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Abstract

This paper describes a new paradigm of machine learning, in which Intelligent Teacher
is involved. During training stage, Intelligent Teacher provides Student with information
that contains, along with classification of each example, additional privileged information
(for example, explanation) of this example. The paper describes two mechanisms that
can be used for significantly accelerating the speed of Student’s learning using privileged
information: (1) correction of Student’s concepts of similarity between examples, and (2)
direct Teacher-Student knowledge transfer.
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1. Introduction

During the last fifty years, a strong machine learning theory has been developed. This
theory (see Vapnik and Chervonenkis, 1974, Vapnik, 1995, Vapnik, 1998, Chervonenkis,
2013) includes:

• The necessary and sufficient conditions for consistency of learning processes.

• The bounds on the rate of convergence, which, in general, cannot be improved.

• The new inductive principle called Structural Risk Minimization (SRM), which always
converges to the best possible approximation in the given set of functions1.

1. Let a set S of functions f(x, α), α ∈ Λ be given. We introduce a structure S1 ⊂ S2 ⊂ ... ⊂ S on this
set, where Sk is the subset of functions with VC dimension k. Consider training set (x1, y1), . . . , (x`, y`).
In the SRM framework, by choosing an element Sk and a function in this element to minimize the CV
bound for samples of size `, one chooses functions f(x, α`) ∈ Sk such that the sequence {f(x, α`}, `→∞,
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• The effective algorithms, such as Support Vector Machines (SVM), that realize the
consistency property of SRM principle2.

The general learning theory appeared to be completed: it addressed almost all standard
questions of the statistical theory of inference. However, as always, the devil is in the detail:
it is a common belief that human students require far fewer training examples than any
learning machine. Why?

We are trying to answer this question by noting that a human Student has an Intelligent
Teacher3 and that Teacher-Student interactions are based not only on brute force methods
of function estimation. In this paper, we show that Teacher-Student interactions can include
special learning mechanisms that can significantly accelerate the learning process. In order
for a learning machine to use fewer observations, it can use these mechanisms as well.

This paper considers a model of learning with the so-called Intelligent Teacher, who
supplies Student with intelligent (privileged) information during training session. This is
in contrast to the classical model, where Teacher supplies Student only with outcome y for
event x.

Privileged information exists for almost any learning problem and this information can
significantly accelerate the learning process.

2. Learning with Intelligent Teacher: Privileged Information

The existing machine learning paradigm considers a simple scheme: given a set of training
examples, find, in a given set of functions, the one that approximates the unknown decision
rule in the best possible way. In such a paradigm, Teacher does not play an important role.

In human learning, however, the role of Teacher is important: along with examples,
Teacher provides students with explanations, comments, comparisons, metaphors, and so
on. In the paper, we include elements of human learning into classical machine learning
paradigm. We consider a learning paradigm called Learning Using Privileged Information
(LUPI), where, at the training stage, Teacher provides additional information x∗ about
training example x.

The crucial point in this paradigm is that the privileged information is available only
at the training stage (when Teacher interacts with Student) and is not available at the test
stage (when Student operates without supervision of Teacher).

In this paper, we consider two mechanisms of Teacher–Student interactions in the frame-
work of the LUPI paradigm:

1. The mechanism to control Student’s concept of similarity between training exam-
ples.

strongly uniformly converges to the function f(x, α0) that minimizes the error rate on the closure of
∪∞k=1Sk (Vapnik and Chervonenkis, 1974), (Vapnik, 1982), (Devroye et al., 1996), (Vapnik, 1998).

2. Solutions of SVM belong to Reproducing Kernel Hilbert Space (RKHS). Any subset of functions in
RKHS with bounded norm has a finite VC dimension. Therefore, SRM with respect to the value of
norm of functions satisfies the general SRM model of strong uniform convergence. In SVM, the element
of SRM structure is defined by parameter C of SVM algorithm.

3. This is how a Japanese proverb assesses teacher’s influence: “Better than a thousand days of diligent
study is one day with a great teacher.”

2024



Learning Using privileged Information

2. The mechanism to transfer knowledge from the space of privileged information
(space of Teacher’s explanations) to the space where decision rule is constructed.

The first mechanism (Vapnik, 2006) was introduced in 2006 using SVM+ method. Here
we reinforce SVM+ by constructing a parametric family of methods SVM∆+; for ∆ =
∞, the method SVM∆+ is equivalent to SVM+. The first experiments with privileged
information using SVM+ method were described in Vapnik and Vashist (2009); later, the
method was applied to a number of other examples (Sharmanska et al., 2013; Ribeiro et al.,
2012; Liang and Cherkassky, 2008).

The second mechanism was introduced recently (Vapnik and Izmailov, 2015b).

2.1 Classical Model of Learning

Formally, the classical paradigm of machine learning is described as follows: given a set of
iid pairs (training data)

(x1, y1), ..., (x`, y`), xi ∈ X, yi ∈ {−1,+1}, (1)

generated according to a fixed but unknown probability measure P (x, y), find, in a given
set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗) that minimizes the
probability of incorrect classifications (incorrect values of y ∈ {−1,+1}). In this model,
each vector xi ∈ X is a description of an example generated by Nature according to an
unknown generator P (x) of random vectors xi, and yi ∈ {−1,+1} is its classification defined
according to a conditional probability P (y|x). The goal of Learning Machine is to find the
function y = f(x, α∗) that guarantees the smallest probability of incorrect classifications.
That is, the goal is to find the function which minimizes the risk functional

R(α) =
1

2

∫
|y − f(x, α)|dP (x, y) (2)

in the given set of indicator functions f(x, α), α ∈ Λ when the probability measure P (x, y) =
P (y|x)P (x) is unknown but training data (1) are given.

2.2 LUPI Paradigm of Learning

The LUPI paradigm describes a more complex model: given a set of iid triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`), xi ∈ X, x∗i ∈ X∗, yi ∈ {−1,+1}, (3)

generated according to a fixed but unknown probability measure P (x, x∗, y), find, in a
given set of indicator functions f(x, α), α ∈ Λ, the function y = f(x, α∗) that guarantees
the smallest probability of incorrect classifications (2).

In the LUPI paradigm, we have exactly the same goal of minimizing (2) as in the classical
paradigm, i.e., to find the best classification function in the admissible set. However, during
the training stage, we have more information, i.e., we have triplets (x, x∗, y) instead of pairs
(x, y) as in the classical paradigm. The additional information x∗ ∈ X∗ belongs to space
X∗, which is, generally speaking, different from X. For any element (xi, yi) of training
example generated by Nature, Intelligent Teacher generates the privileged information x∗i
using some (unknown) conditional probability function P (x∗i |xi).
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In this paper, we first illustrate the work of these mechanisms on SVM algorithms; after
that, we describe their general nature.

Since the additional information is available only for the training set and is not available
for the test set, it is called privileged information and the new machine learning paradigm
is called Learning Using Privileged Information.

Next, we consider three examples of privileged information that could be generated by
Intelligent Teacher.

Example 1. Suppose that our goal is to find a rule that predicts the outcome y of
a surgery in three weeks after it, based on information x available before the surgery. In
order to find the rule in the classical paradigm, we use pairs (xi, yi) from previous patients.

However, for previous patients, there is also additional information x∗ about procedures
and complications during surgery, development of symptoms in one or two weeks after
surgery, and so on. Although this information is not available before surgery, it does exist
in historical data and thus can be used as privileged information in order to construct a
rule that is better than the one obtained without using that information. The issue is how
large an improvement can be achieved.

Example 2. Let our goal be to find a rule y = f(x) to classify biopsy images x into two
categories y: cancer (y = +1) and non-cancer (y = −1). Here images are in a pixel space
X, and the classification rule has to be in the same space. However, the standard diagnostic
procedure also includes a pathologist’s report x∗ that describes his/her impression about
the image in a high-level holistic language X∗ (for example, “aggressive proliferation of cells
of type A among cells of type B” etc.).

The problem is to use the pathologist’s reports x∗ as privileged information (along with
images x) in order to make a better classification rule for images x just in pixel space
X. (Classification by a pathologist is a time-consuming procedure, so fast decisions during
surgery should be made without consulting him or her).

Example 3. Let our goal be to predict the direction of the exchange rate of a currency
at the moment t. In this problem, we have observations about the exchange rates before t,
and we would like to predict if the rate will go up or down at the moment t+ ∆. However,
in the historical market data we also have observations about exchange rates after moment
t. Can this future-in-the-past privileged information be used for construction of a better
prediction rule?

To summarize, privileged information is ubiquitous: it usually exists for almost any
machine learning problem.

Section 4 describes the first mechanism that allows one to take advantage of privileged
information by controlling Student’s concepts of similarity between training examples. Sec-
tion 5 describes examples where LUPI model uses similarity control mechanism. Section
6 is devoted to mechanism of knowledge transfer from space of privileged information X∗

into decision space X.

However, first in the next Section we describe statistical properties of machine learning
that enable the use of privileged information.
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3. Statistical Analysis of the Rate of Convergence

According to the bounds developed in the VC theory (Vapnik and Chervonenkis, 1974),
(Vapnik, 1998), the rate of convergence depends on two factors: how well the classification
rule separates the training data

(x1, y1), ..., (x`, y`), x ∈ Rn, y ∈ {−1,+1}, (4)

and the VC dimension of the set of functions in which the rule is selected.
The theory has two distinct cases:

1. Separable case: there exists a function f(x, α`) in the set of functions f(x, α), α ∈ Λ
with finite VC dimension h that separates the training data (4) without errors:

yif(xi, α`) > 0 ∀i = 1, ..., `.

In this case, for the function f(x, α`) that minimizes (down to zero) the empirical risk
(on training set (4)), the bound

P (yf(x, α`) ≤ 0) < O∗
(
h− ln η

`

)
holds true with probability 1 − η, where P (yf(x, α`) ≤ 0) is the probability of error
for the function f(x, α`) and h is the VC dimension of the admissible set of functions.
Here O∗ denotes order of magnitude up to logarithmic factor.

2. Non-separable case: there is no function in f(x, α), α ∈ Λ finite VC dimension h
that can separate data (4) without errors. Let f(x, α`) be a function that minimizes
the number of errors on (4). Let ν(α`) be its error rate on training data (4). Then,
according to the VC theory, the following bound holds true with probability 1− η:

P (yf(x, α`) ≤ 0) < ν(α`) +O∗

(√
h− ln η

`

)
.

In other words, in the separable case, the rate of convergence has the order of magnitude
1/`; in the non-separable case, the order of magnitude is 1/

√
`. The difference between these

rates4 is huge: the same order of bounds requires 320 training examples versus 100,000
examples. Why do we have such a large gap?

3.1 Key Observation: SVM with Oracle Teacher

Let us try to understand why convergence rates for SVMs differ so much for separable and
non-separable cases. Consider two versions of the SVM method for these cases.

SVM method first maps vectors x of space X into vectors z of space Z and then con-
structs a separating hyperplane in space Z. If training data can be separated with no
error (the so-called separable case), SVM constructs (in space Z that we, for simplicity,

4. The VC theory also gives a more accurate estimate of the rate of convergence; however, the scale of
difference remains essentially the same.
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consider as an N -dimensional vector space RN ) a maximum margin separating hyperplane.
Specifically, in the separable case, SVM minimizes the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ 1, ∀i = 1, ..., `;

whereas in the non-separable case, SVM minimizes the functional

T (w) = (w,w) + C
∑̀
i=1

ξi

subject to the constraints

(yi(w, zi) + b) ≥ 1− ξi, ∀i = 1, ..., `,

where ξi ≥ 0 are slack variables. That is, in the separable case, SVM uses ` observations
for estimation of N coordinates of vector w, whereas in the nonseparable case, SVM uses `
observations for estimation of N + ` parameters: N coordinates of vector w and ` values of
slacks ξi. Thus, in the non-separable case, the number N + ` of parameters to be estimated
is always larger than the number ` of observations; it does not matter here that most of
slacks will be equal to zero: SVM still has to estimate all ` of them. Our guess is that the
difference between the corresponding convergence rates is due to the number of parameters
SVM has to estimate.

To confirm this guess, consider the SVM with Oracle Teacher (Oracle SVM). Suppose
that Teacher can supply Student with the values of slacks as privileged information: during
training session, Student is supplied with triplets

(x1, ξ
0
1 , y1), ..., (x`, ξ

0
` , y`),

where ξ0
i , i = 1, ..., ` are the slacks for the Bayesian decision rule. Therefore, in order to

construct the desired rule using these triplets, the SVM has to minimize the functional

T (w) = (w,w)

subject to the constraints

(yi(w, zi) + b) ≥ ri, ∀i = 1, ..., `,

where we have denoted

ri = 1− ξ0
i , ∀i = 1, ..., `.

One can show that the rate of convergence is equal to O∗(1/`) for Oracle SVM. The following
(slightly more general) proposition holds true (Vapnik and Vashist, 2009).
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Proposition 1. Let f(x, α0) be a function from the set of indicator functions f(x, α),
with α ∈ Λ with VC dimension h that minimizes the frequency of errors (on this set)
and let

ξ0
i = max{0, (1− f(xi, α0))}, ∀i = 1, ..., `.

Then the error probability p(α`) for the function f(x, α`) that satisfies the constraints

yif(x, α) ≥ 1− ξ0
i , ∀i = 1, ..., `

is bounded, with probability 1− η, as follows:

p(α`) ≤ P (1− ξ0 < 0) +O∗
(
h− ln η

`

)
.

3.2 From Ideal Oracle to Real Intelligent Teacher

Of course, real Intelligent Teacher cannot supply slacks: Teacher does not know them.
Instead, Intelligent Teacher can do something else, namely:

1. define a space X∗ of (correcting) slack functions (it can be different from the space
X of decision functions);

2. define a set of real-valued slack functions f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ with VC
dimension h∗, where approximations

ξi = f∗(x, α∗)

of the slack functions5 are selected;

3. generate privileged information for training examples supplying Student, instead
of pairs (4), with triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`). (5)

During training session, the algorithm has to simultaneously estimate two functions using
triplets (5): the decision function f(x, α`) and the slack function f∗(x∗, α∗

` ). In other words,
the method minimizes the functional

T (α∗) =
∑̀
i=1

max{0, f∗(x∗i , α∗)} (6)

subject to the constraints

yif(xi, α) > −f∗(x∗i , α∗), i = 1, ..., `. (7)

Let f(x, α`) and f∗(x∗, α∗
` ) be functions that solve this optimization problem. For these

functions, the following proposition holds true (Vapnik and Vashist, 2009).

5. Note that slacks ξi introduced for the SVM method can be considered as a realization of some function
ξ = ξ(x, β0) from a large set of functions (with infinite VC dimension). Therefore, generally speaking,
the classical SVM approach can be viewed as estimation of two functions: (1) the decision function, and
(2) the slack function, where these functions are selected from two different sets, with finite and infinite
VC dimensions, respectively. Here we consider both sets with finite VC dimensions.
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Proposition 2. The solution f(x, α`) of optimization problem (6), (7) satisfies the
bounds

P (yf(x, α`) < 0) ≤ P (f∗(x∗, α∗
` ) ≥ 0) +O∗

(
h+ h∗ − ln η

`

)
with probability 1 − η, where h and h∗ are the VC dimensions of the set of decision
functions f(x, α), α ∈ Λ, and the set of correcting functions f∗(x∗, α∗), α∗ ∈ Λ∗,
respectively.

According to Proposition 2, in order to estimate the rate of convergence to the best possi-
ble decision rule (in spaceX) one needs to estimate the rate of convergence of P{f∗(x∗, α∗

` ) ≥
0} to P{f∗(x∗, α∗

0) ≥ 0} for the best rule f∗(x∗, α∗
0) in space X∗. Note that both the space

X∗ and the set of functions f∗(x∗, α∗
` ), α

∗ ∈ Λ∗ are suggested by Intelligent Teacher that
tries to choose them in a way that facilitates a fast rate of convergence. The guess is that
a really Intelligent Teacher can indeed do that.

As shown in the VC theory, in standard situations, the uniform convergence has the
order O∗(

√
h∗/`), where h∗ is the VC dimension of the admissible set of correcting functions

f∗(x∗, α∗), α∗ ∈ Λ∗. However, for special privileged space X∗ and corresponding functions
f∗(x∗, α∗), α∗ ∈ Λ∗, the convergence can be faster (as O∗([1/`]δ), δ > 1/2).

A well-selected privileged information space X∗ and Teacher’s explanation P (x∗|x) along
with sets {f(x, α`), α ∈ Λ} and {f∗(x∗, α∗), α∗ ∈ Λ∗} engender a convergence that is
faster than the standard one. The skill of Intelligent Teacher is being able to select of
the proper space X∗, generator P (x∗|x), set of functions f(x, α`), α ∈ Λ, and set of func-
tions f∗(x∗, α∗), α∗ ∈ Λ∗: that is what differentiates good teachers from poor ones.

4. Similarity Control in LUPI Paradigm

4.1 SVM∆+ for Similarity Control in LUPI Paradigm

In this section, we extend SVM method of function estimation to the method called SVM+,
which allows one to solve machine learning problems in the LUPI paradigm (Vapnik, 2006).
The SVMε+ method presented below is a reinforced version of the one described in Vapnik
(2006) and used in Vapnik and Vashist (2009).

Consider the model of learning with Intelligent Teacher: given triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`),

find in the given set of functions the one that minimizes the probability of incorrect classi-
fications in space X.

As in standard SVM, we map vectors xi ∈ X onto the elements zi of the Hilbert space
Z, and map vectors x∗i onto elements z∗i of another Hilbert space Z∗ obtaining triples

(z1, z
∗
1 , y1), ..., (z`, z

∗
` , y`).

Let the inner product in space Z be (zi, zj), and the inner product in space Z∗ be (z∗i , z
∗
j ).

Consider the set of decision functions in the form

f(x) = (w, z) + b,
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where w is an element in Z, and consider the set of correcting functions in the form

ξ∗(x∗, y) = [y((w∗, z∗) + b∗)]+,

where w∗ is an element in Z∗ and [u]+ = max{0, u}.
Our goal is to we minimize the functional

T (w,w∗, b, b∗) =
1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗)]+

subject to the constraints

yi[(w, zi) + b] ≥ 1− [yi((w
∗, z∗i )− b∗)]+.

The structure of this problem mirrors the structure of the primal problem for standard
SVM. However, due to the elements [ui]+ = max{0, ui} that define both the objective
function and the constraints here we faced non-linear optimization problem.

To find the solution of this optimization problem, we approximate this non-linear opti-
mization problem with the following quadratic optimization problem: minimize the func-
tional

T (w,w∗, b, b∗) =
1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗) + ζi] + ∆C

∑̀
i=1

ζi (8)

(here ∆ > 0 is the parameter of approximation6) subject to the constraints

yi((w, zi) + b) ≥ 1− yi((w∗, z∗) + b∗)− ζi, i = 1, ..., `, (9)

the constraints
yi((w

∗, z∗i ) + b∗) + ζi ≥ 0, ∀i = 1, ..., `, (10)

and the constraints
ζi ≥ 0, ∀i = 1, ..., `. (11)

To minimize the functional (8) subject to the constraints (10), (11), we construct the La-
grangian

L(w, b, w∗, b∗, α, β) = (12)

1

2
[(w,w) + γ(w∗, w∗)] + C

∑̀
i=1

[yi((w
∗, z∗i ) + b∗) + (1 + ∆)ζi]−

∑̀
i=1

νiζi −

∑̀
i=1

αi [yi[(w, zi) + b]− 1 + [yi((w
∗, z∗i ) + b∗) + ζi]]−

∑̀
i=1

βi[yi((w
∗, z∗i ) + b∗) + ζi],

where αi ≥ 0, βi ≥ 0, νi ≥ 0, i = 1, ..., ` are Lagrange multipliers.
To find the solution of our quadratic optimization problem, we have to find the saddle

point of the Lagrangian (the minimum with respect to w,w∗, b, b∗ and the maximum with
respect to αi, βi, νi, i = 1, ..., `).

6. In Vapnik (2006), parameter ∆ was set at a sufficiently large value.
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The necessary conditions for minimum of (12) are

∂L(w, b, w∗, b∗, α, β)

∂w
= 0 =⇒ w =

∑̀
i=1

αiyizi (13)

∂L(w, b, w∗, b∗, α, β)

∂w∗ = 0 =⇒ w∗ =
1

γ

∑̀
i=1

yi(αi + βi − C)z∗i (14)

∂L(w, b, w∗, b∗, α, β)

∂b
= 0 =⇒

∑̀
i=1

αiyi = 0 (15)

∂L(w, b, w∗, b∗, α, β)

∂b∗
= 0 =⇒

∑̀
i=1

yi(C − αi − βi) = 0 (16)

∂L(w, b, w∗, b∗, α, β)

∂ζi
= 0 =⇒ αi + βi + νi = (C + ∆C) (17)

Substituting the expressions (13) in (12) and, taking into account (14), (15), (16), and
denoting δi = C − βi, we obtain the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

(zi, zj)yiyjαiαj −
1

2γ

∑̀
i,j=1

(δi − αi)(δj − αj)(z∗i , z∗j )yiyj .

To find its saddle point, we have to maximize it subject to the constraints7

∑̀
i=1

yiαi = 0 (18)

∑̀
i=1

yiδi = 0 (19)

0 ≤ δi ≤ C, i = 1, ..., ` (20)

0 ≤ αi ≤ δi + ∆C, i = 1, ..., ` (21)

Let vectors α0, δ0 be a solution of this optimization problem. Then, according to (13) and
(14), one can find the approximations to the desired decision function

f(x) = (w0, zi) + b =
∑̀
i=1

α∗
i yi(zi, z) + b

and to the slack function

ξ∗(x∗, y) = yi((w
∗
0, z

∗
i ) + b∗) + ζ =

∑̀
i=1

yi(α
0
i − δ0

i )(z
∗
i , z

∗) + b∗ + ζ.

7. In SVM+, instead of constraints (21), the constraints αi ≥ 0 were used.

2032



Learning Using privileged Information

The Karush-Kuhn-Tacker conditions for this problem are
α0
i [yi[(w0, zi) + b+ (w∗

0, z
∗
i ) + b∗] + ζi − 1] = 0

(C − δ0
i )[(w

∗
0, z

∗
i ) + b∗ + ζi] = 0

ν0
i ζi = 0

Using these conditions, one obtains the value of constant b as

b = 1− yk(w0, zk) = 1− yk

[∑̀
i=1

α0
i (zi, zk)

]
,

where (zk, z
∗
k, yk) is a triplet for which α0

k 6= 0, δ0
k 6= C, zi 6= 0.

As in standard SVM, we use the inner product (zi, zj) in space Z in the form of Mer-
cer kernel K(xi, xj) and inner product (z∗i , z

∗
j ) in space Z∗ in the form of Mercer kernel

K∗(x∗i , x
∗
j ). Using these notations, we can rewrite the SVM∆+ method as follows: the

decision rule in X space has the form

f(x) =
∑̀
i=1

yiα
0
iK(xi, x) + b,

where K(·, ·) is the Mercer kernel that defines the inner product for the image space Z of
space X (kernel K∗(·, ·) for the image space Z∗ of space X∗) and α0 is a solution of the
following dual space quadratic optimization problem: maximize the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

yiyjαiαjK(xi, xj)−
1

2γ

∑̀
i,j=1

yiyj(αi − δi)(αj − δj)K∗(x∗i , x
∗
j )

subject to constraints (18) – (21).
Remark. Note that if δi = αi or ∆ = 0, the solution of our optimization problem

becomes equivalent to the solution of the standard SVM optimization problem, which max-
imizes the functional

L(α, δ) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

yiyjαiαjK(xi, xj)

subject to constraints (18) – (21) where δi = αi.
Therefore, the difference between SVM∆+ and SVM solutions is defined by the last

term in objective function (8). In SVM method, the solution depends only on the values
of pairwise similarities between training vectors defined by the Gram matrix K of elements
K(xi, xj) (which defines similarity between vectors xi and xj). The SVM∆+ solution is
defined by objective function (8) that uses two expressions of similarities between observa-
tions: one (K(xi, xj) for xi and xj) that comes from space X and another one (K∗(x∗i , x

∗
j )

for x∗i and x∗j ) that comes from space of privileged information X∗. That is how Intelligent
Teacher changes the optimal solution by correcting the concepts of similarity.
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The last term in equation (8) defines the instrument for Intelligent Teacher to control
the concept of similarity of Student.

Efficient computational implementation of this SVM+ algorithm for classification and
its extension for regression can be found in Pechyony et al. (2010) and Vapnik and Vashist
(2009), respectively.

4.1.1 Simplified Approach

The described method SVM∆+ requires to minimize the quadratic form L(α, δ) subject to
constraints (18) – (21). For large ` it can be a challenging computational problem. Consider
the following approximation. Let

f∗(x∗, α∗
` ) =

∑̀
i=1

α∗
iK

∗(x∗i , x) + b∗

be be an SVM solution in space X∗ and let

ξ∗i = [1− f∗(x∗, α∗
` )− b∗]+

be the corresponding slacks. Let us use the linear function

ξi = tξ∗i + ζi, ζi ≥ 0

as an approximation of slack function in space X. Now we minimize the functional

(w,w) + C
∑̀
i=1

(tξ∗i + (1 + ∆)ζi), ∆ ≥ 0

subject to the constraints
yi((w, zi) + b) > 1− tξ∗i + ζi,

t > 0, ζi ≥ 0, i = 1, ..., `

(here zi is Mercer mapping of vectors xi in RKHS).
The solution of this quadratic optimization problem defines the function

f(x, α`) =
∑̀
i=1

αiK(xi, x) + b,

where α is solution of the following dual problem: maximize the functional

R(α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyjK(xi, xj)

subject to the constraints ∑̀
i=1

yiαi = 0

∑̀
i=1

αiξ
∗
i ≤ C

∑̀
i=1

ξ∗i

0 ≤ αi ≤ (1 + ∆)C, i = 1, ..., `
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4.2 General Form of Similarity Control in LUPI Paradigm

Consider the following two sets of functions: the set f(x, α), α ∈ Λ defined in space X
and the set f∗(x∗, α∗), α∗ ∈ Λ∗, defined in space X∗. Let a non-negative convex functional
Ω(f) ≥ 0 be defined on the set of functions f(x, α), α ∈ Λ, while a non-negative convex
functional Ω∗(f∗) ≥ 0 be defined on the set of functions f(x∗, α∗), α∗ ∈ Λ∗. Let the sets
of functions θ(f(x, α)), α ∈ Λ, and θ(f(x∗, α∗)), α∗ ∈ Λ∗, which satisfy the corresponding
bounded functionals

Ω(f) ≤ Ck

Ω∗(f∗) ≤ Ck,

have finite VC dimensions hk and hk, respectively. Consider the structures

S1 ⊂ ... ⊂ Sm....

S∗
1 ⊂ ... ⊂ S∗

m...

defined on corresponding sets of functions.

Let iid observations of triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`)

be given. Our goal is to find the function f(x, α`) that minimizes the probability of the test
error.

To solve this problem, we minimize the functional

∑̀
i=1

f∗(x∗i , α)

subject to constraints

yi[f(x, α) + f(x∗, α∗)] > 1

and the constraint

Ω(f) + γΩ(f∗) ≤ Cm

(we assume that our sets of functions are such that solutions exist).

Then, for any fixed sets Sk and S∗
k , the VC bounds hold true, and minimization of these

bounds with respect to both sets Sk and S∗
k of functions and the functions f(x, α`) and

f∗(x(, α∗
` ) in these sets is a realization of universally consistent SRM principle.

The sets of functions defined in previous section by the Reproducing Kernel Hilbert
Space satisfy this model since any subset of functions from RKHS with bounded norm
has finite VC dimension according to the theorem about VC dimension of linear bounded
functions in Hilbert space8.

8. This theorem was proven in mid-1970s (Vapnik and Chervonenkis, 1974) and generalized for Banach
spaces in early 2000s (Gurvits, 2001; Vapnik, 1998).
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5. Transfer of Knowledge Obtained in Privileged Information Space to
Decision Space

In this section, we consider the second important mechanism of Teacher-Student interaction:
using privileged information for knowledge transfer from Teacher to Student9.

Suppose that Intelligent Teacher has some knowledge about the solution of a specific
pattern recognition problem and would like to transfer this knowledge to Student. For
example, Teacher can reliably recognize cancer in biopsy images (in a pixel space X) and
would like to transfer this skill to Student.

Formally, this means that Teacher has some function y = f0(x) that distinguishes cancer
(f0(x) = +1 for cancer and f0(x) = −1 for non-cancer) in the pixel space X. Unfortunately,
Teacher does not know this function explicitly (it only exists as a neural net in Teacher’s
brain), so how can Teacher transfer this construction to Student? Below, we describe a
possible mechanism for solving this problem; we call this mechanism knowledge transfer.

Suppose that Teacher believes in some theoretical model on which the knowledge of
Teacher is based. For cancer model, he or she believes that it is a result of uncontrolled
multiplication of the cancer cells (cells of type B) that replace normal cells (cells of type A).
Looking at a biopsy image, Teacher tries to generate privileged information that reflects his
or her belief in development of such process; Teacher may describe the image as:

Aggressive proliferation of cells of type B into cells of type A.

If there are no signs of cancer activity, Teacher may use the description

Absence of any dynamics in the of standard picture.

In uncertain cases, Teacher may write

There exist small clusters of abnormal cells of unclear origin.

In other words, Teacher has developed a special language that is appropriate for de-
scription x∗i of cancer development based on the model he or she believes in. Using this
language, Teacher supplies Student with privileged information x∗i for the image xi by
generating training triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`). (22)

The first two elements of these triplets are descriptions of an image in two languages: in
language X (vectors xi in pixel space), and in language X∗ (vectors x∗i in the space of
privileged information), developed for Teacher’s understanding of cancer model.

Note that the language of pixel space is universal (it can be used for description of
many different visual objects; for example, in the pixel space, one can distinguish between
male and female faces), while the language used for describing privileged information is very
specific: it reflects just a model of cancer development. This has an important consequence:

9. In machine learning, transfer learning refers to the framework, where experience obtained for solving
one problem is used (with proper modifications) for solving another problem, related to the previous
one; both problems are assumed to be in the same space, with only some parameters being changed.
The knowledge transfer considered here is different: it denotes the transfer of knowledge obtained in one
(privileged) space to another (decision) space.
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the set of admissible functions in space X has to be rich (has a large VC dimension), while
the set of admissible functions in space X∗ may be not rich (has a small VC dimension).

One can consider two related pattern recognition problems using triplets (22):

1. The problem of constructing a rule y = f(x) for classification of biopsy in the pixel
space X using data

(x1, y1), ..., (x`, y`). (23)

2. The problem of constructing a rule y = f∗(x∗) for classification of biopsy in the space
X∗ using data

(x∗1, y1), ..., (x∗` , y`). (24)

Suppose that language X∗ is so good that it allows to create a rule y = f∗` (x∗) that
classifies vectors x∗ corresponding to vectors x with the same level of accuracy as the best
rule y = f`(x) for classifying data in the pixel space10.

In the considered example, the VC dimension of the admissible rules in a special space
X∗ is much smaller than the VC dimension of the admissible rules in the universal space
X and, since the number of examples ` is the same in both cases, the bounds on the error
rate for the rule y = f∗` (x∗) in X∗ will be better11 than those for the rule y = f`(x) in
X. Generally speaking, the knowledge transfer approach can be applied if the classification
rule y = f∗` (x∗) is more accurate than the classification rule y = f`(x) (the empirical error
in privileged space is smaller than the empirical error in the decision space).

The following problem arises: how one can use the knowledge of the rule
y = f∗` (x∗) in space X∗ to improve the accuracy of the desired rule y = f`(x) in space X?

5.1 Knowledge Representation for SVMs

To answer this question, we formalize the concept of representation of the knowledge about
the rule y = f∗` (x∗).

Suppose that we are looking for our rule in Reproducing Kernel Hilbert Space (RKHS)
associated with kernel K∗(x∗i , x

∗). According to Representer Theorem (Kimeldorf and
Wahba, 1971; Schölkopf et al., 2001), such rule has the form

f∗` (x∗) =
∑̀
i=1

γiK
∗(x∗i , x

∗) + b, (25)

where γi, i = 1, ..., ` and b are parameters.

Suppose that, using data (24), we found a good rule (25) with coefficients γi = γ∗i , i =
1, ..., ` and b = b∗. This is now the knowledge about our classification problem. Let us
formalize the description of this knowledge.

Consider three elements of knowledge representation used in Artificial Intelligence (Brach-
man and Levesque, 2004):

10. The rule constructed in space X∗ cannot be better than the best possible rule in space X, since all
information originates in space X.

11. According to VC theory, the guaranteed bound on accuracy of the chosen rule depends only on two
factors: the frequency of errors on training set and the VC dimension of admissible set of functions.
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1. Fundamental elements of knowledge.

2. Frames (fragments) of the knowledge.

3. Structural connections of the frames (fragments) in the knowledge.

We call the fundamental elements of the knowledge a limited number of vectors u∗1...., u
∗
m

from space X∗ that can approximate well the main part of rule (25). It could be the support
vectors or the smallest number of vectors12 ui ∈ X∗:

f∗` (x∗)− b =
∑̀
i=1

γ∗iK
∗(x∗i , x

∗) ≈
m∑
k=1

β∗kK
∗(u∗k, x

∗). (26)

Let us call the functions K∗(u∗k, x
∗), k = 1, ...,m the frames (fragments) of knowledge. Our

knowledge

f∗` (x∗) =

m∑
k=1

β∗kK
∗(u∗k, x

∗) + b

is defined as a linear combination of the frames.

5.1.1 Scheme of Knowledge Transfer Between Spaces

In the described terms, knowledge transfer from X∗ into X requires the following:

1. To find the fundamental elements of knowledge u∗1, ..., u
∗
m in space X∗.

2. To find frames (m functions) K∗(u∗1, x
∗), ...,K∗(u∗m, x

∗) in space X∗.

3. To find the functions φ1(x), ..., φm(x) in space X such that

φk(xi) ≈ K∗(u∗k, x
∗
i ) (27)

holds true for almost all pairs (xi, x
∗
i ) generated by Intelligent Teacher that uses some

(unknown) generator P (x∗, x) = P (x∗|x)P (x).

Note that the capacity of the set of functions from which φk(x) are to be chosen can be
smaller than that of the capacity of the set of functions from which the classification function
y = f`(x) is chosen (function φk(x) approximates just one fragment of knowledge, not the
entire knowledge, as function y = f∗` (x∗), which is a linear combination (26) of frames).
Also, as we will see in the next section, estimates of all the functions φ1(x), ..., φm(x) are
done using different pairs as training sets of the same size `. That is, we hope that transfer
of m fragments of knowledge from space X∗ into space X can be done with higher accuracy
than estimating the function y = f`(x) from data (23).

After finding images of frames in space X, the knowledge about the rule obtained in
space X∗ can be approximated in space X as

f`(x) ≈
m∑
k=1

δkφk(x) + b∗,

where coefficients δk = γk (taken from (25)) if approximations (27) are accurate. Otherwise,
coefficients δk can be estimated from the training data, as shown in Section 6.3.

12. In machine learning, it is called the reduced number of support vectors (Burges, 1996).
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5.1.2 Finding the Smallest Number of Fundamental Elements of Knowledge

Let our functions φ belong to RKHS associated with the kernel K∗(x∗i , x
∗), and let our

knowledge be defined by an SVM method in space X∗ with support vector coefficients αi.
In order to find the smallest number of fundamental elements of knowledge, we have to
minimize (over vectors u∗1, ..., u

∗
m and values β1, ..., βm) the functional

R(u∗1, ..., u
∗
m;β1, ..., βm) = (28)∣∣∣∣∣

∣∣∣∣∣∑̀
i=1

yiαiK
∗(x∗i , x

∗)−
m∑
s=1

βsK
∗(u∗s, x

∗)

∣∣∣∣∣
∣∣∣∣∣
2

RKHS

=

∑̀
i,j=1

yiyjαiαjK
∗(x∗i , x

∗
j )− 2

∑̀
i=1

m∑
s=1

yiαiβsK
∗(x∗i , u

∗
s) +

m∑
s,t=1

βsβtK
∗(u∗s, u

∗
t ).

The last equality was derived from the following property of the inner product for functions
in RKHS (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001):(

K∗(x∗i , x
∗),K(x∗j , x

∗)
)
RKHS

= K∗(x∗i , x
∗
j ).

5.1.3 Smallest Number of Fundamental Elements of Knowledge for
Homogeneous Quadratic Kernel

For general kernel functions K∗(·, ·), minimization of (28) is a difficult computational prob-
lem. However, for the special homogeneous quadratic kernel

K∗(x∗i , x
∗
j ) = (x∗i , x

∗
j )

2,

this problem has a simple exact solution (Burges, 1996). For this kernel, we have

R =
∑̀
i,j=1

yiyjαiαj(x
∗
i , x

∗
j )

2 − 2
∑̀
i=1

m∑
s=1

yiαiβs(x
∗
i , u

∗
s)

2 +
m∑

s,t=1

βsβt(u
∗
s, u

∗
t )

2. (29)

Let us look for solution in set of orthonormal vectors u∗i , ..., u
∗
m for which we can rewrite

(29) as follows

R̂ =
∑̀
i,j=1

yiyjαiαj(x
∗
i , x

∗
j )

2 − 2
∑̀
i=1

m∑
s=1

yiαiβs(x
∗
i , u

∗
s)

2 +
m∑
s=1

β2
s (u∗s, u

∗
s)

2. (30)

Taking derivative of R̂ with respect to u∗k, we obtain that the solutions u∗k, k = 1, ...,m
have to satisfy the equations

dR̂

duk
= −2βk

∑̀
i=1

yiαix
∗
ix

∗T
i u∗k + 2β2

ku
∗
k = 0.

Introducing notation

S =
∑̀
i=1

yiαix
∗
ix

∗T
i , (31)
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we conclude that the solutions satisfy the equation

Su∗k = βku
∗
k, k = 1, ...,m.

Let us chose from the set u∗1, ..., u
∗
m of eigenvectors of the matrix S the vectors corresponding

to the largest in absolute values eigenvalues β1, . . . , βm, which are coefficients of expansion
of the classification rule on the frames (uk, x

∗)2, k = 1, . . . ,m.
Using (31), one can rewrite the functional (30) in the form

R̂ = 1TS21−
m∑
k=1

β2
k, (32)

where we have denoted by S2 the matrix obtained from S with its elements si,j replaced
with s2

i,j , and by 1 we have denoted the (`× 1)-dimensional matrix of ones.
Therefore, in order to find the fundamental elements of knowledge, one has to solve the

eigenvalue problem for (n×n)-dimensional matrix S and then select an appropriate number
of eigenvectors corresponding to eigenvalues with largest absolute values. One chooses such
m eigenvectors for which functional (32) is small. The number m does not exceed n (the
dimensionality of matrix S).

5.1.4 Finding Images of Frames in Space X

Let us call the conditional expectation function

φk(x) =

∫
K∗(u∗k, x

∗)p(x∗|x) dx∗

the image of frame K∗(u∗k, x
∗) in space X. To find m image functions φk(x) of the frames

K(u∗k, x
∗), k = 1, ...,m in space X, we solve the following m regression estimation problems:

find the regression function φk(x) in X, k = 1, . . . ,m, using data

(x1,K
∗(u∗k, x

∗
1)), ..., (x`,K

∗(u∗k, x
∗
` )), k = 1, . . . ,m, (33)

where pairs (xi, x
∗
i ) belong to elements of training triplets (22).

Therefore, using fundamental elements of knowledge u∗1, ...u
∗
m in space X∗, the corre-

sponding frames K∗(u∗1, x
∗), ...,K∗(u∗m, x

∗) in space X∗, and the training data (33), one
constructs the transformation of the space X into m-dimensional feature space13

φ(x) = (φ1(x), ...φm(x)),

where k-th coordinate of vector function φ(x) is defined as φk = φk(x).

5.1.5 Algorithms for Knowledge Transfer

1. Suppose that our regression functions can be estimated accurately: for a sufficiently
small ε > 0 the inequalities

|φk(xi)−K∗(u∗k, x
∗
i )| < ε, ∀k = 1, ...,m and ∀i = 1, ..., `

13. One can choose any subset from (m+ n)-dimensional space (φ1(x), ...φm(x)), x1, ..., xn).
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hold true for almost all pairs (xi, x
∗
i ) generated according to P (x∗|y). Then the approxima-

tion of our knowledge in space X is

f(x) =
m∑
k=1

β∗kφk(x) + b∗,

where β∗k, k = 1, ...,m are eigenvalues corresponding to eigenvectors u∗1, ..., u
∗
m.

2. If, however, ε is not too small, one can use privileged information to employ both
mechanisms of intelligent learning: controlling similarity between training examples and
knowledge transfer.

In order to describe this method, we denote by vector φi the m-dimensional vector with
coordinates

φi = (φ1(xi), ..., φm(xi))
T .

Consider the following problem of intelligent learning: given training triplets

(φ1, x
∗
1, y1), ..., (φ`, x

∗
` , y`),

find the decision rule

f(φ(x)) =
∑̀
i=1

yiα̂iK̂(φi, φ) + b. (34)

Using SVM∆+ algorithm described in Section 4, we can find the coefficients of expansion
α̂i in (34). They are defined by the maximum (over α̂ and δ) of the functional

R(α̂, δ) =
∑̀
i=1

α̂i −
1

2

∑̀
i,j=1

yiyjα̂iα̂jK̂(φi, φj)−
1

2γ

∑̀
i,j=1

yiyj(α̂i − δi)(α̂j − δj)K∗(x∗i , x
∗
j )

subject to the equality constraints

∑̀
i=1

α̂iyi = 0,
∑̀
i=1

α̂i =
∑̀
i=1

δi

and the inequality constraints

0 ≤ α̂i ≤ δi + ∆C, 0 ≤ δi ≤ C, i = 1, . . . , `

(see Section 4).

5.2 General Form of Knowledge Transfer

One can use many different ideas to represent knowledge obtained in space X∗. The main
factors of these representations are concepts of fundamental elements of the knowledge.
They could be, for example, just the support vectors (if the number of support vectors is
not too big) or coordinates (features) xt∗, t = 1, . . . , d of d-dimensional privileged space
X∗ (if the number of these features not too big). In the latter case, the small number of
fundamental elements of knowledge would be composed of features x∗k in the privileged
space that can be then approximated by regression functions φk(x). In general, using
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privileged information it is possible to try transfer set of useful features for rule in X∗ space
into their image in X space.

The space where depiction rule is constructed can contain both features of space X
and new features defined by the regression functions. The example of knowledge transfer
described further in subsection 5.5 is based on this approach.

In general, the idea is to specify small amount important feature in privileged space and
then try to transfer them (say, using non-linear regression technique) in decision space to
construct useful (additional) features in decision space.

Note that in SVM framework, with the quadratic kernel the minimal number m of
fundamental elements (features) does not exceed the dimensionality of space X∗ (often, m
is much smaller than dimensionality. This was demonstrated in multiple experiments with
digit recognition by Burges 1996): in order to generate the same level of accuracy of the
solution, it was sufficient to use m elements, where the value of m was at least 20 times
smaller than the corresponding number of support vectors.

5.3 Kernels Involved in Intelligent Learning

In this paper, among many possible Mercer kernels (positive semi-definite functions), we
consider the following three types:

1. Radial Basis Function (RBF) kernel:

KRBFσ(x, y) = exp{−σ2(x− y)2}.

2. INK-spline kernel. Kernel for spline of order zero with infinite number of knots is
defined as

KINK0(x, y) =
d∏

k=1

(min(xk, yk) + δ)

(δ is a free parameter) and kernel of spline of order one with infinite number of knots
is defined in the non-negative domain and has the form

KINK1(x, y) =

d∏
k=1

(
δ + xkyk +

|xk − yk|min{xk, yk}
2

+
(min{xk, yk})3

3

)
where xk ≥ 0 and yk ≥ 0 are k coordinates of d-dimensional vector x.

3. Homogeneous quadratic kernel

KPol2 = (x, y)2,

where (x, y) is the inner product of vectors x and y.

The RBF kernel has a free parameter σ > 0; two other kernels have no free parameters.
That was achieved by fixing a parameter in more general sets of functions: the degree of
polynomial was chosen to be 2, and the order of INK-splines was chosen to be 1.

It is easy to introduce kernels for any degree of polynomials and any order of INK-
splines. Experiments show excellent properties of these three types of kernels for solving
many machine learning problems. These kernels also can be recommended for methods that
use both mechanisms of Teacher-Student interaction.
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5.4 Knowledge Transfer for Statistical Inference Problems

The idea of privileged information and knowledge transfer can be also extended to Statistical
Inference problems considered in Vapnik and Izmailov (2015a) and Vapnik et al. (2015).

For simplicity, consider the problem of estimation14 of conditional probability P (y|x)
from iid data

(x1, y1), ..., (x`, y`), x ∈ X, y ∈ {0, 1}, (35)

where vector x ∈ X is generated by a fixed but unknown distribution function P (x) and
binary value y ∈ {0, 1} is generated by an unknown conditional probability function P (y =
1|x) (similarly, P (y = 0|x) = 1−P (y = 1|x)); this is the function we would like to estimate.

As shown in Vapnik and Izmailov (2015a) and Vapnik et al. (2015), this requires solving
the Fredholm integral equation∫

θ(x− t)P (y = 1|t)dP (t) = P (y = 1, x),

where probability functions P (y = 1, x) and P (x) are unknown but iid data (35) generated
according to joint distribution P (y, x) are given. Vapnik and Izmailov (2015a) and Vapnik
et al. (2015) describe methods for solving this problem, producing the solution

P`(y = 1|x) = P (y = 1|x; (x1, y1), ..., (x`, y`)).

In this section, we generalize classical Statistical Inference problem of conditional probability
estimation to a new model of Statistical Inference with Privileged Information. In this
model, along with information defined in the space X, one has the information defined in
the space X∗.

Consider privileged space X∗ along with space X . Suppose that any vector xi ∈ X has
its image x∗i ∈ X∗. Consider iid triplets

(x1, x
∗
1, y1), ..., (x`, x

∗
` , y`) (36)

that are generated according to a fixed but unknown distribution function
P (x, x∗, y). Suppose that, for any triplet (xi, x

∗
i , yi), there exist conditional probabilities

P (yi|x∗i ) and P (yi|xi). Also, suppose that the conditional probability function P (y|x∗),
defined in the privileged space X∗, is better than the conditional probability function P (y|x),
defined in space X; here by “better” we mean that the conditional entropy for P (y|x∗) is
smaller than conditional entropy for P (y|x):

−
∫

[log2 P (y = 1|x∗) + log2 P (y = 0|x∗)] dP (x∗) <

−
∫

[log2 P (y = 1|x) + log2 P (y = 0|x)] dP (x).

Our goal is to use triplets (36) for estimating the conditional probability
P (y|x; (x1, x

∗
1, y1), ..., (x`, x

∗
` , y`)) in space X better than it can be done with training pairs

(35). That is, our goal is to find such a function

P`(y = 1|x) = P (y = 1|x; (x1, x
∗
1, y1), ..., (x`, x

∗
` , y))

14. The same method can be applied to all the problems described in Vapnik and Izmailov (2015a) and Vapnik
et al. (2015).
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that the following inequality holds:

−
∫

[log2 P (y = 1|x; (xi, x
∗
i , yi)

`
1) + log2 P (y = 0|x; (xi, x

∗
i , yi)

`
1)]dP (x) <

−
∫

[log2 P (y = 1|x; (xi, yi)
`
1) + log2 P (y = 0|x; (xi, yi)

`
1, )]dP (x).

Consider the following solution for this problem:

1. Using kernel K(u∗, v∗), the training pairs (x∗i , yi) extracted from given training triplets
(36) and the methods of solving our integral equation described in Vapnik and Izmailov
(2015a) and Vapnik et al. (2015), find the solution of the problem in space of privileged
information X∗:

P (y = 1|x∗; (x∗i , yi)
`
1) =

∑̀
i=1

α̂iK(x∗i , x
∗) + b.

2. Find the fundamental elements of knowledge: vectors u∗1, ..., u
∗
m.

3. Using some universal kernels (say RBF or INK-Spline), find in the space X the ap-
proximations φk(x), k = 1, . . . ,m of the frames (u∗k, x

∗)2, k = 1, ...,m.

4. Find the solution of the conditional probability estimation problem
P (y|φ; (φi, yi)

`
1) in the space of pairs (φ, y), where φ = (φ1(x), . . . , φm(x)).

5.5 Example of Knowledge Transfer Using Privileged Information

In this subsection, we describe an example where privileged information was used in the
knowledge transfer framework. In this example, using set of of pre-processed video snapshots
of a terrain, one has to separate pictures with specific targets on it (class +1) from pictures
where there are no such targets (class −1).

The original videos were made using aerial cameras of different resolutions: a low reso-
lution camera with wide view (capable to cover large areas quickly) and a high resolution
camera with narrow view (covering smaller areas and thus unsuitable for fast coverage of
terrain). The goal was to make judgments about presence or absence of targets using wide
view camera that could quickly span large surface areas. The narrow view camera could be
used during training phase for zooming in the areas where target presence was suspected,
but it was not to be used during actual operation of the monitoring system, i.e., during test
phase. Thus, the wide view camera with low resolution corresponds to standard information
(space X), whereas the narrow view camera with high resolution corresponds to privileged
information (space X∗).

The features for both standard and privileged information spaces were computed sepa-
rately, using different specialized video processing algorithms, yielding 15 features for deci-
sion space X and 116 features for space of privileged information X∗.

The classification decision rules for presence or absence of targets were constructed using
respectively,

• SVM with RBF kernel trained on 15 features of space X;
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Figure 1: Comparison of SVM and knowledge transfer error rates: video snapshots example.

• SVM with RBF kernel trained on 116 features of space X∗;

• SVM with RBF kernel trained 15 original features of space X augmented with 116
knowledge transfer features, each constructed using regressions on the 15-dimensional
decision space X (as outlined in subsection 5.2).

Parameters for SVMs with RBF kernel were selected using standard grid search with 6-fold
cross validation.

Figure 1 illustrates performance (defined as an overage of error rate) of three algorithms
each trained of 50 randomly selected subsets of sizes 64, 96, 128, 160, and 192: SVM in
space X, SVM in space X∗, and SVM in space with transferred knowledge.

Figure 1 shows that, the larger is the training size, the better is the effect of knowledge
transfer. For the largest training size considered in this experiment, the knowledge transfer
was capable to recover almost 70% of the error rate gap between the error rates of SVM using
only standard features and SVM using privileged features. In this Figure, one also can see
that, even in the best case, the error rate using SVM in the space of privileged information
is half of that of SVM in the space of transferred knowledge. This gap, probably, can be
reduced even further by better selection of the fundamental concepts of knowledge in the
space of privileged information and / or by constructing better regression.

5.6 General Remarks about Knowledge Transfer

5.6.1 What Knowledge Does Teacher Transfer?

In previous sections, we linked the knowledge of Intelligent Teacher about the problem of
interest in X space to his knowledge about this problem in X∗ space15.

15. This two space learning paradigm with knowledge transfer for one space to another space reminds Plato’s
idea about space of Ideas and space of Things with transfer of knowledge from one space to another.
This idea in different forms was explored by many philosophers.
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One can give the following general mathematical justification for our model of knowledge
transfer. Teacher knows that the goal of Student is to construct a good rule in space X
with one of the functions from the set f(x, α), x ∈ X, α ∈ Λ with capacity V CX . Teacher
also knows that there exists a rule of the same quality in space X∗ – a rule that belongs to
the set f∗(x∗, α∗), x∗ ∈ X∗, α∗ ∈ Λ∗ and that has a much smaller capacity V CX∗ . This
knowledge can be defined by the ratio of the capacities

κ =
V CX
V CX∗

.

The larger is κ, the more knowledge Teacher can transfer to Student; also the larger is κ,
the fewer examples will Student need to select a good classification rule.

5.6.2 Learning from Multiple Intelligent Teachers

Model of learning with Intelligent Teachers can be generalized for the situation when Student
has m > 1 Intelligent Teachers that produce m training triplets

(xk1 , x
k∗
k1 , y1), ..., (xk` , x

k∗
k`
, y`),

where xkt , k = 1, ...,m, t = 1, ..., ` are elements x of different training data generated by
the same generator P (x) and xk∗kt , k = 1, ...,m, t = 1, ..., ` are elements of the privileged

information generated by kth Intelligent Teacher that uses generator Pk(x
k∗|x). In this

situation, the method of knowledge transfer described above can be expanded in space X
to include the knowledge delivered by all m Teachers.

5.6.3 Quadratic Kernel

In the method of knowledge transfer, the special role belongs to the quadratic kernel
(x1, x2)2. Formally, only two kernels are amenable for simple methods of finding the smallest
number of fundamental elements of knowledge: the linear kernel (x1, x2) and the quadratic
kernel (x1, x2)2.

Indeed, if linear kernel is used, one constructs the separating hyperplane in the space of
privileged information X∗

y = (w∗, x∗) + b∗,

where vector of coefficients w∗ also belongs to the space X∗, so there is only one fundamental
element of knowledge, i.e., the vector w∗. In this situation, the problem of constructing the
regression function y = φ(x) from data

(x1, (w
∗, x∗1)), ..., (x`, (w

∗, x∗` )) (37)

has, generally speaking, the same level of complexity as the standard problem of pattern
recognition in space X using data (35). Therefore, one should not expect performance
improvement when transferring the knowledge using (37).

With quadratic kernel, one obtains fewer than d fundamental elements of knowledge in
d-dimensional space X∗ (experiments show that the number of fundamental elements can
be significantly smaller than d). According to the methods described above, one defines the
knowledge in space X∗ as a linear combination of m frames. That is, one splits the desired
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function into m fragments (a linear combination of which defines the decision rule) and then
estimates each of m functions φk(x) separately, using training sets of size `. The idea is
that, in order to estimate a fragment of the knowledge well, one can use a set of functions
with a smaller capacity than is needed to estimate the entire function y = f(x), x ∈ X.
Here privileged information can improve accuracy of estimation of the desired function.

To our knowledge, there exists only one nonlinear kernel (the quadratic kernel) that
leads to an exact solution of the problem of finding the fundamental elements of knowledge.
For all other nonlinear kernels, the problems of finding the minimal number of fundamental
elements require difficult (heuristic) computational procedures.

6. Conclusions

In this paper, we tried to understand mechanisms of learning that go beyond brute force
methods of function estimation. In order to accomplish this, we used the concept of In-
telligent Teacher who generates privileged information during training session. We also
described two mechanisms that can be used to accelerate the learning process:

1. The mechanism to control Student’s concept of similarity between training examples.

2. The mechanism to transfer knowledge from the space of privileged information to the
desired decision rule.

It is quite possible that there exist more mechanisms in Teacher-Student interactions and
thus it is important to find them.

The idea of privileged information can be generalized to any statistical inference problem
creating non-symmetric (two spaces) approach in statistics.

Teacher-Student interaction constitutes one of the key factors of intelligent behavior and
it can be viewed as a basic element in understanding intelligence (for both machines and
humans).
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