and stationary environments, RUQL performs as well as the other algorithms, with
no statistical significance for the difference. For noise-free non-stationary environments, DynaQ
performs significantly better. The reason is that by repeating the updates, DynaQ is effectively
increasing the learning rate for all actions, which is beneficial in noise-free environments. As the
environment becomes non-stationary and noisy, RUQL consistently outperforms other algorithms,
with FAQL and DoubleQ as close seconds. Dyna-Q fails in noisy environments because Dyna-Q
effectively boosts the learning rate for all the actions (therefore, the Q-value of an optimal action
may drop significantly upon receiving noisy negative reward).

6.4 Taxi Domain with Switching Stations

To investigate how RUQL works in multi-state environments we use a variation of the taxi domain
(Dietterich, 2000). Figure 7 illustrates the domain. The world is a 5x5 grid that has 4 stations
(represented by the letters) and walls (represented by the thick lines). A customer appears at a
source station and is to be delivered to a destination station. Both the source and the destination
stations are picked uniformly at random and can be the same. A taxi can pick a customer up, drop
a customer, or navigate through the world, which results in a total of 6 actions: UP, DOWN, LEFT,
RIGHT, PICK, and DROP. The state here is the taxi location (25 values) the customer location (5
values: 4 stations and in taxi) and destination (4 values) for a total of 500 states. Each navigation
action receives a reward of -1. Hitting the wall results in no change in the state and the same reward
of -1. Picking up or dropping off a customer receives a reward of 20 if at the right location, otherwise
receives a reward of -10. We made two main modifications:

12. Note that these values of α are for QL, DoubleQ, DynaQ, and RUQL. For FAQL, we used the square root of these α
values for both αFAQ and βFAQ, so that FAQL has an effective learning rate αFAQ.βFAQ = α.

22

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

D
HHH

HHAlg.
P

0.0 0.01 0.1

5
00

0 QL 0.77 0.74 0.83
DynaQ 1.31 -0.01 0.02

DoubleQ 0.85 0.75 0.80
FAQL 0.81 0.80 0.85
RUQL 0.84 0.81 0.90

10
0
00

QL 0.81 0.74 0.84
DynaQ 1.34 -0.16 0

DoubleQ 0.95 0.74 0.95
FAQL 0.88 0.80 0.86
RUQL 0.90 0.85 0.95

∞
QL 1.18 1.16 1.19

DynaQ 1.2 -0.17 0.36
DoubleQ 1.20 1.15 1.2

FAQL 1.18 1.16 1.18
RUQL 1.18 1.16 1.18

Table 4: The mean payoff for the 1-Row Domain, for different values of D and P . Each cell represents the
average payoff, maximized over α and τ .

Figure 7: The Taxi domain (Dietterich, 2000).

• Rare but severe noise: PICK and DROP actions fail with probability p and result in penalty
Rp
p .13

• Non-stationary domain: every duration D the stations (R,G,Y,B) rotate their locations (station
R takes the location of station G which in turn takes the location of station Y, etc.).

We conducted the experiments over range of parameter values, includingD ∈ {300000, 600000,∞},
τ ∈ {0.03, 0.1, 0.3, 1}, πmin ∈ {0, 0.001, 0.01}, α ∈ {0.001, 0.01, 0.1},14 p ∈ {0, 0.01}, Rp =

13. For the navigation actions, the noise remains similar to the original Taxi domain: a navigation action fails with
probability p and results in skidding to one of the sides with reward of -1.

14. Again the values of α are for QL and RUQL. For FAQL, we used the square root of these α values for both αFAQ
and βFAQ, so that FAQL has an effective learning rate αFAQ.βFAQ = α.

23

ABDALLAH AND KAISERS

D
HHH

HHAlg.
p

0 0.01

∞

QL 2.35 -0.61
DynaQ 2.34 0.19

DoubleQ 2.27 -1.23
RUQL 2.37 0.45
FAQL 2.38 0.29

6
00

0
0
0 QL 1.79 -1.31

DynaQ 1.83 -0.42
DoubleQ 1.17 -1.91
RUQL 1.77 -0.47
FAQL 1.80 -0.58

3
00

0
0
0 QL 0.64 -1.46

DynaQ 1.38 -0.79
DoubleQ 0.11 -1.92
RUQL 1.19 -0.70
FAQL 0.77 -0.94

Table 5: The mean payoff for the Taxi domain, for different values of p and D.

−6, and γ = 1. For each combination we collected the average payoff over 1200000 consecutive
time steps. All Q-values are initialized to zeros. Finally, statistical significance of the difference
in the mean is computed over 100 independent simulation runs, using two-tail two-sample t-test,
where the null hypothesis is rejected at p-value 0.05.

Table 5 shows the results for different values of D and p. For each algorithm, we report the best
average payoff it achieved across the different parameter values. Bold entries confirm the statistical
significance of the outperforming algorithm, similar to the results shown in Section 6.1. We notice
similarities to the previous domain. In noise-free environments, again DynaQ outperforms other al-
gorithms. As the environment becomes noisy and non-stationary, the performance of DynaQ drops
significantly, while RUQL outperforms all other algorithms. Interestingly, DoubleQ performs the
worst in this domain, across the different settings. This is perhaps due to the reported underesti-
mation of DoubleQ for the Q values (Hasselt, 2010). It is also worth noting that even in stationary
but noisy setting, RUQL outperforms other algorithms in the taxi domain. The reason for this is
that RUQL can boost the learning rate more effectively than Q-learning and other algorithms. For
example, suppose the best action in a particular state is to drop the customer. However, due to noise,
the payoff will be highly negative. This will result in sudden drop in the Q-value for the DROP
action in this particular state, and consequently the probability of choosing DROP. However, RUQL
will boost the learning rate for the DROP action once it is tried and succeeds, therefore recovering
from the noise effect faster. This results in a cascading effect across states. Also because RUQL’s
boost diminishes as the action is chosen more frequently, the learning becomes stable in the face
of the noise (which can not be achieved via simple increase of the learning rate for QL, or using
DynaQ). This is consistent with previous work, which experimentally showed that converging to a
policy is in some cases inferior to continuous learning (tracking) even in stationary environments
(Sutton et al., 2007). As the environment becomes more dynamic (D = 600000 and D = 300000)
the performance of all algorithms drop (as expected) but RUQL maintains the superior performance.

24

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

G

Figure 8: The Mines domain. The agent can navigate through the 4x16 grid, while avoiding the
scattered mines and trying to reach the goal.

6.5 Mines Domain

The mines domain is illustrated by Figure 8 and is adopted from the RL-GLUE software (Tanner
and White, 2009). The world consists of 4x16 grid, where the agent can navigate up, down, left and
right (4 actions) and receives a reward of -1 unless it encounters a mine, in which case the reward
is -100, or it reaches the goal state and receives the reward of 10. In this simple domain there are
only 64 states. 6 mines in addition to the goal are scattered randomly in the grid. We modified the
domain slightly from the original as follows:

• Rare but severe noise: reaching the goal state will fail with probability p and result in reward
of −1/p, otherise will succeed and produce reward of 11/(1 − p) (expected reward remains
10).

• Non-stationary domain: every duration D the goal state is randomly re-assigned.

We conducted the experiments over a range of parameter values, including D ∈ {25 · 104, 50 ·
104,∞}, τ ∈ {0.008, 0.04, 0.2, 1, 5}, p ∈ {0, 10−2}, α ∈ {0.0025, 0.01, 0.04, 0.16}, πmin ∈
{0, 10−2, 10−3}, and γ = 1.15 For each combination, we collected the average payoff over 106

consecutive time steps, and reported the best performance for each algorithm over the tested param-
eter values. All Q-values are initialized to zeros. Finally, statistical significance of the difference in
the mean is computed over 20 independent simulation runs, using two-tail two-sample t-test, where
the null hypothesis is rejected at p-value 0.05. Table 6 summarizes the results for different values
of p and the duration D. We observe similar qualitative results to the previous domains. DynaQ
is better in noise-free settings, with RUQL outperforming other algorithms as the environment be-
comes noisy and non-stationary. FAQL is close second in noisy and non-stationary environments as
well, albeit RUQL is clearly superior in the most frequently changing benchmark environment with
D=250,000.

7. Discussion of RUQL

Looking at the previous experimental results we can identify a few interesting observations. The
main benefit of RUQL is reducing the policy-bias, which is reflected in better performance in non-
stationary environments. In noise-free environments, however, the benefit of RUQL is diminishing,
since for noise-free environments the learning rate can be as high as 1. As RUQL reduces the
policy bias by boosting the learning rate for actions with low probability of being chosen, such

15. Again the values of α are for QL and RUQL. For FAQL, we used the square root of these α values for both αFAQ
and βFAQ, so that FAQL has an effective learning rate αFAQ.βFAQ = α.

25

ABDALLAH AND KAISERS

D
PPPPPPPPAlg.

P
0 0.01

∞

QL 0.79 0.6
DynaQ 0.78 0.35

DoubleQ 0.78 0.54
RUQL 0.79 0.63
FAQL 0.79 0.63

50
00

0
0 QL 0.70 0.43

DynaQ 0.77 0.34
DoubleQ 0.69 0.40
RUQL 0.70 0.49
FAQL 0.72 0.48

25
00

0
0 QL 0.67 0.27

DynaQ 0.75 0.29
DoubleQ 0.63 0.39
RUQL 0.65 0.43
FAQL 0.66 0.33

Table 6: The mean payoff for the Mines domain, for different values of p and D.

benefit fades as the basic learning rate increases. In contrast, if the environment is noisier and
changes more frequently, the benefits of RUQL become more apparent. This is consistent across
the domains we have studied. Overall, RUQL retains the simplicity of QL, while showing robust
performance across various experimental settings.

8. Conclusions

In this paper we proposed and evaluated the Repeated Update Q-learning algorithm, RUQL, which
addresses the policy bias of Q-learning. Unlike the closest state-of-the-art algorithm, RUQL’s be-
havior remains consistent even for policies with arbitrarily small probabilities of choosing actions.
We show theoretically that our algorithm is guaranteed to converge to the optimal Q-values in single-
agent stationary environments, while having better response to changes in non-stationary environ-
ments. We show experimentally how this results in superior performance in non-stationary and
noisy environments, compared to 4 other algorithms.

Given its merits in non-stationary environments, RUQL may find interesting applications in
multi-agent environments. There is a growing collection of algorithms that were designed specif-
ically for multi-agent environments. The Win-or-Learn-Fast heuristic (Bowling and Veloso, 2002;
Bowling, 2005) resulted in the first gradient-ascend-based (GAB) multi-agent learning algorithms
that successfully converged to mixed Nash Equilibrium in small general-sum games with minimum
knowledge of the underlying game (only the player’s own payoff). This was followed by the more
recent GAB algorithms (Abdallah and Lesser, 2008; Zhang and Lesser, 2010). Other multi-agent
algorithms that assumed knowledge of the underlying game were also proposed and were able to
converge in larger games (Hu and Wellman, 2003; Conitzer and Sandholm, 2007). All of these
algorithms could benefit from improved value approximation techniques like the one presented in
this paper. The integration of RUQL in specialized multi-agent learning algorithms is a promising
avenue of future research.

26

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

Finally, it is important to note that RUQL is not intended as a replacement of Q-learning. In
stationary environments with stochastic outcomes, QL may outperform RUQL, since the latter may
slightly boost the learning rate of rarely chosen action. However, if the environment is actually
changing over time (non-stationary and thus violating the core assumption of QL), then RUQL’s
boost may yield superior performance.

Acknowledgments

We would like to acknowledge support for this project from the Emirates Foundation Ref No: 2010-
107 Sience & Engineering Research grant and British University in Dubai INF009 Grant.

Appendix A. Theoretical Derivations of Exact RUQL

Here we derive the different quantities that are needed for each of the four cases of the exact RUQL.

Case 1:

Qb 1
π(s,a)

c(s, a) = [1− α]
b 1
π(s,a)

c
Q0(s, a) + α[r + γmax

a′
Q0(s

′, a′)](
1 + (1− α) + (1− α)2 + ...+ (1− α)

b 1
π(s,a)

c−1
)

= [1− α]
b 1
π(s,a)

c
Q0(s, a) + α[r + γmax

a′
Q0(s

′, a′)]
[1− (1− α)

b 1
π(s,a)

c
]

1− (1− α)

= [1− α]
b 1
π(s,a)

c
Q0(s, a) + [1− (1− α)

b 1
π(s,a)

c
][r + γmax

a′
Q0(s

′, a′)]

We can remove the floor notation for a better generalization, and using the equalitiesQ0(s, a) =
Qt(s, a) and Qb 1

π(s,a)
c(s, a) = Qt+1(s, a) we get (RUQL’s main update rule):

Qt+1(s, a) = [1− α]
1

π(s,a)Qt(s, a) +
[
1− (1− α)

1
π(s,a)

]
[r + γQt(s′, amax)]

Case 2:

Q1(s, a) = [1− α]Qt(s, a) + α
(
r + γQt(s, a)

)
= [1− α+ αγ]Qt(s, a) + αr

Q2(s, a) = [1− α+ αγ]Q1(s, a) + αr

= [1− α+ αγ]
(
[1− α+ αγ]Qt(s, a) + αr

)
+ αr

Qn(s, a) = [1− α+ αγ]nQt(s, a) + αr
(
1 + [1− α+ αγ] + . . .+ [1− α+ αγ]n−1

)
= [1− α+ αγ]nQt(s, a) + αr

1− [1− α+ αγ]n

1− [1− α+ αγ]

= [1− α+ αγ]nQt(s, a) + r
1− [1− α+ αγ]n

1− γ
= [1− α+ αγ]nQt(s, a) + (1− [1− α+ αγ]n)

r

1− γ

27

ABDALLAH AND KAISERS

= [1− α+ αγ]n
(
Qt(s, a)− r

1− γ

)
+

r

1− γ

Qt+1(s, a) = [1− α+ αγ]
1

π(s,a)

(
Qt(s, a)− r

1− γ

)
+

r

1− γ

Case 3 using Qt(s, a′′) = Qt(s, a), where a′′ = arg maxa′∈A\aQ
t(s, a′):

Qt(s, a′′) = [1− α+ αγ]i>
(
Qt(s, a)− r

1− γ

)
+

r

1− γ

Qt(s, a′′)− r

1− γ
= [1− α+ αγ]i>

(
Qt(s, a)− r

1− γ

)
Qt(s, a′′)− r

1−γ
Qt(s, a)− r

1−γ
= [1− α+ αγ]i>

i> =

log

(
Qt(s,a′′)− r

1−γ
Qt(s,a)− r

1−γ

)
log (1− α+ αγ)

Case 4 using Qt(s, a′′) = Qt(s, a), where a′′ = arg maxa′∈AQ
t(s, a′):

Qt(s, a′′) = [1− α]i⊥Qt(s, a) +
[
1− (1− α)i⊥

]
[r + γQt(s, a′′)]

Qt(s, a′′)− r − γQt(s, a′′) = [1− α]i⊥Qt(s, a)− (1− α)i⊥ [r + γQt(s, a′′)]

(1− γ)Qt(s, a′′)− r = [1− α]i⊥
[
Qt(s, a)− r − γQt(s, a′′)

]
(1− γ)Qt(s, a′′)− r

Qt(s, a)− r − γQt(s, a′′)
= [1− α]i⊥

(1− γ)Qt(s, a′′)− r
Qt(s, a)− γQt(s, a′′)− r

= [1− α]i⊥

i⊥ =
log
(

(1−γ)Qt(s,a′′)−r
Qt(s,a)−γQt(s,a′′)−r

)
log (1− α)

References

Yasin Abbasi, Peter L Bartlett, Varun Kanade, Yevgeny Seldin, and Csaba Szepesvari. Online learn-
ing in markov decision processes with adversarially chosen transition probability distributions.
In Annual Conference on Advances in Neural Information Processing Systems (NIPS), pages
2508–2516. Curran Associates, Inc., 2013.

Sherief Abdallah and Michael Kaisers. Addressing the policy-bias of q-learning by repeating up-
dates. In International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 1045–1052, 2013.

Sherief Abdallah and Victor Lesser. A multiagent reinforcement learning algorithm with non-linear
dynamics. Journal of Artificial Intelligence Research, 33:521–549, 2008.

28

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

Youssef Achbany, François Fouss, Luh Yen, Alain Pirotte, and Marco Saerens. Tuning continual
exploration in reinforcement learning: An optimality property of the boltzmann strategy. Neuro-
computing, 71(13):2507–2520, 2008.

Monica Babes, Enrique Munoz de Cote, and Michael L. Littman. Social reward shaping in the
prisoner’s dilemma. In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 1389–1392, 2008.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Optimal exploration-exploitation in a multi-armed-
bandit problem with non-stationary rewards. Available at SSRN 2436629, 2014.

Michael Bowling. Convergence and no-regret in multiagent learning. In Annual Conference on
Advances in Neural Information Processing Systems (NIPS), pages 209–216, 2005.

Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning rate. Artificial
Intelligence, 136(2):215–250, 2002. ISSN 0004-3702.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative mul-
tiagent systems. In National Conference on Artificial intelligence/Innovative Applications of
Artificial Intelligence, pages 746–752, 1998.

Vincent Conitzer and Tuomas Sandholm. AWESOME: A general multiagent learning algorithm
that converges in self-play and learns a best response against stationary opponents. Machine
Learning, 67(1-2):23–43, 2007. ISSN 0885-6125.

Bruno C. da Silva, Eduardo W. Basso, Ana L. C. Bazzan, and Paulo M. Engel. Dealing with
non-stationary environments using context detection. In International Conference on Machine
Learning (ICML), pages 217–224. ACM, 2006.

William Dabney and Andrew G Barto. Adaptive step-size for online temporal difference learning.
In AAAI Conference on Artificial Intelligence (AAAI), 2012.

Jose Enrique Munoz de Cote, Alessandro Lazaric, and Marcello Restelli. Learning to cooperate in
multi-agent social dilemmas. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 783–785, 2006.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Rodrigues Gomes Eduardo and Ryszard Kowalczyk. Dynamic analysis of multiagent q-learning
with ε-greedy exploration. In International Conference on Machine Learning (ICML), pages
369–376. ACM, 2009.

Drew Fudenberg and David K. Levine. The Theory of Learning in Games. MIT press, 1998.

Aram Galstyan. Continuous strategy replicator dynamics for multi-agent q-learning. Autonomous
Agents and Multi-Agent Systems, 26(1):37–53, 2013. ISSN 1387-2532.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for non-stationary bandit
problems. In International Conference on Algorithmic Learning Theory, pages 174–188, 2011.

29

ABDALLAH AND KAISERS

Abraham P George and Warren B Powell. Adaptive stepsizes for recursive estimation with applica-
tions in approximate dynamic programming. Machine learning, 65(1):167–198, 2006.

Hado V Hasselt. Double q-learning. In Annual Conference on Advances in Neural Information
Processing Systems (NIPS), pages 2613–2621, 2010.

Junling Hu and Michael P. Wellman. Nash Q-learning for general-sum stochastic games. Journal
of Machine Learning Research, 4:1039–1069, 2003. ISSN 1533-7928.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 99:1563–1600, 2010.

Michael Kaisers and Karl Tuyls. Frequency adjusted multi-agent q-learning. In International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 309–316, 2010. ISBN
978-0-9826571-1-9.

Alessandro Lazaric, Jose Enrique Munoz de Cote, Fabio Dercole, and Marcello Restelli. Bifurcation
analysis of reinforcement learning agents in the selten’s horse game. In Workshop on Adaptive
Agents and Multi-Agents Systems, pages 129–144, 2007.

David S. Leslie and Edmund J. Collins. Individual q-learning in normal form games. SIAM J.
Control and Optimization, 44(2):495–514, 2005.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-
free step-size adaptation. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2121–2124. IEEE, 2012.

Koichi Moriyama. Utility based q-learning to facilitate cooperation in prisoner’s dilemma games.
Web Intelligence and Agent Systems, 7:233–242, August 2009.

Koichi Moriyama, Satoshi Kurihara, and Masayuki Numao. Evolving subjective utilities: Prisoner’s
dilemma game examples. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 233–240, Richland, SC, 2011.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision pro-
cesses under bandit feedback. In Annual Conference on Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1804–1812, 2010.

Itsuki Noda. Recursive adaptation of stepsize parameter for non-stationary environments. In
MatthewE. Taylor and Karl Tuyls, editors, Adaptive and Learning Agents, volume 5924 of Lec-
ture Notes in Computer Science, pages 74–90. Springer Berlin Heidelberg, 2010.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952.

Tuomas W. Sandholm and Robert H. Crites. Multiagent reinforcement learning in the iterated
prisoner’s dilemma. Biosystems, 37(1–2):147 – 166, 1996.

Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac
analysis. Journal of Machine Learning Research, 10:2413–2444, 2009.

30

ADDRESSING NON-STATIONARITY BY REPEATING UPDATES

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In International Conference on Machine Learning (ICML), pages
216–224, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1999.

Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments.
In International Conference on Machine learning (ICML), pages 871–878. ACM, 2007.

Brian Tanner and Adam White. RL-Glue: language-independent software for reinforcement-
learning experiments. Journal of Machine Learning Research, 10:2133–2136, September 2009.

Gerald Tesauro. Extending q-learning to general adaptive multi-agent systems. In Annual Confer-
ence on Advances in Neural Information Processing Systems (NIPS). MIT Press, 2004.

Karl Tuyls, Pieter Jan ’t Hoen, and Bram Vanschoenwinkel. An evolutionary dynamical analysis
of multi-agent learning in iterated games. Autonomous Agents and Multi-Agent Systems, 12(1):
115–153, 2006.

Peter Vrancx, Karl Tuyls, and Ronald Westra. Switching dynamics of multi-agent learning. In
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 307–
313, 2008. ISBN 978-0-9817381-0-9.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8:279–292, 1992.

Michael Wunder, Michael L. Littman, and Monica Babes. Classes of multiagent q-learning dynam-
ics with ε-greedy exploration. In International Conference on Machine Learning (ICML), pages
1167–1174, 2010.

Jia Yuan Yu, Shie Mannor, and Nahum Shimkin. Markov decision processes with arbitrary reward
processes. Mathematics of Operations Research, 34(3):737–757, 2009.

Chongjie Zhang and Victor Lesser. Multi-agent learning with policy prediction. In AAAI Conference
on Artificial Intelligence (AAAI), pages 927–934, 2010.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning (ICML), pages 928–936, 2003.

31

