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Abstract

A new method is proposed for estimating derivatives of a nonparametric regression function.
By applying Taylor expansion technique to a derived symmetric difference sequence, we
obtain a sequence of approximate linear regression representation in which the derivative
is just the intercept term. Using locally weighted least squares, we estimate the derivative
in the linear regression model. The estimator has less bias in both valleys and peaks of the
true derivative function. For the special case of a domain with equispaced design points,
the asymptotic bias and variance are derived; consistency and asymptotic normality are
established. In simulations our estimators have less bias and mean square error than its
main competitors, especially second order derivative estimator.

Keywords: nonparametric derivative estimation, locally weighted least squares, bias-
correction, symmetric difference sequence, Taylor expansion

1. Introduction

In nonparametric regressions, it is often of interest to estimate mean functions. Many esti-
mation methodologies and relevant theoretical properties have been rigorously investigated,
see, for example, Fan and Gijbels (1996), Härdle et al. (2004), and Horowitz (2009). Non-
parametric derivative estimation has never attracted much attention as one usually gets the
derivative estimates as “by-products” from a local polynomial or spline fit, as Newell and
Einbeck (2007) mentioned. However, applications of derivative estimation are important
and wide-ranging. For example, in the analysis of human growth data, first and second
derivatives of the height as a function of time are important parameters (Müller, 1988;
Ramsay and Silverman, 2002): the first derivative has the interpretation of speed and the
second derivative acceleration. Another field of application is the change point problems,
including exploring the structures of curves (Chaudhuri and Marron, 1999; Gijbels and
Goderniaux, 2005), detecting the extremum of derivative (Newell et al., 2005), character-
izing submicroscopic nanoparticle (Charnigo et al., 2007) and comparing regression curves
(Park and Kang, 2008). Other needs arise in nonparametric regressions themselves, for
example, in the construction of confidence intervals (Eubank and Speckman, 1993), in the
computation of bias and variance, and in the bandwidth selection (Ruppert et al., 1995).
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There are three main approaches of nonparametric derivative estimation in the litera-
ture: smoothing spline, local polynomial regression (LPR), and difference-based method. As
for smoothing spline, the usual way of estimating derivatives is to take derivatives of spline
estimate. Stone (1985) showed that spline derivative estimators achieve the optimal L2 rate
of convergence. Zhou and Wolfe (2000) derived asymptotic bias, variance, and established
normality properties. Heckman and Ramsay (2000) considered a penalized version. In the
case of LPR, a polynomial obtained by Taylor Theorem is fitted locally by kernel regres-
sion. Ruppert and Wand (1994) derived the leading bias and variance terms for general
multivariate kernel weights using locally weighted least squares theory. Fan and Gijbels
(1996) established its asymptotic properties. Delecroix and Rosa (2007) showed its uniform
consistency. In the context of difference-based derivative estimation, Müller et al. (1987)
and Härdle (1990) proposed a cross-validation technique to estimate the first derivative by
combining difference quotients with kernel smoothing. But the variance of the estimator
is proportional to n2 in the case of equidistant design. Charnigo et al. (2011) employed
a variance-reducing linear combination of symmetric quotients called empirical derivative,
quantified the asymptotic variance and bias, and proposed a generalized Cp criterion for
derivative estimation. De Brabanter et al. (2013) derived L1 and L2 rates and established
consistency of the empirical derivative.

LPR relies on Taylor expansion—a local approximation, and the main term of Taylor
series is the mean rather than the derivatives. The convergence rates of the mean estimation
and the derivative estimations are different in LPR. When the mean estimator achieves the
optimal rate of convergence, the derivative estimators do not (see Table 3 in Appendix
I). Empirical derivative can eliminate the main term of the approximation, but it seems
that their asymptotic bias and variance properties have not been well studied. Also large
biases may exist in valleys and peaks of the derivative function, and boundary problem
caused by estimation variance is still an unsolved problem. Motivated by Tong and Wang
(2005) and Lin and Li (2008), we propose a new method to estimate derivatives in the
interior. By applying Taylor expansion to a derived symmetric difference sequence, we
obtain a sequence of approximate linear regression representation in which the derivative
is just the intercept term. Then we estimate the derivative in the linear regression model
via locally weighted least squares. The asymptotic bias and variance of the new estimator
are derived, consistency and asymptotic normality are established. Theoretical properties
and simulation results illustrate that our estimators have less bias, especially higher order
derivative estimator. In the theory frame of locally weighted least squares regression, the
empirical first derivative is our special case: local constant estimator. In addition, one-side
locally weighted least squares regression is proposed to solve the boundary problem of first
order derivative estimation.

This paper is organized as follows. Section 2 introduces the motivation and methodology
of this paper. Section 3 presents theoretical results of the first order derivative estimator,
including the asymptotic bias and variance, consistency and asymptotic normality. Further,
we describe the behavior at the boundaries of first order derivative estimation and propose
a correction method. Section 4 generalizes the idea to higher order derivative estimation.
Simulation studies are given in Section 5, and the paper concludes by some discussions in
Section 6. All proofs are given in Appendices A-H, respectively.
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2. Motivation and Estimation Methodology for the First Order
Derivative

In this section, we first show that where the bias and variance of derivative estimation come
from, and then propose a new method for the first order derivative estimation.

2.1 Motivation

Consider the following nonparametric regression model

Yi = m(xi) + εi, 1 ≤ i ≤ n, (1)

where xi’s are equidistantly designed, that is, xi = i/n, Yi’s are random response variables,
m(·) is an unknown smooth mean function, εi’s are independent and identically distributed
random errors with E[εi] = 0 and V ar[εi] = σ2.

If errors εi’s are not present in (1), the model can be expressed as

Yi = m(xi), 1 ≤ i ≤ n. (2)

In this case, the observed Yi’s are actually the true values of the mean function at xi’s.
Derivative estimation in model (2) can be viewed as a numerical computation problem.
Assume thatm(·) is three times continuously differentiable on [0, 1]. Then Taylor expansions
of m(xi±j) at xi are given by

m(xi+j) = m(xi) +m(1)(xi)
j

n
+
m(2)(xi)

2!

j2

n2
+
m(3)(xi)

3!

j3

n3
+ o

(
j3

n3

)
,

m(xi−j) = m(xi)−m(1)(xi)
j

n
+
m(2)(xi)

2!

j2

n2
− m(3)(xi)

3!

j3

n3
+ o

(
j3

n3

)
.

In order to eliminate the dominant term m(xi), we employ a linear combination of m(xi−j)
and m(xi+j) subject to

aij ·m(xi+j) + bij ·m(xi−j) = 0 ·m(xi) + 1 ·m(1)(xi) +O

(
j

n

)
.

It is equivalent to solving the equations aij + bij = 0,

(aij − bij)
j

n
= 1,

whose solution is 
aij =

n

2j
,

bij = − n

2j
.

So we obtain

m(1)(xi) =
m(xi+j)−m(xi−j)

2j/n
− m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
. (3)
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As j increases , the bias will also increase. To minimize the bias, set j = 1. Then the first
order derivative m(1)(xi) is estimated by

m̂(1)(xi) =
m(xi+1)−m(xi−1)

2/n
.

Here the estimation bias is only the remainder term in Taylor expansion.

We now consider the true regression model (1). Symmetric (about i) difference quotients
(Charnigo et al., 2011; De Brabanter et al., 2013) are defined as

Y
(1)
ij =

Yi+j − Yi−j
xi+j − xi−j

, 1 ≤ j ≤ k, (4)

where k is a positive integer. Under model (1), we can decompose Y
(1)
ij into two parts as

Y
(1)
ij =

m(xi+j)−m(xi−j)

2j/n
+
εi+j − εi−j

2j/n
, 1 ≤ j ≤ k. (5)

On the right hand side of (5), the first term includes the bias, and the second term contains
the information of the variance.

From (3) and (5), we have

Y
(1)
ij = m(1)(xi) +

m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
+
εi+j − εi−j

2j/n
. (6)

Taking expectation on (6), we have

E[Y
(1)
ij ] = m(1)(xi) +

m(3)(xi)

6

j2

n2
+ o

(
j2

n2

)
.
= m(1)(xi) +

m(3)(xi)

6

j2

n2
.

For any fixed k = o(n),

E[Y
(1)
ij ]

.
= m(1)(xi) +

m(3)(xi)

6
dj , 1 ≤ j ≤ k, (7)

where dj = j2

n2 . We treat (7) as a linear regression with dj and Y
(1)
ij as the independent

variable and dependent variable respectively, and then estimate m(1)(xi) as the intercept
using the locally weighted least squares regression.

2.2 Estimation Methodology

For a fixed xi, express equation (6) in the following form:

Y
(1)
ij = βi0 + βi1d1j + δij , 1 ≤ j ≤ k,
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where βi0 = m(1)(xi), βi1 = m(3)(xi)
6 , d1j = j2

n2 , and δij = o
(
j2

n2

)
+

εi+j−εi−j

2j/n are independent

across j. The above expression takes a regression form, in which the independent variable

is d1j and the dependent variable Y
(1)
ij , and the error term satisfies

E[δij ] = o

(
j2

n2

)
.
= 0, V ar[δij ] =

n2σ2

2j2
.

To reduce the variance and combine the information for all j, we use the locally weighted
least squares regression (LWLSR) to estimate coefficients as

β̂i = arg min
βi0,βi1

k∑
j=1

(Y
(1)
ij − βi0 − βi1d1j)

2wij

= (D>WD)−1D>WY
(1)
i ,

where wij = σ2/2
V ar[δij ]

= j2

n2 , β̂i = (β̂i0, β̂i1)
>, superscript > denotes the transpose of a matrix,

D =


1 12/n2

1 22/n2

...
...

1 k2/n2

 , Y
(1)
i =


Y

(1)
i1

Y
(1)
i2
...

Y
(1)
ik

 ,W =


12/n2 0 · · · 0

0 22/n2 · · ·
...

... 0
. . . 0

0 0 · · · k2/n2

 .

Therefore, the estimator is obtained as

m̂(1)(xi) = β̂i0 = e>1 β̂i, (8)

where e1 = (1, 0)>.

3. Properties of the First Order Derivative Estimation

In this section, we study asymptotic properties of our first order derivative estimator (8) in
interior points, and reveal that empirical first derivative is our special case: local constant
estimator. For boundary points, we propose one-side LWLSR to reduce estimation variance.

3.1 Asymptotic Results

The following theorems provide asymptotic results on bias and variance, and establish
pointwise consistency and asymptotic normality of the first order derivative estimators.

Theorem 1 (Uniform Asymptotic Variance) Assume that the nonparametric model
(1) holds with equidistant design and the unknown smooth function m(·) is three times
continuously differentiable on [0, 1]. Furthermore, assume that the third order derivative
m(3)(·) is finite on [0, 1]. Then the variance of the first order derivative estimator in (8) is

V ar[m̂(1)(xi)] =
75σ2

8

n2

k3
+ o

(
n2

k3

)
uniformly for k + 1 ≤ i ≤ n− k.

2621



Wang and Lin

Theorem 1 shows that the variance of the derivative estimator is constant as x changes,
while the following theorem shows that the bias changes with x.

Theorem 2 (Pointwise Asymptotic Bias) Assume that the nonparametric model (1)
holds with equidistant design and the unknown smooth function m(·) is five times continu-
ously differentiable on [0, 1]. Furthermore, assume that the fifth order derivative m(5)(·) is
finite on [0, 1]. Then the bias of the first order derivative estimator in (8) is

Bias[m̂(1)(xi)] = −m
(5)(xi)

504

k4

n4
+ o

(
k4

n4

)
for k + 1 ≤ i ≤ n− k.

Using Theorems 1 and 2, we have that if nk−3/2 → 0 and n−1k → 0, then our estimator
has the consistency property

m̂(1)(xi)
P−→ m(1)(xi).

Furthermore, we establish asymptotic normality in the following theorem.

Theorem 3 (Asymptotic Normality) Under the assumptions of Theorem 2, if k → ∞
as n→∞ such that nk−3/2 → 0 and n−1k → 0, then

k3/2

n

(
m̂(1)(xi)−m(1)(xi) +

m(5)(xi)

504

k4

n4

)
d−→ N

(
0,

75σ2

8

)

for k+1 ≤ i ≤ n−k. Further, if k →∞ as n→∞ such that nk−3/2 → 0 and n−1k11/10 → 0,
then

k3/2

n

(
m̂(1)(xi)−m(1)(xi)

)
d−→ N

(
0,

75σ2

8

)
for k + 1 ≤ i ≤ n− k.

Theorem 3 shows that with suitable choice of k our first order derivative estimator is
asymptotically normally distributed, even asymptotically unbiased. Using the asymptotic
normality property, we can construct confidence intervals and confidence bands. From the
above theorems, the following corollary follows naturally.

Corollary 4 Under the assumptions of Theorem 2, the optimal choice of k that minimizes
the asymptotic mean square error of the first order derivative estimator in (8) is

kopt
.
= 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11.

With the optimal choice of k, the asymptotic mean square error of the first order derivative
estimator in (8) can be expressed as

AMSE[m̂(1)(xi)]
.
= 0.31

(
σ16(m(5)(xi))

6
)1/11

n−8/11.
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Figure 1: (a) Simulated data set of size 300 from model (1) with equidistant xi ∈ [0.25, 1],

m(x) =
√
x(1− x) sin((2.1π)/(x + 0.05)), εi

iid∼ N(0, 0.12), and the true mean
function (bold line). (b)-(f) The proposed first order derivative estimators
(green dots) and the empirical first derivatives (red dashed lines) for k ∈
{6, 12, 25, 30, 50}. As a reference, the true first order derivative is also plotted
(bold line).

Now we briefly examine the finite sample behavior of our estimator and compare it with
the empirical first derivative given by Charnigo et al. (2011) and De Brabanter et al. (2013).
Their estimator has the following form:

Y
[1]
i =

k1∑
j=1

wijY
(1)
ij , k1 + 1 ≤ i ≤ n− k1, (9)

where k1 is a positive integer, wij = j2/n2∑k1
j=1 j

2/n2
, and Y

(1)
ij is defined in (4).

Figure 1 displays our proposed first order derivative estimators (8) and empirical first
derivatives (9) with k1 = k ∈ {6, 12, 25, 30, 50}, for a data set of size 300 generated from

model (1) with xi ∈ [0.25, 1], εi
iid∼ N(0, 0.12), and m(x) =

√
x(1− x) sin((2.1π)/(x+0.05)).

This m(x) is borrowed from De Brabanter et al. (2013). When k is small (see Figure 1
(b) and (c)), the proposed estimators are noise corrupted versions of the true first order
derivatives, while the performance of the empirical derivatives is better except that there
are large biases near local peaks and valleys of the true derivative function. As k becomes
bigger (see Figure 1 (d)- (f)), our estimators have much less biases than empirical derivative
estimators near local peaks and valleys of the true derivative. The balance between the
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estimation bias and variance is clear even visually. Furthermore, if we combine the left part
of Figure 1 (d), the middle part of (e) and the right part of (f), more accurate derivative
estimators are obtained.

Actually, empirical first derivative and our estimator have a close relationship. Express
equation (6) in simple linear regression form

Y
(1)
ij = βi0 + ηij , 1 ≤ j ≤ k,

where βi0 = m(1)(xi), ηij = O
(

( jn)2
)

+
εi+j−εi−j

2j/n with

E[ηij ]
.
= 0, V ar[ηij ] =

n2σ2

2j2
.

This is called the local constant-truncated estimator. By the LWLSR, we get

m̂(1)(xi) = Y
[1]
i ,

which is exactly the empirical first derivative. On three times continuous differentiability,
we have the following bias and variance

Bias[Y
[1]
i ] =

m(3)(xi)

10

k2

n2
, V ar[Y

[1]
i ] =

3σ2

2

n2

k3
.

For empirical first derivative and our estimator, symmetric difference sequence eliminates
the even-order terms in Taylor expansion of mean function. This is an important advantage,
i.e., if the mean function is two times continuously differentiable, then the second-order term
is eliminated so that the bias is smaller than the second-order term. In De Brabanter et al.
(2013), the bias is O(k/n) which is obtained via a inequality (See Appendix B, De Brabanter
et al. 2013). In fact, the bias should be

Bias[Y
[1]
i ] < O(k/n) or Bias[Y

[1]
i ] = o(k/n),

which does not have exact and explicit expression on two times continuous differentiability.
In order to obtain explicit expression, we make the stronger smoothing condition—three
times continuous differentiability.

In addition, the smoothing assumptions on bias and variance are different in Theorem
1 and Theorem 2. For empirical first derivative and ours, the variance term only needs
one time continuous differentiability; whereas the bias term needs three times and five
times respectively. From the viewpoint of Taylor expansion, it seems we pay a serious
price. However, in practical applications bias-correction is needed especially in the cases
of immense oscillation of mean function. From the viewpoint of Weierstrass approximation
theorem, even if a continuous function is nondifferentiable we still can correct the bias.

3.2 Behavior at the Boundaries

Recall that for the boundary region (2 ≤ i ≤ k and n − k + 1 ≤ i ≤ n − 1) the weights in
empirical first derivative (9) are slightly modified by normalizing the weight sum. Whereas
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our estimator can be obtained directly from the LWLSR without any modification, the only
difference is that the smoothing parameter is i− 1 instead of k.

For the boundary (3 ≤ i ≤ k), the bias and variance for our estimator are

Bias[m̂(1)(xi)] = −m
(5)(xi)

504

(i− 1)4

n4
, V ar[m̂(1)(xi)] =

75σ2

8

n2

(i− 1)3
. (10)

Hence, the variance will be the largest for i = 3 and decrease for growing i till i = k,
whereas the bias will be smallest for i = 3 and increase for growing i till i = k. A similar
analysis for n− k + 1 ≤ i ≤ n− 2 shows the same results.

For the modified estimator (De Brabanter et al., 2013), the bias and variance in the
theory frame of the LWLSR are

Bias[m̂(1)(xi)] =
m(3)(xi)

10

(i− 1)2

n2
, V ar[m̂(1)(xi)] =

3σ2

2

n2

(i− 1)3
,

Which have the analogue change trend like (10) above. Although our estimator has less
bias (O(1/n4)) than empirical first derivative (O(1/n2)), the variances both are big enough
(O(n2)). So the two estimators are inaccurate and the boundary problem still exists.

In order to reduce the variance, we propose the one-side locally weighted least squares
regression method which consists of two cases: left-side locally weighted least squares re-
gression (LSLWLSR) and right-side locally weighted least squares regression (RSLWLSR).
These estimation methods can be used for the boundary: LSLWLSR is for n−k+1 ≤ i ≤ n
and RSLWLSR is for 1 ≤ i ≤ k. On two times continuous differentiability, the estimation
bias is O(k/n) and variance is O(n2/k3).

Assume that m(·) is two times continuously differentiable on [0, 1]. For 1 ≤ i ≤ n − k,
define right-side lag-j first-order difference sequence

Y <1>
ij =

Yi+j − Yi
xi+j − xi

, 1 ≤ j ≤ k. (11)

Decompose Y <1>
ij into two parts and simplify from (11) such as

Y <1>
ij =

m(xi+j)−m(xi)

j/n
+
εi+j − εi
j/n

= m(1)(xi) +
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
+
εi+j − εi
j/n

.

(12)

For some fixed i, εi is constant as j increases. Thus we express equation (12) in the
following form:

Y <1>
ij = βi0 + βi1d1j + δij , 1 ≤ j ≤ k,

where βi0 = m(1)(xi), βi1 = −εi, d1j = n
j , and δij = m(2)(xi)

2!
j1

n1 + o
(
j1

n1

)
+

εi+j

j/n are indepen-

dent across j with

E[δij |εi] =
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
.
= 0, V ar[δij |εi] =

n2σ2

j2
.
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So we use the LWLSR to estimate regression coefficients as

β̂i = arg min
βi0,βi1

k∑
j=1

(Y
(1)
ij − βi0 − βi1d1j)

2wij

= (D>WD)−1D>WY <1>
i ,

where wij = σ2

V ar[δij ]
= j2

n2 , β̂i = (β̂i0, β̂i1)
>,

D =


1 n1/11

1 n1/21

...
...

1 n1/k1

 , Y <1>
i =


Y <1>
i1

Y <1>
i2
...

Y <1>
ik

 ,W =


12/n2 0 · · · 0

0 22/n2 · · ·
...

... 0
. . . 0

0 0 · · · k2/n2

 .

Therefore, the estimator is obtained as

m̂(1)(xi) = β̂i0 = e>1 β̂i, (13)

where e1 = (1, 0)>.
Following Theorem 1-4 above, we have the similar theorems for the right-side first-order

derivative estimator in (13). Here we only give the asymptotic bias and variance as follows.

Theorem 5 Assume that the nonparametric model (1) holds with equidistant design and
the unknown smooth function m(·) is two times continuously differentiable on [0, 1]. Fur-
thermore, assume that the second order derivative m(2)(·) is finite on [0, 1]. Then the bias
and variance of the right-side first-order derivative estimator in (13) are

Bias[m̂(1)(xi)|εi] =
m(2)(xi)

2

k1

n1
+ o

(
k1

n1

)
V ar[m̂(1)(xi)|εi] = 12σ2

n2

k3
+ o

(
n2

k3

)
correspondingly for 1 ≤ i ≤ n− k.

From Theorem 5 above, we can see that the variance and bias for the right-side first-
order derivative estimator in (13) is O(n2/k3) and O(k/n), which is the same rate as De
Brabanter et al. (2013) deduced on two times continuous differentiability. For further bias-
correction, high-order Taylor expansion may be needed. A similar analysis for left-side lag-j
first-order difference sequence obtains the same results.

3.3 The Choice of k

From the tradeoff between bias and variance, we have two methods for the choice of k:
adaptive method and uniform method. The adaptive k based on asymptotic mean square
error is

ka = 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11.
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To choose k globally, we consider the mean averaged square error (MASE) criterion

MASE =
1

n− 2k

n−k∑
i=k+1

MSE(m̂(1)(xi))

=
1

n− 2k

n−k∑
i=k+1

(
75σ2

8

n2

k3
+

(m(5)(xi))
2

5042
k8

n8
)

=
75σ2

8

n2

k3
+

1

n− 2k

n−k∑
i=k+1

(m(5)(xi))
2

5042
k8

n8

→ 75σ2

8

n2

k3
+

L5

5042
k8

n8
,

where L5 =
∫ 1
0 (m(5)(x))2dx. Minimizing the MASE with respect to k, the uniform k is

ku = 3.48(
σ2

L5
)1/11n10/11.

Since the ka and ku are unknown in practice, a rule of thumb estimator may be prefer-
able. The error variance σ2 can be estimated by Hall et al. (1990), the fifth order derivative
m(5)(xi) can be estimated by local polynomial regression (R-package: locpol), and L5 is
estimated by Seifert et al. (1993).

However, questions still remain. First, k = O(n10/11), which requires n to be large
enough to ensure k < n; Second, ‘the higher the derivative, the wilder the behavior’ (Ram-
say, 1998), thus the estimations of m(5)(xi) and L5 are inaccurate. The most important is
that when the bias is very small or large we can’t balance the bias and variance via only
increasing or decreasing the value of k. From the expression of adaptive k, uniform k and
simulations, we put forward the following considerations.

• On the whole, k should satisfy k < n/2 or else the needed data size 2k goes over the
total size n so that we can’t estimate any derivative. In addition, we can’t leave more
boundary points than interior points, so k needs to satisfy the condition k < n/4.

• The choice of k relies on Taylor expansion which is a local concept. There exists some
maximum value of k suitable for a fixed mean function, denoted by kmax. However,
adaptive and uniform k is determined by many factor: variance, sample size, frequency
and amplitude of mean function. Thus it is possible to obtain too big k in the cases
of large variance, and now cross validation could be an alternative. As frequency
and amplitude increase, the uniform and adaptive k decrease. This is the reason why
our estimator adopting different k for different oscillation has better performance in
Figure 1. In addition, as the order of Taylor expansion increases, the kmax becomes
large. So our estimator needs a larger k than empirical derivative.

• When the third-order and fifth-order derivatives are close to zero, the values of ka and
ku are too big even k > n/2. Thus we can’t balance bias and variance via increasing
the value of k when bias is very small. Meanwhile we can’t balance bias and variance
via decreasing the value of k when bias is too big. It is better to correct bias by
higher-order Taylor expansion.
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4. Higher Order Derivative Estimations

In this section, we generalize the idea of the first order derivative estimation to higher order.
Different difference sequences are adopted for first and second order derivative estimation.

4.1 Second Order Derivative Estimation

As for the second order derivative estimation, we can show by a similar technique as in (3)
that

m(2)(xi) =
m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
− m(4)(xi)

12

j2

n2
+ o

(
j2

n2

)
.

Define

Y
(2)
ij =

Yi−j − 2Yi + Yi+j
j2/n2

. (14)

Just as in equation (5), decompose (14) into two parts as

Y
(2)
ij =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+
εi−j − 2εi + εi+j

j2/n2
, 1 ≤ j ≤ k.

Note that i is fixed as j changes. Thus the conditional expectation of Y
(2)
ij given εi is

E[Y
(2)
ij |εi] =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+ (−2εi)

n2

j2

.
= m(2)(xi) +

m(4)(xi)

12

j2

n2
+ (−2εi)

n2

j2
.

Therefore, the new regression model is given by

Y
(2)
ij = βi0 + βi1d1j + βi2d2j + δij , 1 ≤ j ≤ k,

where the regression coefficient vector βi = (βi0, βi1, βi2)
> = (m(2)(xi),

m(4)(xi)
12 ,−2εi)

>,

covariates d1j = j2

n2 and d2j = n2

j2
, and the error term δij =

εi+j+εi−j

j2/n2 + o
(
j2

n2

)
, with

E[δij |εi]
.
= 0, V ar[δij |εi] =

2σ2n4

j4
.

Now the locally weighted least squares estimator of βi can be expressed as

β̂i = (D>WD)−1D>WY
(2)
i ,

where

D =


1 12/n2 n2/12

1 22/n2 n2/22

...
...

...
1 k2/n2 n2/k2

 , Y
(2)
i =


Y

(2)
i1

Y
(2)
i2
...

Y
(2)
ik

 ,W =


14/n4 0 · · · 0

0 24/n4 · · ·
...

... 0
. . . 0

0 0 · · · k4/n4

 .
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Therefore,
m̂(2)(xi) = β̂i0 = e>1 β̂i, (15)

where e1 = (1, 0, 0)>.
The following three theorems provide asymptotic results on bias, variance and mean

square error, and establish pointwise consistency and asymptotic normality of the second
order derivative estimator.

Theorem 6 Assume that the nonparametric model (1) holds with equidistant design and
the unknown smooth function m(·) is six times continuously differentiable on [0, 1]. Further-
more, assume that the sixth order derivative m(6)(·) is finite on [0, 1]. Then the variance of
the second order derivative estimator in (15) is

V ar[m̂(2)(xi)|εi] =
2205σ2

8

n4

k5
+ o(

n4

k5
)

uniformly for k + 1 ≤ i ≤ n− k, and the bias is

Bias[m̂(2)(xi)|εi] = −m
(6)(xi)

792

k4

n4
+ o(

k4

n4
)

for k + 1 ≤ i ≤ n− k.

From Theorem 6, we can see that if nk−5/4 → 0 and n−1k → 0, then our estimator is
consistent

m̂(2)(xi)
P−→ m(2)(xi).

Moreover, we establish asymptotic normality, derive the asymptotic mean square error and
the optimal k value.

Corollary 7 Under the assumptions of Theorem 6, if k → ∞ as n → ∞ such that
nk−5/4 → 0 and n−1k → 0, then

k5/2

n2

(
m̂(2)(xi)−m(2)(xi) +

m(6)(xi)

792

k4

n4

)
d−→ N

(
0,

2205σ2

8

)
.

Moreover, if nk−5/4 → 0 and n−1k13/12 → 0, then

k5/2

n2

(
m̂(2)(xi)−m(2)(xi)

)
d−→ N

(
0,

2205σ2

8

)
.

Corollary 8 Under the assumptions of Theorem 6, the optimal k value that minimizes the
asymptotic mean square error of the second order derivative estimator in (15) is

kopt
.
= 4.15

(
σ2

(m(6)(xi))2

)1/13

n12/13.

With the optimal choice of k, the asymptotic mean square error of the second order derivative
estimator in (15) can be expressed as

AMSE[m̂(1)(xi)]
.
= 0.36

(
σ16(m(6)(xi))

10
)1/13

n−8/13.
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Figure 2: (a)-(f) The proposed second order derivative estimators (green points) and the
empirical second derivatives (red dashed line) for k ∈ {6, 9, 12, 25, 35, 60} based
on the simulated data set from Figure 1. As a reference, the true second order
derivative curve is also plotted (bold line).

Here we also use a simple simulation to examine the finite sample behavior of the new
estimator and compare it with the empirical second derivative given by Charnigo et al.
(2011) and De Brabanter et al. (2013). Their estimator has the following form:

Y
[2]
i =

k2∑
j=1

wijY
(2)
ij , k1 + k2 + 1 ≤ i ≤ n− k1 − k2, (16)

where wij = j/n∑k2
j=1 j/n

, Y
(2)
ij = (Y

(1)
i+j − Y

(1)
i−j)/(2j/n), k1 is the same as in (9), and k2 is

a positive integer. Figure 2 displays our second order derivative estimators and empirical
second derivatives (16) at interior point for the data from Figure 1, where k1 = k2 = k ∈
{6, 9, 12, 25, 35, 60}. The performance of the our second derivative estimator and empirical
second derivative is parallel to the first derivative’s case. Note that the k values used here
are larger than the counterparts in the first order derivative estimation.

4.2 Higher Order Derivative Estimation

We generalize the method aforementioned to higher order derivatives m(l)(xi) (l > 2). The
method includes two main steps: the first step is to construct a sequence of symmetric
difference quotients in which the derivative is the intercept of the linear regression derived
by Taylor expansion, and the second step is to estimate the derivative using the LWLSR.
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The construction of a difference sequence is particularly important because it determines
the estimation accuracy.

When l is odd, set d = l+1
2 . We linearly combine m(xi±j)’s subject to

d∑
h=1

[ai,jd+hm(xi+jd+h) + ai,−(jd+h)m(xi−(jd+h))] = m(l)(xi) +O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive 2d equations through Taylor expansion and
solve out the 2d unknown parameters. Define

Y
(l)
ij =

d∑
h=1

[ai,jd+hYi+jd+h + ai,−(jd+h)Yi−(jd+h)].

and consider the linear regression

Y
(l)
ij = m(l)(xi) + δij , 1 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O( jn).

When l is even, set d = l
2 . We linearly combine m(xi±j)’s subject to

bi,jm(xi)+
d∑

h=1

[ai,jd+hm(xi+jd+h)+ai,−(jd+h)m(xi−(jd+h))] = m(l)(xi)+O

(
j

n

)
, 0 ≤ j ≤ k,

where k is a positive integer. We can derive 2d+ 1 equations through Taylor expansion and
solve out the 2d+ 1 unknown parameters. Define

Y
(l)
ij = bi,jm(xi) +

d∑
h=1

[ai,jd+hYi+jd+h + ai,−(jd+h)Yi−(jd+h)].

and consider the linear regression

Y
(l)
ij = m(l)(xi) + bi,jεi + δij , 1 ≤ j ≤ k,

where δij =
∑d

h=1[ai,jd+hεi+jd+h + ai,−(jd+h)εi−(jd+h)] +O( jn).
If k is large enough, it is better to keep the j2/n2 term like (7) to reduce the estimation

bias. With the regression models defined above, we can obtain the higher order derivative
estimators and deduce their asymptotic results by similar arguments as in the previous
subsection; the details are omitted here.

5. Simulations

In addition to the simple simulations in the previous sections, we conduct more simulation
studies in this section to further evaluate the finite-sample performances of the proposed
method and compare it with two other well-known methods. To get more comprehensive
comparisons, we use estimation curves and mean absolute errors to assess the performances
of different methodologies.
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5.1 Finite Sample Results of the First Order Derivative Estimation

We first consider the following two regression functions

m(x) = sin(2πx) + cos(2πx) + log(4/3 + x), x ∈ [−1, 1], (17)

and

m(x) = 32e−8(1−2x)
2
(1− 2x), x ∈ [0, 1]. (18)

Figure 3: (a) The true first order derivative function (bold line) and our first order derivative
estimations (green dashed line). Simulated data set of size 500 from model (1)
with equispaced xi ∈ [−1, 1], m(x) = sin(2πx) + cos(2πx) + log(4/3 + x), and

εi
iid∼ N(0, 0.12). (b) The true first order derivative function (bold line) and our

first order derivative estimations (green dashed line). Simulated data set of size
500 from model (1) with equispaced xi ∈ [0, 1], m(x) = 32e−8(1−2x)

2
(1− 2x), and

εi
iid∼ N(0, 0.12).

These two functions were considered by Hall (2010) and De Brabanter et al. (2013),
respectively. The data sets are of size n = 500 and generated from model (1) with ε ∼
N(0, σ2) for σ = 0.1. Figure 3 presents the first order derivative estimations of regression
functions (17) and (18). It shows that our estimation curves of the first order derivative fit
the true curves accurately, although a comparison with the other estimators is not given in
the figure.

We now evaluate our estimator with empirical first derivative. Since the oscillation of
the periodic function depends on frequency and amplitude, in our simulations we choose
the mean function

m(x) = A sin(2πfx), x ∈ [0, 1],
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Ours Empirical Ours Empirical Ours Empirical

A f σ n=50 n=50 n=200 n=200 n=1000 n=1000

1 1 0.1 0.28(0.09) 0.36(0.08) 0.14(0.04) 0.24(0.04) 0.07(0.02) 0.16(0.03)
0.5 1.38(0.45) 1.01(0.28) 0.69(0.23) 0.61(0.16) 0.30(0.10) 0.38(0.07)
2 5.54(1.87) 2.35(0.90) 2.73(0.89) 1.39(0.48) 1.18(0.37) 0.85(0.24)

2 0.1 0.58(0.15) 1.00(0.13) 0.34(0.07) 0.61(0.07) 0.19(0.03) 0.39(0.04)
0.5 1.76(0.57) 2.33(0.52) 1.08(0.31) 1.52(0.28) 0.60(0.17) 0.97(0.16)
2 5.59(1.88) 4.91(1.60) 2.96(1.05) 3.36(0.95) 1.63(0.52) 2.11(0.48)

10 1 0.1 0.41(0.09) 0.98(0.12) 0.24(0.05) 0.67(0.07) 0.13(0.03) 0.42(0.04)
0.5 1.45(0.47) 2.46(0.44) 0.80(0.22) 1.65(0.25) 0.42(0.10) 1.05(0.14)
2 5.52(1.76) 5.27(1.24) 2.71(0.89) 3.55(0.76) 1.28(0.35) 2.31(0.38)

2 0.1 1.15(0.17) 2.90(0.20) 0.64(0.09) 1.66(0.12) 0.35(0.05) 1.06(0.06)
0.5 3.72(0.79) 6.44(0.77) 2.06(0.39) 4.18(0.42) 1.16(0.19) 2.65(0.24)
2 9.38(2.78) 13.3(2.40) 5.66(1.38) 9.14(1.35) 3.17(0.72) 5.74(0.65)

Table 1: Adjusted Mean Absolute Error for the first order derivative estimation.

with design points xi = i/n, and the errors are independent and identically normal distri-
bution with zero mean and variance σ2. We consider three sample sites n = 50, 200, 1000,
corresponding to small, moderate, and large sample sizes, three standard deviations σ =
0.1, 0.5, 2, two frequencies f = 1, 2, and two amplitudes A = 1, 10. The number of repeti-
tions is set as 1000. We consider two criterion: adjusted mean absolute error (AMAE) and
mean averaged square error, and find that they have similar performance. For the sake of
simplicity and robustness, we choose the AMAE as a measure of comparison. It is defined
as

AMAE(k) =
1

n− 2k

n−k∑
i=k+1

|m̂′(xi)−m′(xi)|,

here the boundary effects are excluded. According to the condition k < n/4 and the AMAE
criterion, we choose k as follows

k̂ = min{arg min
k
AMAE(k),

n

4
}.

Table 1 reports the simulation results. The numbers outside and inside the brackets
are the mean and standard deviation of the AMAE. It indicates our estimator performs
better than empirical first derivative in most cases except that the adoptive k is much less
the theoretically uniform k.

5.2 Finite Sample Results of the Second Order Derivative Estimation

Consider the same functions as in Subsection 5.1. Figure 4 presents the estimation curves
and the true curves of the second order derivatives of (17) and (18). It shows that our
estimators track the true curves closely.
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Figure 4: (a)-(b) The true second order derivative function (bold line) and proposed second
order derivative estimations (green dashed line) based on the simulated data sets
from Figure 3 correspondingly.

method n=50 n=100 n=250 n=500

σ = 0.02 ours 1.03(0.18) 0.79(0.11) 0.62(0.068) 0.47(0.07)
locpol 1.58(0.45) 0.98(0.22) 0.70(0.11) 0.54(0.08)
pspline 1.05(0.87) 0.80(0.82) 0.41(0.18) 0.60(0.78)

σ = 0.1 ours 2.40(0.55) 2.03(0.39) 1.46(0.27) 1.26(0.25)
locpol 3.90(1.53) 2.93(1.71) 1.79(0.46) 1.52(1.14)
pspline 2.53(2.32) 3.54(8.33) 1.86(2.79) 2.36(3.91)

σ = 0.5 ours 6.63(2.05) 5.05(1.61) 4.08(0.96) 3.27(0.90)
locpol 9.48(2.70) 8.16(5.07) 5.80(3.47) 4.38(2.20)
pspline 8.23(11.9) 8.00(15.1) 7.52(12.3) 4.77(11.8)

Table 2: Adjusted Mean Absolute Error for the second order derivative estimation.

We evaluate our method with two other well-known methods by Monte Carlo studies,
that is local polynomial regression with p = 5 (R packages locpol, Cabrera, 2012) and pe-
nalized smoothing splines with norder = 6 and method = 4 (R packages pspline, Ramsay
and Ripley, 2013) in model (1). For the sake of simplicity, we set the mean function

m(x) = sin(2πx), x ∈ [−1, 1].

We consider four sample sizes, n ∈ {50, 100, 250, 500}, and three standard deviations, σ ∈
{0.02, 0.1, 0.5}. The number of repetitions is set as 100. Table 2 indicates that our estimator
is superior to the others in both mean and standard deviation.
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6. Discussion

In this paper we propose a new methodology to estimate derivatives in nonparametric re-
gression. The method includes two main steps: construct a sequence of symmetric difference
quotients, and estimate the derivative using locally weighted least squares regression. The
construction of a difference sequence is particularly important, since it determines the es-
timation accuracy. We consider three basic principles to construct a difference sequence.
First, we eliminate the terms before the derivative of interest through linear combinations,
the derivative is thus put in the important place. Second, we adopt every dependent vari-
able only once, which keeps the independence of the difference sequence’s terms. Third, we
retain one or two terms behind the derivative of interest in the derived linear regression,
which reduces estimation bias.

Our method and the local polynomial regression (LPR) have a close relationship. Both
methods rely on Taylor expansion and employ the idea of locally weighted fitting. However,
there are important differences between them. The first difference is the aim of estimation.
The aim of LPR is to estimate the mean, the derivative estimation is only a “by-product”,
while the aim of our method is to estimate the derivative directly. The second difference is
the method of weighting. LPR is kernel-weighted, the farther the distance, the lower the
weight; our weight is based on variance, which can be computed exactly. Our simulation
studies show that our estimator is more efficient than the LPR in most cases.

All results have been derived for equidistant design with independent identical dis-
tributed errors, and extension to more general designs is left to further research. Also, the
boundary problem deserve further consideration.
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Appendix A. Proof of Theorem 1

For (8), we yield V ar[β̂i] = V ar[(D>WD)−1D>WY
(1)
i ] = σ2

2 (D>WD)−1. We can compute

D>WD =

(
I2/n

2 I4/n
4

I4/n
4 I6/n

6

)
,

where Il =
∑k

j=1 j
l, l is an integer. Using the formula for the inverse of a matrix, we have

(D>WD)−1 =
n8

I2I6 − I24

(
I6/n

6 −I4/n4
−I4/n4 I2/n

2

)
.

Therefore the variance of β̂i0 is

V ar[β̂i0] =
σ2

2
e>1 (D>WD)−1e1 =

75σ2

8

n2

k3
+ o(

n2

k3
).

2635



Wang and Lin

Appendix B. Proof of Theorem 2

From (8), we yield E[β̂i] = E[(D>WD)−1D>WY
(1)
i ] = β + (D>WD)−1D>WE[δi]. So we

have
Bias[β̂i] = (D>WD)−1D>WE[δi].

Since m is five times continuously differentiable, the following Taylor expansions are valid
for m(xi±j) around xi

m(xi±j) = m(xi) +m(1)(x)(
±j
n

) +
m(2)(x)

2!
(
±j
n

)2 +
m(3)(x)

3!
(
±j
n

)3 +
m(4)(x)

4!
(
±j
n

)4

+
m(5)(x)

5!
(
±j
n

)5 + o

(
(
±j
n

)5
)
.

We have

Y
(1)
ij =

Yi+j − Yi−j
xi+j − xi−j

=
m(1)(xi)(

2j
n ) + m(3)(xi)

3 ( jn)3 + m(5)(xi)
60 ( jn)5 + o

(
( jn)5

)
+ (εi+j − εi−j)

2j/n

= m(1)(xi) +
m(3)(xi)

6
(
j

n
)2 +

m(5)(xi)

120
(
j

n
)4 + o

(
(
j

n
)4
)

+
εi+j − εi−j

2j/n

= m(1)(xi) +
m(3)(xi)

6
(
j

n
)2 + δij .

So

E[δi] =
m(5)(xi)

120


14/n4

24/n4

...
k4/n4

+ o(


14/n4

24/n4

...
k4/n4

),

Bias[β̂i] =
m(5)(xi)

120

k4

n4

(
−5/21
10/9

)
+ o(

k4

n4
).

The estimation bias is Bias[β̂i0] = −m(5)(xi)
504

k4

n4 + o( k
4

n4 ).

Appendix C. Proof of Theorem 3

Using the asymptotic theory of least squares and the fact that {δij}kj=1 are independent

distributed with mean zeros and variance {n2σ2

2j2
}kj=1, it follows that the asymptotic normality

is proved.

Appendix D. Proof of Corollary 4

For the first derivative estimation, the mean square error is given by

MSE[m̂(1)(xi)] = (Bias[m̂(1)(xi)])
2 + V ar[m̂(1)(xi)]

=
(m(5)(xi))

2

254016

k8

n8
+

75σ2

8

n2

k3
+ o(

k8

n8
) + o(

n2

k3
).
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Ignoring higher order terms, we obtain the asymptotic mean square error

AMSE(m̂(1)(xi)) =
(m(5)(xi))

2

254016

k8

n8
+

75σ2

8

n2

k3
. (19)

To minimize (19) with respect to k, we take the first derivative of (19) and yield the gradient

d[AMSE(m̂(1)(xi))]

dk
=

(m(5)(xi))
2

31752

k7

n8
− 225σ2

8

n2

k4
,

our optimization problem is to solve d[AMSE(m̂(1)(xi))]
dk = 0. So we obtain

kopt =

(
893025σ2

(m(5)(xi))2

)1/11

n10/11
.
= 3.48

(
σ2

(m(5)(xi))2

)1/11

n10/11,

and
AMSE(m̂(1)(xi))

.
= 0.31(σ16(m(5)(xi))

6)1/11n−8/11.

Appendix E. Proof of Theorem 5

The conditional variance of β̂i0 is V ar[β̂i0|εi] = σ2(D>WD)−1 = 12σ2 n
2

k3
+ o(n

2

k3
).

Since the conditional bias of δij is

E[δij |εi] =
m(2)(xi)

2!

j1

n1
+ o

(
j1

n1

)
.

Thus the conditional bias of β̂i0 is

Bias[β̂i0|εi] = (D>WD)−1D>WE[δi]

=
m(2)(xi)

2

k1

n1
+ o

(
k1

n1

)
.

Appendix F. Proof of Theorem 6

The conditional variance is given by V ar[β̂i|εi] = 2σ2(D>WD)−1. We can compute

D>WD =

 I4/n
4 I6/n

6 I2/n
2

I6/n
6 I8/n

8 I4/n
4

I2/n
2 I4/n

4 I0/n
0

 .

The determinant of D>WD is

|D>WD| = I0I4I8 + 2I2I4I6 − I0I26 − I34 − I22I8
n12

,

and the adjoint matrix is

(D>WD)? =

 (I0I8 − I24 )/n8 (I2I4 − I0I6)/n6 (I4I6 − I2I8)/n10
(I2I4 − I0I6)/n6 (I0I4 − I22 )/n4 (I2I6 − I24 )/n8

(I4I6 − I2I8)/n10 (I2I6 − I24 )/n8 (I4I8 − I26 )/n12

 .
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Based on the formula for the inverse of a matrix A−1 = 1
|A|A

?, we have

V ar[β̂i0|εi] = 2σ2e>1 (D>WD)−1e1 =
2205σ2

8

n4

k5
+ o(

n4

k5
).

Revisit the sixth order Taylor approximation for m(xi±j) around xi

m(xi±j) = m(xi) +m(1)(xi)(
±j
n

) +
m(2)(xi)

2!
(
±j
n

)2 +
m(3)(xi)

3!
(
±j
n

)3 +
m(4)(xi)

4!
(
±j
n

)4

+
m(5)(xi)

5!
(
±j
n

)5 +
m(6)(xi)

6!
(
±j
n

)6 + o

(
(
±j
n

)6
)
.

We have

Y
(2)
ij =

m(xi−j)− 2m(xi) +m(xi+j)

j2/n2
+
εi−j − 2εi + εi+j

j2/n2

= m(2)(xi) +
m(4)(xi)

12

j2

n2
+ (−2εi)

n2

j2
+
m(6)(xi)

360

j4

n4
+ o

(
j4

n4

)
+
εi−j + εi+j
j2/n2

.

So the conditional mean is

E[δi|εi] =
m(6)(xi)

360


14/n4

24/n4

...
k4/n4

+ o(


14/n4

24/n4

...
k4/n4

),

and the conditional bias is

Bias[β̂i|εi] = (D>WD)−1D>WE[δi|εi]

=
m(6)(xi)

360

 5/11
15/11

5/231

 k4/n4

k2/n2

k6/n6

+ o(

 k4/n4

k2/n2

k6/n6

).

We get

Bias[β̂i0|εi] = −m
(6)(xi)

792

k4

n4
+ o(

k4

n4
).

Appendix G. Proof of Corollary 7

Using the asymptotic theory of least square and the fact that {δij}kj=1 are independent

distributed with conditional mean zeros and conditional variance {2σ2n4

j4
}kj=1, it follows that

the asymptotic normality is proved.

Appendix H. Proof of Corollary 8

For the second derivative estimation, the MSE is

MSE[m̂(2)(xi)|εi] = Bias[m̂(2)(xi)]
2 + V ar[m̂(2)(xi)]

=
(m(6)(xi))

2

627264

k8

n8
+

2205σ2

8

n4

k5
+ o(

n4

k5
) + o(

k8

n8
).
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Ignoring higher order terms, we get AMSE

AMSE[m̂(2)(xi)|εi] =
(m(6)(xi))

2

627264

k8

n8
+

2205σ2

8

n4

k5
. (20)

To minimize (20) with respect to k, take the first derivative of (20) and yield the gradient

d[AMSE[m̂(2)(xi)|εi]]
dk

=
(m(6)(xi))

2

78408

k7

n8
− 11025σ2

8

n4

k6
,

our optimization problem is to solve d[AMSE[m̂(2)(xi)|εi]]
dk = 0. So we obtain

kopt =

(
108056025σ2

(m(6)(xi))2

)1/13

n12/13
.
= 4.15

(
σ2

(m(6)(xi))2

)1/13

n12/13,

and

AMSE(m̂(1)(xi))
.
= 0.36

(
σ16(m(6)(xi))

10
)1/13

n−8/13.

Appendix I. Convergence Rates

In Table 3, we give the convergence rate of mean estimator and the first order derivative
estimator in LPR. p = 1 means that the order of LPR is 1. V ar0 represents the convergence
rate of the variance of the mean estimator, V ar1 represents the convergence rate of the

variance of the first order derivative estimator. M̃SE1 stands for the convergence rate of
the mean square error of first order derivative estimator when k = k0,

V ar0 Bias20 k0 MSE0 V ar1 Bias21 k1 MSE1 M̃SE1

p=1 1/k k4/n4 n4/5 n−4/5 n2/k3 k4/n4 n6/7 n−4/7 n−2/5

p=2 1/k k8/n8 n8/9 n−8/9 n2/k3 k4/n4 n6/7 n−4/7 n−4/9

p=3 1/k k8/n8 n8/9 n−8/9 n2/k3 k8/n8 n10/11 n−8/11 n−2/3

p=4 1/k k12/n12 n12/13 n−12/13 n2/k3 k8/n8 n10/11 n−8/11 n−8/13

Table 3: The convergence rates for mean estimator and the first order derivative estimator.
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