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Abstract
We introduce a new and improved characterization of the label complexity of disagreement-based
active learning, in which the leading quantity is the version space compression set size. This quan-
tity is defined as the size of the smallest subset of the training data that induces the same version
space. We show various applications of the new characterization, including a tight analysis of
CAL and refined label complexity bounds for linear separators under mixtures of Gaussians and
axis-aligned rectangles under product densities. The version space compression set size, as well
as the new characterization of the label complexity, can be naturally extended to agnostic learning
problems, for which we show new speedup results for two well known active learning algorithms.
Keywords: active learning, selective sampling, sequential design, statistical learning theory, PAC
learning, sample complexity, selective prediction

1. Introduction

Active learning is a learning paradigm allowing the learner to sequentially request the target labels
of selected instances from a pool or stream of unlabeled data.1 The key question in the theoretical
analysis of active learning is how many label requests are sufficient to learn the labeling func-
tion to a specified accuracy, a quantity known as the label complexity. Among the many recent
advances in the theory of active learning, perhaps the most well-studied technique has been the
disagreement-based approach, initiated by Cohn, Atlas, and Ladner (1994), and further advanced in
numerous articles (e.g., Balcan, Beygelzimer, and Langford, 2009; Dasgupta, Hsu, and Monteleoni,
2007; Beygelzimer, Dasgupta, and Langford, 2009; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Koltchinskii, 2010; Hanneke, 2012; Hanneke and Yang, 2012). The basic strategy in disagreement-
based active learning is to sequentially process the unlabeled examples, and for each example, the
algorithm requests its label if and only if the value of the optimal classifier’s classification on that
point cannot be inferred from information already obtained.

1. Any active learning technique for streaming data can be used in pool-based models but not vice versa
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One attractive feature of this approach is that its simplicity makes it amenable to thorough
theoretical analysis, and numerous theoretical guarantees on the performance of variants of this
strategy under various conditions have appeared in the literature (see e.g., Balcan, Beygelzimer,
and Langford, 2009; Hanneke, 2007a; Dasgupta, Hsu, and Monteleoni, 2007; Balcan, Broder, and
Zhang, 2007; Beygelzimer, Dasgupta, and Langford, 2009; Friedman, 2009; Balcan, Hanneke, and
Vaughan, 2010; Hanneke, 2011; Koltchinskii, 2010; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Hsu, 2010; Hanneke, 2012; El-Yaniv and Wiener, 2012; Hanneke and Yang, 2012; Hanneke, 2014).
The majority of these results formulate bounds on the label complexity in terms of a complexity
measure known as the disagreement coefficient (Hanneke, 2007a), which we define below. A notable
exception to this is the recent work of El-Yaniv and Wiener (2012), rooted in the related topic
of selective prediction (El-Yaniv and Wiener, 2010; Wiener and El-Yaniv, 2012; Wiener, 2013;
Wiener and El-Yaniv, 2015), which instead bounds the label complexity in terms of two complexity
measures called the characterizing set complexity and the version space compression set size (El-
Yaniv and Wiener, 2010). In the current literature, the above are the only known general techniques
for the analysis of disagreement-based active learning.

In the present article, we present a new characterization of the label complexity of disagreement-
based active learning. The leading quantity in our characterization is the version space compression
set size of El-Yaniv and Wiener (2012, 2010); Wiener (2013), which corresponds to the size of the
smallest subset of the training set that induces the same version space as the entire training set. This
complexity measure was shown by El-Yaniv and Wiener (2012) to be a special case of the extended
teaching dimension of Hanneke (2007b).

The new characterization improves upon the two prior techniques in some cases. For a noise-
less setting (the realizable case), we show that the label complexity results derived from this new
technique are tight up to logarithmic factors. This was not true of either of the previous techniques;
as we discuss in Appendix B, the known upper bounds in the literature expressed in terms of these
other complexity measures are sometimes off by a factor of the VC dimension. Moreover, the new
method significantly simplifies the recent technique of Wiener (2013); El-Yaniv and Wiener (2012,
2010) by completely eliminating the need for the characterizing set complexity measure.

Interestingly, interpreted as an upper bound on the label complexity of active learning in gen-
eral, the upper bounds presented here also reflect improvements over a bound of Hanneke (2007b),
which is also expressed in terms of (a target-independent variant of) this same complexity measure:
specifically, reducing the bound by roughly a factor of the VC dimension compared to that result.
In addition to these results on the label complexity, we also relate the version space compression set
size to the disagreement coefficient, essentially showing that they are always within a factor of the
VC dimension of each other (with additional logarithmic factors).

We apply this new technique to derive new results for two learning problems: namely, linear
separators under mixtures of Gaussians, and axis-aligned hyperrectangles under product densities.
We derive bounds on the version space compression set size for each of these. Thus, using our
results relating the version space compression set size to the label complexity, we arrive at bounds
on the label complexity of disagreement-based active learning for these problems, which represent
significant refinements of the best results in the prior literature on these settings.

While the version space compression set size is initially defined for noiseless (realizable) learn-
ing problems that have a version space, it can be naturally extended to an agnostic setting, and the
new technique applies to noisy, agnostic problems as well. This surprising result, which was mo-
tivated by related observations of Hanneke (2014); Wiener (2013), is allowed through bounds on
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the disagreement coefficient in terms of the version space compression set size, and the applicabil-
ity of the disagreement coefficient to both the realizable and agnostic settings. We formulate this
generalization in Section 6 and present new sample complexity results for known active learning
algorithms, including the disagreement-based methods of Dasgupta, Hsu, and Monteleoni (2007)
and Hanneke (2012). These results tighten the bounds of Wiener (2013) using the new technique.

2. Preliminary Definitions

Let X denote a set, called the instance space, and let Y , {−1,+1}, called the label space. A
classifier is a measurable function h : X → Y . Throughout, we fix a set F of classifiers, called the
concept space, and denote by d the VC dimension of F (Vapnik and Chervonenkis, 1971; Vapnik,
1998). We also fix an arbitrary probability measure P over X ×Y , called the data distribution.
Aside from Section 6, we make the assumption that ∃ f ∗ ∈ F with P(Y = f ∗(x)|X = x) = 1 for
all x ∈ X , where (X ,Y ) ∼ P; this is known as the realizable case, and f ∗ is known as the target
function. For any classifier h, define its error rate er(h), P((x,y) : h(x) 6= y); note that er( f ∗) = 0.

For any set H of classifiers, define the region of disagreement

DIS(H ), {x ∈ X : ∃h,g ∈H s.t. h(x) 6= g(x)}.

Also define ∆H , P(DIS(H )×Y ), the marginal probability of the region of disagreement.
Let S∞ , {(x1,y1),(x2,y2), . . .} be a sequence of i.i.d. P-distributed random variables, and for

each m ∈ N, denote by Sm , {(x1,y1), . . . ,(xm,ym)}.2 For any m ∈ N∪{0}, and any S ∈ (X ×Y )m,
define the version space VSF ,S , {h ∈ F : ∀(x,y) ∈ S,h(x) = y} (Mitchell, 1977). The following
definition will be central in our results below.

Definition 1 (Version Space Compression Set Size) For any m ∈N∪{0} and any S ∈ (X ×Y )m,
the version space compression set ĈS is a smallest subset of S satisfying VSF ,ĈS

= VSF ,S. The
version space compression set size is defined to be n̂(F ,S) , |ĈS|. In the special cases where F
and perhaps S = Sm are obvious from the context, we abbreviate n̂ , n̂(Sm), n̂(F ,Sm).

Note that the value n̂(F ,S) is unique for any S, and n̂(Sm) is, obviously, a random number
that depends on the (random) sample Sm. The quantity n̂(Sm) has been studied under at least two
names in the prior literature. Drawing motivation from the work on Exact learning with Member-
ship Queries (Hegedüs, 1995; Hellerstein, Pillaipakkamnatt, Raghavan, and Wilkins, 1996), which
extends ideas from Goldman and Kearns (1995) on the complexity of teaching, the quantity n̂(Sm)
was introduced in the work of Hanneke (2007b) as the extended teaching dimension of the classi-
fier f ∗ on the space {x1, . . . ,xm} with respect to the set F [{x1, . . . ,xm}] , {xi 7→ h(xi) : h ∈ F } of
distinct classifications of {x1, . . . ,xm} realized by F ; in this context, the set ĈSm is known as a min-
imal specifying set of f ∗ on {x1, . . . ,xm} with respect to F [{x1, . . . ,xm}]. The quantity n̂(Sm) was
independently discovered by El-Yaniv and Wiener (2010) in the context of selective classification,
which is the source of the compression set terminology introduced above; we adopt this terminology
throughout the present article. See the work of El-Yaniv and Wiener (2012) for a formal proof of
the equivalence of these two notions.

It will also be useful to define minimal confidence bounds on certain quantities, as follows.

2. Note that, in the realizable case, yi = f ∗(xi) for all i with probability 1. For simplicity, we will suppose these equalities
hold throughout our discussion of the realizable case.
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Definition 2 (Version Space Compression Set Size Minimal Bound) For any m ∈ N∪ {0} and
δ ∈ (0,1], define the version space compression set size minimal bound

Bn̂(m,δ), min{b ∈ N∪{0} : P(n̂(Sm)≤ b)≥ 1−δ} .

Similarly, define the version space disagreement region minimal bound

B∆(m,δ), min
{

t ∈ [0,1] : P(∆VSF ,Sm ≤ t)≥ 1−δ
}
.

In both cases, the quantities implicitly also depend on F and P (which remain fixed throughout our
analysis below), and the only random variables involved in these probabilities are the data Sm.

Most of the existing general results on disagreement-based active learning are expressed in terms
of a quantity known as the disagreement coefficient (Hanneke, 2007a, 2009), defined as follows.

Definition 3 (Disagreement Coefficient) For any classifier f and r > 0, define the r-ball centered
at f as

B( f ,r), {h ∈ F : ∆{h, f} ≤ r} ,

and for any r0 ≥ 0, define the disagreement coefficient of F with respect to P as3

θ(r0), sup
r>r0

∆B( f ∗,r)
r

∨1.

The disagreement coefficient was originally introduced to the active learning literature by Han-
neke (2007a), and has been studied and bounded by a number of authors (see e.g., Hanneke, 2007a;
Friedman, 2009; Wang, 2011; Hanneke, 2014; Balcan and Long, 2013). Similar quantities have also
been studied in the passive learning literature, rooted in the work of Alexander (see e.g., Alexander,
1987; Giné and Koltchinskii, 2006).

Numerous recent results, many of which are surveyed by Hanneke (2014), exhibit bounds on
the label complexity of disagreement-based active learning in terms of the disagreement coeffi-
cient. It is therefore of major interest to develop such bounds for specific cases of interest (i.e.,
for specific classes F and distributions P). In particular, any result showing θ(r0) = o(1/r0) indi-
cates that disagreement-based active learning should asymptotically provide some advantage over
passive learning for that F and P (Hanneke, 2012). We are particularly interested in scenarios in
which θ(r0) = O(polylog(1/r0)), or even θ(r0) = O(1), since these imply strong improvements
over passive learning (Hanneke, 2007a, 2011).

There are several general results on the asymptotic behavior of the disagreement coefficient as
r0→ 0, for interesting cases. For the class of linear separators in Rk, perhaps the most general result
to date is that the existence of a density function for the marginal distribution of P over X is sufficient
to guarantee θ(r0) = o(1/r0) (Hanneke, 2014). That work also shows that, if the density is bounded
and has bounded support, and the target separator passes through the support at a continuity point
of the density, then θ(r0) = O(1). In both of these cases, for k ≥ 2, the specific dependence on r0
in the little-o and the constant factors in the big-O will vary depending on the particular distribution
P, and in particular, will depend on f ∗ (i.e., such bounds are target-dependent).

There are also several explicit, target-independent bounds on the disagreement coefficient in the
literature. Perhaps the most well-known of these is for homogeneous linear separators in Rk, where

3. We use the notation a∨b = max{a,b}.
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the marginal distribution of P over X is confined to be the uniform distribution over the unit sphere,
in which case θ(r0) is known to be within a factor of 4 of min{π

√
k,1/r0} (Hanneke, 2007a). In the

present paper, we are primarily focused on explicit, target-independent speedup bounds, though our
abstract results can be used to derive bounds of either type.

3. Relating n̂ and the Disagreement Coefficient

In this section, we show how to bound the disagreement coefficient in terms of Bn̂(m,δ). We also
show the other direction and bound Bn̂(m,δ) in terms of the disagreement coefficient.

Theorem 4 For any r0 ∈ (0,1),

θ(r0)≤max
{

max
r∈(r0,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Proof We will prove that, for any r ∈ (0,1),

∆B( f ∗,r)
r

≤max
{

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
. (1)

The result then follows by taking the supremum of both sides over r ∈ (r0,1).

Fix r ∈ (0,1), let m = d1/re, and for i ∈ {1, . . . ,m}, define Sm\i = Sm \ {(xi,yi)}. Also define
Dm\i =DIS(VSF ,Sm\i∩B( f ∗,r)) and ∆m\i =P(xi ∈Dm\i|Sm\i) =P(Dm\i×Y ). If ∆B( f ∗,r)m≤ 512,
(1) clearly holds. Otherwise, suppose ∆B( f ∗,r)m > 512. If xi ∈ DIS(VSF ,Sm\i), then we must have
(xi,yi) ∈ ĈSm . So

n̂(Sm)≥
m

∑
i=1

1DIS(VSF ,Sm\i )
(xi).

Therefore,

P{n̂(Sm)≤ (1/16)∆B( f ∗,r)m}

≤ P

{
m

∑
i=1

1DIS(VSF ,Sm\i )
(xi)≤ (1/16)∆B( f ∗,r)m

}

≤ P

{
m

∑
i=1

1Dm\i(xi)≤ (1/16)∆B( f ∗,r)m

}

= P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥
m

∑
i=1

1DIS(B( f ∗,r))(xi)− (1/16)∆B( f ∗,r)m

}
.
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Breaking the above event into two cases based on the value of ∑
m
i=11DIS(B( f ∗,r))(xi), this last line

equals

P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥

m

∑
i=1

1DIS(B( f ∗,r))(xi)−
1
16

∆B( f ∗,r)m,
m

∑
i=1

1DIS(B( f ∗,r))(xi)<
7
8

∆B( f ∗,r)m

}

+P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥

m

∑
i=1

1DIS(B( f ∗,r))(xi)−
1
16

∆B( f ∗,r)m,
m

∑
i=1

1DIS(B( f ∗,r))(xi)≥
7
8

∆B( f ∗,r)m

}

≤ P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)< (7/8)∆B( f ∗,r)m

}

+P

{
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥ (13/16)∆B( f ∗,r)m

}
.

Since we are considering the case ∆B( f ∗,r)m > 512, a Chernoff bound implies

P

(
m

∑
i=1

1DIS(B( f ∗,r))(xi)< (7/8)∆B( f ∗,r)m

)
≤ exp{−∆B( f ∗,r)m/128}< e−4.

Furthermore, Markov’s inequality implies

P

(
m

∑
i=1

1DIS(B( f ∗,r))(xi)−1Dm\i(xi)≥ (13/16)∆B( f ∗,r)m

)
≤

m∆B( f ∗,r)−E
[
∑

m
i=11Dm\i(xi)

]
(13/16)m∆B( f ∗,r)

.

Since the xi values are exchangeable,

E

[
m

∑
i=1

1Dm\i(xi)

]
=

m

∑
i=1

E
[
E
[
1Dm\i(xi)

∣∣∣Sm\i

]]
=

m

∑
i=1

E
[
∆m\i

]
= mE

[
∆m\m

]
.

Hanneke (2012) proves that this is at least

m(1− r)m−1
∆B( f ∗,r).

In particular, when ∆B( f ∗,r)m > 512, we must have r < 1/511 < 1/2, which implies (1− r)d1/re−1

≥ 1/4, so that we have

E

[
m

∑
i=1

1Dm\i(xi)

]
≥ (1/4)m∆B( f ∗,r).

Altogether, we have established that

P(n̂(Sm)≤ (1/16)∆B( f ∗,r)m)<
m∆B( f ∗,r)− (1/4)m∆B( f ∗,r)

(13/16)m∆B( f ∗,r)
+ e−4 =

12
13

+ e−4 <
19
20

.
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Thus, since n̂(Sm)≤ Bn̂
(
m, 1

20

)
with probability at least 19

20 , we must have that

Bn̂

(
m,

1
20

)
> (1/16)∆B( f ∗,r)m≥ (1/16)

∆B( f ∗,r)
r

.

The following Theorem, whose proof is given in Section 4, is a “converse” of Theorem 4,
showing a bound on Bn̂(m,δ) in terms of the disagreement coefficient.

Theorem 5 There is a finite universal constant c > 0 such that, ∀r0,δ ∈ (0,1),

max
r∈(r0,1)

Bn̂

(⌈
1
r

⌉
,δ

)
≤ cθ(dr0)

(
d ln(eθ(dr0))+ ln

(
log2(2/r0)

δ

))
log2

(
2
r0

)
.

4. A Tight Analysis of CAL

The following algorithm is due to Cohn, Atlas, and Ladner (1994).

Algorithm: CAL(n)
0. m← 0, t← 0, V0← F
1. While t < n
2. m← m+1
3. If xm ∈ DIS(Vm−1)
4. Request label ym; let Vm←{h ∈Vm−1 : h(xm) = ym}, t← t +1
5. Else Vm←Vm−1
6. Return any ĥ ∈Vm

One particularly attractive feature of this algorithm is that it maintains the invariant that Vm =
VSF ,Sm for all values of m it obtains (since, if Vm−1 = VSF ,Sm−1 , then f ∗ ∈ Vm−1, so any point
xm /∈ DIS(Vm−1) has {h ∈Vm−1 : h(xm) = ym}= {h ∈Vm−1 : h(xm) = f ∗(xm)}=Vm−1 anyway). To
analyze this method, we first define, for every m ∈ N,

N(m;Sm) =
m

∑
t=1

1DIS(VSF ,St−1 )
(xt),

which counts the number of labels requested by CAL among the first m data points (assuming it
does not halt first). The following result provides data-dependent upper and lower bounds on this
important quantity, which will be useful in establishing label complexity bounds for CAL below.

Lemma 6
max
t≤m

n̂(St)≤ N(m;Sm),

and with probability at least 1−δ,

N(m;Sm)≤ max
t∈{2i:i∈{0,...,blog2(m)c}}

(
55n̂(St) ln

(
et

n̂(St)

)
+24ln

(
4log2(2m)

δ

))
log2(2m).
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Since the upper and lower bounds on N(m;Sm) in Lemma 6 require access to the labels of the
data, they are not as much interesting for practice as they are for their theoretical significance. In
particular, they will allow us to derive new distribution-dependent bounds on the performance of
CAL below (Theorems 9 and 10). Lemma 6 is also of some conceptual significance, as it shows
a direct and fairly-tight connection between the behavior of CAL and the size of the version space
compression set.

The proof of the upper bound on N(m;Sm) relies on the following two lemmas. The first lemma
(Lemma 7) is implied by a classical compression bound of Littlestone and Warmuth (1986), and
provides a high-confidence bound on the probability measure of a set, given that it has zero empirical
frequency and is specified by a small number of samples. For completeness, we include a proof of
this result below: a variant of the original argument of Littlestone and Warmuth (1986).4

Lemma 7 (Compression; Littlestone and Warmuth, 1986) For any δ ∈ (0,1), any collection D
of measurable sets D ⊆ X ×Y , any m ∈ N and n ∈ N∪ {0} with n ≤ m, and any permutation-
invariant function φn : (X ×Y )n → D, with probability of at least 1− δ over draw of Sm, every
distinct i1, . . . , in ∈ {1, . . . ,m} with Sm∩φn((xi1 ,yi1), . . . ,(xin ,yin)) = /0 satisfies5

P(φn((xi1 ,yi1), . . . ,(xin ,yin)))≤
1

m−n

(
n ln
(em

n

)
+ ln

(
1
δ

))
. (2)

Proof Let ε > 0 denote the value of the right hand side of (2). The result trivially holds if ε >
1. For the remainder, consider the case ε ≤ 1. Let In be the set of all sets of n distinct indices
{i1, . . . , in} from {1, . . . ,m}. Note that |In|=

(m
n

)
. Given a labeled sample Sm and i = {i1, . . . , in} ∈

In, denote by Si
m = {(xi1 ,yi1), . . . ,(xin ,yin)}, and by S−i

m = {(xi,yi) : i ∈ {1, . . . ,m} \ i}. Since φn

is permutation-invariant, for any distinct i1, . . . , in ∈ {1, . . . ,m}, letting i = {i1, . . . , in} denote the
unordered set of indices, we may denote φn(Si

m) = φn((xi1 ,yi1), . . . ,(xin ,yin)) without ambiguity. In
particular, we have {φn((xi1 ,yi1), . . . ,(xin ,yin)) : i1, . . . , in ∈ {1, . . . ,m} distinct}= {φn(Si

m) : i ∈ In},
so that it suffices to show that, with probability at least 1−δ, every i ∈ In with Sm∩φn(Si

m) = /0 has
P(φn(Si

m))≤ ε.
Define the events ω(i,m) =

{
Sm∩φn(Si

m) = /0
}

and ω′(i,m− n) =
{

S−i
m ∩φn(Si

m) = /0
}

. Note
that ω(i,m)⊆ ω′(i,m−n). Therefore, for each i ∈ In, we have

P
({

P(φn(Si
m))> ε

}
∩ω(i,m)

)
≤ P

({
P(φn(Si

m))> ε

}
∩ω

′(i,m−n)
)
.

By the law of total probability and σ(Si
m)-measurability of the event

{
P(φn(Si

m))> ε
}

, this equals

E
[
P
({

P(φn(Si
m))> ε

}
∩ω

′(i,m−n)
∣∣∣Si

m

)]
= E

[
1[P(φn(Si

m))> ε]P
(

ω
′(i,m−n)

∣∣∣Si
m

)]
.

Noting that |S−i
m ∩φn(Si

m)| is conditionally Binomial(m−n,P(φn(Si
m))) given Si

m, this equals

E
[
1[P(φn(Si

m))> ε]
(

1−P(φn(Si
m))
)m−n

]
≤ (1− ε)m−n ≤ e−ε(m−n),

4. See also Section 5.2.1 of Herbrich (2002) for a very clear and concise proof of a similar result (beginning with the
line above (5.15) there, for our purposes).

5. We define 0ln(1/0) = 0ln(∞) = 0.
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where the last inequality is due to 1− ε≤ e−ε (see e.g., Theorem A.101 of Herbrich, 2002). In the
case n = 0, this last expression equals δ, which establishes the result since |I0| = 1. Otherwise, if
n > 0, combining the above with a union bound, we have that

P
(
∃i ∈ In : P(φn(Si

m))> ε∧Sm∩φn(Si
m) = /0

)
= P

(⋃
i∈In

{
P(φn(Si

m))> ε

}
∩ω(i,m)

)

≤ ∑
i∈In

P
({

P(φn(Si
m))> ε

}
∩ω(i,m)

)
≤ ∑

i∈In

e−ε(m−n) =

(
m
n

)
e−ε(m−n).

Since
(m

n

)
≤
( em

n

)n (see e.g., Theorem A.105 of Herbrich, 2002), this last expression is at most( em
n

)n e−ε(m−n) = δ, which completes the proof.

The following, Lemma 8, will be used for proving Lemma 6 above. The lemma relies on
Lemma 7 and provides a high-confidence bound on the probability of requesting the next label at
any given point in the CAL algorithm. This refines a related result of El-Yaniv and Wiener (2010).
Lemma 8 is also of independent interest in the context of selective prediction (Wiener, 2013; El-
Yaniv and Wiener, 2010), as it can be used to improve the known coverage bounds for realizable
selective classification.

Lemma 8 For any δ ∈ (0,1) and m ∈ N, with probability at least 1−δ,

∆VSF ,Sm ≤
10n̂(Sm) ln

(
em

n̂(Sm)

)
+4ln

(2
δ

)
m

.

Proof The proof is similar to that of a result of El-Yaniv and Wiener (2010), except using a gener-
alization bound based directly on sample compression, rather than the VC dimension. Specifically,
let D = {DIS(VSF ,S)×Y : S ∈ (X ×Y )m}, and for each n ≤ m and S ∈ (X ×Y )n, let φn(S) =
DIS(VSF ,S)×Y . In particular, note that for any n ≥ n̂(Sm), any superset S of ĈSm of size n con-
tained in Sm has φn(S) = DIS(VSF ,Sm)×Y , and therefore Sm∩φn(S) = /0 and ∆VSF ,Sm = P(φn(S)).
Therefore, Lemma 7 implies that, for each n ∈ {0, . . . ,m}, with probability at least 1−δ/(n+2)2,
if n̂(Sm)≤ n,

∆VSF ,Sm ≤
1

m−n

(
n ln
(em

n

)
+ ln

(
(n+2)2

δ

))
.

Furthermore, since ∆VSF ,Sm ≤ 1, any n≥m/2 trivially has ∆VSF ,Sm ≤ 2n/m≤ (2/m)(n ln(em/n)+
ln((n+2)2/δ)), while any n≤ m/2 has 1/(m−n)≤ 2/m, so that the above is at most

2
m

(
n ln
(em

n

)
+ ln

(
(n+2)2

δ

))
.

Additionally, ln((n+2)2)≤ 2ln(2)+4n≤ 2ln(2)+4n ln(em/n), so that the above is at most

2
m

(
5n ln

(em
n

)
+2ln

(
2
δ

))
.

By a union bound, this holds for all n ∈ {0, . . . ,m} with probability at least 1−∑
m
n=0 δ/(n+2)2 >

1−δ. In particular, since n̂(Sm) is always in {0, . . . ,m}, this implies the result.
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Proof of Lemma 6 For any t ≤ m, by definition of n̂ (in particular, minimality), any set S ⊂ St

with |S|< n̂(St) necessarily has VSF ,S 6= VSF ,St . Thus, since CAL maintains that Vt = VSF ,St , and
Vt is precisely the set of classifiers in F that are correct on the N(t;St) points (xi,yi) with i ≤ t
for which 1DIS(VSF ,Si−1 )

(xi) = 1, we must have N(t;St)≥ n̂(St). We therefore have maxt≤m n̂(St)≤
maxt≤m N(t;St) = N(m;Sm) (by monotonicity of t 7→ N(t;St)).

For the upper bound, let δi be a sequence of values in (0,1] with ∑
blog2(m)c
i=0 δi ≤ δ/2. Lemma 8

implies that, for each i, with probability at least 1−δi,

∆VSF ,S2i ≤ 2−i
(

10n̂(S2i) ln
(

e2i

n̂(S2i)

)
+4ln

(
2
δi

))
.

Thus, by monotonicity of ∆VSF ,St in t, a union bound implies that with probability at least 1−δ/2,
for every i ∈ {0,1, . . . ,blog2(m)c}, every t ∈ {2i, . . . ,2i+1−1} has

∆VSF ,St ≤ 2−i
(

10n̂(S2i) ln
(

e2i

n̂(S2i)

)
+4ln

(
2
δi

))
. (3)

Noting that
{
1DIS(VSF ,St−1 )

(xt)−∆VSF ,St−1

}∞

t=1
is a martingale difference sequence with respect to

{xt}∞
t=1, Bernstein’s inequality (for martingales) implies that with probability at least 1−δ/2, if (3)

holds for all i ∈ {0,1, . . . ,blog2(m)c} and t ∈ {2i, . . . ,2i+1−1}, then

m

∑
t=1

1DIS(VSF ,St−1 )
(xt)≤ 1+

blog2(m)c

∑
i=0

2i+1

∑
t=2i+1

1DIS(VSF ,S2i )
(xt)

≤ log2

(
4
δ

)
+2e

blog2(m)c

∑
i=0

(
10n̂(S2i) ln

(
e2i

n̂(S2i)

)
+4ln

(
2
δi

))
.

Letting δi =
δ

2blog2(2m)c , the above is at most

max
i∈{0,1,...,blog2(m)c}

(
55n̂(S2i) ln

(
e2i

n̂(S2i)

)
+24ln

(
4log2(2m)

δ

))
log2(2m).

This also implies distribution-dependent bounds on any confidence bound on the number of
queries made by CAL. Specifically, let BN(m,δ) be the smallest nonnegative integer n such that
P(N(m;Sm)≤ n)≥ 1−δ. Then the following result follows immediately from Lemma 6.

Theorem 9 For any m ∈ N and δ ∈ (0,1), for any sequence δt in (0,1] with ∑
blog2(m)c
i=0 δ2i ≤ δ/2,

max
t≤m

Bn̂(t,δ)≤ BN(m,δ)

≤ max
t∈{2i:i∈{0,1,...,blog2(m)c}}

(
55Bn̂(t,δt) ln

(
et

Bn̂(t,δt)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).
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Proof Since Lemma 6 implies every t ≤ m has n̂(St)≤ N(m;Sm), we have P(n̂(St)≤ BN(m,δ))≥
P(N(m;Sm) ≤ BN(m,δ)) ≥ 1− δ. Since Bn̂(t,δ) is the smallest n ∈ N with P(n̂(St) ≤ n) ≥ 1− δ,
we must therefore have Bn̂(t,δ)≤ BN(m,δ), from which the left inequality in the claim follows by
maximizing over t.

For the second inequality, the upper bound on N(m;Sm) from Lemma 6 implies that, with prob-
ability at least 1−δ/2, N(m;Sm) is at most

max
t∈{2i:i∈{0,...,blog2(m)c}}

(
55n̂(St) ln

(
et

n̂(St)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).

Furthermore, a union bound implies that with probability at least 1−∑
blog2(m)c
i=0 δ2i ≥ 1−δ/2, every

t ∈ {2i : i ∈ {0, . . . ,blog2(m)c}} has n̂(St) ≤ Bn̂(t,δt). Since x 7→ x ln(et/x) is nondecreasing for
x ∈ [0, t], and Bn̂(t,δt) ≤ t, combining these two results via a union bound, we have that with
probability at least 1−δ, N(m;Sm) is at most

max
t∈{2i:i∈{0,1,...,blog2(m)c}}

(
55Bn̂(t,δt) ln

(
et

Bn̂(t,δt)

)
+24ln

(
8log2(2m)

δ

))
log2(2m).

Letting Um denote this last quantity, note that since N(m;Sm) is a nonnegative integer, N(m;Sm) ≤
Um⇒ N(m;Sm)≤ bUmc, so that P(N(m;Sm)≤ bUmc)≥ 1−δ. Since BN(m,δ) is the smallest non-
negative integer n with P(N(m;Sm)≤ n)≥ 1−δ, we must have BN(m,δ)≤ bUmc ≤Um.

In bounding the label complexity of CAL, we are primarily interested in the size of n suffi-
cient to guarantee low error rate for every classifier in the final Vm set (since ĥ is taken to be an
arbitrary element of Vm). Specifically, we are interested in the following quantity. For n ∈ N, de-
fine M(n;S∞) = min{m ∈ N : N(m;Sm) = n} (or M(n;S∞) = ∞ if maxm N(m;Sm)< n), and for any
ε,δ ∈ (0,1], define

Λ(ε,δ) = min

n ∈ N : P

 sup
h∈VSF ,SM(n;S∞)

er(h)≤ ε

≥ 1−δ

 .

Note that, for any n ≥ Λ(ε,δ), with probability at least 1− δ, the classifier ĥ produced by CAL(n)
has er(ĥ)≤ ε. Furthermore, for any n < Λ(ε,δ), with probability greater than δ, there exists a choice
of ĥ in the final step of CAL(n) for which er(ĥ) > ε. Therefore, in a sense, Λ(ε,δ) represents the
label complexity of the general family of CAL strategies (which vary only in how ĥ is chosen from
the final Vm set). We can also define an analogous quantity for passive learning by empirical risk
minimization:

M(ε,δ) = min

{
m ∈ N : P

(
sup

h∈VSF ,Sm

er(h)≤ ε

)
≥ 1−δ

}
.

We typically expect M(ε,δ) to be larger than Ω(1/ε), and it is known M(ε,δ) is always at most
O((1/ε)(d log(1/ε)+ log(1/δ))) (e.g., Vapnik, 1998). We have the following theorem relating these
two quantities.
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Theorem 10 There exists a universal constant c ∈ (0,∞) such that, ∀ε,δ ∈ (0,1), ∀β ∈
(

0, 1−δ

δ

)
,

for any sequence δm in (0,1] with ∑
blog2(M(ε,δ/2))c
i=0 δ2i ≤ δ/2,

max
m≤M(ε,1−βδ)

Bn̂(m,(1+β)δ)≤ Λ(ε,δ)

≤ c
(

max
m≤M(ε,δ/2)

Bn̂(m,δm) ln
(

em
Bn̂(m,δm)

)
+ ln

(
log2(2M(ε,δ/2))

δ

))
log2(2M(ε,δ/2)).

Proof By definition of M(ε,1− βδ), ∀m < M(ε,1− βδ), with probability greater than 1− βδ,
suph∈VSF ,Sm

er(h) > ε. Furthermore, by definition of Bn̂(m,(1+β)δ), ∀n < Bn̂(m,(1+β)δ), with
probability greater than (1+β)δ, n̂(Sm) > n, which together with Lemma 6 implies N(m;Sm) > n,
so that M(n;S∞) < m. Thus, fixing any m ≤M(ε,1−βδ) and n < Bn̂(m,(1+β)δ), a union bound
implies that with probability exceeding δ, M(n;S∞) < m and suph∈VSF ,Sm−1

er(h) > ε. By mono-
tonicity of t 7→ VSF ,St , this implies that with probability greater than δ, suph∈VSF ,SM(n;S∞)

er(h) > ε,

so that Λ(ε,δ)> n.
For the upper bound, Lemma 6 and a union bound imply that, with probability at least 1−δ/2,

N(M(ε,δ/2);SM(ε,δ/2))≤

c′
(

max
m≤M(ε,δ/2)

Bn̂(m,δm) ln
(

em
Bn̂(m,δm)

)
+ ln

(
log2(2M(ε,δ/2))

δ

))
log2(2M(ε,δ/2)),

for a universal constant c′ > 0. In particular, this implies that for any n at least this large, with
probability at least 1−δ/2, M(n+1;S∞)≥M(ε,δ/2). Furthermore, by definition of M(ε,δ/2) and
monotonicity of m 7→ suph∈VSF ,Sm

er(h), with probability at least 1−δ/2, every m ≥M(ε,δ/2) has
suph∈VSF ,Sm

er(h)≤ ε. By a union bound, with probability at least 1−δ, suph∈VSF ,SM(n+1;S∞)
er(h)≤ ε.

This implies Λ(ε,δ)≤ n+1, so that the result holds (for instance, it suffices to take c = c′+2).

For instance, δm = δ/(2log2(2M(ε,δ/2))) might be a natural choice in the above result.
Another implication of these results is a complement to Theorem 4 that was presented in Theo-

rem 5 above.
Proof of Theorem 5 Lemma 29 in Appendix A and monotonicity of ε 7→ θ(ε) imply that, for
m = d1/r0e,

BN(m,δ)≤ 8∨ c0θ(dr0/2)
(

d ln(eθ(dr0/2))+ ln
(

log2(2/r0)

δ

))
log2

(
2
r0

)
≤ (c0∨8)θ(dr0/2)

(
d ln(eθ(dr0/2))+ ln

(
log2(2/r0)

δ

))
log2

(
2
r0

)
,

for a finite universal constant c0 > 0. The result then follows from Theorem 9 and the fact that
θ(dr0/2)≤ 2θ(dr0) (Hanneke, 2014).

This also implies the following corollary on the necessary and sufficient conditions for CAL to
provide exponential improvements in label complexity when passive learning by empirical risk
minimization has Ω(1/ε) sample complexity (which is typically the case).6

6. All of these equivalences continue to hold even when this M(ε, ·) = Ω(1/ε) condition fails, excluding statements 1
and 2, which would then be implied by the others but not vice versa.
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Corollary 11 (Characterization of CAL) If d < ∞, and ∃δ0 ∈ (0,1) such that M(ε,δ0) = Ω(1/ε),
then the following are all equivalent:

1. Λ(ε,δ) = O
(
polylog

(1
ε

)
log
(1

δ

))
,

2. Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
,

3. Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
,

4. Bn̂
(
m, 1

20

)
= O(polylog(m)),

5. θ(r0) = O
(

polylog
(

1
r0

))
,

6. B∆(m,δ) = O
(

polylog(m)
m log

(1
δ

))
,

7. B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
,

8. BN(m,δ) = O
(
polylog(m) log

(1
δ

))
,

9. BN
(
m, 1

20

)
= O(polylog(m)),

where F and P are considered constant, so that the big-O hides (F ,P)-dependent constant factors
here (but no factors depending on ε, δ, m, or r0).7

Proof We decompose the proof into a series of implications. Specifically, we show that 3⇒ 4⇒
5⇒ 8⇒ 3, 8⇒ 9⇒ 4, 5⇒ 1⇒ 2⇒ 4, and 3⇒ 6⇒ 7⇒ 5. These implications form a strongly
connected directed graph, and therefore establish equivalence of the statements.

(3⇒ 4) If Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
, then in particular there is some (sufficiently small)

constant δ1 ∈ (0,1/20) for which Bn̂(m,δ1) = O(polylog(m)), and since δ 7→ Bn̂(m,δ) is nonin-
creasing, Bn̂

(
m, 1

20

)
≤ Bn̂(m,δ1), so that Bn̂

(
m, 1

20

)
= O(polylog(m)) as well.

(4⇒ 5) If Bn̂
(
m, 1

20

)
= O(polylog(m)), then

max
m≤1/r0

Bn̂

(
m,

1
20

)
= O

(
max

m≤1/r0

polylog(m)

)
= O

(
polylog

(
1
r0

))
.

Therefore, Theorem 4 implies

θ(r0)≤max
{

max
m≤d1/r0e

16Bn̂

(
m,

1
20

)
,512

}
≤ 528+16 max

m≤1/r0

Bn̂

(
m,

1
20

)
= O

(
polylog

(
1
r0

))
.

7. In fact, we may choose freely whether or not to allow the big-O to hide f ∗-dependent constants, or P-dependent
constants in general, as long as the same interpretation is used for all of these statements. Though validity for each
of these interpretations generally does not imply validity for the others, the proof remains valid regardless of which
of these interpretations we choose, as long as we stick to the same interpretation throughout the proof.
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(5 ⇒ 8) If θ(r0) = O
(

polylog
(

1
r0

))
, then Lemma 29 in Appendix A implies that BN(m,δ) =

O
(
polylog(m) log

(1
δ

))
.

(8⇒ 3) If BN(m,δ) = O
(
polylog(m) log

(1
δ

))
, then Theorem 9 implies

Bn̂(m,δ)≤ BN(m,δ) = O
(

polylog(m) log
(

1
δ

))
.

(8⇒ 9) If BN(m,δ) =O
(
polylog(m) log

(1
δ

))
, then for any sufficiently small value δ2 ∈ (0,1/20),

BN(m,δ2)=O(polylog(m)); monotonicity of δ 7→BN(m,δ) further implies BN
(
m, 1

20

)
≤BN(m,δ2),

so that BN
(
m, 1

20

)
= O(polylog(m)).

(9 ⇒ 4) When BN
(
m, 1

20

)
= O(polylog(m)), Theorem 9 implies that Bn̂

(
m, 1

20

)
≤ BN

(
m, 1

20

)
=

O(polylog(m)).

(5 ⇒ 1) If θ(r0) = O
(

polylog
(

1
r0

))
, then Lemma 30 in Appendix A implies that Λ(ε,δ) =

O
(
polylog

(1
ε

)
log
(1

δ

))
.

(1⇒ 2) If Λ(ε,δ) = O
(
polylog

(1
ε

)
log
(1

δ

))
, then for any sufficiently small value δ3 ∈ (0,1/40],

Λ(ε,δ3) = O
(
polylog

(1
ε

))
; furthermore, monotonicity of δ 7→ Λ(ε,δ) implies Λ

(
ε, 1

40

)
≤ Λ(ε,δ3),

so that Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
as well.

(2⇒ 4) Let c ∈ (0,1] and ε0 ∈ (0,1) be constants such that, ∀ε ∈ (0,ε0), M(ε,δ0) ≥ c
ε
. For any

δ ∈ (0,1/20), if 19
20 + δ ≤ δ0, then M

(
ε, 19

20 +δ
)
≥M(ε,δ0) ≥ c/ε; otherwise, if 19

20 + δ > δ0, then
letting m = M(ε, 19

20 + δ) and Li = {(xm(i−1)+1,ym(i−1)+1), . . . ,(xmi,ymi)} for i ∈ N, we have that
∀k ∈ N,

P

(
sup

h∈VSF ,Smk

er(h)> ε

)
≤ P

(
min
i≤k

sup
h∈VSF ,Li

er(h)> ε

)

=
k

∏
i=1

P

(
sup

h∈VSF ,Li

er(h)> ε

)
≤
(

19
20

+δ

)k

,

so that setting k =
⌈

ln(1/δ0)

ln(1/( 19
20+δ))

⌉
reveals that

M(ε,δ0)≤M
(

ε,
19
20

+δ

)⌈
ln(1/δ0)

ln(1/(19
20 +δ))

⌉
. (4)

Since ln(x)< x−1 for x ∈ (0,1), we have ln(1/(19
20 +δ)) =− ln(19

20 +δ)>−(19
20 +δ−1) = 1

20 −δ;
together with the fact that 1

20 −δ < 1, this implies⌈
ln(1/δ0)

ln(1/(19
20 +δ))

⌉
≤

⌈
ln(1/δ0)

1
20 −δ

⌉
<

ln(1/δ0)
1

20 −δ
+1

<
ln(1/δ0)

1
20 −δ

+
1

1
20 −δ

=
ln(e/δ0)

1
20 −δ

.

726



ACTIVE LEARNING

Plugging this into (4) reveals that

M
(

ε,
19
20

+δ

)
≥

1
20 −δ

ln(e/δ0)
M(ε,δ0)≥

c( 1
20 −δ)

ln(e/δ0)

1
ε
.

If Λ
(
ε, 1

40

)
= O

(
polylog

(1
ε

))
, then Theorem 10 (with β = 1

20δ
−1 and δ = 1/40) implies

max
t≤ c/40

ln(e/δ0)
1
ε

Bn̂

(
t,

1
20

)
≤ Λ

(
ε,

1
40

)
= O

(
polylog

(
1
ε

))
.

This implies that, ∀m ∈ N,

Bn̂

(
m,

1
20

)
≤ Λ

(
c/40

m ln(e/δ0)
,

1
40

)
= O

(
polylog

(
m ln(e/δ0)

(c/40)

))
= O(polylog(m)) .

(3⇒ 6) Lemma 8 implies that with probability at least 1−δ/2,

∆VSF ,Sm ≤
1
m

(
10n̂(Sm) ln

(
em

n̂(Sm)

)
+4ln

(
4
δ

))
,

while the definition of Bn̂

(
m, δ

2

)
implies that n̂(Sm) ≤ Bn̂

(
m, δ

2

)
with probability at least 1− δ/2.

By a union bound, both of these occur with probability at least 1− δ; together with the facts that
x 7→ x ln(em/x) is nondecreasing on (0,m] and Bn̂

(
m, δ

2

)
≤ m, this implies

B∆(m,δ)≤ 1
m

10Bn̂

(
m,

δ

2

)
ln

 em

Bn̂

(
m, δ

2

)
+4ln

(
4
δ

)
= O

(
1
m

(
Bn̂

(
m,

δ

2

)
log(m)+ log

(
1
δ

)))
.

Thus, if Bn̂(m,δ) = O
(
polylog(m) log

(1
δ

))
, then we have

B∆(m,δ) = O
(

polylog(m)

m
log
(

1
δ

))
.

(6 ⇒ 7) If B∆(m,δ) = O
(

polylog(m)
m log

(1
δ

))
, then there exists a sufficiently small constant δ4 ∈

(0,1/9] such that B∆(m,δ4) = O
(

polylog(m)
m

)
; in fact, combined with monotonicity of δ 7→B∆(m,δ),

this implies B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
as well.
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(7⇒ 5) If B∆

(
m, 1

9

)
= O

(
polylog(m)

m

)
, then Lemma 31 in Appendix A implies

θ(r0)≤max

{
sup

r∈(r0,1/2)

7B∆

(
b1/rc, 1

9

)
r

,2

}

≤ 2+14 max
m≤1/r0

mB∆

(
m,

1
9

)
= O

(
max

m≤1/r0

polylog(m)

)
= O

(
polylog

(
1
r0

))
.

5. Applications

In this section, we state bounds on the complexity measures studied above, for various hypothesis
classes F and distributions P, which can then be used in conjunction with the above results. In each
case, combining the result with theorems above yields a bound on the label complexity of CAL that
is smaller than the best known result in the published literature for that problem.

5.1 Linear Separators under Mixtures of Gaussians

The first result, due to El-Yaniv and Wiener (2010), applies to the problem of learning linear sep-
arators under a mixture of Gaussians distribution. Specifically, for k ∈ N, the class of linear sep-
arators in Rk is defined as the set of classifiers (x1, . . . ,xk) 7→ sign(b+∑

k
i=1 xiwi), where the val-

ues b,w1, . . . ,wk ∈ R are free parameters specifying the classifier, with ∑
k
i=1 w2

i = 1, and where
sign(t) = 21[0,∞)(t)− 1. In this work, we also include the two constant functions x 7→ −1 and
x 7→+1 as members of the class of linear separators.

Theorem 12 (El-Yaniv and Wiener, 2010, Lemma 32) For t,k ∈ N, there is a finite constant ck,t
> 0 such that, for F the space of linear separators on Rk, and for P with marginal distribution over
X that is a mixture of t multivariate normal distributions with diagonal covariance matrices of full
rank, ∀m≥ 2,

Bn̂

(
m,

1
20

)
≤ ck,t(log(m))k−1.

Combining this result with Theorem 4 implies that there is a constant ck,t ∈ (0,∞) such that, for
F and P as in Theorem 12, ∀r0 ∈ (0,1/2],

θ(r0)≤ ck,t

(
log
(

1
r0

))k−1

.

In particular, plugging this into the label complexity bound of Hanneke (2011) for CAL (Lemma 30
of Appendix A) yields the following bound on the label complexity of CAL, which has an im-
proved asymptotic dependence on ε compared to the previous best known result, due to El-Yaniv
and Wiener (2012), reducing the exponent on the logarithmic factor from Θ(k2) to Θ(k), and reduc-
ing the dependence on δ from poly(1/δ) to log(1/δ).
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Corollary 13 For t,k ∈ N, there is a finite constant ck,t > 0 such that, for F the space of linear
separators on Rk, and for P with marginal distribution over X that is a mixture of t multivariate
normal distributions with diagonal covariance matrices of full rank, ∀ε,δ ∈ (0,1/2],

Λ(ε,δ)≤ ck,t

(
log
(

1
ε

))k

log
(

log(1/ε)

δ

)
.

Corollary 13 is particularly interesting in light of a lower bound of El-Yaniv and Wiener (2012)
for this problem, showing that there exists a distribution P of the type described in Corollary 13 for
which BN(m,δ) = Ω

(
(log(m))

k−1
2

)
.

5.2 Axis-aligned Rectangles under Product Densities

The next result applies to the problem of learning axis-aligned rectangles under product densities
over Rk: that is, classifiers h((x′1, . . . ,x

′
k)) = 2∏

k
j=11[a j,b j](x

′
j)−1, for values a1, . . . ,ak,b1, . . . ,bk ∈

R. The result specifically applies to rectangles with a probability at least λ > 0 of classifying a ran-
dom point positive. This result represents a refinement of a result of Hanneke (2007b): specifically,
reducing a factor of k2 to a factor of k.

Theorem 14 For k,m ∈ N and λ,δ ∈ (0,1), for any P with marginal distribution over X that is a
product distribution with marginals having continuous CDFs, and for F the space of axis-aligned
rectangles h on Rk with P((x,y) : h(x) = 1)≥ λ,

Bn̂(m,δ)≤ 8k
λ

ln
(

8k
δ

)
.

Proof The proof is based on a slight refinement of an argument of Hanneke (2007b). For (X ,Y )∼P,
denote (X1, . . . ,Xk), X , let Gi be the CDF of Xi, and define G(X1, . . . ,Xk), (G1(X1), . . . ,Gk(Xk)).
Then the random variable X ′ , (X ′1, . . . ,X

′
k) , (G1(X1), . . . ,Gk(Xk)) = G(X) is uniform in (0,1)k;

to see this, note that since X1, . . . ,Xk are independent, so are G1(X1), . . . ,Gk(Xk), and that for each
i ≤ k, ∀t ∈ (0,1), P(Gi(Xi) ≤ t) = supx∈R:Gi(x)=t P(Xi ≤ x) = supx∈R:Gi(x)=t Gi(x) = t, where the
first equality is by monotonicity and continuity of Gi and the intermediate value theorem (since
limx→−∞ Gi(x) = 0 < t and limx→∞ Gi(x) = 1 > t), and the second equality is by definition of Gi. Fix
any h∈ F , let a1, . . . ,ak,b1, . . . ,bk ∈R be the values such that h((z1, . . . ,zk)) = 2∏

k
i=11[ai,bi](zi)−1

for all (z1, . . . ,zk) ∈ Rk, and define Hh((z1, . . . ,zk)) = 2∏
k
i=11[Gi(ai),Gi(bi)](zi)− 1. Clearly Hh is

an axis-aligned rectangle. Furthermore, for every z ∈ Rk with h(z) = +1, monotonicity of the Gi

functions implies Hh(G(z)) = +1 as well. Therefore, P(Hh(X ′) = +1)≥ P(h(X) = +1)≥ λ.
Let G−1

i (t) = min{s : Gi(s) = t} for t ∈ (0,1), which is well-defined by continuity of Gi and the
intermediate value theorem, combined with the facts that limz→∞ Gi(z) = 1 and limz→−∞ Gi(z) =
0. Let Ti denote the set of discontinuity points of G−1

i in (0,1). Fix any (z1, . . . ,zk) ∈ Rk with
h((z1, . . . ,zk)) = −1 and G(z1, . . . ,zk) ∈ (0,1)k. In particular, this implies ∃i ∈ {1, . . . ,k} such
that zi /∈ [ai,bi]. For this i, we have Gi(zi) /∈ (Gi(ai),Gi(bi)) by monotonicity of Gi. Therefore,
if Hh(G(z1, . . . ,zk)) = +1, we must have either zi < ai and Gi(zi) = Gi(ai), or zi > bi and Gi(zi) =
Gi(bi). In the former case, for any ε with 0< ε< 1−Gi(zi), G−1

i (Gi(zi)+ε)=G−1
i (Gi(ai)+ε)> ai,

while G−1
i (Gi(zi))≤ zi, and since zi < ai, we must have Gi(zi)∈ Ti. Similarly, in the latter case (zi >

bi and Gi(zi) = Gi(bi)), any ε with 0 < ε < 1−Gi(zi) has G−1
i (Gi(bi)+ ε) = G−1

i (Gi(zi)+ ε)> zi,
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while G−1
i (Gi(bi)) ≤ bi, and since zi > bi, we have Gi(bi) ∈ Ti; since Gi(zi) = Gi(bi), this also

implies Gi(zi) ∈ Ti. Thus, any (z1, . . . ,zk) ∈ Rk with Hh(G(z1, . . . ,zk)) 6= h((z1, . . . ,zk)) must have
some i ∈ {1, . . . ,k} with Gi(zi) ∈ Ti.

For each i ∈ {1, . . . ,k}, since Gi is nondecreasing, G−1
i is also nondecreasing, and this implies

G−1
i has at most countably many discontinuity points (see e.g., Kolmogorov and Fomin, 1975,

Section 31, Theorem 1). Furthermore, for every t ∈ R,

P(Gi(Xi) = t)≤ P(inf{x ∈ R : Gi(x) = t} ≤ Xi ≤ sup{x ∈ R : Gi(x) = t})
= Gi(sup{x ∈ R : Gi(x) = t})−Gi(inf{x ∈ R : Gi(x) = t}) = t− t = 0,

where the inequality is due to monotonicity of Gi, the first equality is by definition of Gi as the
CDF and by continuity of Gi (which implies P(Xi < x) = Gi(x)), and the second equality is due to
continuity of Gi. Therefore,

P(∃h ∈ F : Hh(G(X)) 6= h(X))≤ P(∃i ∈ {1, . . . ,k} : Gi(Xi) ∈ Ti)≤
k

∑
i=1

∑
t∈Ti

P(Gi(Xi) = t) = 0.

By a union bound, this implies that with probability 1, for every h ∈ F , every (x,y) ∈ Sm has
Hh(G(x)) = h(x). In particular, we have that with probability 1, every classification of the se-
quence {x1, . . . ,xm} realized by classifiers in F is also realized as a classification of the i.i.d.
Uniform((0,1)k) sequence {G(x1), . . . ,G(xm)} by the set F ′ of axis-aligned rectangles h′ with
P(h′(X ′) = +1) ≥ λ. This implies that Bn̂(m,δ) ≤ min{b ∈ N∪{0} : P(n̂(F ′,{(G(x),y) : (x,y) ∈
Sm}) ≤ b) ≥ 1− δ} (in fact, one can show they are equal). Therefore, since the right hand side is
the value of Bn̂(m,δ) one would get from the case of P having marginal P(· ×Y ) over X that is
Uniform((0,1)k), without loss of generality, it suffices to bound Bn̂(m,δ) for this special case. To-
ward this end, for the remainder of this proof, we assume P has marginal P(·×Y ) over X uniform
in (0,1)k.

Let m ∈ N, and let U = {x1, . . . ,xm}, the unlabeled portion of the first m data points. Further
denote by U+ = {xi ∈U : f ∗(xi) = +1}, and U− = U \U+. For each i ∈ N, express xi explicitly
in vector form as (xi1, . . . ,xik). If U+ 6= /0, for each j ∈ {1, . . . ,k}, let a j = min{xi j : xi ∈ U+}
and b j = max{xi j : xi ∈U+}. Denote by hclos(x) = 21×k

j=1[a j,b j]
(x)−1, the closure hypothesis; for

completeness, when U+ = /0, let hclos(x) =−1 for all x.
First, note that if m < 2e

λ

(
2k+ ln

(2
δ

))
, the result trivially holds, since n̂(Sm) ≤ m always, and

2e
λ

(
2k+ ln

(2
δ

))
≤ 8k

λ
ln
(8k

δ

)
. Otherwise, if m≥ 2e

λ

(
2k+ ln

(2
δ

))
, a result of Auer and Ortner (2004)

implies that, on an event Eclos of probability at least 1−δ/2, P((x,y) : hclos(x) 6= f ∗(x)) ≤ λ/2. In
particular, since P((x,y) : f ∗(x) = +1)≥ λ, on this event we must have P((x,y) : hclos(x) = +1)≥
λ/2. Furthermore, this implies U+ 6= /0 on Eclos.

Now fix any j ∈ {1, . . . ,k}. Let x(a j)
j denote the value xi j for the point xi ∈ U with largest

xi j such that xi j < a j, and for all j′ 6= j, xi j′ ∈ [a j′ ,b j′ ]; if no such point exists, let x(a j)
j = 0. Let

U(a j) = {xi ∈ U : xi j < a j}. Let m(a j) = |U(a j)|, and enumerate the points in U(a j) in decreasing
order of xi j, so that i1, . . . , im(a j) are distinct indices such that each t ∈ {1, . . . ,m(a j)} has xit ∈U(a j),
and each t ∈ {1, . . . ,m(a j)− 1} has xit+1 j ≤ xit j. Since P((x,y) : hclos(x) = +1) ≥ λ/2 on Eclos, it
must be that the volume of × j′ 6= j[a j′ ,b j′ ] is at least λ/2. Therefore, working under the conditional
distribution given U+ and m(a j), on Eclos, for each t ∈ {1, . . . ,m(a j)}, with conditional probability
at least λ/2, we have ∀ j′ 6= j, xit j′ ∈ [a j′ ,b j′ ]. Therefore, the value t(a j) , min{t : ∀ j′ 6= j,xit j′ ∈
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[a j′ ,b j′ ]}∪{m(a j)} is bounded by a Geometric random variable with parameter λ/2. In particular,
this implies that with conditional probability at least 1− δ

4k , t(a j)≤
⌈ 2

λ
ln
(4k

δ

)⌉
. Letting A(a j) = {xi ∈

U : x(a j)
j ≤ xi j < a j}, we note that |A(a j)| ≤ t(a j) with probability 1, so that the above reasoning,

combined with the law of total probability, implies that there is an event E(a j) of probability at least
1− δ

4k such that, on E(a j) ∩Eclos, |A(a j)| ≤
⌈ 2

λ
ln
(4k

δ

)⌉
. For the symmetric case, define x(b j)

j as the
value xi j for the point xi ∈U with smallest xi j such that xi j > b j, and for all j′ 6= j, xi j′ ∈ [a j′ ,b j′ ];
if no such point xi exists, define x(b j)

j = 1. Define A(b j) = {xi ∈U : b j < xi j ≤ x(b j)
j }. By the same

reasoning as above, there is an event E(b j) of probability at least 1− δ

4k such that, on E(b j)∩Eclos,
|A(b j)| ≤

⌈ 2
λ

ln
(4k

δ

)⌉
. Applying this to all values of j, and letting A =

⋃k
j=1 A(a j) ∪A(b j), we have

that on the event Eclos∩
⋂k

j=1 E(a j)∩E(b j),

|A| ≤ 2k
⌈

2
λ

ln
(

4k
δ

)⌉
.

Furthermore, a union bound implies that the event Eclos∩
⋂k

j=1 E(a j)∩E(b j) has probability at least
1−δ. For the remainder of the proof, we suppose this event occurs.

Next, let B =

{
argmin
xi∈U+

xi j : j ∈ {1, . . . ,k}

}
∪

{
argmax

xi∈U+

xi j : j ∈ {1, . . . ,k}

}
, and note that |B| ≤

2k. Finally, we conclude the proof by showing that the set A ∪ B has the property that {h ∈
F : ∀x ∈ A∪B,h(x) = f ∗(x)} = VSF ,Sm , which implies {(xi,yi) : xi ∈ A∪B} is a version space
compression set, so that n̂(Sm) ≤ |A∪B|, and hence Bn̂(m,δ) ≤ 2k + 2k

⌈ 2
λ

ln
(4k

δ

)⌉
≤ 8k

λ
ln
(4k

δ

)
.

To prove that A∪ B has this property, first note that any h ∈ F with h(xi) = +1 for all xi ∈ B,
must have U+ ⊇ {xi ∈ U+ : h(xi) = +1} ⊇ U+ ∩×k

j=1[minxi∈U+ xi j,maxxi∈U+ xi j] = U+, so that
{xi ∈ U : h(xi) = +1} ⊇ U+ = {xi ∈ U : f ∗(xi) = +1}. Next, for any xi ∈ U− \ (A∪B), ∃ j ∈
{1, . . . ,k} : xi j /∈ [a j,b j], and by definition of A, for this j we must have xi j /∈ [x(a j)

j ,x(b j)
j ]. Now fix

any h ∈ F , and express {x : h(x) =+1}=×k
j′=1[a

′
j′ ,b
′
j′ ]. If h(xi′) =+1 for all xi′ ∈ B, then we must

have a′j′ ≤ a j′ and b′j′ ≥ b j′ for every j′ ∈ {1, . . . ,k}. Furthermore, if h(xi) = +1, then we must have

a′j ≤ xi j ≤ b′j; but then we must have either a′j ≤ xi j < x(a j)
j or x(b j)

j < xi j ≤ b′j. In the former case,

since xi j < x(a j)
j , we must have x(a j)

j > 0, so that there exists a point xi′ ∈U with xi′ j = x(a j)
j and with

xi′ j′ ∈ [a j′ ,b j′ ] for all j′ 6= j, and furthermore (by definition of A), xi′ ∈A; but since [a j′ ,b j′ ]⊆ [a′j′ ,b
′
j′ ]

we also have xi′ j′ ∈ [a′j′ ,b
′
j′ ] for all j′ 6= j, and since a′j < x(a j)

j = xi′ j < a j ≤ b j ≤ b′j, we also have
xi′ j ∈ [a′j,b

′
j]. Altogether, we must have h(xi′) = +1, which proves there exists at least one point in

A∪B classified differently by h and f ∗. The case that x(b j)
j < xi j ≤ b′j is symmetric to this one, so

that by the same reasoning, this h must disagree with f ∗ on the classification of some point in A∪B.
Therefore, every h ∈ F with h(x) = f ∗(x) for all x ∈ A∪B has h(xi) =−1 for all xi ∈U− \ (A∪B).
Combined with the above proof that every such h also has h(xi) = +1 for every xi ∈U+, we have
that every such h has h(x) = f ∗(x) for every x ∈U.

One implication of Theorem 14, combined with Theorem 4, is that

θ(r0)≤ 128
k
λ

ln(160k)
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for all r0 ≥ 0, for P and F as in Theorem 14. This has implications, both for the label complex-
ity of CAL (via Lemma 30), and also for the label complexity of noise-robust disagreement-based
methods (see Section 6 below). More directly, combining Theorem 14 with Theorem 10 yields
the following label complexity bound for CAL, which improves over the best previously published
bound on the label complexity of CAL for this problem (due to El-Yaniv and Wiener, 2012), reduc-
ing the dependence on k from Θ(k3 log2(k)) to Θ(k log2(k)).

Corollary 15 There exists a finite universal constant c > 0 such that, for k ∈ N and λ ∈ (0,1),
for any P with marginal distribution over X that is a product distribution with marginals having
continuous CDFs, and for F the space of axis-aligned rectangles h on Rk with P((x,y) : h(x) =
1)≥ λ, ∀ε,δ ∈ (0,1/2),

Λ(ε,δ)≤ c
k
λ

log
(

k
δ

log
(

1
ε

))
log
(

k
ε

log
(

1
δ

))
log
(

λ log(1/ε)

ε log(k)
∨ e
)
.

Proof The result follows by plugging the bound from Theorem 14 into Theorem 10, taking δm =
δ/(2log2(2M(ε,δ/2))), bounding M(ε,δ/2) ≤ 8k

ε
log(8e

ε
)+ 8

ε
log(24

δ
) (Vapnik, 1982; Anthony and

Bartlett, 1999), and simplifying the resulting expression.

This result is particularly interesting in light of the following lower bound on the label complex-
ities achievable by any active learning algorithm.

Theorem 16 For k∈N\{1} and λ∈ (0,1/4], letting PX denote the uniform probability distribution
over (0,1)k, for F the space of axis-aligned rectangles h on Rk with PX(x : h(x) = 1) ≥ λ, for any
active learning algorithm A , ∀δ ∈ (0,1/2], ∀ε ∈ (0,1/(8k)), there exists a function f ∗ ∈ F such
that, if P is the realizable-case distribution having marginal PX over X and having target function
f ∗, if A is allowed fewer than

max
{

k log
(

1
4kε

)
,(1−δ)

⌊
1

ε∨λ

⌋}
−1

label requests, then with probability greater than δ, the returned classifier ĥ has er(ĥ)> ε.

Proof For any ε > 0, let M (ε) denote the maximum number M of classifiers h1, . . . ,hM ∈ F
such that, ∀i, j ≤M with i 6= j, PX(x : hi(x) 6= h j(x)) ≥ 2ε. Kulkarni, Mitter, and Tsitsiklis (1993)
prove that, for any learning algorithm based on binary-valued queries, with a budget smaller than
log2((1−δ)M (2ε)) queries, there exists a target function f ∗ ∈F such that the classifier ĥ produced
by the algorithm (when P has marginal PX over X and has target function f ∗) will have er(ĥ) > ε

with probability greater than δ. In particular, since active learning queries are binary-valued in the
binary classification setting, this lower bound applies to active learning algorithms as a special case.

Thus, for the first term in the lower bound, we focus on establishing a lower bound on M (2ε)
for this problem. First note that (1−1/k)k ≥ 1/4, so that λ ≤ (1−1/k)k. Furthermore, (1/k)(1−
1/k)k−1 > 1/(4k), so that ε < (1/k)(1−1/k)k−1. Now let

F2ε =

{
(x1, . . . ,xk) 7→ 2

k

∏
j=1

1[a j,b j](x j)−1 : ∀ j ≤ k,b j = a j +1−1/k,

a j ∈
{

0,
ε

(1−1/k)k−1 , . . . ,

⌊
(1−1/k)k−1

εk

⌋
ε

(1−1/k)k−1

}}
.
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Note that |F2ε| =
(

1+
⌊
(1−1/k)k−1

εk

⌋)k
. Furthermore, since every a j ∈ [0,1/k] in the specification

of F2ε, we have b j = a j + 1− 1/k ∈ [0,1], which implies PX((x1, . . . ,xk) : ∏
k
j=11[a j,b j](x j) = 1) =

(1− 1/k)k ≥ λ. Therefore, F2ε ⊆ F . Finally, for each {(a j,b j)}k
j=1 and {(a′j,b′j)}k

j=1 specifying
distinct classifiers in F2ε, at least one j has |a j−a′j| ≥ ε

(1−1/k)k−1 . Since all of the elements h ∈ F2ε

have PX(x : h(x) = +1) = (1−1/k)k, we can note that

PX

(
(x1, . . . ,xk) :

k

∏
i=1

1[ai,bi](xi) 6=
k

∏
i=1

1[a′i,b
′
i]
(xi)

)
= 2(1−1/k)k−2PX

(
(×k

i=1[ai,bi])∩ (×k
i=1[a

′
i,b
′
i])
)

= 2(1−1/k)k−2PX

(
×k

i=1[max{ai,a′i},min{bi,b′i}]
)

= 2(1−1/k)k−2
k

∏
i=1

(min{bi,b′i}−max{ai,a′i}).

Thus, since

k

∏
i=1

(min{bi,b′i}−max{ai,a′i})

≤ (min{b j,b′j}−max{a j,a′j})∏
i 6= j

(bi−ai) = (1−1/k)k−1(min{b j,b′j}−max{a j,a′j})

= (1−1/k)k−1(min{a j,a′j}−max{a j,a′j}+(1−1/k)) = (1−1/k)k−1(1−1/k−|a j−a′j|)

≤ (1−1/k)k−1(1−1/k− ε

(1−1/k)k−1 ) = (1−1/k)k− ε,

we have

PX((x1, . . . ,xk) :
k

∏
i=1

1[ai,bi](xi) 6=
k

∏
i=1

1[a′i,b
′
i]
(xi))≥ 2(1−1/k)k−2((1−1/k)k− ε) = 2ε.

Thus, M (2ε)≥
(

1+
⌊
(1−1/k)k−1

εk

⌋)k
. Finally, note that for δ ∈ (0,1/2], this implies

log2((1−δ)M (2ε))≥ k log2

(
(1−1/k)k−1

εk

)
−1≥ k log2

(
1

4kε

)
−1.

Together with the aforementioned lower bound of Kulkarni, Mitter, and Tsitsiklis (1993), this es-
tablishes the first term in the lower bound.

To prove the second term, we use of a technique of Hanneke (2007b). Specifically, fix any finite
set H ⊆ F with minh,g∈H PX(x : h(x) 6= g(x))≥ 2ε, let

XPTD( f ,H,U,δ)=min{t ∈N : ∃R⊆U : |R| ≤ t, |{h∈H : ∀x∈R,h(x)= f (x)}|≤ δ|H|+1}∪{∞},

for any classifier f and U ∈
⋃

m X m, and let XPTD(H,PX ,δ) denote the smallest t ∈ N such that
every classifier f has limm→∞PU∼Pm

X
(XPTD( f ,H,U,δ)> t) = 0. Then Hanneke (2007b) proves

that there exists a choice of target function f ∗ ∈ F for the distribution P such that, if A is al-
lowed fewer than XPTD(H,PX ,δ) label requests, then with probability greater than δ, the returned
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classifier ĥ has er(ĥ) > ε. For the particular problem studied here, let H be the set of classi-
fiers hi(x) = 21[(i−1)(ε∨λ),i(ε∨λ)]×[0,1]k−1(x)− 1, for i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋}
. Note that each hi ∈ H has

PX(x : hi(x) = +1) = PX((x1, . . . ,xk) : x1 ∈ [(i− 1)(ε∨ λ), i(ε∨ λ)]) = ε∨ λ ≥ λ, so that H ⊆ F .
Furthermore, for any hi,h j ∈H with i 6= j, PX(x : hi(x) 6= h j(x))≥ PX((x1, . . . ,xk) : x1 ∈ ((i−1)(ε∨
λ), i(ε∨ λ))∪ (( j− 1)(ε∨ λ), j(ε∨ λ))) = 2(ε∨ λ) ≥ 2ε. Also, let R ⊆ (0,1)k be any finite set
with no points (x1, . . . ,xk) ∈ R such that x1 ∈

{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

; note that every
x ∈ R has exactly one hi ∈ H with hi(x) = +1. Thus, for the classifier f with f (x) = −1 for all
x ∈ X , |{h ∈ H : ∀x ∈ R,h(x) = f (x)}| ≥ |H| − |R|. Thus, for any set U ⊆ (0,1)k with no points
(x1, . . . ,xk) ∈U having x1 ∈

{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

, we have XPTD( f ,H,U,δ)≥ (1−
δ)|H|−1. Since, for all m ∈ N, the probability that U ∼ Pm

X contains a point (x1, . . . ,xk) with x1 ∈{
i(ε∨λ) : i ∈

{
1, . . . ,

⌊ 1
ε∨λ

⌋
−1
}}

is zero, we have that PU∼Pm
X
(XPTD( f ,H,U,δ) ≥ (1− δ)|H|−

1) = 1. This implies XPTD(H,PX ,δ) ≥ (1− δ)|H|− 1 = (1− δ)
⌊ 1

ε∨λ

⌋
− 1. Combining this with

the lower bound of Hanneke (2007b) implies the result.

Together, Corollary 15 and Theorem 16 imply that, for λ ∈ (0,1/4] bounded away from 0, the
label complexity of CAL is within logarithmic factors of the minimax optimal label complexity.

6. New Label Complexity Bounds for Agnostic Active Learning

In this section we present new bounds on the label complexity of noise-robust active learning al-
gorithms, expressed in terms of Bn̂(m,δ). These bounds yield new exponential label complexity
speedup results for agnostic active learning (for the low accuracy regime) of linear classifiers under
a fixed mixture of Gaussians. Analogous results also hold for the problem of learning axis-aligned
rectangles under a product density.

Specifically, in the agnostic setting studied in this section, we no longer assume ∃ f ∗ ∈ F with
P(Y = f ∗(x)|X)= 1 for (X ,Y )∼P, but rather allow that P is any probability measure over X ×Y . In
this setting, we let f ∗ : X →Y denote a classifier such that er( f ∗)= infh∈F er(h) and infh∈F P((x,y) :
h(x) 6= f ∗(x)) = 0, which is guaranteed to exist by topological considerations (see Hanneke, 2012,
Section 6.1);8 for simplicity, when ∃ f ∈ F with er( f ) = infh∈F er(h), we take f ∗ to be an element
of F . We call f ∗ the infimal hypothesis (of F , w.r.t. P) and note that er( f ∗) is sometimes called the
noise rate of F (e.g., Balcan, Beygelzimer, and Langford, 2006). The introduction of the infimal
hypothesis f ∗ allows for natural generalizations of some of the key definitions of Section 2 that
facilitate analysis in the agnostic setting.

Definition 17 (Agnostic Version Space) Let f ∗ be the infimal hypothesis of F w.r.t. P. The agnos-
tic version space of a sample S is

VSF ,S, f ∗ , {h ∈ F : ∀(x,y) ∈ S,h(x) = f ∗(x)}.

Definition 18 (Agnostic Version Space Compression Set Size) Letting ĈS, f ∗ denote a smallest
subset of S satisfying VSF ,ĈS, f∗ , f ∗

= VSF ,S, f ∗ , the agnostic version space compression set size is

n̂(F ,S, f ∗), |ĈS, f ∗ |.

8. In the agnostic setting, there are typically many valid choices of the function f ∗ satisfying these conditions. The
results below hold for any such choice of f ∗.

734



ACTIVE LEARNING

We also extend the definition of the version space compression set minimal bound (see Definition 2)
to the agnostic setting, defining

Bn̂(m,δ), min{b ∈ N∪{0} : P(n̂(F ,S, f ∗)≤ b)≥ 1−δ}.

For general P in the agnostic setting, define the disagreement coefficient as before, except now
with respect to the infimal hypothesis:

θ(r0), sup
r>r0

∆B( f ∗,r)
r

∨1.

One can easily verify that these definitions are equal to those given above in the special case
that P satisfies the realizable-case assumptions ( f ∗ ∈ F and P(Y = f ∗(X)|X) = 1 for (X ,Y )∼ P).

We begin with the following extension of Theorem 4.

Lemma 19 For general (agnostic) P, for any r0 ∈ (0,1),

θ(r0)≤max
{

max
r∈(r0,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Proof First note that θ(r0) and Bn̂
(⌈1

r

⌉
, 1

20

)
depend on P only via f ∗ and the marginal P(· ×Y )

of P over X (in both the realizable case and agnostic case). Define a distribution P′ with marginal
P′(·×Y ) = P(·×Y ) over X , and with P(Y = f ∗(x)|X = x) = 1 for all x ∈ X , where (X ,Y ) ∼ P′.
In particular, in the special case that f ∗ ∈ F in the agnostic case, we have that P′ is a distribution
in the realizable case, with identical values of θ(r0) and Bn̂

(⌈1
r

⌉
, 1

20

)
as P, so that Theorem 4

(applied to P′) implies the result. On the other hand, when P is a distribution with f ∗ /∈ F , let θ′(r0)
denote the disagreement coefficient of F ∪ { f ∗} with respect to P′ (or equivalently P), and for
m ∈ N, let B ′n̂(m,1/20) , min{b ∈ N∪{0} : P(n̂(F ∪{ f ∗},Sm, f ∗)≤ b)≥ 19/20}. In particular,
since F ⊆ F ∪ { f ∗}, we have θ(r0) ≤ θ′(r0), and since P′ is a realizable-case distribution with
respect to the hypothesis class F ∪{ f ∗}, Theorem 4 (applied to P′ and F ∪{ f ∗}) implies

θ
′(r0)≤max

{
max

r∈(r0,1)
16B ′n̂

(⌈
1
r

⌉
,

1
20

)
,512

}
.

Finally, note that for any m ∈ N and sets C,S ∈ (X ×Y )m, VSF ∪{ f ∗},C, f ∗ = VSF ,C, f ∗ ∪{ f ∗} and
VSF ∪{ f ∗},S, f ∗ = VSF ,S, f ∗ ∪{ f ∗}, so that VSF ∪{ f ∗},C, f ∗ = VSF ∪{ f ∗},S, f ∗ if and only if VSF ,C, f ∗ =

VSF ,S, f ∗ . Thus, n̂(F ∪ { f ∗},Sm, f ∗) = n̂(F ,Sm, f ∗), so that B ′n̂
(⌈1

r

⌉
, 1

20

)
= Bn̂

(⌈1
r

⌉
, 1

20

)
, which

implies the result.

6.1 Label complexity bound for agnostic active learning

A2 (Agnostic Active) was the first general-purpose agnostic active learning algorithm with proven
improvement in error guarantees compared to passive learning. The original work of Balcan,
Beygelzimer, and Langford (2006), which first introduced this algorithm, also provided specialized
proofs that the algorithm achieves an exponential label complexity speedup (for the low accuracy
regime) compared to passive learning for a few simple cases, including: threshold functions, and
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homogeneous linear separators under a uniform distribution over the sphere. Additionally, Han-
neke (2007a) provided a general bound on the label complexity of A2, expressed in terms of the
disagreement coefficient, so that any bound on the disagreement coefficient translates into a bound
on the label complexity of agnostic active learning with A2. Inspired by the A2 algorithm, other
noise-robust active learning algorithms have since been proposed, with improved label complexity
bounds compared to those proven by Hanneke (2007a) for A2, while still expressed in terms of the
disagreement coefficient (see e.g., Dasgupta, Hsu, and Monteleoni, 2007; Hanneke, 2014). As an
example of such results, the following result was proven by Dasgupta, Hsu, and Monteleoni (2007).

Theorem 20 (Dasgupta, Hsu, and Monteleoni, 2007) There exists a finite universal constant c >
0 such that, for any ε,δ ∈ (0,1/2), using hypothesis class F , and given the input δ and a budget n
on the number of label requests, the active learning algorithm of Dasgupta, Hsu, and Monteleoni
(2007) requests at most n labels,9 and if

n≥ cθ(er( f ∗)+ ε)

(
er( f ∗)2

ε2 +1
)(

d log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies

er( f̂ )≤ er( f ∗)+ ε.

Combined with the results above, this implies the following theorem.

Theorem 21 There exists a finite universal constant c > 0 such that, for any ε,δ ∈ (0,1/2), using
hypothesis class F , and given the input δ and a budget n on the number of label requests, the active
learning algorithm of Dasgupta, Hsu, and Monteleoni (2007) requests at most n labels, and if

n≥ c
(

max
r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)(

er( f ∗)2

ε2 +1
)(

d log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies

er( f̂ )≤ er( f ∗)+ ε.

Proof By Lemma 19,

θ(er( f ∗)+ ε)≤max
{

max
r∈(er( f ∗)+ε,1)

16Bn̂

(⌈
1
r

⌉
,

1
20

)
,512

}
≤ 512

(
max

r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)
.

Plugging this into Theorem 20 yields the result.

9. This result applies to a slightly modified variant of the algorithm of Dasgupta, Hsu, and Monteleoni (2007), studied
by Hanneke (2011), which terminates after a given number of label requests, rather than after a given number of
unlabeled samples. The same is true of Theorem 21 and Corollary 22.
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Interestingly, from the perspective of bounding the label complexity of agnostic active learning
in general, the result in Theorem 21 sometimes improves over a related bound proven by Hanneke
(2007b) (for a different algorithm). Specifically, compared to the result of Hanneke (2007b), this
result maintains an interesting dependence on f ∗, whereas the bound of Hanneke (2007b) effectively
replaces the factor Bn̂(d1/re,1/20) with the maximum of this quantity over the choice of f ∗.10 Also,
while the result of Hanneke (2007b) is proven for an algorithm that requires explicit access to a value
η≈ er( f ∗) to obtain the stated label complexity, the label complexity in Theorem 21 is achieved by
the algorithm of Dasgupta, Hsu, and Monteleoni (2007), which requires no such extra parameters.

As an application of Theorem 21, we have the following corollary.

Corollary 22 For t,k ∈ N and c ∈ (0,∞), there exists a finite constant ck,t,c > 0 such that, for
F the class of linear separators on Rk, and for P with marginal distribution over X that is a
mixture of t multivariate normal distributions with diagonal covariance matrices of full rank, for
any ε,δ ∈ (0,1/2) with ε ≥ er( f ∗)

c , using hypothesis class F , and given the input δ and a budget n
on the number of label requests, the active learning algorithm of Dasgupta, Hsu, and Monteleoni
(2007) requests at most n labels, and if

n≥ ck,t,c

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it produces satisfies er( f̂ )≤ er( f ∗)+ ε.

Proof Let F and P be as described above. First, we argue that f ∗ ∈ F . Fix any classifier f with
infh∈F P((x,y) : h(x) 6= f (x)) = 0. There must exist a sequence {(b(t),w(t)

1 , . . . ,w(t)
k )}∞

k=1 in Rk+1

with ∑
k
i=1(w

(t)
i )2 = 1 for all t, s.t. P

(
(x1, . . . ,xk,y) : sign

(
b(t)+∑

k
i=1 xiw

(t)
i

)
6= f (x1, . . . ,xk)

)
→ 0.

If limsup
t→∞

b(t) = ∞, then ∃t j→ ∞ with b(t j)→ ∞, and since every (x1, . . . ,xk) ∈ Rk has ∑
k
i=1 xiw

(t)
i ≥

−‖x‖, we have that b(t j) +∑
k
i=1 xiw

(t j)
i → ∞, which implies sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→ 1 for all

(x1, . . . ,xk) ∈Rk. Similarly, if liminf
t→∞

b(t) =−∞, then ∃t j→∞ with sign
(

b(t j)+∑
k
i=1 xiw

(t j)
i

)
→−1

for all (x1, . . . ,xk) ∈ Rk. Otherwise, if limsupt→∞ b(t) < ∞ and liminft→∞ b(t) > −∞, then the se-
quence {(b(t),w(t)

1 , . . . ,w(t)
k )}∞

t=1 is bounded in Rk+1. Therefore, the Bolzano-Weierstrass Theorem

implies it contains a convergent subsequence: that is, ∃t j → ∞ s.t. (b(t j),w(t j)
1 , . . . ,w(t j)

k ) converges.
Furthermore, since {w ∈ Rk : ‖w‖ = 1} is closed, and {b(t) : t ∈ N} ⊆ [inft b(t),supt b(t)], which is
a closed subset of R, ∃(b,w1, . . . ,wk) ∈ Rk+1 with ∑

k
i=1 w2

i = 1 such that (b(t j),w(t j)
1 , . . . ,w(t j)

k )→
(b,w1, . . . ,wk). Continuity of linear functions implies, ∀(x1, . . . ,xk) ∈ Rk, b(t j)+∑

k
i=1 xiw

(t j)
i → b+

∑
k
i=1 xiwi. Therefore, every (x1, . . . ,xk)∈Rk with b+∑

k
i=1 xiwi > 0 has sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→

1, and every (x1, . . . ,xk) ∈ Rk with b+∑
k
i=1 xiwi < 0 has sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
→ −1. Since

P
(
(x1, . . . ,xk,y) : b+∑

k
i=1 xiwi = 0

)
= 0, this implies (x1, . . . ,xk) 7→ sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
con-

verges to (x1, . . . ,xk) 7→ sign
(
b+∑

k
i=1 xiwi

)
almost surely [P].

10. There are a few other differences, which are usually minor. For instance, the bound of Hanneke (2007b) uses r ≈
er( f ∗)+ε rather than maximizing over r > er( f ∗)+ε. That result additionally replaces “1/20” with a value δ′ ≈ δ/n.
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Thus, in each case, ∃t j → ∞ and h ∈ F s.t. (x1, . . . ,xk) 7→ sign
(

b(t j)+∑
k
i=1 xiw

(t j)
i

)
con-

verges to h a.s. [P]. Since convergence almost surely implies convergence in probability, we
have P

(
(x1, . . . ,xk,y) : sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
6= h(x1, . . . ,xk)

)
→ 0. Furthermore, by assump-

tion, P
(
(x1, . . . ,xk,y) : sign

(
b(t j)+∑

k
i=1 xiw

(t j)
i

)
6= f (x1, . . . ,xk)

)
→ 0 as well. Thus, a union bound

implies P((x,y) : h(x) 6= f (x)) = 0. In particular, we have that for any f with infg∈F P((x,y) :
g(x) 6= f (x)) = 0 and er( f ) = infg∈F er(g), ∃h ∈ F with P((x,y) : f (x) 6= h(x)) = 0, and hence
er(h) = infg∈F er(g). Thus, we may assume f ∗ ∈ F in this setting.

Therefore, in this scenario, Theorem 12 implies

max
r>er( f ∗)+ε

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1≤ c(1)k,t

(
log
(

2
er( f ∗)+ ε

))k−1

,

for an appropriate (k, t)-dependent constant c(1)k,t ∈ (0,∞). Plugging this into Theorem 21, and re-
calling that the VC dimension of the class of linear classifiers in Rk is k+1 (see e.g., Anthony and
Bartlett, 1999), we get a bound on the number of label requests of

c(2)k,t

(
log
(

2
er( f ∗)+ ε

))k−1(er( f ∗)2

ε2 +1
)(

k log
(

1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
≤ c(3)k,t

(
log
(

1
ε

))k+1(er( f ∗)2

ε2 +1
)(

k+ log
(

1
δ

))
,

for appropriate (k, t)-dependent constants c(2)k,t ,c
(3)
k,t ∈ (0,∞). Since (by assumption) ε ≥ er( f ∗)

c , this
is at most

c(4)k,t,c

(
log
(

1
ε

))k+1(
k+ log

(
1
δ

))
≤ c(5)k,t,c

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

for appropriate (k, t,c)-dependent constants c(4)k,t,c,c
(5)
k,t,c ∈ (0,∞). Thus, taking ck,t,c = c(5)k,t,c estab-

lishes the result.

An analogous result can be shown for the problem of learning axis-aligned rectangles via The-
orem 14.

6.2 Label complexity bound under Mammen-Tsybakov noise

Since the original work on agnostic active learning discussed above, there have been several other
analyses, expressing the noise conditions in terms of quantities other than the noise rate er( f ∗).
Specifically, the following condition of Mammen and Tsybakov (1999) has been studied for several
algorithms (see e.g., Balcan, Broder, and Zhang, 2007; Hanneke, 2011; Koltchinskii, 2010; Han-
neke, 2012; Hanneke and Yang, 2012; Hanneke, 2014; Beygelzimer, Hsu, Langford, and Zhang,
2010; Hsu, 2010).

Condition 23 (Mammen and Tsybakov, 1999) For some a ∈ [1,∞) and α ∈ [0,1], for every f ∈
F ,

Pr( f (X) 6= f ∗(X))≤ a(er( f )− er( f ∗))α.
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In particular, for a variant of A2 known as RobustCALδ, studied by Hanneke (2012, 2014) and
Hanneke and Yang (2012), the following result is known (due to Hanneke and Yang, 2012).

Theorem 24 (Hanneke and Yang, 2012) There exists a finite universal constant c > 0 such that,
for any ε,δ ∈ (0,1/2), for any n,u ∈ N, given the arguments n and u, the RobustCALδ algorithm
requests at most n labels, and if u is sufficiently large, and

n≥ ca2
θ(aε

α)

(
1
ε

)2−2α(
d log(eθ(aε

α))+ log
(

log(1/ε)

δ

))
log
(

1
ε

)
,

for a and α as in Condition 23, then with probability at least 1− δ, the classifier f̂ ∈ F it returns
satisfies er( f̂ )≤ er( f ∗)+ ε.

Combined with Theorem 4, this implies the following theorem.

Theorem 25 There exists a finite universal constant c > 0 such that, for any ε,δ ∈ (0,1/2), for any
n,u ∈N, given the arguments n and u, the RobustCALδ algorithm requests at most n labels, and if u
is sufficiently large, and

n≥ ca2
(

max
r>aεα

Bn̂

(⌈
1
r

⌉
,

1
20

)
+1
)(

1
ε

)2−2α(
d log

(
1
ε

)
+ log

(
1
δ

))
log
(

1
ε

)
,

for a and α as in Condition 23, then with probability at least 1− δ, the classifier f̂ ∈ F it returns
satisfies er( f̂ )≤ er( f ∗)+ ε.

In particular, reasoning as in Corollary 22 above, Theorem 25 implies the following corollary.

Corollary 26 For t,k ∈N and a ∈ [1,∞), there exists a finite constant ck,t,a > 0 such that, for F the
class of linear separators on Rk, and for P satisfying Condition 23 with α = 1 and the given value
of a, and with marginal distribution over X that is a mixture of t multivariate normal distributions
with diagonal covariance matrices of full rank, for any ε,δ ∈ (0,1/2), for any n,u ∈ N, given the
arguments n and u, the RobustCALδ algorithm requests at most n labels, and if u is sufficiently large,
and

n≥ ck,t,a

(
log
(

1
ε

))k+1

log
(

1
δ

)
,

then with probability at least 1−δ, the classifier f̂ ∈ F it returns satisfies er( f̂ )≤ er( f ∗)+ ε.

Corollary 26 proves an exponential label complexity speedup in the asymptotic dependence on
ε compared to passive learning, for which there is a lower bound on the label complexity of Ω(1/ε)
in the worst case over these distributions (Long, 1995).

Remark 27 Condition 23 can be satisfied with α = 1 if the Bayes optimal classifier is in F and the
source distribution satisfies Massart noise (Massart and Nédélec, 2006):

Pr(|P(Y = 1|X = x)−1/2|< 1/(2a)) = 0.

For example, if the data was generated by some unknown linear hypothesis with label noise (prob-
ability to flip any label) of up to (a−1)/2a, then P satisfies the requirements of Corollary 26.
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Appendix A. Analysis of CAL via the Disagreement Coefficient

The following result was first established by (Giné and Koltchinskii, 2006, page 1213), with slightly
different constant factors. The version stated here is directly from Hanneke (2009, Section 2.9), who
also presents a simple and direct proof.

Lemma 28 (Giné and Koltchinskii, 2006; Hanneke, 2009) For any t ∈ N and δ ∈ (0,1), with
probability at least 1−δ,

sup
h∈VSF ,St

er(h)≤ 24
t

(
d ln(880 ·θ(d/t))+ ln

(
12
δ

))
.

The following result is implicit in a proof of Hanneke (2011); for completeness, we present a
formal proof here.

Lemma 29 (Hanneke, 2011) There exists a finite universal constant c0 > 0 such that, ∀δ ∈ (0,1),
∀m ∈ N with m≥ 2,

BN(m,δ)≤ c0θ(d/m)

(
d ln(eθ(d/m))+ ln

(
log2(m)

δ

))
log2(m).

Proof The result trivially holds for m = 2, taking any c0 ≥ 2. Otherwise, suppose m≥ 3. Note that,
for any t ∈ N,

24
t

(
d ln(880θ(d/t))+ ln

(
24log2(m)

δ

))
≤ c1

t

(
d ln(eθ(d/t))+ ln

(
2log2(m)

δ

))
, (5)

for some universal constant c1 ∈ [1,∞) (e.g., taking c1 = 168 suffices). Thus, letting rt denote the
expression on the right hand side of (5), Lemma 28 implies that, for any t ∈ N, with probability at
least 1−δ/(2log2(m)),

sup
h∈VSF ,St

er(h)≤ rt .

By a union bound, this holds for all t ∈ {2i : i ∈ {1, . . . ,dlog2(m)e− 1}} with probability at least
1−δ/2. In particular, on this event, we have

N(m;Sm)≤ 2+
dlog2(m)e−1

∑
i=1

2i+1

∑
t=2i+1

1DIS(B( f ∗,r2i ))(xt).
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A Chernoff bound implies that, with probability at least 1−δ/2, the right hand side is at most

log2

(
8
δ

)
+2e

dlog2(m)e−1

∑
i=1

2i
∆B( f ∗,r2i)

≤ log2

(
8
δ

)
+2e

dlog2(m)e−1

∑
i=1

2i
θ(r2i)r2i

≤ log2

(
8
δ

)
+2ec1

dlog2(m)e−1

∑
i=1

θ
(
d2−i)(d ln

(
eθ
(
d2−i))+ ln

(
2log2(m)

δ

))
≤ 4ec1θ(d/m)

(
d ln(eθ(d/m))+ ln

(
log2(m)

δ

))
log2(m).

Letting c0 = 4ec1, the result holds by a union bound and minimality of BN(m,δ).

The following result is taken from the work of Hanneke (2011, Proof of Theorem 1); see also
Hanneke (2014) for a theorem and proof expressed in this exact form.

Lemma 30 (Hanneke, 2011) There exists a finite universal constant c0 > 0 such that, ∀ε,δ ∈
(0,1/2],

Λ(ε,δ)≤ c0θ(ε)

(
d ln(eθ(ε))+ ln

(
log2(1/ε)

δ

))
log2

(
1
ε

)
.

The next result is taken from the work of El-Yaniv and Wiener (2012, Corollary 39).

Lemma 31 (El-Yaniv and Wiener, 2012) For any r0 ∈ (0,1),

θ(r0)≤max

{
sup

r∈(r0,1/2)

7 ·B∆(b1/rc,1/9)
r

,2

}
.

Appendix B. Separation from the Previous Analyses

There are simple examples showing that sometimes Bn̂(m,δ) ≈ θ(1/m), so that the upper bound
Λ(ε,δ) ≤ c0dθ(ε)polylog

( 1
εδ

)
in Lemma 30 is off by a factor of d compared to Theorem 10 in

those cases (aside from logarithmic factors). For instance, consider the class of unions of k intervals,
where k ∈ N, X = [0,1], and F = {x 7→ 21⋃k

i=1[z2i−1,z2i]
(x)− 1 : 0 < z1 < · · · < z2k < 1}. Suppose

the data distribution P has a uniform marginal distribution over X , and has f ∗ = 21⋃k
i=1[z

∗
2i−1,z

∗
2i]
−

1, where z∗i = i
2k+1 for i ∈ {1, . . . ,2k}. In this case, for r0 ≥ 0, θ(r0) is within a factor of 2 of

min
{

1
r0
,4k
}

(see e.g., Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2012). However, for any

m ∈ N with m≥ (2k+1) ln
(2k+1

δ

)
, with probability at least 1−δ we have for each i ∈ {0, . . . ,2k},

at least one j≤m has i
2k+1 < x j <

i+1
2k+1 , and no j≤m has x j =

i
2k+1 ; in this case, ĈSm is constructed

as follows; for each i∈ {1, . . . ,2k}, we include in ĈSm the point (x j,y j) with largest x j less than i
2k+1

and the point (x j,y j) with smallest x j greater than i
2k+1 . The number of points in this set ĈSm is at

most 4k. Therefore, for any m ∈ N, we have Bn̂(m,δ) ≤ min
{

m,max
{⌈

(2k+1) ln
(2k+1

δ

)⌉
,4k
}}

.
In particular, noting that d = 2k here, we have that for ε < 1/k, the bound on Λ(ε,δ) in Lemma 30

741



WIENER, HANNEKE, AND EL-YANIV

has a Θ̃(k2) dependence on k, while the upper bound on Λ(ε,δ) in Theorem 10 has only a Θ̃(k)
dependence on k, which matches the lower bound in Theorem 10 (up to logarithmic factors).

Aside from the disagreement coefficient, the other technique in the existing literature for bound-
ing the label complexity of CAL is due to El-Yaniv and Wiener (2010, 2012), based on a quantity
they call the characterizing set complexity, denoted γ(F , n̂(Sm)). Formally, for n ∈ N, let γ(F ,n)
denote the VC dimension of the collection of sets {DIS(VSF ,S) : S ∈ (X ×Y )n}. Then El-Yaniv
and Wiener (2012) prove the following bound, for a universal constant c ∈ (0,∞).11

Λ(ε,δ)≤ c

(
max

m≤M(ε,δ/2)
γ(F ,Bn̂(m,δ)) ln

(
em

γ(F ,Bn̂(m,δ))

)

+ ln
(

log2(2M(ε,δ/2))
δ

))
log2(2M(ε,δ/2)). (6)

We can immediately note that γ(F ,Bn̂(m,δ))≥Bn̂(m,δ)−1; specifically, for any S∈ (X ×Y )m, let-
ting {(xi1 ,yi1), . . . ,(xin̂(Sm)

,yin̂(Sm)
)}= ĈS, we have that {xi2 , . . . ,xin̂(Sm)

} is shattered by {DIS(VSF ,S′) :
S′ ∈ (X ×Y )n̂(Sm)}, since letting S′ be any subset of {(xi2 ,yi2), . . . ,(xin̂(Sm)

,yin̂(Sm)
)} (filling in the

remaining elements as copies of (xi1 ,yi1) to make S′ of size n̂(Sm)),

{(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)}∩ (DIS(VSF ,S′)×Y ) = {(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)}\S′,

since otherwise, the (xi j ,yi j) in {(xi2 ,yi2), . . . ,(xin̂(Sm)
,yin̂(Sm)

)} \ S′ not in DIS(VSF ,S′)×Y would
have xi j /∈ DIS(VSF ,ĈS\{(xi j ,yi j )}

), so that VSF ,ĈS\{(xi j ,yi j )}
= VSF ,ĈS

= VSF ,S, contradicting mini-

mality of ĈS. Therefore, γ(F , n̂(Sm)) ≥ n̂(Sm)− 1. Then noting that γ(F ,n) is monotonic in n,
we find that γ(F ,Bn̂(m,δ)) is a minimal 1− δ confidence bound on γ(F , n̂(Sm)), which implies
γ(F ,Bn̂(m,δ))≥ Bn̂(m,δ)−1.

One can also give examples where the gap between Bn̂(m,δ) and γ(F ,Bn̂(m,δ) is large, for
instance where γ(F ,Bn̂(m,δ)) ≥ d while Bn̂(m,δ) = 2 for large m. For instance, consider X that
has d points w1, . . . ,wd and 2d+1 additional points xI and zI indexed by the sets I ⊆ {1, . . . ,d},
and say F is the space of classifiers {hJ : J ⊆ {1, . . . ,d}}, where for each J ⊆ {1, . . . ,d}, {x :
hJ(x) = +1} = {wi : i ∈ J} ∪ {xI : I ⊆ J} ∪ {zI : I ⊆ {1, . . . ,d} \ J}; in particular, the classifica-
tion on w1, . . . ,wd determines the classification on the remaining 2d+1 points, and {w1, . . . ,wd} is
shatterable, so that |F | = 2d , and the VC dimension of F is d. Let P be a distribution that has
a uniform marginal distribution over the 2d+1 + d points in X , and satisfies the realizable case as-
sumption (i.e., P(Y = f ∗(X)|X) = 1, for some f ∗ ∈ F ). For any integer m ≥ (2d+1 + d) ln(2/δ),
with probability at least 1−δ, we have (x{i≤d: f ∗(wi)=+1},+1) ∈ Sm and (z{i≤d: f ∗(wi)=−1},+1) ∈ Sm.
Since every hJ ∈ F with hJ(x{i≤d: f ∗(wi)=+1}) = +1 has {i ≤ d : f ∗(wi) = +1} ⊆ J = {i ≤ d :
hJ(wi) = +1}, and every hJ ∈ F with hJ(z{i≤d: f ∗(wi)=−1}) = +1 has {i ≤ d : f ∗(wi) = −1} ⊆
{1, . . . ,d} \ J = {i ≤ d : hJ(wi) = −1}, so that {i ≤ d : f ∗(wi) = +1} ⊇ {i ≤ d : hJ(wi) = +1},
we have that every hJ ∈ F with both hJ(x{i≤d: f ∗(wi)=+1}) = +1 and hJ(z{i≤d: f ∗(wi)=−1}) = +1
has {i ≤ d : hJ(wi) = +1} = {i ≤ d : f ∗(wi) = +1}. Since classifiers in F are completely de-
termined by their classification of {w1, . . . ,wd}, this implies hJ = f ∗. Therefore, letting ĈSm =
{(x{i≤d: f ∗(wi)=+1},+1),(z{i≤d: f ∗(wi)=−1},+1)}, we have VSF ,ĈSm

= VSF ,Sm , so that n̂(Sm) ≤ 2 (in

11. This result can be derived from their Theorem 15 via reasoning analogous to the derivation of Theorem 10 from
Lemma 8 above.

742



ACTIVE LEARNING

fact, one can easily show n̂(Sm) = 2 in this case). Thus, for large m, Bn̂(m,δ) ≤ 2. However, for
any I ⊆ {1, . . . ,d}, letting S = {(x{1,...,d}\I,+1)}, we have h{1,...,d}\I ∈ VSF ,S, every h ∈ VSF ,S
has h(wi) = +1 for every i ∈ {1, . . . ,d} \ I, and every i ∈ I has h({1,...,d}\I)∪{i} ∈ VSF ,S, so that
DIS(VSF ,S)∩{w1, . . . ,wd}= {wi : i ∈ I}; therefore, the VC dimension of {DIS(VSF ,{x}) : x ∈ X }
is at least d: that is, γ(F ,1) ≥ d. Since we have n̂(Sm) ≥ 1 whenever Sm contains any point other
than x{} and z{}, and this happens with probability at least 1− (2/(2d+1 +d))m ≥ 1−δ > δ (when
δ < 1/2), this implies we have γ(F , n̂(Sm)) ≥ γ(F ,1) ≥ d with probability greater than δ, which
(by monotonicity of γ(F , ·)) implies γ(F ,Bn̂(m,δ))≥ d.

This is not quite strong enough to show a gap between (6) and Theorem 10, since the bounds
in Theorem 10 require us to maximize over the value of m, which would therefore also include
values Bn̂(m,δ) for m < (2d+1 + d) ln(2/δ). To exhibit a gap between these bounds, we can sim-
ply redefine the marginal distribution of P over X to have P({w1}×Y ) = 1. Note that with this
distribution, xi = w1 for all i, with probability 1, so that we clearly have n̂(Sm) = 1 almost surely,
and hence Bn̂(m,δ) = 1 for all m. As argued above, we have γ(F ,1) ≥ d for this space. There-
fore, maxm≤M γ(F ,Bn̂(m,δ)) ≥ d, while maxm≤M Bn̂(m,δ) ≤ 1, for all M ∈ N. However, note
that unlike the example constructed above for the disagreement coefficient, the gap in this ex-
ample could potentially be eliminated by replacing the distribution-free quantity γ(F ,n) with a
distribution-dependent complexity measure (e.g., an annealed VC entropy or a bracketing number
for {DIS(VSF ,S) : S ∈ (X ×Y )n}).
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P. Massart and É. Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34(5):
2326–2366, 2006.

T. Mitchell. Version spaces: A candidate elimination approach to rule learning. In Proceedings of
the 5th International Joint Conference on Artificial Intelligence, 1977.

V. Vapnik. Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York,
1982.

V. Vapnik. Statistical Learning Theory. Wiley Interscience, New York, 1998.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16:264–280, 1971.

L. Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active learn-
ing. Journal of Machine Learning Research, 12:2269–2292, 2011.

Y. Wiener. Theoretical Foundations of Selective Prediction. PhD thesis, the Technion — Israel
Institute of Technology, 2013.

Y. Wiener and R. El-Yaniv. Pointwise tracking the optimal regression function. In Advances in
Neural Information Processing Systems 25, 2012.

Y. Wiener and R. El-Yaniv. Agnostic pointwise-competitive selective classification. Journal of
Machine Learning Research, to appear, 2015.

745


	Introduction
	Preliminary Definitions
	Relating  and the Disagreement Coefficient
	A Tight Analysis of CAL
	Applications
	Linear Separators under Mixtures of Gaussians
	Axis-aligned Rectangles under Product Densities

	New Label Complexity Bounds for Agnostic Active Learning
	Label complexity bound for agnostic active learning
	Label complexity bound under Mammen-Tsybakov noise

	Analysis of CAL via the Disagreement Coefficient
	Separation from the Previous Analyses

