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Abstract

Scientific practice typically involves repeatedly studying a system, each time trying to un-
ravel a different perspective. In each study, the scientist may take measurements under
different experimental conditions (interventions, manipulations, perturbations) and mea-
sure different sets of quantities (variables). The result is a collection of heterogeneous data
sets coming from different data distributions. In this work, we present algorithm COm-
bINE, which accepts a collection of data sets over overlapping variable sets under different
experimental conditions; COmbINE then outputs a summary of all causal models indicat-
ing the invariant and variant structural characteristics of all models that simultaneously fit
all of the input data sets. COmbINE converts estimated dependencies and independencies
in the data into path constraints on the data-generating causal model and encodes them
as a SAT instance. The algorithm is sound and complete in the sample limit. To account
for conflicting constraints arising from statistical errors, we introduce a general method
for sorting constraints in order of confidence, computed as a function of their correspond-
ing p-values. In our empirical evaluation, COmbINE outperforms in terms of efficiency
the only pre-existing similar algorithm; the latter additionally admits feedback cycles, but
does not admit conflicting constraints which hinders the applicability on real data. As a
proof-of-concept, COmbINE is employed to co-analyze 4 real, mass-cytometry data sets
measuring phosphorylated protein concentrations of overlapping protein sets under 3 dif-
ferent interventions.

Keywords: causality, causal discovery, graphical models, maximal ancestral graphs,
semi-Markov causal models, randomized experiments, latent variables

1. Introduction

Causal discovery is an abiding goal in almost every scientific field. In order to discover the
causal mechanisms of a system, scientists typically have to perform a series of experiments
(interchangeably: manipulations, interventions, or perturbations). Each experiment adds
to the existing knowledge of the system and sheds light to the sought-after mechanism
from a different perspective. In addition, each measurement may include a different set of
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quantities (variables), when for example the technology used allows only a limited number
of measured quantities.

However, for the most part, machine learning and statistical methods focus on analyzing
a single data set. They are unable to make joint inferences from the complete collection of
available heterogeneous data sets, since each one is following a different data distribution
(albeit stemming from the same system under study). Thus, data sets are often analyzed in
isolation and independently of each other; the resulting knowledge is typically synthesized
ad hoc in the researcher’s mind.

The proposed work tries to automate the above inferences. We propose a general,
constraint-based algorithm named COmbINE for learning causal structure characteristics
from the integrative analysis of collections of data sets. The data sets can be heterogeneous
in the following manners: they may be measuring different overlapping sets of variables O;
under different hard manipulations on a set of observed variables I;,. A hard manipulation
on a variable I, corresponds to a Randomized Controlled Trial (Fisher, 1935) where the
experimentation procedure completely eliminates any other causal effect on I (e.g., ran-
domizing mice to two groups having two different diets; the effect of all other factors on the
diet is completely eliminated).

What connects together the available data sets and allows their co-analysis is the as-
sumption that there exists a single underlying causal mechanism that generates the data,
even though it is measured with a different experimental setting each time. A causal model
is plausible as an explanation if it simultaneously fits all data sets when the effect of ma-
nipulations and selection of measured variables is taken into consideration.

COmbINE searches for the set of causal models that simultaneously fits all available
data sets in the sense given above. The algorithm outputs a summary network that includes
all the variant and invariant pairwise causal characteristics of the set of fitting models. For
example, it indicates the causal relations upon which all fitting models agree, as well as
the ones for which conflicting explanations are plausible. As our formalism of choice for
causal modeling, we employ Semi-Markov Causal Models (SMCMs). SMCMs (Tian and
Pearl, 2003) are extensions of Causal Bayesian Networks (CBNs) that can account for
latent confounding variables, but do not admit feedback cycles. Internally, the algorithm
also makes heavy use of the theory and learning algorithm for Maximal Ancestral Graphs
(MAGsSs) (Richardson and Spirtes, 2002).

The algorithm builds upon the ideas in Triantafillou et al. (2010) to convert the observed
statistical dependencies and independencies in the data to path constraints on the plausible
data generating structures. The constraints are encoded as a SAT instance and solved with
modern SAT engines, exploiting the efficiency of state-of-the-art solvers. However, due to
statistical errors in the determination of dependencies and independencies, conflicting con-
straints may arise. In this case, the SAT instance is unsolvable and no useful information
can be inferred. COmbINE includes a technique for sorting constraints according to con-
fidence: The constraints are added to the SAT instance in decreasing order of confidence,
and the ones that conflict with the set of higher-ranked constraints are discarded. The tech-
nique is general and the ranking score is a function of the p-values of the statistical tests
of independence. It can therefore be applied to any type of data, provided an appropriate
test exists.

2148



CAUSAL DISCOVERY FROM MULTIPLE INTERVENTIONS

COmbINE is empirically compared against a similar, recently developed algorithm by
Hyttinen et al. (2013). The latter is also based on conversion to SAT and is able to addi-
tionally deal with cyclic structures, but assumes lack of statistical errors and corresponding
conflicts. It can therefore not be directly applied to typical real problems that may generate
such conflicts. COmbINE proves to be more efficient than Hyttinen et al. (2013) and scales
to larger problem sizes, due to an inherently more compact representation of the path-
constraints. The empirical evaluation also includes a quantification of the effect of sample
size, number of data sets co-analyzed, and other factors on the quality and computational
efficiency of learning. In addition, the proposed conflict resolution technique’s superiority is
demonstrated over several other alternative conflict resolution methods. Finally, we present
a proof-of-concept computational experiment by applying the algorithm on 5 heterogeneous
data sets from Bendall et al. (2011) and Bodenmiller et al. (2012) measuring overlapping
variable sets under 3 different manipulations. The data sets measure protein concentrations
in thousands of human cells of the autoimmune system using mass-cytometry technologies.
Mass cytometers can perform single-cell measurements with a rate of about 10,000 cells per
second, but can currently only measure up to circa 30 variables per run. Thus, they seem
to form a suitable test-bed for integrative causal analysis algorithms.

The rest of this paper is organized as follows: Section 2 presents the related literature on
learning causal models and combining multiple data sets. Section 3 reviews the necessary
theory of MAGs and SMCMs and discusses the relation between the two and how hard
manipulations are modeled in each. Section 4 is the core of this paper, and it is split in
three subsections; presenting the conversion to SAT; introducing the algorithm and proving
soundness and completeness with respect to the observed independence models; introducing
the conflict resolution strategy. Section 5 is devoted to the experimental evaluation of
the algorithm: testing the algorithm’s performance in several settings and presenting an
actual case study where the algorithm can be applied. Finally, Section 6 summarizes the
conclusions and proposes some future directions of this work.

2. Related Work

Methods for causal discovery have been, for the most part, limited to the analysis of a single
data set. However, the great advancement of intervention and data collection technology has
led to a vast increase of available data sets, both observational and experimental. Therefore,
over the last few years, there have been a number of works that focus on causal discovery
from multiple sources. Algorithms in that area may differ in the formalism they use to
model causality or in the type of heterogeneity in the studies they co-analyze. In any case,
the goal is always to discover the single underlying data-generating causal mechanism.
One group of algorithms focuses on combining observational data that measure overlap-
ping variables. Tillman et al. (2008) and Triantafillou et al. (2010) both provide sound and
complete algorithms for learning the common characteristics of MAGs from data sets mea-
suring overlapping variables. Tillman et al. (2008) handles conflicts by ignoring conflicting
evidence, while the method presented in Triantafillou et al. (2010) only works with an oracle
of conditional independence. Tillman and Spirtes (2011) present an algorithm for the same
task that handles a limited type of conflicts (those concerning p-values for the same pair
of variables stemming from different data sets) by combining the p-values for conditional
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independencies that are testable in more than one data sets. Claassen and Heskes (2010b)
present a sound, but not complete, algorithm for causal structure learning from multiple
independence models over overlapping variables by transforming independencies into a set
of causal ancestry rules.

Another line of work deals with learning causal models from multiple experiments.
Cooper and Yoo (1999) use a Bayesian score to combine experimental and observational
data in the context of causal Bayesian networks. Hauser and Bithlmann (2012) extend the
notion of Markov equivalence for DAGs to the case of interventional distributions arising
from multiple experiments, and propose a learning algorithm. Tong and Koller (2001) and
Murphy (2001) use Bayesian network theory to propose experiments that are most informa-
tive for causal structure discovery. Eberhardt and Scheines (2007) and Eaton and Murphy
(2007b) discuss how some other types of interventions can be modeled and used to learn
Bayesian networks. Hyttinen et al. (2012a) provides an algorithm for learning linear cyclic
models from a series of experiments, along with sufficient and necessary conditions for iden-
tifiability. This method admits latent confounders but uses linear structural equations to
model causal relations and is therefore inherently limited to linear relations. Meganck et al.
(2006) propose learning SMCMs by learning the Markov equivalence classes of MAGs from
observational data and then designing the experiments necessary to convert it to a SMCM.

Finally, there is a limited number of methods that attempt to co-analyze data sets mea-
suring overlapping variables under different experimental conditions. In Hyttinen et al.
(2012b) the authors extend the methods of Hyttinen et al. (2012a) to handle overlap-
ping variables, again under the assumption of linearity. Hyttinen et al. (2013) propose
a constraint-based algorithm for learning causal structure from different manipulations of
overlapping variable sets. The method works by transforming the observed m-connection
and m-separation constraints into a SAT instance. The method uses a path analysis heuris-
tic to reduce the number of tests translated into path constraints. Causal insufficiency is
allowed, as well as feedback cycles. However, this method cannot handle conflicts and there-
fore relies on an oracle of conditional independence. Moreover, the method can only scale up
to about 12 variables. Claassen and Heskes (2010a) present an algorithm for learning causal
models from multiple experiments; the experiments here are not hard manipulations, but
general experimental conditions, modeled like variables that have no parents in the graph
but can cause other variables in some of the conditions.

To the best of our knowledge, COmbINE is the first algorithm to address both overlap-
ping variables and multiple interventions for acyclic structures without relying on specific
parametric assumptions or requiring an oracle of conditional independence. While the lim-
its of COmbINE in terms of input size have not been exhaustively checked, the algorithm
scales up to networks of up to 100 variables for relatively sparse networks (maximum number
of parents equals 5).

3. Mixed Causal Models

Causally insufficient systems are often described using Semi-Markov causal models (SM-
CMs) (Tian and Pearl, 2003) or Maximal Ancestral Graphs (MAGs) (Richardson and
Spirtes, 2002; Richardson, 2003). Both of them are mixed graphs, meaning they can
contain both directed (—») and bi-directed («—) edges. We use the term mixed causal
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graph to denote both. In this section, we will briefly present their common and unique
properties. First, let us review the basic mixed graph notation:

In a mixed graph G = (V,E), a path is a sequence of distinct nodes (Vp, V1,...,Vy,)
s.t for 0 < i < n, V; and V;41 are adjacent in G. X is called a parent of Y and Y a
child of X in G if X—Y in G. A path from Vj to V,, is directed if for 0 < i < n, V;
is a parent V1. X is called an ancestor of Y and Y is called a descendant of X in
G if X =Y in G or there exists a directed path from X to Y in G. We use the notation
Pag(X), Chg(X), Ang(X), Descg(X) to denote the set of parents, children, ancestors and
descendants of nodes X in G. A directed cycle in G occurs when X — Y € E and
Y € Ang(X). An almost directed cycle in G occurs when X <+ Y € Eand Y € Ang(X).
Given a path p in a mixed graph, a non-endpoint node V on p is called a collider if the
two edges incident to V' on p are both into V. Otherwise V is called a non-collider. A
path p = (X, Y, Z), where X and Z are not adjacent in G is called an unshielded triple.
If Y is a collider on this path, the triple is called an unshielded collider.

MAGs and SMCMs are graphical models that represent both causal relations and condi-
tional independencies among a set of measured (observed) variables O, and can be viewed as
generalizations of causal Bayesian networks that can account for latent confounders. MAGs
can also account for selection bias, but in this work we assume selection bias is not present.

3.1 Semi-Markov Causal Models

Semi-Markov causal models (SMCMs), introduced by Tian and Pearl (2003), often also
reported as Acyclic Directed Mixed Graphs (ADMGs), are causal models that implicitly
model hidden confounders using bi-directed edges. A directed edge X—Y denotes that X is
a direct cause of Y in the context of the variables included in the model. A bi-directed edge
X <Y denotes that X and Y are confounded by an unobserved variable. Two variables
can be joined by at most two edges, one directed and one bi-directed.

Semi-Markov causal models are designed to represent marginals of causal Bayesian net-
works. In DAGs, the probabilistic properties of the distribution of variables included in
the model can be determined graphically using the criterion of d-separation. The natural
extension of d-separation to mixed causal graphs is called m-separation:

Definition 1 (m-connection, m-separation. ) In a mized graph G = (E, V), a path p
between A and B is m-connecting given (conditioned on) a set of nodesZ , Z C V\{A, B}
if

1. Every non-collider on p is not a member of Z.
2. Every collider on the path is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no m-connecting path between A and
B relative to Z. Otherwise, we say they are m-connected given Z. We use the notation
JIm(G) to denote the set of m-separations that hold in G.

Let G be a SMCM over a set of variables O, II the joint probability distribution (JPD)
over the same set of variables and J(II) the independence model, defined as the set of
conditional independencies that hold in II. We use (X,Y|Z) to denote the conditional
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independence of variables in X with variables in Y given variables in Z. Under the Causal
Markov (CMC) and Faithfulness (FC) conditions (Spirtes et al., 2001), every m-separation
present in G corresponds to a conditional independence in J(I1) and vice-versa: Jm(G) =
J(II).

In causal Bayesian networks, every missing edge in G corresponds to a conditional in-
dependence in J(II) (resp. an m-separation in G), meaning there exists a subset of the
variables in the model that renders the two non-adjacent variables independent. Respec-
tively, every conditional independence in J(II) corresponds to a missing edge in the DAG
G. This is not always true for SMCMs. Figure 1 illustrates an example of a SMCM where
two non-adjacent variables are not independent given any subset of observed variables.

Evans and Richardson (2010, 2011) deal with the factorization and parameterization
of SMCMs for discrete variables. Based on this parameterization, score-based methods
have also recently been explored (Richardson et al., 2012; Shpitser et al., 2013), but are
still limited to small sets of discrete variables. The skeleton of a SMCM is not uniquely
identifiable by the corresponding conditional independence model on the same variables
(see Figure 1 for an example). Richardson and Spirtes (2002) overcome this obstacle by
introducing a causal mixed graph with slightly different semantics, the maximal ancestral
graph.

3.2 Maximal Ancestral Graphs

Maximal ancestral graphs (MAGs) (Richardson and Spirtes, 2002), are ancestral mixed
graphs, meaning that they contain no directed or almost directed cycles, where an almost
directed cycle occurs if X«—+Y and X causes Y. Every pair of variables X, Y in an ancestral
graph is joined by at most one edge. The orientation of this edge represents (non) causal
ancestry: A bi-directed edge X <«—+Y denotes that X does not cause Y and Y does not cause
X, but (under the faithfulness assumption) the two share a latent confounder. A directed
edge X —Y denotes causal ancestry: X is a causal ancestor of Y. Thus, if X causes Y
(not necessarily directly in the context of observed variables) and they are also confounded,
there is an edge X—Y in the corresponding MAG. Undirected edges can also be present in
MAGs that account for selection bias. As mentioned above, we assume no selection bias in
this work and the theory of MAGs presented here is restricted to MAGs with no undirected
edges.

Like SMCMs, ancestral graphs are also designed to represent marginals of causal Bayesian
networks. Thus, under the causal Markov and faithfulness conditions for a MAG M and a
jpd II, X and Y are m-separated given Z in an ancestral graph M if and only if (X, Y|Z) is
in the corresponding independence model 7 (IT). Still, like in SMCMs, a missing edge does
not necessarily correspond to a conditional independence. The following definition describes
a subset of ancestral graphs in which every missing edge (non-adjacency) corresponds to a
conditional independence:

Definition 2 (Maximal Ancestral Graph, MAG) A mized graph is called ancestral if
it contains no directed and almost directed cycles. An ancestral graph G is called maximal
if for every pair of non-adjacent nodes (X,Y), there is a (possibly empty) set Z, X, Y ¢ Z
such that (X,Y|Z) € T (G).
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Figure 1: Maximality and primitive inducing paths.(a) Both (i) a semi Markov causal model
over variables {A, B, C, D}; variables A and D are m-connected given any
subset of observed variables, but they do not share a direct relationship in the
context of observed variables and (ii) a non-maximal ancestral graph over vari-
ables {A, B, C, D}. (b) The corresponding MAG. A and D are adjacent, since
they cannot be m-separated given any subset of {B,C}. Path (A4, B,C,D) is a
primitive inducing path. This example was presented in Zhang (2008Db).

Figure 1 illustrates an ancestral graph that is not maximal, and the corresponding
maximal ancestral graph. MAGs are closed under marginalization (Richardson and Spirtes,
2002). Thus, if G is a MAG faithful to II, then there is a unique MAG G’ faithful to any
marginal distribution of II.

We use [1, to denote the act of marginalizing out variables L, thus, if G is a MAG
over variables O U L faithful to a joint probability distribution II, G[y, is the MAG over
O faithful to the marginal joint probability distribution of II. We use J[r, to denote the
marginal independence model of T, i.e. the set of conditional independencies {X Ll Y |Z €
J : (XUYUZ)NL = (}. Obviously, the DAG of a causal Bayesian network is also a MAG.
For a MAG G over O and a set of variables L C O, the marginal MAG Gy, is defined as
follows:

Definition 3 (Marginal MAG) (Richardson and Spirtes, 2002) MAG G[1, has node set
O\ L and edges specified as follows: If X, Y are s.t. VZ C O\LU{X,Y}, X and Y are

m-connected given Z in G, then

X ¢ Ang(Y);Y ¢ Ang(X) XY
if ¢ Xe€Ang(Y);Y ¢ Ang(X)  then ¢ X —»Y » inJ|L
X ¢ Ang(Y);Y € Ang(X) X«Y

The following theorem was proved in Richardson and Spirtes (2002):
Theorem 4 If G is a MAG over V=0 UL, then J,(G[L) = In(G)[L-
Proof See proof of Theorem 4.18 in Richardson and Spirtes (2002). |
As mentioned above, every conditional independence in an independence model J cor-
responds to a missing edge in the corresponding faithful MAG G. Conversely, if X and
Y are dependent given every subset of observed variables, then X and Y are adjacent in

G. Thus, given an oracle of conditional independence it is possible to learn the skeleton of
a MAG G over variables O from a data set. Still, some of the orientations of G are not
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distinguishable by mere observations. The set of MAGs G faithful to distributions II that
entail a set of conditional independencies 7 (II) form a Markov equivalence class.

It is well known that two DAGs are Markov equivalent if and only if they share the
same adjacencies and unshielded colliders. Markov equivalent MAGs also share adjacencies
and unshielded colliders, but this is not sufficient to characterize Markov equivalent graphs.
The emergence of bi-directed edges imposes also a set of shielded colliders on the Markov
equivalent MAGs. These colliders are discriminated by discriminating paths:

Definition 5 (Discriminating path) A path p = (X,..., W, V,Y) is called discrimi-
nating for V if X is not adjacent to Y and every node on the path from X to V is a
collider and a parent of Y.

Discriminating paths, their properties and their connection to Markov equivalence is
discussed in detail in Ali et al. (2009). Unfortunately, two Markov equivalent MAGs may
not share the same discriminating paths. Moreover, a triple may be discriminated to be a
collider in MAG M but not in MAG My in the same Markov equivalence class. There
exists however, a subset of discriminating paths that (a) are present in all the Markov
equivalent MAGs and (b) the colliders discriminated by these paths are necessary and
sufficient for Markov equivalence (Ali et al., 2009). The following definition from Ali et al.
(2009) is relevant:

Definition 6 (Colliders with order) Let ©;,i > 0 be a set of triples of order i in MAG
M, defined recursively as follows:

e Order 0: A triple (X,Y,Z) € D¢y if X and Z are not adjacent.
e Orderi: A triple (X,Y,Z) € D11 if,

1. forallj <i+1,(X,Y,Z) €D; and

2. There is a discriminating path (W, Vy,...,V,, Y, Q) such that either (X,Y,Z) =
(Vo,Y,Q) or (XY, Z) =(Q,Y,V,,) and the n colliders:

<I/Vv ‘/iav2>a R <Vn*1?Vn’Y> € UQJ

J<i

If (XY, Z) € ©;, the triple has order i. If the triple has order i for some i, then we say
the triple has order. If (X,Y,Z) is a triple with order and X»—Y<—Z is in M, then the
triple is a collider with order i in M. Otherwise, the triple is a definite non-collider
with order in M. A discriminating path p has order i if all colliders on the path (except
from the collider (V,,,Y, Q) discriminated by the path) have order at most i — 1, and there
exists at least one collider with order i — 1. If a discriminating path has order i for some 1,
then we say that the discriminating path has order. In this work we (abusively) call (non)
colliders with order > 1 discriminating (definite non) colliders.

Note that not every triple on a mixed graph has order. The order (if any) of a shielded
triple is the minimum of the orders of all discriminating paths with order for that triple.
Triples with order 0 are the unshielded triples. Discriminating paths with order > 1 are

2154



CAUSAL DISCOVERY FROM MULTIPLE INTERVENTIONS

present in all Markov equivalent MAGs, and therefore colliders with order > 1 are the
triples that are colliders in all the Markov equivalent MAGs. Colliders with order, along
with adjacencies, are necessary and sufficient to characterize Markov equivalent MAGs:

Theorem 7 Two MAGs over the same variable set are Markov equivalent if and only if
they share the same edges and the same colliders with order.

Proof See proof of Theorem 3.7 in Ali et al. (2009). [

We use [G] to denote the class of MAGs that are Markov equivalent to G. A partial
ancestral graph (PAG) is a representative graph of this class, and has the skeleton shared
by all the graphs in [G], and all the orientations invariant in all the graphs in [G]. Endpoints
that can be either arrows or tails in different MAGs in G are denoted with a circle “o” in the
representative PAG. We use the symbol * as a wild card to denote any of the three marks.
We use the notation M € P to denote that MAG M belongs to the Markov equivalence
class represented by PAG P.

For a MAG M and a probability distribution II faithful to each other, J,,(M) = J(II).
Thus, the set of m-separations entailed in M are exactly the conditional independencies
that hold in IT. FCI Algorithm (Spirtes et al., 2001; Zhang, 2008a) is a sound and complete
algorithm for learning the complete (maximally informative) PAG of the MAGs faithful to
a distribution IT over variables O in which a set of conditional independencies 7 (II) hold.
An important advantage of FCI is that it employs CMC, faithfulness and some graph theory
to reduce the number of tests required to identify the correct PAG.

3.3 Correspondence Between SMCMs and MAGs

Semi Markov Causal Models and Maximal Ancestral Graphs both represent causally in-
sufficient causal structures. They both entail the conditional independence structure and
the causal ancestry structure of the observed variables. Thus, under CMC and FC, the
SMCM G and the MAG M over a set of variables O entail the same independence model:
Im(S) = Tm(M). They also entail the same ancestral relationships: X is an ancestor of Y’
in § if and only if X is an ancestor of Y in M.

Nevertheless, SMCMs and MAGs also have significant differences: SMCMs describe the
causal relations among observed variables, while MAGs encode independence structure with
partial causal ordering. Edge semantics in SMCMs are closer to the semantics of causal
Bayesian networks, whereas edge semantics in MAGs are more complicated. On the other
hand, unlike in DAGs and MAGs, a missing edge in a SMCM does not necessarily correspond
to a conditional independence (SMCMs do not obey a pairwise Markov property).

Figure 2 summarizes the main differences of SMCMs and MAGs. It shows two different
DAGs, and the corresponding marginal SMCMs and MAGs over four observed variables.
SMCMs have a many-to-one relationship to MAGs: For a MAG M, there can exist more
than one SMCMs that entail the same probabilistic and causal ancestry relations. On the
other hand, for any given SMCM there exists only one MAG entailing the same probabilistic
and causal ancestry relations. This is clear in Figure 2, where a unique MAG, M; = Mo
entails the same information as two different SMCMs, S; and Ss in the same figure.
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Figure 2: An example two different DAGs and the corresponding mixed causal graphs
over observed variables. On the left we can see DAGs §G; over variables
{A, B, C, D, L} (top) and Gs over variables {4, B, C, D} (bottom). From left
to right, on the same row as the underlying causal DAG, we can see the respective
SMCMs &; and Sy over {A, B, C, D}; the respective MAGs M; = Gi[, and
My = Gy over variables {A, B, C, D}; finally, the respective PAGs P; and Ps.
Notice that, M; and My are identical, despite representing different underlying
causal structures.

Directed edges in a SMCM denote a causal relation that is direct in the context of
observed variables. In contrast, a directed edge in a MAG merely denotes causal ancestry;
the causal relation is not necessarily direct. An edge X—Y can be present in a MAG even
though X does not directly cause Y'; this happens when X is a causal ancestor of Y and
the two cannot be rendered independent given any subset of observed variables. Depending
on the structure of latent variables, this edge can be either missing or bi-directed in the
respective SMCM.

In Figure 2 we can see examples of both cases. For example, A is a causal ancestor of
D in DAG Gy, but not a direct cause (in the context of observed variables). Therefore, the
two are not adjacent in the corresponding SMCM S; over {A, B,C, D}. However, the two
cannot be rendered independent given any subset of {B, C'}, and therefore A—D is in the
respective MAG M.

On the same DAG, B is another causal ancestor (but not a direct cause) of D. The
two variables share the common cause L. Thus, in the corresponding SMCM S; over
{A, B,C, D} we can see the edge B<~D. However, a bi-directed edge between B and D is
not allowed in MAG M1, since it would create an almost directed cycle. Thus, B—D is
in Mj.

We must also note that unlike SMCMs, MAGs only allow one edge per variable pair.
Thus, if X directly causes Y and the two are also confounded, both edges will be in a
relevant SMCM (XXY), while the two will share a directed edge from X to Y in the
corresponding MAG.

Overall, a SMCM has a subset of the adjacencies (but not necessarily edges) of its MAG
counterpart. These extra adjacencies in MAGs correspond to pairs of variables that cannot
be m-separated given any subset of observed variables, but neither directly causes the other,
and the two are not confounded. These adjacencies can be checked in a SMCM using a
special type of path, called inducing path (Richardson and Spirtes, 2002).
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Figure 3: Effect of manipulating variable C' on the causal graphs of Figure 2. From right
to left we can see the manipulated DAGs G{ (top) and G§ (bottom), the ma-
nipulated SMCMs S¢ (top) and S (bottom) over variables {A, B, C, D}, the
manipulated MAGs M¢ = GS[; (top) and MS = G (bottom) over the same
set of variables, and the corresponding PAGs P{ (top) and P§ (bottom). No-
tice that edge A—»D is removed in MY, even though it is not adjacent to the
manipulated variable. Moreover, on the same graph, edge B—D is now B<—>D.

Definition 8 (Inducing path) A path p = (V1,Va,...,V,,) on a mized causal graph G
over a set of variables V.= OUL is called inducing with respect to L if every non-collider
on the path is in L and every collider is an ancestor of either Vi or V,. A path that is
inducing with respect to the empty set is called a primitive inducing path.

Obviously, an edge joining X and Y is a primitive inducing path. Intuitively, an inducing
path with respect to L is m-connecting given any subset of variables that does not include
variables in L. Path A—B<«—L —D is an inducing path with respect to L in G; of Figure
2, and A—B<—D is an inducing path with respect to the empty set in S; of the same
figure. Inducing paths are extensively discussed in Richardson and Spirtes (2002), where
the following theorem is proved:

Theorem 9 If G is an ancestral graph over variables V. = OUL, and X,Y € O then the
following statements are equivalent:

1. X andY are adjacent in G|L,.
2. There is an inducing path with respect to L in G.
3.VZ,ZCV\LU{X,Y}, X andY are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002). |

This theorem links inducing paths in an ancestral graph to m-separations in the same
graph and to adjacencies in any marginal ancestral graph. The equivalence of (ii) and (iii)
can also be proved for SMCMs, using the proof presented in Richardson and Spirtes (2002)
for Theorem 9:

Theorem 10 If G is a SMCM over variables V. = OUL, and X,Y € O then the following
statements are equivalent:
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1. There is an inducing path with respect to L in G.

2.VZ,ZCV\LU{X,Y}, X andY are m-connected given Z in G.

Proof See proof of Theorem 4.2 in Richardson and Spirtes (2002). [

The following proposition follows from Theorems 9 and 10:

Proposition 12 . Let O be a set of variables and J the independence model over O. Let
S be a SMCM over variables O that is faithful to J and M be the MAG over the same
variables that is faithful to J. Let X, Y € O. Then there is an inducing path between X
and Y with respect to L, L C O in S if and only if there is an inducing path between X
and Y with respect to L in M.

Proof See Appendix A. |

Primitive inducing paths are connected to the notion of maximality in ancestral graphs:
Every ancestral graph can be transformed into a maximal ancestral graph with the addition
of a finite number of bi-directed edges. Such edges are added between variables X, Y that
are m-connected through a primitive inducing path (Richardson and Spirtes, 2002).
Path A<+B<«+C<->D in Figure 1 is an example of a primitive inducing path.

Inducing paths are crucial in this work because adjacencies and non-adjacencies in
marginal ancestral graphs can be translated into existence or absence of inducing paths in
causal graphs that include some additional variables. For example, path A—sB<~—L—D
is an inducing path w.r.t. L in Gy in Figure 2, and therefore A and D are adjacent in
M. Thus, inducing paths are useful for combining causal mixed graphs over overlapping
variables.

Inducing paths are also necessary to decide whether two variables in an SMCM will
be adjacent in a MAG over the same variables without having to check all possible m-
separations. Algorithm 1 describes how to turn a SMCM into a MAG over the same
variables.

Algorithm 1 takes as input a SMCM S and adds the necessary edges to transform it
into a MAG M by looking for primitive inducing paths. The procedure can be viewed as
a special case of marginalizing out variables in DAGs, presented in Spirtes and Richardson
(1996) and Zhang (2008b). Similar algorithms are also presented in Sadeghi (2012), where
the relationship among different types of mixed causal graphs representing the same inde-
pendence model is discussed in detail. The algorithm is sound, i.e. the output MAG shares
the same causal ancestry relations and entails the same independence model as S:

Theorem 13 . Let O be a set of variables and J the independence model over O. Let S

be a SMCM over variables V that is faithful to J. Let M = SMCMtoMAG(S). Then S
and M share the same ancestry relations and Jn(S) = Tm(M).

Proof See Appendix A. [ ]
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Algorithm 1: SMCMtoMAG
input : SMCM S
output: MAG M

MS;
foreach ordered pair of variables X, Y not adjacent in S do
if 3 primitive inducing path from X to Y in S then
if X € Ans(Y) then
‘ add X—Y to M;
else if Y € Ang(X) then
‘ add Y—X to M;
else
‘ add Y«—+X to M;

end

© 0w N O A W N

-
o

end

=
=

end

foreach X=XY in M do
remove X <+—+Y;

end

I T e
U R W N

The algorithm is also complete, since there only exists one such MAG. The inverse pro-
cedure, converting a MAG into the underlying SMCM, is not possible, since we cannot know
in general which of the edges correspond to direct causation or confounding and which are
there because of a (non-trivial) primitive inducing path. Note though that, there exist sound
and complete algorithms that identify all edges for which such a determination is possible
(Borboudakis et al., 2012). In addition, in the next section we show that co-examining ma-
nipulated distributions can indicate that some edges stand for indirect causality (or indirect
confounding).

3.4 Manipulations Under Causal Insufficiency

An important motivation for using causal models is to predict causal effects. In this work, we
focus on hard manipulations, where the value of the manipulated variables is set exclusively
by the manipulation procedure. We also adopt the assumption of locality, denoting that
the intervention of each manipulated variable should not directly affect any variable other
than its direct target, and more importantly, local mechanisms for other variables should
remain the same as before the intervention (Zhang, 2006). Thus, the intervention is merely
a local surgery with respect to causal mechanisms. These assumptions may seem a bit
restricting, but this type of experiment is fairly common in several modern fields where the
technical capability for precise interventions is available, such as, for example, molecular
biology. Finally, we assume that the manipulated model is faithful to the corresponding
manipulated distributions.

In the context of causal Bayesian networks, hard interventions are modeled using what
is referred to as “graph surgery”, in which all edges incoming to the manipulated variables
are removed from the graph. The resulting graph is referred to as the manipulated graph.
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Naturally, DAGs are closed under manipulation. We use the term intervention target to
denote a set of manipulated variables. For a DAG G and an intervention target I, we use gt
to denote the manipulated DAG. Parameters of the distribution that refer to the probability
of manipulated variables given their parents are replaced by the parameters set by the
manipulation procedure, while all other parameters remain intact. We use II' to denote
this manipulated joint probability distribution, and JT to denote the corresponding
manipulated independence model.

Graph surgery can be easily extended to SMCMs: One must simply remove edges into
the manipulated variables. Again, we use the notation S! to denote the graph resulting
from a SMCM S after the manipulation of variables in I. In contrast, predicting the effect
of manipulations in MAGs is not trivial. Due to the complicated semantics of the edges,
the manipulated graph is usually not unique.

This becomes more obvious by looking at Figures 2 and 3. Figure 2 shows two different
causal DAGs and the corresponding SMCMs and MAGs, and Figure 3 shows the effect
of a manipulation on the same graphs. In Figure 2 the marginals of DAGs D; and D,
are represented by the same MAG M; =Ms. However, after manipulating variable C,
the resulting manipulated MAGs M{ and M§ do not belong to the same equivalence class
(they do not even share the same skeleton). We must point out, that the indistinguishability
of My and My refers to m-separation only; the absence of a direct causal edge between A
and D could be detected using other types of tests, like the Verma constraint (Verma and
Pearl, 2003).

While we cannot predict the effect of manipulations on a MAG M, given a data set
measuring variables O when variables in I C O are manipulated, we can obtain (assuming
an oracle of conditional independence) the PAG representative of the actual manipulated
MAG M. We use P! to denote this PAG.

We must point out here that we use P! as the representative of the Markov equivalence
class of models that are faithful to the manipulated conditional independence model 7 (II'),
as opposed to the representative of the interventional Markov equivalence class of manip-
ulated MAGs. The information on manipulations, not included in the present use of PI,
defines a smaller Markov equivalence class: For example, in Figure 3, MAGs in the inter-
ventional Markov equivalence class of M{' share the additional invariant characteristic of
a tail into C' on the edge Co—D. This invariant feature however is not oriented in P, To
the best of our knowledge, no sound and complete algorithm for identifying the maximally
informative PAG for the interventional Markov equivalence class of MY exists (however,
orienting all edges out of the manipulated variables is a trivially sound method).

By observing PAGs {PY} that stem from known, different manipulations of the same
underlying distribution, we can infer some refined information for the underlying causal
model. Let’s suppose, for example, that G; in Figure 2 is the true underlying causal graph
for variables {A, B,C, D, L} and that we have the learnt PAGs P! and P{ from relevant
data sets. Graph 77{4 is not shown, but is identical to P; in Figure 2 since A has no incoming
edges in the underlying DAG (and SMCM). P is illustrated in Figure 3. Edge A o—oD
is present in P!, but is missing in P¢ even though neither A nor D are manipulated in
PE. By reasoning on the basis of both graphs, we can infer that edge A —D in Pf
cannot denote a direct causal relation among the two variables, but must be the result of a
primitive, non-trivial inducing path.
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4. Learning Causal Structure From Multiple Data Sets Measuring
Overlapping Variables Under Different Manipulations

In the previous section we described the effect of manipulation on MAGs and saw an exam-
ple of how co-examining PAGs faithful to different manipulations of the same underlying
distribution can help classify an edge between two variables as not direct.

In this section, we expand this idea and present a general, constraint-based algorithm
for learning causal structure from overlapping manipulations. The algorithm takes as input
a set of data sets measuring overlapping variable sets {Oi}fil; in each data set, some of the
observed variables can be manipulated. The set of manipulated variables in experiment ¢
is also provided and is denoted with I;.

In the rest of this paper, we make the following assumptions:

Al

A2

A3

We assume that there exists an underlying causal mechanism over a set of variables
O that can be described with a semi Markov causal model G over O. If II is the joint
probability distribution over O, we assume that II and G are faithful to each other,
ie. Jn(G) = J(I). We also say that G is faithful to the independence model 7 (IT).

We assume that we collect data sets in IV different experiments, where in experiment ¢
we observe variables O; C O, while variables L; = O\ O; are latent and variables I; C
O are manipulated. We also assume O = Ufi 1 O;. We assume that manipulations
are ideal hard interventions and that they result in removal of all edges in G that are
incoming to the manipulated variables.

We assume faithfulness for the manipulated SMCMs and distributions, i.e. jm(gli) =
J (I,

Unless mentioned otherwise, the following notation is used:

O, denotes the set of observed variables in experiment 4.
I; denotes the set of manipulated variables in experiment <.
O = U;0; denotes the union of observed variables.

L; = O\ O; denotes the set of latent variables (with respect to the union of observed
variables) in experiment i.

D, denotes a data set for experiment i, sampled from the mechanism described by
(G, 11%), measuring variables in O;.

Ji denotes the independence model that holds in data set D;. In the sample limit,
Ji is equal to the set of m-separations that hold for sets of variables in O; after
manipulating I; in the underlying causal model: 7; = J(II%) [, = J, (GY)|[L;-

P; denotes the maximally informative PAG for the (observational) Markov equivalence
class of MAGs faithful to J;. Thus, for any MAG M; € P;, Tn(M;) = J;. Notice
that, since SMCMs and MAGs over the same variables represent the same indepen-
dence model, for an oracle of conditional independence, P; = [SMCMtoMAG (GY¥)[y.].
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Under the assumptions described above, we are interested in combining information
across data sets collected from different manipulations and marginalizations of the same
system under study, to identify features of the possible underlying causal mechanism. If &
is a SMCM that describes this underlying causal mechanism, then this SMCM must agree
with all the observed independence models {7;})¥.;. This means that for each experiment,
the respective manipulated ST must entail all and only the conditional independencies that
hold in data set D; (in the sample limit 7; can be obtained correctly from the data). For
the family of independence models {J;}}¥,, and a family of intervention targets {I;}¥; a
possibly underlying SMCM is defined as follows:

Definition 11 (Possibly underlying SMCM) If {7;}}Y, is a family of independence
models over variable sets {O;}Y, and {L;}}¥Y, is a family of intervention targets such that
I, CO; Vi, then a SMCM S is a possibly underlying SMCM for {7;}Y, and {L;}Y,
iff:

VX,Y,Z C O;, [X is m-separated from Y given Z in S¥| < X 1LY | Z € J;,

Intuitively, S is a SMCM such that once the effects of manipulations are modeled (i.e. St
is constructed), it entails all and only the independencies J; observed in the corresponding
data set. Thus, S is a possible causal model that explains all data. Since each independence
model J; can be graphically represented by a PAG P;, one can recast this definition in
graph-theoretic terms: S is a possibly underlying SMCM if, after graph surgery, results in
a marginal MAG that belongs in P;:

Theorem 14 If S is a SMCM, {J;}¥, is a family of independence models, {L;}Y, is a
family of intervention targets and P; is the PAG of the Markov equivalence class of MAGSs
faithful to J;, the following statements are equivalent:

e S is a possibly underlying SMCM for {T;}¥, and {I;},.

o M;eP; Vi, where M; = SMCMtoMAG(S%)]L,.

Proof See Appendix A. |

As mentioned above, PAGs P; here denote the maximally informative representatives of
the Markov equivalence class of MAGs that entail independence models 7;, instead of the
interventional Markov equivalence class of MAGs that entail both 7; and the interven-
tional constraints following the manipulation of targets I;. Hence, this graphical criterion
may seem incomplete, since the actual MAGs belong to thinner equivalence classes, which
include some additional orientations: tails towards any manipulated variable and addi-
tional orientations stemming from the combination of m-separation and acyclicity with
these aforementioned tails. However, MAGs M; = SMCMtoMAG(S%)[r,, are constructed
after graph surgery has been applied to the (candidate) possibly underlying SMCM and
abide by definition the constraints that correspond to interventional information (i.e. tail
orientations towards manipulated variables), since S% and SMCMtoMAG(SY) share the
same ancestral relations. Thus, the resulting MAGs M; belong (by construction) to the
thinner interventional Markov equivalence class of MAGs, and testing Markov equivalence
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in the observational sense is a sound and complete graphical criterion to determine whether
a SMCM is possibly underlying for a family of independence models coupled with a family
of intervention targets.

Notice that PAG P; can be learnt with a sound and complete algorithm such as FCI.
We can now benefit by the compact representation of Markov equivalence classes of MAGs
described in Theorem 7, to check whether a SMCM § is possibly underlying for a family
of independence models {7;}¥, and a family of intervention targets {I;}Y,: Instead of
checking all conditional dependencies (resp. independencies) in J; to be m-connections
(resp. m-separations) in the corresponding SMCM S¥i, we can construct the corresponding
MAGs M; = SMCMtoMAG(SIi)[Li for each experiment and check whether they belong
to the Markov equivalence class represented by P;. By Theorem 7, we only need to check
adjacencies and colliders with order.

In the next section, we present an algorithm that converts the problem of identifying a
SMCM S that is possibly underlying for a family of observed independence models {7;} Y,
and a family of intervention targets {I;}), into a constraint satisfaction problem. Specifi-
cally, we will create a satisfiability instance s.t. a SMCM is possibly underlying for {7},
and {Iz}fi ; if and only if it corresponds to a truth-setting assignment for the SAT instance.
For a family of independence models {7;})¥, and a family of intervention targets {L;}¥,,
several SMCMs may be possibly underlying. We can then use the equivalent SAT instance
to query properties shared by all possibly underlying SMCMs, or to identify a single possibly
underlying SMCM with some desirable characteristics. In this work, we use the equivalent
SAT instance to identify all edges and endpoints that are invariant in all possibly underlying
SMCMs.

4.1 Conversion to SAT

Theorem 14 implies that M; has the same edges (adjacencies), and the same colliders with
order (unshielded colliders and discriminating colliders with order) as any MAG in P;, for
all 7. We impose these constraints on S by converting them to a SAT instance. We express
the constraints in terms of the following core variables, denoting edges and orientations in
any possibly underlying SMCM S.

e edge(X, Y): true if X and Y are adjacent in S, false otherwise.

o tail(X, Y): true if there exists an edge between X and Y in S that is out of Y, false
otherwise.

e arrow(X, Y): true if there exists an edge between X and Y in S that is into Y, false
otherwise.

Variables tail and arrow are not mutually exclusive, enabling us to represent X~ Y
edges when tail(Y, X) Aarrow(Y, X). Each independence model J; is entailed by the (non)
adjacencies and (non) colliders in each observed PAG P;. These structural characteristics
correspond to paths in any possibly underlying SMCM as follows:

1. VXY € O;, X and Y are adjacent in P; if and only if there exists an inducing path
between X and Y with respect to Lj in ST (by Theorems 9 and 10 and Proposition
12).
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adjacent(X,Y,P;) <> Ipxy : inducing(pxy,1)

/*X and Y are adjacent in P; iff
there exists an inducing path from X to Y with respect to L; in St «/

collider((X,Y, Z), P;) <+ —ancestor(Y, X, i) A\ ~ancestor(Y, Z, i)
/* Triple (XY, Z) is collider in P; iff
Y is not an ancestor of X or Z in S%. «/

unshielded((X,Y, Z), P;) +
adjacent(X,Y,P;) A adjacent(Y, Z, P;) A —adjacent(X, Z, P;)

/* Triple (X,Y, Z) is unshielded in P; iff
(X, Y), (Y, Z) are adjacent in P;, (X, Z) are not adjacent in P;. ./

discriminating((Vp, ..., V-1, Vo, Var1), Vi, Pi) <
—adjacent(Vo, Vg1, Pi) AVJ € [0, ..., nladjacent(V;, Vii1, Pi)A

Vi€ 1,...,n—1](collider((Vj—1, Vj, Viz1), Pi)
A adjacent(Vy, Vii1, Pi) A ancestral(Vy, V41, z))

/* Path (W, ..., V,41) is discriminating for V,, in P; iff
Vo, Vag1 are not adjacent in Py, Vp, ..., V41 is a path in P;,

every node between Vy and V,, is a collider on the path

and a parent of V41 in P;. ,/

Figure 4: Formulae relating properties of observed PAGs to the underlying SMCM S. In
each PAG, all features that are necessary and sufficient for Markov equivalence
impose constraints on possibly underlying SMCMs. Constraints are expressed us-
ing the literals and formulae introduced here. Index i is used to denote properties
of an underlying SMCM in experiment i, where variables L; are latent and vari-
ables I; are manipulated. We use use pxy to denote a path between X and Y in
S. Conjunction and disjunction are assumed to have precedence over implication
with regard to bracketing. Each formula is followed by an explanation in natural
language (in star-slash comments).
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inducing((Vo, ..., Vot1),1) <
(n =0— edge(V[), Vn+1))/\

(n >0— (Vje[l,...,n] unblocked((Vj_1,V}, Vjt1), Vo, Vn+1,i)))/\
Vo € I — taill(Vi,Vo)) A (Y € TI; — tail(Vy, Vay1))
/* Path (Vp,...,Vuy1) is inducing with respect to L; in St iff
if the path has only two variables, V{ is adjacent to V,, in S
else each triple is unblocked for the endpoints with respect to Lj,
if Vo (Vi41) is manipulated in i then the path is out of Vj (V1) in S. »/
unblocked((Z, V,W), X, Y,i) <>
edge(Z, V) A edge(V, W)A
[V € L; — —head2head({Z,V,W),i) V ancestor(V, X, i) V ancestor(V, Y, i)|A
[V € L; — head2head({Z,V,W),i) A (ancestor(V, X, i) V ancestor(V,Y,i))]
/* Triple (Z,V,W) is unblocked for X, Y with respect to L iff
(Z,V) (V, W) are adjacent in S
if V is latent, if V is head2head then it is an ancestor of X or Y in S
if V' is not latent, V' is a head2head and an ancestor of X or Y in St «/

head2head((X,Y, 2),i) < Y € I Aarrow(X,Y) Aarrow(Z,Y)

/* Triple (X,Y, Z) is head2head in S% iff
Y is not manipulated in experiment i, X is into Y, Z is into Y in S. ./

ancestor(X,Y,7) < Ipxy : ancestral(pxy,i)

/* X is an ancestor of Y in experiment i iff
there exists an ancestral path from X to ¥ in STi. «/

ancestral((Vp, ..., Viy1),1) ©
Viel,...,n+1](V; € L A (edge(Vj—1,V;) Atail(V;, Vi—1) A arrow(Vi_1,Vj)))

/* Path (Vp, ..., Vy41) is ancestral in experiment i iff
every variable (apart from possibly 14) is not manipulated in Sti

every variable is a parent of the next in S. ,/

Figure 5: Formulae reducing path properties of the graphs S to the core variables: Graph
properties of § in each experiment, inferred by the observed PAGs using the
formulae in Figure 4, are now expressed as boolean formulae using the “core”
variables edge, arrow and tail. Index i is used to denote properties of an under-
lying SMCM in experiment i, where variables L; are latent and variables I; are
manipulated. Conjunction and disjunction are assumed to have precedence over
implication with regard to bracketing. Each formula is followed by an explanation
in in natural language (in star-slash comments).
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2. If (X,Y, Z) is an unshielded definite non collider in P;, then (XY, Z) is an unshielded
triple in P; and Y is an ancestor of either X or Z in 8% (by the semantics of edges
in MAGs).

3. If (XY, Z) is an unshielded collider in P;, then (X, Y, Z) is an unshielded triple in P;
and Y is not an ancestor of X nor Z in S' (by the semantics of edges in MAGs).

4. If (W,..., X,Y,Z) is a discriminating collider in P;, then (W ..., XY, Z) is a dis-
criminating path for Y in P; and Y is not an ancestor of X nor Z in 8% (by the
semantics of edges in MAGs).

5. If (W,...,X,Y, Z) is a discriminating definite non collider in P;, then (W ..., XY, Z)
is a discriminating path for Y in P; and Y is an ancestor of either X or Z in 8% (by
the semantics of edges in MAGs).

These constraints are expressed using the core variables (edges, tails and arrows), as
described in Figures 4 and 5. Figure 4 describes how features of a PAG are imposed as
path constraints in a possibly underlying SMCM. More specifically, an adjacency, a tail and
an arrowhead in a PAG P; correspond to an inducing path, a causal ancestry and the lack
of causal ancestry on any possibly underlying SMCM, respectively. Unshielded triples and
discriminating paths are expressed on the basis of these basic PAG features. In each PAG,
the observed features depend on the latent and manipulated variables. When constraints are
imposed on the candidate underlying SMCMs, the latent and manipulated variables in the
experiment are taken under consideration: If an adjacency is observed in P; in experiment
i, where variables L; are latent and I; are manipulated, then any path on S that explains
this adjacency must be inducing with respect to L; in S%. Any truth-assignment to the
core variables that does not entail the presence of such an inducing path should not satisfy
the SAT instance. The following constraints are added to ensure that the graphs satisfying
constraints 1-5 above are SMCMs:

6. VX,Y € O, either X is not an ancestor of Y or Y is not an ancestor of X in S (no
directed cycles).

7. VX,Y € O, at most one of tail(X,Y) and tail(Y, X) can be true (no selection bias).
8. VX,Y € O, at least one of tail(X,Y) and arrow(Y, X) must be true.

Naturally, Constraints 7 and 8 are meaningful only if X and Y are adjacent (if edge(X, Y)
is true), and redundant otherwise.

4.2 Algorithm COmbINE

We now present algorithm COmbINE (Causal discovery from Overlapping INtErventions)
that learns causal features from multiple, heterogeneous data sets. The algorithm takes as
input a set of data sets {D;}X; over a set of overlapping variable sets {O;}¥ ;. In each
data set, a (possibly empty) subset of the observed variables I; C O; may be manipulated.
Each data set entails an independence model [J;. FCI is run on each data set and the
corresponding PAGs {P;} | are produced. The algorithm then creates a candidate under-
lying SMCM H;,. Subsequently, for each PAG P;, the features of P; are translated into
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Algorithm 2: COmbINE

input : data sets {D;}Y,, sets of intervention targets {I;}}*;, FCI parameters
params, maximum path length mpl, conflict resolution strategy str
output: Summary graph H

foreach i do P; < FCI(D;, params);

Hin + initializeSMCM ({P;}N));

(®,F) + addConstraints (H, {Pi}X,, {L}Y,, mpl);

F' <+ select a subset of non-conflicting literals 7’ according to strategy str;
H < backBone (® A F')

U R W

constraints, expressed in terms of edges and endpoints in H;,, using the formulae in Figures
4 and 5 . In the sample limit (and under the assumptions discussed above), the SAT for-
mula & A F produced by this procedure is satisfied by all and only the possibly underlying
SMCMs for {J;}¥; and {I;}. In the presence of statistical errors, however, ® A F may be
unsatisfiable. To handle conflicts, the algorithm takes as input a strategy for selecting a
non-conflicting subset of constraints ' and ignores the rest. Finally, COmbINE queries
the SAT formula for variables that have the same truth-value in all satisfying assignments,
translates them into graph features, and returns a graph that summarizes the invariant
edges and orientations of all possibly underlying SMCMs. In the rest of this paper we call
the graphical output of COmbINE a summary graph.

The pseudocode for COmbINE is presented in Algorithm 2. Apart from the set of data
sets described above, COmbINE takes as input the chosen parameters for FCI (threshold
a, maximum conditioning set mazK), the maximum length of paths to consider and a
strategy for selecting a subset of non-conflicting constraints.

Initially, the algorithm runs FCI on each data set D; and produces the corresponding
PAG P;. Then the candidate SMCM H,, is initialized: H;, is the graph upon which all
path constraints will be imposed. Path constraints are realized on the basis of the plausible
configurations of H;,. We say that a path p in H,;, is possibly inducing with respect
to L, if we can create a graph #/, by orienting circle endpoints in H;, such that path p is
inducing with respect to L in #},. We say that a path p in #;, is possibly ancestral, if
we can create a graph ., by orienting circle endpoints in H;, such that path p is ancestral
... To ensure the soundness of the algorithm, if p is an inducing (ancestral) path in S,
it must be a possibly inducing (ancestral) path in H;,. Thus, H;, must have at least a
superset of edges and at most a subset of orientations of any possibly underlying SMCM S.

An obvious—yet not very smart—choice for H;, would be the complete unoriented graph.
However, looking for possibly inducing and possibly ancestral paths on the complete unori-
ented graph over the union of variables could make the problem intractable even for small
input sizes. To reduce the number of possibly inducing and possibly ancestral paths, we
use Algorithm 3 to construct H,.

Algorithm 3 constructs a graph H;, that has all edges observed in any PAG P; as well
as some additional edges that would not have been observed even if they existed: Edges
connecting variables that have never been observed together, and edges connecting variables
that have been observed together, but at least one of them was manipulated in each joint
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Algorithm 3: initializeSMCM
input : PAGs {P;}¥,
output: initial graph H;,

‘Hin < empty graph over UO;;
foreach i do
‘ Hin <+ add all edges in P; unoriented;
end
Orient only arrowheads that are present in every P;;

[ N I M

/* Add edges between variables never measured unmanipulated together */
foreach pair X, Y of non-adjacent nodes do
if /HZ s.t. X, Y € Oz\Iz then
add Xo—oY to Hin;
if 3i s.t. XY €0;, X €I, Y €1, then add arrow into X
10 if 3i s.t. X, Y €0;,Y €1;, X €1, then add arrow into Y;

11 end

© o N o

12 end

appearance in a data set. For example, variables X9 and X15 in Figure 6 are measured
together in two data sets: Dy and Dj3. If X9—X15 in the underlying SMCM, this edge
would be present in P3. Similarly, if X15—X9 in the underlying SMCM, the variables
would be adjacent in Po. We can therefore rule out the possibility of a directed edge
between the two variables in §. However, it is possible that X15 and X9 are confounded
in S, and the edge disappears by the manipulation procedure in both Py and Ps. Thus,
Algorithm 3 will add these possible edges in H;,. In addition, in Line 5, Algorithm 3 adds
all the orientations found so far in all P;’s that are invariant.! The resulting graph has, in
the sample limit, a superset of edges and a subset of orientations compared to the actual
underlying SMCM. Lemma 15 in Appendix A formalizes and proves this property.

Having initialized the search graph, Algorithm 2 proceeds to generate the constraints.
This procedure is described in detail in Algorithm 4, that is the core of COmbINE. These
are: (i) the bi-conditionals regarding the presence/absence of edges (Line 4), (ii) conditionals
regarding unshielded and discriminating colliders (Lines 14, 13, 20 and 19), (iii) constraints
that ensure that any truth-setting assignment is a SMCM, i.e., it has no directed cycles and
that every edge has at least one arrowhead (Lines 8 and 9 respectively). Literal col (resp.
dnc) is used to represent both unshielded and discriminating colliders (resp. unshielded and
discriminating non colliders).

The constraints are realized on the basis of the plausible configurations of H;,: Thus,
for the constraints corresponding to adjacent(X,Y, i) the algorithm finds all paths between

1. Other options would be to keep all non-conflicting arrows, or keep non-conflicting arrows and tails after
some additional analysis on definitely visible edges (see Zhang 2008b, Borboudakis et al. 2012 for more
on this subject). These options are asymptotically correct and would constrain search even further.
Nevertheless, orientation rules in FCI seem to be prone to error propagation and we chose a more
conservative strategy giving a chance to the conflict resolution strategy to improve the learning quality.
Naturally, if an oracle of conditional independence is available or there is a reason to be confident on
certain features, one can opt to make additional orientations.
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Algorithm 4: addConstraints

input : Hin, {P}Y,, {L}Y,, mpl
output: @, list of literals F

® «+ () foreach X,Y do

foreach i do
posIndPaths<+ paths in #H;, of maximum length mpl that are possibly
inducing with respect to Ly;;
O+ DA [adjacent(X, Y, P;) <» dpxy €posIndPaths s. t. inducing(pxy,i)];
if X, Y are adjacent in P; then add adjacent(X,Y,P;) to F;
else add —adjacent(X,Y,P;) to F;

end

® < ® A [-ancestor(X,Y) V mancestor(Y, X)];

P+ O A [~tail(X,Y) V ~tail (Y, X)]| A [(arrow(X,Y) V tail (X, Y)];

10 end

11 foreach i do

[

w

© 0w N O o s

12 foreach unshielded triple in P; do
13 P« O A [col(X,Y, Z,P;) — unshielded(X,Y, Z,P;) A collider(X,Y, Z,P;)];
14 D+ DA [dnc(X, Y, Z,P;) — unshielded(X,Y, Z, P;) A\ —collider(X,Y, Z, 731-)];
15 if (X,Y,Z) is a collider in P; then add col(X,Y, Z,P;) to F;
16 else add dne(X,Y, Z,P;) to F;
17 end
18 foreach discriminating path pwz = (W,..., X,Y, Z) do
19 P« DA [col(X,Y, Z,P;) —
discriminating(pwz,Y, P;) A collider(X,Y, Z, 73@)} ;
20 P« DA [dne(X,Y, Z,P;) —
discriminating(pwz,Y, P;) A —collider(X,Y, Z, 731)] ;
21 if X, Y, Z is a collider in P; then add col(X,Y, Z,P;) to F;
22 else add dne(X,Y, Z,P;) to F;
23 end
24 end

X and Y in H;, that are possibly inducing. Then, for the literal adjacent(X,Y,7) to be
true, at least one of these paths is constrained to be inducing; for the opposite, none of
these paths is allowed to be inducing. This step is the most computationally expensive part
of the algorithm. The parameter mpl controls the length of the possibly inducing paths;
instead of finding all paths between X and Y that are possibly inducing, the algorithm
looks for all paths of length at most mpl. This plays a major part in the ability of the
algorithm to scale up, since finding all possible paths between every pair of variables can
blow up even in relatively small networks, particularly in the presence of unoriented cliques
or in relatively dense networks.

Notice that the information on manipulations is included in the satisfiability instance
through the encoding of the constraints: For every adjacency between X and Y observed
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in P;, the plausible inducing paths are consistent with the respective intervention targets:
No inducing path is allowed to include an edge that is incoming to a manipulated variable.

As an example, consider the following variation of the instance presented in Figure 7.
Assume that variable X is manipulated in experiment 1, and no variable is manipulated in
experiment 2. Since no information concerning experiments is employed up to the initial-
ization of the search graph, the resulting PAGs are the P; and Py shown in Figure 7. Thus,
in the initial search graph H;,, Xo—oY and Xo—oZo—oY are the two possibly inducing
paths for X and Y in experiment i. Then the following constraint will be imposed:

adjacent(X,Y,1) < inducing((X,Y),1) Vinducing({(X, Z,Y), 1)
For path (X, Y'), the corresponding constraint is reduced to the properties of S as follows:

inducing((X,Y),1) <
(X el = tail(Y, X)) AN(Y €I} — tail(X,Y)) Aedge(X,Y)

which is then added in ® as inducing((X,Y),1) <> tail(Y, X) Aedge(X,Y) since X € I is
true and Y € I is false. For the path (X, Z,Y") the corresponding constraint finally added
in ® is
inducing((X, Z,Y)) <
tail(Z, X) N [mhead2head((X, Z,Y)) V ancestral(Z, X) V ancestral(Z,Y)]

Thus, in a SMCM that satisfies the final formula, if inducing((X,Y’),q) is true, there
will be an inducing path from X to Y consistent with the manipulation information.

Also notice how this constraint is propagated in the SAT: For example, X+—*Zs—+Y =WV
is a plausible skeleton for a possibly underlying SMCM. By the constraints mentioned above,
X — Zx—Y is the inducing path for X and Y with respect to L; = Z. By the constraints
added for the definite non collider (X, Z, W) for Ps, Z has to be an ancestor of either X or
Y in 8?. Therefore, the path Z«—+Y» W has to be an ancestral path in S, which implies
that Y—Z2 in §. Thus, the orientation Y—Z7 is imposed by a combination of constraints
stemming from different PAGs, for two variables never jointly measured.

As mentioned above, in the absence of statistical errors, all the constraints stemming
from all PAGs P; are simultaneously satisfiable. In practical settings however, it is pos-
sible that some of the PAGs have some erroneous features due to statistical errors, and
these features can lead to conflicting constraints. To tackle this problem, Algorithm 4
uses the following technique: For every observed feature, instead of imposing the im-
plied constraints on the formula ®, the algorithm adds a bi-conditional connecting the
feature to the constraints. For example, if X and Y are found adjacent in P;, then in-
stead of adding the constraints Ipxy : inducing(X,Y,i) to ®, we add the bi-conditional
adjacent(X,Y,P;) <> Ipxy : inducing(X,Y,i). The antecedents of the conditionals are
stored in a list of literals F. The conflict resolution strategy is then imposed on this list of
literals, selecting a subset F’ that results in a satisfiable SAT formula ® A F’. The formula
d A F' is expressed in Conjunctive Normal Form (CNF) so it can be input to standard SAT
solvers.

Recall that the propositional variables of ® correspond to the features of the actual
underlying SMCM (its edges and endpoints). Some of these variables have the same value
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Figure 6: An example of COmbINE input - output. Graph S is the actual, data-generating,
underlying SMCM over 12 variables. PAGs P1, Py and Ps are the output of FCI
ran with an oracle of conditional independence on three different marginals of G.
H is the output of COmbINE algorithm. The sets of latent variables (with respect
to the union of observed variables) per data set are: Ly = {X9}, Lo = {0}, L3 =
{X18}. The sets of manipulated variables (annotated as rectangle nodes instead
of circles in the respective graphs) are: Iy = {X14,X34}, I, = {X15, X8},
Is = {X9, X12}. Notice that X10 and X 31 are adjacent in Py, but not in P; or
Ps. This happens because there exists an inducing path in the underlying SMCM
(X31—X14«+X10 in S) that is “broken” by the manipulation of X 14 and X12,
respectively. Also notice a dashed edge between X9 and X 15, which cannot be
excluded since the variables have never been observed unmanipulated together.
Even if the link existed, it would be destroyed in both Ps and Pj3, where both
variables are observed. All graphs were visualized in Cytoscape (Smoot et al.,
2011).

in all the possible truth-setting assignments of ® A 7', meaning the respective features are
invariant in all possibly underlying SMCMs. Such variables are called backbone variables
of ® A F' (Hyttinen et al., 2013). The actual value of a backbone variable is called the
polarity of the variable. For sake of brevity, we say an edge or endpoint has polarity 0/1 if
the corresponding variable is a backbone variable in ® A 7" and has polarity 0/1. Based on
the backbone of ® A F’, the final step of COmbINE is to construct the summary graph S.
S has the following types of edges and endpoints:
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e 0. 0| o e

Figure 7: A detailed example of a non-trivial inference. From left to right: The true un-
derlying SMCM over variables X, Y, Z, W; PAGs P; and Py over {X,Y,W}
and {X, Z, W}, respectively; The output H of Algorithm 2 ran with an oracle
of conditional independence. Notice that, the edges in P; can not both simul-
taneously occur in a consistent SMCM &: This would make Xo—oYo—oW an
inducing path for X and W with respect to Ly = {Y'} and contradict the features
of Py, where X and W are not adjacent. Similarly, Xoc—oZoc—oW cannot occur in
any possibly underlying SMCM S. The only possible edge structures that explain
all the observed adjacencies and definite non colliders are Xo—oY o—oZo—oW or
Xo—oZo—oYo—olW. Either way, Y and Z share an edge in all consistent SMCMs,
and the algorithm will predict a solid edge between Y and Z, even if the two have
not been measured in the same data set. This example is discussed in detail in
(Tsamardinos et al., 2012).

e Solid Edges: Edges in H that have polarity 1 in ® A F/, meaning that they are
present in all possibly underlying SMCMs.

e Absent Edges: Edges that are not in H or edges in H that have polarity 0 in ® A F,
meaning that they are absent in all possibly underlying SMCMs.

e Dashed Edges: Edges in H that are not backbone variables in ® A 7/, meaning that
there exists at least one possibly underlying SMCM where this edge is present and
one where this edge is absent.

e Solid Endpoints: Endpoints in H that are backbone variables in ® A F’, meaning
that this orientation is invariant in all possibly underlying SMCMs.

e Dashed (circled) Endpoints: Endpoints in A that are not backbone variables in
® A F', meaning that there exists at least one possibly underlying SMCM where this
orientation does not hold.

We use the term solid features of the summary graph to denote the set of solid edges,
absent edges and solid endpoints of the summary graph.

Overall, Algorithm 2 takes as input a set of data sets and a list of parameters and outputs
a summary graph that has all invariant edges and orientations of the SMCMs that satisfy
as many constraints as possible (according to some strategy). The algorithm is capable of
non-trivial inferences, like for example the presence of a solid edge among variables never
measured together. Figures 6 and 7 illustrate the output of Algorithm 2, along with the
corresponding input PAGs.

We claim that, given an oracle of conditional independence, the SAT-generating pro-
cedure described in Algorithm 4 results in a SAT instance ® A F that is satisfied by all
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and only the possibly underlying SMCMs for {7;}X, and {L;}¥, (i.e., every SMCM that
entails the exact same conditional independencies as those obtained by the oracle for every
experiment, after the removal of edges incoming to the manipulated variables). Lemma 17
proves that the every possibly underlying SMCM satisfies ® A F, while Lemma 19 proves
that if S is a mixed graph satisfying ® A F, S is a possibly underlying SMCM for {7},
and {L;}Y,.

In all subsequent lemmas, theorems and proofs we employ the assumptions A1-A3 and
the notation presented in the beginning of Section 4. We also assume the algorithms are run
with an oracle of conditional independence and infinite maximum conditioning set size and
maximum path length. We only present the main lemmas and theorems here. Auxiliary
lemmas and all proofs can be found in Appendix A.

Lemma 17 For an oracle of conditional independence, if S is a possibly underlying model
for {Ti}¥, and {L;}Y.,, and ® A F is the conjunction of the outputs of Algorithm 4, S
satisfies ® A F.

Proof See Appendix A. [ |

Lemma 19. For an oracle of conditional independence, if ® AN F is the conjunction of the
outputs of Algorithm 4, and & a mized graph that satisfies ® N F, then S is a possibly
underlying SMCM for { T}, and {I;}Y,.

Proof See Appendix A. |

Soundness and completeness of Algorithm 2 stems from the Lemmas 17 and 19: For
the summary graph that is the output of COmbINE soundness means that if a feature
is solid in H, the feature is present in all possibly underlying SMCMs for {7}, and
{I;}¥ ;. Completeness means that if a feature is dashed in #, there exists at least two
possibly underlying SMCM where this feature has different truth values. Since ® A F
implicitly represents the entire solution space, and it is satisfied by all and only the possibly
underlying SMCMs, soundness and completeness of Algorithm 2 easily follows.

Theorem 20 (Soundness and completeness of Algorithm 2) If H is the output of
Algorithm 2, then the following hold:

Soundness: If a feature (edge, absent edge, endpoint) is solid in H, then this feature is
present in all SMCMs that are possibly underlying for {Ji}}¥., and {L;}Y,.
Completeness: If a feature is present in all SMCMs that are possibly underlying for
{TAY, and {I;}Y,, the feature is solid in H.

Proof See Appendix A. [ ]
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4.3 A Strategy for Conflict Resolution Based on the Maximum Posterior Ratio

In this section, we present a method for assigning a measure of confidence to every literal
in list F described in Algorithm 2, and a strategy for selecting a subset of non-conflicting
constraints. List F includes four types of literals, expressing different statistical information:

1. adjacent(X,Y,P;): X and Y are not independent given any subset of O;.
2. —adjacent(X,Y,P;): X and Y are independent given some Z C O;

3. col({X,Y,Z),P;): Y is in no subset of O; that renders X and Z independent.

W

. dnc((X,Y,Z),P;): Y is in every subset of O; that renders X and Z independent.

For the scope of this work, we will focus on ranking the first two types of antecedents:
Adjacencies and non-adjacencies. We will then assign colliders and non-colliders with order
to the same rank as the non-adjacency of the corresponding discriminating path’s endpoints.
Naturally, this criterion of sorting colliders and non-colliders is merely a heuristic, as more
than one tests of independence are involved in deciding that a triple is a (non) collider.

Assigning a measure of likelihood or posterior probability to every single (non) adjacency
would enable their comparison. A non-adjacency in a PAG corresponds to a conditional
independence given some subset of the observed variables. In contrast, an adjacency corre-
sponds to the lack of such a subset. Thus, an edge between X and Y should be present in
P; if the evidence (data) is less in favor of hypothesis:

Hy:3Z C O;: X 1L Y | Z than the alternative Hy : Z C O; : X 1L Y | Z (1)

This is a complicated set of hypotheses, that involves multiple tests of independence. We try
to approximate testing by using a single test of independence as a surrogate: During FCI,
several conditioning sets are tested for every pair of variables X and Y. Let Zxy be the
conditioning test for which the highest p-value is identified for the given pair of variables.
Notice that it is this maximum p-value that is employed in FCI and similar algorithms to
determine whether an edge is included in the output or not. We use the set of hypotheses

Hy: X 1LY | Zxy against the alternative Hy : X L Y | Zxy

as a surrogate for the set of hypotheses in Equation 1. Under the null hypothesis, the
p-values follow a uniform ¢([0, 1]) distribution,? also known as the Beta(1,1) distribution.
Under the alternative hypothesis, the density of the p-values should be decreasing in p.
One class of decreasing densities is the Beta(¢, 1) distribution for 0 < £ < 1, with density
f(pl€) = &pt~L. Thus, we can approximate the null and alternative hypotheses in terms of
the p-value as

Hy : pxyz ~ Beta(1,1) against Hy : pxy.z ~ Beta(, 1) for some & € (0,1). (2)

Taking the Beta alternatives was presented as a method for calibrating p-values in Sellke
et al. (2001). For the purpose of this work, we use them to estimate whether dependence

2. This is actually an approximation in this case, since these p-values are maximum p-values over several
tests.
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is more probable than independence for a given p-value p, by estimating which of the Beta
alternatives it is most likely to follow.

Let F be a set of M literals corresponding to adjacencies and non-adjacencies, and
{pj}jj‘/il the respective maximum p-values: If the j-th literal in F is (—)adjacent(X,Y,P;),
then p; is the maximum p-value obtained for X, Y during FCI over D;. We assume that
this population of p-values follows a mixture of Beta(§,1) and Beta(1l,1) distribution. If
7o is the proportion of p-values following Beta(&, 1), the probability density function is

f(pl&,mo) = mo + (1 — mo)&p 1

and the likelihood for a set of p-values {p;}}

=1 is

L&, mo) = [[(mo + (1 — mo)eps ™).
J
The respective negative log likelihood is

—LL(&m) ==Y log(mo + (1 — mo)éps ). (3)
J

For given estimates 7y and f , the posterior ratio of Hy against Hj is

_ P(p|Ho)P(Ho)  P(plp ~ Beta(1,1))P(p ~ Beta(1,1)) 70

Eolp) = P(p|H\)P(H1) — P(plp ~ Beta(£,1))P(p ~ Beta(£, 1)) &pé=1(1 — i)

Eyp(p) > 1 implies that for the test of independence represented by the p-value p, indepen-
dence is more probable than dependence, while Ey(p) < 1 implies the opposite. Moreover,
the value of Ey(p) quantifies this belief. Conversely, the corresponding posterior ratio of
H against Hy is

Ept~1(1 — 7o)
o

Er(p) =

We define the maximum posterior ratio (MPR) for a p-value p to be the maximum
between the two:

{ 0 épg_l(l _7":0)}' (4)

E(p) = max{— ) =
( ) fpg_l(l—ﬂfo) o

MPR estimates heuristically quantify our confidence in the observed adjacencies and
non-adjacencies and are employed to create a list of literals as follows: Let X and Y be a
pair of observed variables, and pxy be the maximum p-value reported during FCI for these
variables. Then, if Ey(pxy) > E1(pxy), the literal —adjacent(X,Y, i) is added to F with
confidence estimate E(pxy). Otherwise, the literal adjacent(X,Y,i) is added to F with a
confidence estimate E(pxy). The list can then be sorted in order of confidence, and the
literals can be satisfied incrementally. Whenever a literal in the list is encountered that
cannot be satisfied in conjunction with the ones already selected, it is ignored.
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Figure 8: Behaviour and calibration of MPR estimates. (left) Log of the maximum poste-
rior ratio E(p) versus log of the p-value p for 7y = 0.6 and various 5 For § = 0.1,
an adjacency supported by a maximum p-value of 0.0038 corresponds to the same
FE as a non-adjacency supported by a p-value of 0.6373. The intersection point
of the line with the x axis is the p for which Ey(p) = E1(p) = 1. (center) Prob-
ability calibration plots for confidence estimates obtained using MPR estimates

(1/(1 + Ep(p)) for adjacencies, Ey(p)/(1 + Eo(p)) for non-adjacencies). For each
interval of length 0.1 in [0.5, 1], the estimated confidences are plotted against the
actual frequency of correctness of the corresponding constraints. The green lines
correspond to estimates obtained using BCCDR (see Section 5) The confidence
estimates correspond to the experiments presented in Figure 10. (right). Number
of confidences in each interval.

Notice that, it is possible that for a p-value Ey(pxy) > Ei1(pxy) (i-e., MPR determines
independence is more probable), even though pxy is smaller than the FCI threshold used. In
other words, given a fixed FCI threshold, dependence maybe accepted; but, when analyzing
the set of p-values encountered to compute MPR, independence seems more probable. The
reverse situation is also possible. The pseudo-code in Algorithm 5 (Lines 6—10) accepts the
MPR. decisions for dependencies and independencies; this implies that some of the decisions
made by FCI will be reversed. Nevertheless, in anecdotal experiments we found that the
literals for which this situation occurs are near the end of the sorted list; thus, whether
one accepts the initial decisions of FCI based on a fixed threshold, or a dynamic threshold
based on MPR usually does not have a large impact on the output of the algorithm.

Figure 8 shows how the MPR varies with the p-value for 7y = 0.6 and several é ’s.
The lowest possible value of the MPR is 1, and corresponds to the p-value p for which
Eo(p) = Ei1(p). Naturally, for the same &, this p-value (where the odds switch in favor of
non-adjacency) is larger for a lower my. In Figure 8 for mp = 0.6 we can see an example
of two p-values that correspond to the same E: An adjacency represented by a p-value of
0.0038 (0.0038 being the mazimum p-value of any test performed by FCI for the pair of
variables) is as likely as a non-adjacency represented by a p-value of 0.6373 (0.6373 being
the p-value based on which FCI removed this edge).

To obtain MPR estimates, we need to estimate my and £&. We used the method described

in Storey and Tibshirani (2003) to estimate 7 on the pooled (maximum) p-values {p;}}% =1
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2 input data sets, 7 : 0.806

5 input data sets, 7 : 0.668 10 input data sets, 7 : 0.766
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Figure 9: Distribution of p-values and estimated 7y. We used the method of Storey and
Tibshirani (2003) to estimate 7y for a sample of p-values corresponding to 2 (left),
5 (center) and 10 (right) input data sets. We generated networks by manipulat-
ing a marginal of the ALARM network (Beinlich et al., 1989) consisting of 14
variables. In each experiment, at most 3 variables were latent and at most 2
variables were manipulated. We simulated data sets of 100 samples each from
the resulting manipulated graphs. We ran FCI on each data set with o = 0.1 and
maxzK =5 and cached the maximum p-value reported for each pair of variables.
We used the p-values from all data sets to estimate 7. The dashed line corre-
sponds to the proportion of p-values that come from the null distribution based
on the estimated 7.

over all data sets obtained during FCI. For a given 7y, Equation 3 can then be easily
optimized for €.

The method used to obtain 7y assumes independent p-values, which is of course not
the case since the test schedule of FCI depends on previous decisions. In addition, each
p-value may be the maximum of several p-values; these maximum p-values may not follow a
uniform distribution even when the non-adjacency (null hypothesis) is true. Finally, given
that p-values stem from tests over different conditioning set sizes, p-values corresponding
to adjacencies do not necessarily follow the same beta distribution. Thus, the approach
presented here is at best an approximation.

In the algorithm as presented, a single beta is fit from the pooled p-values of FCI runs
over all data sets. This strategy is perhaps more appropriate when individual data sets
have a small number of p-values, so the pooled set provides a larger sample size for the
fitting. Other strategies though, are also possible. One could instead fit a different beta for
each data-set and its corresponding set of p-values. This approach could perhaps be more
appropriate in case the PAG structures P; vary greatly in terms of sparseness. In addition,
one could also fit different beta distributions for each conditioning set size. Figure 9 shows
the empirical distribution of p-values and the estimated 7y based on the p-values returned
from FCI on 2, 5 and 10 input data sets, simulated from a network of 14 variables.

The strategy for selecting non-conflicting constraints based on the MPR is presented
in Algorithm 5. MPR is a general criterion that can be used to compare confidence in
dependencies and independencies. The method is based on p-values and thus, can be
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Algorithm 5: MPRstrategy

input : SAT formula @, list of literals F, their corresponding p-values {p;}
output: List of non conflicting literals F’

F'« 0;

Estimate 7y from {p;} using the method described in Storey and Tibshirani (2003);
Find ¢ that minimizes — > log(mo + (1 — 7f0)§p§_1);

foreach literal (—)adjacent(X,Y,P;) € F with p-value p; do

W N

2 épS ™ (1—0)
5 | Eo(py) < ma Er(pj) =
6 if El(pj) < EO(pj) then
7 ‘ add —adjacent(X,Y,P;) to F
8 else
9 ‘ add adjacent(X,Y,P;) in F
10 end
11 Score(literal) < max{Ey(p;), E1(p;)};
12 end

13 foreach literal collider(X,Y, Z,P;), dnc(X,Y, Z,P;) do
14 if X,Y, Z is an unshielded triple in P; then

15 ‘ Score(literal) <— Score(X, Z,P;);

16 else if (W ... XY, Z) is discriminating for Y in P; then
17 ‘ Score(literal) <— Score(W, Z, P;);

18 end

19 end

20 F ¢ sort F by descending score;
21 foreach ¢ € F do
22 if ® A ¢ is satisfiable then

23 D < DA
24 Add ¢ to F;
25 end

26 end

applied in different types of data (e.g., continuous and discrete) in conjunction with any
appropriate test of independence. Moreover, since it is based on cached p-values, and fitting
a beta distribution is efficient, it adds minimal computational complexity. On the other
hand, the estimation of maximum posterior ratios is based on heuristic assumptions and
approximations. Nevertheless, experiments presented in the following section showcase that
the method works similarly if not better than other conflict resolution methods, while being
orders of magnitude computationally more efficient.

5. Experimental Evaluation

We present a series of experiments to characterize how the behavior of COmbINE is affected
by the characteristics of the problem instance and compare it against another alternative
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Problem attribute ‘ Default value used
Number of variables in the generating DAG 20
Maximum number of parents per variable 5
Number of input data sets 5
Maximum number of latent variables per data set 3
Maximum number of manipulated variables per data set 2
Sample size per data set 1000

Table 1: Default values used in generating experiments in each iteration of COmbINE. Un-
less otherwise stated, the input data sets of COmbINE were generated according
to these values.

algorithm in the literature. We also present a comparative evaluation of conflict resolution
methods, including the one based on the proposed MPR estimation technique. Finally, we
present a proof-of-concept application on real mass cytometry data on human T-cells. In
more detail, we initially compare the complete version of COmbINE (i.e., without restric-
tions on the maximum path length or the conditioning set) against SBCSD (Hyttinen et al.,
2013) in ideal conditions (i.e., both algorithms are provided with an independence oracle).
We perform a series of experiments to explore the (a) learning accuracy of COmbINE as a
function of the maximum path length considered by the algorithm, the density and size of
the network to reconstruct, the number of input data sets, the sample size, and the number
of latent variables, and (b) the computational time as a function of the above factors.

All experiments were performed on data simulated from randomly generated networks
as follows. The graph of each network is a DAG with a specified number of variables and
maximum number of parents per variable. Variables are randomly sorted topologically and
for each variable the number of parents is uniformly selected between 0 and the maximum
allowed. The parents of each variable are selected with uniform probability from the set
of preceding nodes. Each DAG is then coupled with random parameters to generate con-
ditional linear Gaussian networks. To avoid very weak interactions, minimum absolute
conditional correlation was set to 0.2. Before generating a data set, the variables of the
graph are partitioned to unmanipulated, manipulated, and latent. Mean value and stan-
dard deviation for the manipulated variables were set to 0 and 1, respectively. Subsequently,
data instances are sampled from the network distribution, considering the manipulations
and removing the latent variables. All experiments are performed on conservative families
of targets; the term was introduced in Hauser and Biihlmann (2012) to denote families of
intervention targets in which all variables have been observed unmanipulated at least once.

For each invocation of the algorithm, the problem instance (set of data sets) is generated
using the parameters shown in Table 1. COmbINE default parameters were set as follows:
maximum path length = 3, a = 0.1 and maximum conditioning set mazK = 5, and the
Fisher z-test of conditional independence. As far as orientations are concerned, in our
experience, FCI is very prone to error propagation, we therefore used the rule in (Ramsey
et al., 2006) for conservative colliders. Unless otherwise stated, Algorithm 5 is employed to
resolve conflicts. SAT instances were solved using MINISAT2.0 (Eén and Sérensson, 2004)
along with the modifications presented in Hyttinen et al. (2013) for iterative solving and

2179



TRIANTAFILLOU AND TSAMARDINOS

computing the backbone with some minor modifications for sequentially performing literal
queries. In the subsequent experiments, one of the problem parameters in Table 1 is varied
each time, while the others retain the values above.

To measure learning performance, ideally one should know the correct output, i.e., the
structure that the algorithm would learn if ran with an oracle of conditional independence,
and unrestricted infinite maxK and maximum path length parameters. Notice that the
original generating DAG structure cannot serve as the correct output for comparison. This
is because the presence of manipulated and latent variables implies that not all structural
features of the generating DAG can be recovered. For example, for the problem instance
presented in Figure 7 (middle), the correct output, shown in Figure 7 (right), has one solid
edge out of 5, no solid endpoint, one absent, and four dashed edges. Dashed edges and
endpoints in the output of the algorithm can only be evaluated if one knows this correct
output. Unfortunately, the correct output cannot be recovered in a timely fashion in most
problems involving more than 15 variables, as shown in Section 5.1.

As a surrogate, we defined metrics that do not consider dashed edges or endpoints and
can be directly computed by comparing the “solid” features of the output with the original
data generating graph. Specifically, we used two types of precision and recall; one for
edges (s-Precision/s-Recall) and one for orientations (o-Precision/o-Recall). Let G be the
graph that generated the data (the SMCM stemming from the initial random DAG after
marginalizing out variables latent in all data sets), and H be the summary graph returned
by COmbINE. s-Precision and s-Recall were then calculated as follows:

# solid edges in ‘H that are also in G
# solid edges in ‘H

s-Precision =

and

# solid edges in H that are also in G

- Il =
s-Reca # edges in G

Similarly, orientation precision and recall are calculated as follows:

# endpoints in G correctly oriented in H

o-Precision =
# of orientations(arrows/tails) in H

and

# endpoints in G correctly oriented in ‘H

o-Recall = # endpoints in G

Since dashed edges and endpoints do not contribute to these metrics, precision in particular
could be favorable for conservative algorithms that tend to categorize all edges (endpoints)
as dashed. To alleviate this problem, we accompany each precision / recall figure with the
percentage of dashed edges out of all edges in the output graph to indicate how conservative
is the algorithm. Similarly, we present the percentage of dashed (circled) endpoints out of
all endpoints in the output graph. Finally, we note that in the experiments that follow,
unless otherwise stated, we report the median, 5, and 95 percentile over 100 runs of the
algorithm with the same settings.
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Running time Completed instances/
# # max Median (5 %ile, 95 %ile) total instances
variables | parents COmbINE SBCSD SBCSD’ COmbINE | SBCSD | SBCSD’
10 3 17(1,113) 149(14,470)* 91(30,369)* 50/50 30/50 48/50
5 80(4,1192) 365(133,500)* | 264(68,554)* 50/50 16/50 32/50
14 3 28(4,6361)* — 451(407,492)* 49/50 0/50 4/50
5 272(23,16107)* — — 43/50 0/50 0/50

Table 2: Comparison of running times for COmbINE and SBCSD for networks of 10 and
14 variables. The table reports the median running time along with the 5 and
95 percentiles, as well as the number of instances (problem inputs) in which each
algorithm managed to complete; *numbers are computed only on the problems for
which the algorithm completed.

5.1 COmbINE vs. SBCSD

Hyttinen et al. (2013) presented a similar algorithm, named SAT-based causal structure dis-
covery (SBCSD). SBCSD is also capable of learning causal structure from manipulated data
sets over overlapping variable sets. In addition, if linearity is assumed, it can admit feedback
cycles. SBCSD also uses similar techniques for converting conditional (in)dependencies into
a SAT instance. However, the algorithm requires all m-connections to constrain the search
space (at least the ones that guarantee completeness), while COmbINE uses inducing paths
to avoid that. For each adjacency X+—Y in a data set, COmbINE creates a constraint
specifying that at least one path between the variables is inducing with respect to Lj. In
contrast, SBCSD creates a constraint specifying that at least one path between the variables
is m-connecting path given each possible conditioning set. So, both algorithms are forced
to check every possible path, yet COmbINE examines each path once (with respect to Lj),
while SBCSD examines it for multiple possible conditioning sets. The latter choice may
be necessary to deal with cyclic structures, but leads to significantly larger SAT problems
when acyclicity is assumed.

SBCSD is not presented with a conflict resolution strategy and so it can only be tested by
using an oracle of conditional independence. Equipping SBCSD with such a strategy is pos-
sible, but it may not be straightforward: SBCSD computes the SAT backbone incrementally
for efficiency, which complicates pre-ranking constraints according to some criterion. Since
SBCSD cannot handle conflicts, we compared it to the complete version of our algorithm
(infinite maxK and maximum path length) using an oracle of conditional independence.
Since no statistical errors are assumed, the initial search graph for COmbINE includes all
observed arrows. Both algorithms are sound and complete, hence we only compare run-
ning time. SBCSD uses a path-analysis heuristic to limit the number of tests to perform.
However, the authors suggest that in cases of acyclic structures, this heuristic could be
substituted with the FCI test schedule. To better characterize the behavior of SBCSD
on acyclic structures, we equipped the original implementation as suggested.®> We denote
this version of the algorithm as SBCSD’. Also note, that the available implementation of

3. However, we do not include the Possible d-Separating step of FCI; this step hardly influences the quality
of the algorithm (Colombo et al., 2012). Thus, the timing results of Table 2 are a lower bound on the
execution time of the SBCSD algorithm.
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SBCSD by its authors has an option to restrict the search to acyclic structures, which was
employed in the comparative evaluation. Finally, we note that SBCSD is implemented in
C, while COmbINE is implemented in Matlab.

For the comparative evaluation, we simulated random acyclic networks with 10 and 14
variables. The default parameters were used to generate 50 problem instances for networks
with 3 and 5 maximum parents per variable. Both algorithms were run on the same com-
puter, with 4GB of available memory. SBCSD reached maximum memory and aborted
without concluding in several cases for networks of 10 variables, and in all cases for net-
works of 14 wvariables. SBCSD’ slightly improves the running time over SBCSD. Median
running time along with the 5 and 95 percentiles as well as number of cases completed are
reported in Table 2. The metrics for each algorithm were calculated only on the cases where
the algorithm completed.

The results in Table 2 indicate that COmbINE is more time-efficient than SBCSD and
SBCSD’. While the running times do depend on implementation, the fact that SBCSD have
much higher memory requirements indicates that the results must be at least in part due
to the more compact representation of constraints by COmbINE . COmbINE managed to
complete all cases for networks of 10 and most cases for 14 variables, while SBCSD completed
less than 50% and 0%, respectively. SBCSD’ completed most cases for 10 variables but only
4% of cases for 14 variables. Interestingly, the percentiles for COmbINE are quite wide
spanning two orders of magnitude for problems with maxParents equal to 5 (we cannot
compute the actual 95 percentile for SBCSD since it did not complete for most problems).
Thus, performance highly depends on the input structure. Such heavy-tailed distributions
are well-noted in the constraint satisfaction literature (Gomes et al., 2000). We also note
the fact that COmbINE seems to depend more on the sparsity and less on the number of
variables, while SBCSD’s time increases monotonically with the number of variables. Based
on these results, we would suggest the use of COmbINE for problems where acyclicity is a
reasonable assumption and the number of variables is relatively high.

5.2 Evaluation of Conflict Resolution Strategies

In this section we evaluate our Maximum Map Ratio strategy (MPR) against three other al-
ternatives: A ranking strategy where constraints are sorted based on Bayesian probabilities
as proposed in Claassen and Heskes (2012) (BCCDR), as well as a Max-SAT (MaxSAT)
and a weighted max-SAT (wMaxSAT) approach.

MPR: This strategy sorts constraints according to the Maximum Map Ratio (Algorithm
5) and greedily satisfies constraints in order of confidence; whenever a new constraint is not
satisfiable given the ones already selected, it is ignored (Lines 21- 25 in Algorithm 5).

BCCDR: BCCDR sorts constraints according to Bayesian probability estimates of the
literals in F as presented in Claassen and Heskes (2012). The same greedy strategy for
satisfying constraints in order is employed. Briefly, the authors propose a method for
calculating Bayesian probabilities for any feature of a causal graph (e.g. adjacency, m-
connection, causal ancestry). To estimate the probability of a feature, for a given data
set D, the authors calculate the score of all DAGs of N variables. Let G F f denote
that a feature f is present in DAG G. The probability of the feature is then calculated
as P(f) = > g P(D|G)P(G). Scoring all DAGs is practically infeasible for networks with
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Figure 10: Learning performance of COmbINE with various conflict resolution strategies.
From left to right: Median s-Precision, s-Recall, proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints (bottom) for
networks of several sizes for various conflict resolution strategies. Each data set
consists of 100 samples. The numbers for wMaxSAT and maxSAT correspond
to 22 and 23 cases, respectively, in which the algorithms managed to return
a solution within 500 seconds. Coloured bars indicate 5 and 95 percentiles.
Asterisks in the top right figure show the absolute number of literals rejected by
each strategy (y axis on the right). Asterisks on x tick labels indicate cases where
the behaviour of MPR and BCCDR are significantly different (paired t-test of
equality of means with unknown but equal variances).

more than 5 or 6 variables. Thus, for data sets with more variables, a subset of variables
must be selected for the calculation of the probability of a feature. Following (Claassen and
Heskes, 2012), we use 5 as the maximum N attempted.

The literals in F represent information on adjacencies: (—)adjacent(X,Y,P;) and col-
liders: (—)collider(X,Y, Z,P;). To apply the method above for a given feature, we have to
select the variables used in the DAGs, a suitable scoring function, and suitable DAG priors.
For (non) adjacencies X+—Y in PAG P;, we scored the DAGs over variables X, Y and Z,
for the conditioning set Z maximizing the p-value of the tests X 1LY | Z performed by FCI.
Since the total number of variables cannot exceed 5, the maximum conditioning set for FCI
is limited to 3 in all experiments in this section for a fair comparison. (Non) colliders are
assigned the same score as the non adjacency of their endpoints.

We use the BGE metric for Gaussian distributions (Geiger and Heckerman, 1994) as
implemented in the BDAGL package Eaton and Murphy (2007a) to calculate the likelihoods
of the DAGs. This metric is score equivalent, so we pre-computed representatives of the
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Markov equivalent networks of up to 5 nodes, and scored only one network per equivalence
class to speed up the method. Priors for the DAGs were also pre-computed to be consistent
with respect to the maximum attempted number of nodes (i.e. 5) as suggested in Claassen
and Heskes (2012).

MaxSAT: This approach tries to satisfy as many literals in F as possible. Recall
that the SAT problem consists of a set of hard-constraints (conditionals, no cycles, no
tail-tail edges), which should always be satisfied (hard constraints), and a set of literals
F. Maximum SAT solvers cannot be directly applied to the entire SAT formula since
they do not distinguish between hard and soft constraints. To maximize the number of
literals satisfied, while ensuring all hard-constraints are satisfied we resorted to the following
technique: we use the akmaxsat (Kuegel, 2010) weighted max SAT solver that tries to
maximize the sum of the weights of the satisfied clauses. Each literal is assigned a weight
of 1, and each hard-constraint is assigned a weight equal to the sum of all weights in F
plus 10000. The summary graph returned by Algorithm 2 is based on the backbone of the
subset of literals selected by akmaxsat.

wMaxSAT: Finally, we augmented the above technique with a different weighted strat-
egy that considers the importance of each literal. Specifically, each literal was weighted
proportionally to the logarithm of the corresponding MPR. Again, each hard-constraint
was assigned a weight equal to the sum of all weights in F plus 10000, to ensure that the
solver will always satisfy these statements. The summary graph returned by Algorithm 2
is based on the backbone of the subset of literals selected by akmaxsat.

We ran all methods for networks of 10, 20, 30, 40 and 50 variables for data sets of 100
samples to test them on cases where statistical errors are common. For each network size
we performed 50 iterations. MaxSAT and wMaxSAT often failed to complete in a timely
fashion; to complete the experiments we aborted the solver after 500 seconds. We note that
this amount of time corresponds to more than 10 times the maximum running time of the
MPR method (calculating MPRs and solving the SAT instance), and more than twice times
the maximum running time of the BCCDR-based method (for 50 variables). Cases where
the solver did not complete were not included in the reported statistics. Unfortunately, the
methods using weighted max SAT solving failed to complete in most cases for 10 variables,
and all cases for more than 10 variables.

The results are shown in Figure 10, where we can see the median performance of both
algorithms over 50 iterations. Overall, MPR exhibits better Precision and identifies more
solid edges, while BCCDR exhibits slightly better Recall. BCCDR is better for variable
size equal to 10, which could be explained from the fact that MPR is not provided with
sufficient number of p-values to estimate 7y and f . In terms of computational complexity,
for networks of 50 variables, estimating the BCCDR ratios takes about 150 seconds on
average, while estimating the MPR ratios takes less than a second. The more sophisticated
search strategies MaxSAT and wMaxSAT do not seem to offer any significant quality
benefits, at least for the single variable size for which we could evaluate them. Based on
these results, we believe that MPR is a reasonable and relatively efficient conflict resolution
strategy.
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Figure 11: Learning performance of COmbINE against maximum path length. From left
to right: s-Precision, s-Recall, percentage dashed edges and o-Precision, o-Recall
and percentage of dashed endpoints (bottom) for varying maximum path length,
averaged over all networks. Shaded area ranges from the 5 to the 95 percentile.
Maximum path length 3 seems to be a be a reasonable trade-off between per-
formance, percentage of dashed features, and efficiency.

5.3 COmbINE Performance with Increasing Maximum Path Length

In this section, we examine the behavior of the algorithm when the length of the paths con-
sidered is limited, in which case the output is an approximation of the actual solution. The
COmbINE pseudo-code in Algorithm 2 accepts the maximum path length as a parameter.

Learning performance as a function of the maximum path length is shown in Figure 11.
Notice that when the path length is increased from 1 to 2 there is drop in the percentage
of dashed endpoints, implying more orientations are possible. For length equal to 1, only
unshielded and discriminating colliders are identified, while for length larger than 2 further
orientations become possible thanks to reasoning with the inducing paths. When length
is 1, notice that there are almost no dashed edges (except for the edges added in Line 5
of Algorithm 3). When the maximum length increases, adjacencies in one data set, can
be explained with longer inducing paths in the underlying graph and more dashed edges
appear. The learning performance of the algorithm is not monotonic with the maximum
length. Explaining an association (adjacency) through the presence of a long inducing path
may be necessary for asymptotic correctness. However, in the presence of statistical errors,
allowing such long paths could lead to complicated solutions or the propagation of errors.
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Figure 12: Learning performance of COmbINE for various network sizes and densities.
From left to right: Median s-Precision, s-Recall, proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints (bottom) for
varying network size and density. Density is controlled by limiting the number
of possible parents per variable. Coloured bars indicate 5 and 95 percentiles. As

expected, the performance deteriorates as networks become denser.

Overall, it seems any increase of the maximum path length above 3 does not significantly
affect performance. It seems that a maximum path length of 3 is a reasonable trade-
off among learning performance (precision and recall), percentage of uncertainties, and
computational efficiency. These experiments justify our choice of maximum length 3 as the
default parameter value of the algorithm.

5.4 COmbINE Performance as a Function of Network Density and Size

In Figure 12 the learning performance of the algorithm is presented as a function of network
density and size. Density was controlled by the maximum parents allowed per variable, set
by parameter maxParents during the generation of the random networks. For all network
sizes, learning performance monotonically decreases with increased density, while the per-
centage of dashed features does not significantly vary. The size of the network has a smaller
impact on the performance, particularly for the sparser networks. For dense networks,
performance is relatively poor and becomes worse with larger sizes.

We also calculated confusion matrices for edges and endpoints inferred by COmbINE
against the correct output structure H for networks of 10 variables, where H can be ob-
tained by running COmbINE with an oracle of conditional independence and unrestricted
path length and conditioning set size. Table 3 shows the resulting confusion matrices for
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Actual H
maxParents 3 maxParents 5
Edges solid dashed absent solid dashed absent
solid 8.0 (4.0,12.0) | 0.0 (0.0,5.0) 0.0 (0.0,4.0) 9.0 (3.0,13.0) | 1.0 (0.0,10.0) 1.0 (0.0,5.0)
dashed 0.0 (0.0,3.0) | 0.0 (0.0,4.0) 0.0 (0.0,2.0) 0.5 (0.0,4.0) | 0.5 (0.0,3.0) 1.0 (0.0,2.0)
absent 1.0 (0.0,4.0) | 0.0 (0.0,3.0) | 31.0 (24.0,36.0) || 2.5 (0.0,8.0) | 1.5 (0.0,9.0) | 24.0 (14.0,34.0)
7 [ Endpoints arrow circle tail arrow circle tail

arrow 8.0 (4.0,12.0) | 1.0 (0.0,5.0) 0.0 (0.0,3.0) 8.0 (4.0,13.0) | 3.0 (0.0,8.0) 2 (0.0,5.0)
circle 1.0 (0.0,3.0) | 3.0 (0.0,14.0) 0.0 (0.0,2.0) 1.0 (0.0,5.0) | 3.0 (0.0,8.0) 1.0 (0.0,4.0)

tail 0.0 (0.0,2.0) | 0.0 (0.0,5.0) 4.0 (0.0,8.0) 1.0 (0.0,5.0) 1 (0.0,54.0) 3.0 (1.0,6.0)

Table 3: Confusion matrices reporting edge and endpoint counts of the output of COmbINE
7 versus the actual summary graph . Results are shown for 10 variables and 5
data sets of 1000 samples each. H was obtained using COmbINE with an oracle
of conditional independence, and unconstrained maxK and maximum path length
parameters. The table reports median values (bold) along with the 5 and 95
percentiles (in parenthesis). Results are in agreement with the metrics used for
larger networks.

maxParents 3 and 5 and 5 data sets of sample size 1000. Overall, the results are in concor-
dance with the metrics used for larger networks, and confirm that the method works best
for sparser networks. Notice that for dense networks (for N=10 and maxParents =5, the
networks have about 40% of all possible edges), there are cases where the actual correct
output includes a large proportion of dashed edges, while constricting the maximum path
length forces the algorithm to accept more solid features (hence the wide percentiles).

5.5 COmbINE Performance over Sample Size and Number of Input Data Sets

Figure 13 shows the performance of the algorithm with increasing the number of input data
sets. As expected, the percentage of uncertainties (dashed features) is steadily decreasing
with increased number of input data sets. Recall also steadily improves, while Precision is
relatively unaffected. Figure 14 holds the number of input data set constant to the default
value 5, while increasing the sample size per data set. Recall in particular improves with
larger sample sizes, while the percentage of dashed endpoints drops.

5.6 COmbINE Performance for Increasing Number of Latent Variables

We also examine the effect of confounding to the performance of COmbINE . To do so, we
generated semi-Markov causal models instead of DAGs in the generation of the experiments:
We generated random DAG networks of 30 variables and then marginalized out a percentage
of the variables. Figure 15 depicts COmbINE’s performance against 3, 6, and 9 of latent
variables, corresponding to 10%, 20% and 30% of the total number of variables in the
graph, respectively. Overall, confounding does not seem to greatly affect the performance
of COmbINE. We must point out however, that s-Recall is lower than the s-Recall with no
confounded variables for the same network size (see Figure 12).

2187



TRIANTAFILLOU AND TSAMARDINOS

0.9 e 09

| i
1= ut»//-
04} o 04

s-Precision
s-Recall

03 ! 03

Proportion of dashed edges

3 5 B

5 ; 5
number of data sets

‘{ 3 5
number of data sets

number of data sets

0.9 ! 0.9

7k |
= 06 i
2 <

i (H”—/
03 B 03 8

0.3 !
0.2 e
0.1 =

s

o-Precision
o-Recall
Proportion of dashed endpoints

3 E

number of data sets number of data sets number of data sets

3 5 8 2 3 5

Figure 13: Learning performance of COmbINE for varying number of input data sets.
From left to right: Median s-Precision, s-Recall, Proportion of dashed edges
(top) and o-Precision, o-Recall and proportion of dashed endpoints of (bottom)
for varying number of input data sets. Shaded area ranges from the 5 to the 95
percentile. Increasing the number of input data sets improves the performance
of the algorithm.

5.7 Running Time for COmbINE

The running time of COmbINE depends on several factors, including the ones examined in
the previous experiments: Maximum path length, number of input data sets and sample size,
and, naturally, the number of variables. Figure 16 illustrates the running time of COmbINE
against these factors. As we can see in Figure 16, the restriction on the maximum path
length is the most critical factor for the scalability of the algorithm.

5.8 A Case Study: Mass Cytometry Data

Mass cytometry (Bendall et al., 2011) is a recently introduced technique that enables mea-
suring protein activity in cells, and its main use is to classify hematopoietic cells and identify
signaling profiles in the immune system. Therefore, the proteins are usually measured in
a sample of cells and then in a different sample of the same (type of) cells after they have
been stimulated with a compound that triggers some kind of signaling behavior. Identify-
ing the causal succession of events during cell signaling is crucial to designing drugs that
can trigger or suppress immune reaction. Therefore in several studies both stimulated and
un-stimulated cells are treated with several perturbing compounds to monitor the potential
effect on the signaling pathway.
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Figure 14: Learning performance of COmbINE for varying sample size per data set. From
left to right: s-Precision, s-Recall, Proportion of dashed edges (top) and o-
Precision, o-Recall and proportion of dashed endpoints of (bottom) for varying
sample size per data set. Shaded area ranges from the 5 to the 95 percentile.
Increasing the sample size improves the performance of the algorithm.

Mass cytometry data seem to be a suitable test-bed for causal discovery methods: The
proteins are measured in single cells instead of representing tissue averages, the latter being
known to be problematic for causal discovery (Chu et al., 2003), and the samples range in
thousands. However, the mass cytometer can measure only up to 34 variables, which may
be too low a number to measure all the variables involved in a signaling pathway. Moreover,
about half of these variables are surface proteins that are necessary to distinguish (gate) the
cells into sub-populations, but are not functional proteins involved in the signaling path-
way. It is therefore reasonable for scientists to perform experiments measuring overlapping
variable sets.

Bendall et al. (2011) and Bodenmiller et al. (2012) both use mass cytometry to measure
protein abundance in cells of the immune system. In both studies, the samples were treated
with several different signaling stimuli. Some of the stimuli were common in both studies.
After stimulation with each activating compound, Bodenmiller et al. (2012) also test the
cell’s response to 27 inhibitors. One of these inhibitors is also used in Bendall et al. (2011).
For this inhibitor, Bendall et al. (2011) measured bone marrow cell samples of a single donor.
In Bodenmiller et al. (2012), measurements were taken from peripheral blood mononuclear
cell (PBMC) samples of a (different) single donor. Despite differences in the experimental
setup, the signaling pathway of every stimulus and every sub-population of cells is considered
universal across (healthy) donors, so the data should reflect the same underlying causal
structure.
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Figure 15: Learning performance of COmbINE for varying percentage of confounded vari-
ables. From left to right: s-Precision, s-Recall, percentage of dashed edges (top)
and o-Precision, o-Recall and percentage of dashed endpoints (bottom) for vary-
ing number of confounded nodes for networks of 30 variables. Shaded area ranges
from the 5 to the 95 percentile. Overall, the number of confounding variables
does not seem to greatly affect the algorithm’ s performance.

We focused on two sub-populations of the cells, CD4+ and CD8+ T-cells, which are
known to play a central role in immune signaling. The data were manually gated by the
researchers in the original studies. We also focused on one of the stimuli present in both
studies, PMA-Ionomycin, which is known to have prominent effects on T-cells. Proteins
pBtk, pStat3, pStatb, pNfkb, pS6, pp38, pErk, pZap70, pSHP2 and pPlcg2 are measured
in both data sets (initial p denotes that the concentration of the phosphorylated protein is
measured). Four additional variables were included in the analysis, pAkt, pLat and pStatl
measured only in Bodenmiller et al. (2012) and pMAPK measured only in Bendall et al.
(2011). To be able to detect signaling behavior, we formed data sets that contain both
stimulated and unstimulated samples.

As mentioned above, the cells were treated with several inhibitors. Some of these in-
hibitors target a specific protein, and some of them perturb the system in a more general or
unidentified way. Specific inhibitors can be abundance inhibitors, which affect the level of
measured protein, and activity inhibitors, which affect the function of measured proteins.
The former are closer to ideal hard interventions. Activity inhibitors have been modelled
in several ways in the literature. Sachs et al. (2005) model them as ideal interventions by
manually setting the values to the lowest discretization level. Itani et al. (2010) propose
splitting the target variable in two nodes, one used to represent the inhibition and the other
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Figure 16: Running time of COmbINE. From left to right: Running time (in seconds) is
plotted in logarithmic scale against maximum parents per variable and number
of variables (top row); number of data sets and maximum path length (bottom
row). Shaded area ranges from the 5 to the 95 percentile. The number of
variables and the maximum path length seem to be the most critical factors of
computational performance. Notice that, COmbINE scales up to problems with
100 total variables for limited path length and relatively sparse networks.

used to represent the abundance. Mooij and Heskes (2013) propose modelling activity inhi-
bitions by removing outgoing edges of the target variable. Notice that this type of modelling
can be easily encoded in a SAT representation.

We used abundance inhibitors that we believe can be modeled as hard interventions (i.e.
the compounds used to target these proteins are known to be specific and to have an effect
in the phosphorylation levels of the target). The maximum dosage of each inhibitor was
used. For all three interventions, the distribution of the target variable under zero dosage
is differs significantly (according to a Kolmogorov-Smirnov test with significance threshold
0.05) from the distribution of the target variable for the maximum dosage, indicating that
the inhibitor has an effect on the abundance of the target protein. Nevertheless, we must
point out that the interventions may not be entirely ideal. More information on the specific
compounds can be found in the respective publications.

We ended up with four data sets for each sub-population. Details can be found in Table
4. Protein interactions are typically non-linear, so we discretized the data into 4 bins. We
ran Algorithm 2 with maximum path length 3. We used the G? test of independence for
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Data set Source latent (L;): manipulated(I;) | Donor
D, Bodenmiller et al. (2012) pMAPK pAkt 1
Do Bodenmiller et al. (2012) pMAPK pBtk 1
Ds Bodenmiller et al. (2012) pMAPK pErk 1
Dy Bendall et al. (2011) pAkt, pLat, pStatl pErk 2

Table 4: Summary of the mass cytometry data sets co-analyzed with COmbINE. The pro-
cedure was repeated for two sub-populations of cells, CD4+ cells and CD8+ cells.

Figure 17: A case study for COmbINE: Mass cytometry data. COmbINE was run on 4
different mass cytometry data for two different cell populations: CD4+ T-cells
(left) and CD8+ T-cells (right). In each data set, one variable was manipulated
(pAkt, pBTk, pErk, pErk respectively). Variables pAkt, pLat and pStatl are
only measured in data sets 1-3, while pMAPK is only measured in data set 4.

FCI with a = 0.05 and maxK=5. We used Cytoscape (Smoot et al., 2011) to visualize the
summary graphs produced by COmbINE;, illustrated in Figure 17.

Unfortunately, the ground truth for this problem is not known for a full quantitative
evaluation of the results. Nevertheless, this set of experiments demonstrates the availability
of real and important data sets and problems that are suited integrative causal analysis.
Second, these experiments provide a proof-of-concept for the specific algorithm. One type
of interesting type of inference possible with COmbINE and similar algorithms is the pre-
diction of a direct relation of pAkt and pMAPK in CD4+ cells, even though the variables
are not jointly measured in any of the input data sets. Thus, methods for learning causal
structure from multiple manipulations over overlapping variables potentially constitute a
powerful tool in the field of mass cytometry.

We do not make any claims for the validity of the output graphs and they are presented
only as a proof-of-concept, as there are several potential pitfalls. In addition to the potential
imperfect manipulations described above, COmbINE also assumes lack of feedback cycles,
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which is not guaranteed in this system. We note however, that acyclic networks have been
successfully used for reverse engineering protein pathways in the past (Sachs et al., 2005).

6. Conclusions and Future Work

We have presented COmbINE, a sound and complete algorithm that performs causal dis-
covery from multiple data sets that measure overlapping variable sets under different inter-
ventions in acyclic domains. COmbINE works by converting the constraints on inducing
paths in the sought out semi Markov causal model (SMCMs) that stem from the discovered
(in)dependencies into a SAT instance. COmbINE outputs a summary of the structural
characteristics of the underlying SMCM, distinguishing between the characteristics that are
identifiable from the data (e.g., causal relations that are postulated as present), and the
ones that are not (e.g., relations that could be present or not). In the empirical evaluation
the algorithm outperforms in efficiency a recently published similar one (Hyttinen et al.,
2013) that, given an oracle of conditional independence, performs the same inferences by
checking all m-connections necessary for completeness.

COmbINE is equipped with a conflict resolution technique that ranks dependencies
and independencies discovered according to confidence as a function of their p-values. This
technique allows it to be applicable on real data that may present conflicting constraints
due to statistical errors. To the best of our knowledge, COmbINE is the only implemented
algorithm of its kind that can be applied on real data.

The algorithm is empirically evaluated in various scenarios, where it is shown to exhibit
high precision and recall and reasonable behavior against sample size and number of input
data sets. It scales up to networks with up to 100 variables for relatively sparse networks.
Moreover, it is possible for the user to trade the number of inferences for improved compu-
tational efficiency by limiting the maximum path length considered by the algorithm. As
a proof-of-concept application, we used COmbINE to analyze a real set of experimental
mass-cytometry data sets measuring overlapping variables under three different interven-
tions.

COmbINE outputs a summary of the characteristics of the underlying SMCM that can
be identified by computing the backbone of the corresponding SAT instance. The conver-
sion of a causal discovery problem to a SAT instance makes COmbINE easily extendable
to other inference tasks. One could instead produce all SAT solutions and obtain all the
SMCMs that are plausible (i.e., fit all data sets). In this case, COmbINE with input a
single PAG would output all SMCMs that are Markov Equivalent with the PAG; there is
no other known procedure for this task. Alternatively, one could easily query whether there
are solution models with certain structural characteristics of interest (e.g., a directed path
from A to B); this is easily done by imposing additional SAT clauses expressing the presence
of these features. Incorporating certain types of prior knowledge such as causal precedence
information can also be achieved by imposing additional path constraints. Future work
includes extending this work for admitting soft interventions and known instrumental vari-
ables. The conflict resolution technique proposed could be employed to standard causal
discovery algorithms that learn from single data sets, in an effort to improve their learning
quality.
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Appendix A. Proofs

We now present proofs for propositions and theorems presented in the main section.

Proposition 12 Let O be a set of variables and J the independence model over O. Let
S be a SMCM over variables O that is faithful to J and M be the MAG over the same
variables that is faithful to J. Let X,Y € O. Then there is an inducing path between X
and Y with respect to L, L C O in S if and only if there is an inducing path between X
and Y with respect to L in M.

Proof (=) Assume there exists a path p in § that is inducing w.r.t. L. Then by Theorem
10 there exists no Z C O \ LU {X,Y} such that X and Y are m-separated given Z in S,
and since S and M entail the same m-separations there exists no Z C O\ LU{X,Y} such
that X and Y are m-separated given Z in M. Thus, by Theorem 9 there exists an inducing
path between X and Y with respect to L in M.

(<) Similarly, assume there exists a path p in M that is inducing w.r.t. L. Then by The-
orem 9 there exists no Z C O\ LU{X,Y} such that X and Y are m-separated given Z in
M, and since S and M entail the same m-separations there exists no ZC O\ LU{X,Y}
such that X and Y are m-separated given Z in §. Thus, by Theorem 10 there exists an
inducing path between X and Y with respect to L in S. |

Theorem 13 Let O be a set of variables and J the independence model over O. Let S be
a SMCM over variables O that is faithful to J. Let M = SMCMtoMAG(S). Then S and
M share the same ancestry relations and Jm(S) = Tm(M), hence the two graphs entail the
same independence model.

Proof S and M share the same ancestry relations, since during Algorithm 1 a directed
edge X—Y is added only if X is an ancestor of Y in S, and no directed edges are removed.
To prove that the J,(S) = Jm(M), consider a DAG G constructed from S as follows:
For every bi-directed edge X<—+Y, introduce a new node Lxy. Remove X<«+Y and add
X<«—Lxy—Y. Let {Ly,y;} be the set of nodes added by this procedure. Obviously, G
is a DAG and G and S share the same ancestry relations and the same m-separations for
variables in O, thus J,(S) = Jn(9)[L.- If (X, V1,...,V,,Y) is a primitive inducing path
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in S, then (X, Lxv;,Vi,...,Lv,_,vi,» Va, Ly, v, Y) is an inducing path with respect to L in
G and vice versa. Thus, X and Y are adjacent in Gy, if only if there exists a primitive
inducing path between X and Y in S, and G shares the same ancestry relations with &
for variables in O, thus by Definition 3, G[,= M. By Theorem 4 (Richardson and Spirtes,
2002) Jin(M) = Tn(G[L) = Tin(G)[L= Tin(S). u

In all subsequent lemmas, theorems and proofs we employ the assumptions and notation
presented in Section 4 (Assumptions A1-A3 and notation presented beneath them). We
also assume the algorithms are run with an oracle of conditional independence and infinite
maximum conditioning set size and maximum path length.

The following theorem proves that a S is possibly underlying SMCM for {J;}!"; and
{Ii}i]\il if and only if the result of manipulating I;, adding necessary edges to create a
Markov equivalent MAG and then marginalizing out variables in L; produces a MAG M;
that belongs to the Markov equivalence class represented by P; for all experiments.

Theorem 14 If S is a SMCM, {J;}¥, is a family of independence models, {L;}Y, is a
family of intervention targets and P; is the PAG of the Markov equivalence class of MAGs
faithful to J;, the following statements are equivalent:

e S is a possibly underlying SMCM for {TJ;}¥, and {L;},.
o Vi, M; € P;, where M; = SMCMtOMAG(SIi)[Li.
Proof The following hold:
S is a possibly underlying SMCM for {7}~ | and {L;}Y, & T (SY)[L,= T Vi
(by definition)
Tm (SMCMtoMAG (8Y))[1,= Jm(SY¥)[L,= J; Vi (by Theorem 13)

TIm(SMCMtoMAG (SY)[1,) = Jn(SMCMtoMAG(SY))[r,= J; Vi  (by Theorem 4)

TImn(M;) = T; Vi, and by definition of P;, M; € P; Vi.
|

The following Lemma proves that no inducing and ancestral paths present in the true
underlying SMCM are ruled out during the construction of the initial search graph, and is
necessary for subsequent proofs. We prove that H;, has a superset of edges and a subset
of orientations compared to S.

Lemma 15 If H;y, is the initial search graph returned by Algorithm 3 for {P;}Y,, and S
is a possibly underlying SMCM for {J; i]\il and {I; fil, then the following hold: If p is an
ancestral path in S, then p is a possibly ancestral path in H;y,. Similarly, if p is an inducing
path with respect to L in S, then p is a possibly inducing path with respect to L in Hy,.
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Proof We will first prove that H;, has a superset of edges compared to S, and therefore
any path in S is a path also in H;,. If X and Y are adjacent in S, then one of the following
holds:

1. Fist. X, Y € O; \ I;. Then the edge is present in ST and X and Y are adjacent in
P;: the edge is added to H;, in Line 3 of Algorithm 3.

2. Aist. X,Y € O;\I,. Then the edge is added to H;;, in Line 8 of Algorithm 3.

Therefore, every edge in S is present also in H;,. We must also prove that no orientation
in H is oriented differently in S: H;, has only arrowhead orientations, so we must prove
that, if X+—Y in H;, and X and Y are adjacent in both graphs, X+—Y in S.

Arrowheads are added to H;, in Lines 5, 9 or 10 of the Algorithm. Arrowheads added
in Line 5 occur in all P;. If Xa+—Y in any P;, this means that Y is not an ancestor of X
in S%. Assume that X«—Y in S: If X in I, the edge would be absent in ST and P;. If
X ¢ 1I;, X would be ancestor of Y in S, which is a contradiction. Therefore, if X and Y
are adjacent in §, X—Y in S.

Arrows added to H;, in Lines 9 and 10 correspond to cases where an edge is not present
in any P;, fis.t. X, Y € O;\I;, but Jist. X, Y € O;, X €I; and Y ¢ I;. Then an arrow
is added towards X. Assume the opposite holds: X—Y in S, then X—Y in S, and
since both variables are observed in experiment ¢ the edge would be present in P;, which is
a contradiction. Thus, if the edge is present in S, the edge is oriented into X.

Thus, H;, has a superset of edges of S, and for any edge present in both graphs, the
orientations are the same. Thus, if p is an ancestral path in S, then p is a possibly ancestral
path in H;,. Similarly, if p is a possibly inducing path with respect to L in &, then p is a
possibly inducing path with respect to L in ;. |

We can now prove that if a SMCM S entails all and only the observed conditional
independencies for all experiments (and is therefore a possibly underlying SMCM for {7;} ¥,
and {L;}Y ), then S satisfies ® A F. We say that S satisfies a constraint ¢ if the truth-
values assigned to edge, arrow and tail variables by their corresponding configuration in &
satisfies ¢. To simplify the proof, we first prove the following lemma:

Lemma 16 If S is a possibly underlying SMCM for {Ti}Y., and {Li}Y,, and X—Y is
in P;, then S satisfies ancestor(X,Y,1). Similarly, if Xo—Y is in P;, then S satisfies
—ancestor(Y, X, ).

Proof By Theorem 14 SMCMtoMAG (S8%)[r,,€ P;. Thus, if X—Y is in P;, then X is an
ancestor of Y in ST (there exists an ancestral path from X to Y in 8%). Let p1,...,pa be
the possibly ancestral paths (there exists at least one: if X—Y in P;, then X+—+Y is a pos-
sibly inducing path in H;;,) from X to Y in H;,. The constraint ancestor(X,Y,1) is realized
in ® A F as ancestor(Y, X, i) A [ancestor(Y, X, 1) <> ancestral(p1,i) V ancestral(pa,i)-- -V
ancestral(par,i)]. This is equivalent to ancestral(pi,i)Vancestral(pa,i) - - -Vancestral(par, i).
If a path is ancestral in S, the path is also ancestral in S. By Lemma 15, if a path is
ancestral in S, the path is possibly ancestral in H;,. Hence, at least one of p1,...,par is
ancestral in S', and S satisfies ancestor(X,Y, ).
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If Xo—Y is in P;, then, since SMCMtoMAG (Si)[r,€ P;, there can be no ancestral
path from Y to X in 8%). Let p1,...,pay be the possibly ancestral paths (if any) from Y
to X in H;p. The constraint —ancestral(Y, X, ) is realized in ® A F as —ancestor(Y, X, i) A
[ancestor(Y, X, 1) <> ancestral(p1,i)V ancestral(pa,i) - - -V ancestral(pyr,i)]. This is equiv-
alent to —ancestral(pi,i) A —~ancestral(ps,i) - -- A —ancestral(pyr,i). None of these paths
are ancestral in S¥, therefore S satisfies ancestor(X,Y,1). |

We can now prove that any possibly underlying SMCM for {7;}X, and {I,;}, satisfies
oA F.

Lemma 17 For an oracle of conditional independence, if S is a possibly underlying model
for {J; i]\il and {I; fvzl, and ® A F is the conjunction of the outputs of Algorithm 4, S
satisfies ® A F.

Proof By Theorem 14, since S is a possibly underlying SMCM for {7; i]il and {I; f\i 1>
M; = SMCMtoMAG(SY)[r,,€ P; Vi.

1. Constraints added in Lines 8, 9 of Algorithm 4. These constraints are satisfied
since § is an acyclic mixed graph.

2. Adjacency constraints added in Lines 4, 5, 6 of Algorithm 4. Assume that
for a pair of variables X, Y adjacent in P;, there exist M possibly inducing paths
in H;n, namely p1,,...,pp. For this adjacency, the following constraint is added in
® A F in Lines 4 and 5 of Algorithm 4:

adjacent(X,Y, P;) A [adjacent(X, Y, P;) + inducing(pi,i) V- - - Vinducing(pa, )],
which is equivalent to
inducing(p1,1) V - - - Vinducing(par, ©).

Since M; € P;, X and Y are adjacent in M;. By Proposition 12 there exists an
inducing path p* between X and Y with respect to L; in S¥. By Lemma 15, this
path is a possibly inducing path in H;y,, thus, 3i € [1,..., M] such that p* = p;. Thus,
the constraint inducing(pi,i) V - - V inducing(par, i) is satisfied by S.

Similarly, if X and Y are not adjacent in P;, the constraint
—adjacent(X, Y, P;) Aladjacent(X, Y, P;) < inducing(p1,i) V- - - Vinducing(par, )]
is added to ® A F in Lines 4 and 6 of Algorithm 4. The constraint is equivalent to
—inducing(p1,1) A - -+ A ~inducing(ps, ).

Since X and Y are not adjacent in M, by Proposition 12 there exists no inducing
path with respect to L; in S¥. Thus, none of the paths (if any) py, ..., pas is inducing
with respect to L; in S¥, and the constraint —inducing(p1,i) A-- - A —~inducing(par, i)
is satisfied by S.
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3. Unshielded (non) collider constraints added in Lines 13,14, 15,16 of Algo-
rithm 4. For an unshielded collider X*—Y »—Z in P;, the constraint

col((X,Y, Z), Pi)A
[col((X,Y, Z), P;) — unshielded((X,Y, Z),P;) A collider((X,Y, Z), P;)],

which is equivalent to
unshielded((X,Y, Z),P;) A collider((X,Y, Z), P;)
is added in Lines 14 and 15. As shown in Figure 4,
unshielded((X,Y, Z),P;) < adjacent(X, Y, P;) Nadjacent(Y, Z,P;) A\—adjacent(X, Z, P;)
and
collider (X, Y, Z),P;) <> —ancestor(Y, X, i) N —mancestor(Y, Z, 1)

. Since M; € P;, X»—Y<+—=Z is an unshielded triple in M;, adjacent(X,Y,P;) A
adjacent(Y, Z,P;) AN —adjacent(X, Z,P;) is satisfied (as described above for adjacency
constraints). Since X+—Y <—Z in P;, by Lemma 16 constraints ~ancestor(Y, X, ) A
—ancestor(Y, Z,i) are satisfied by S.

For an unshielded definite non collider X»—xY »—+Z in P;, the constraint

dnc({(X,Y, Z), P;)A
[dne((X,Y, Z), P;) — unshielded((X,Y, Z), P;) A ~collider((X,Y, Z), P;)],

is added in Lines 13 and 16 of Algorithm 4, which is equivalent to
unshielded((X,Y, Z),P;) A —collider((X,Y, Z), P;).

Since M; € P;, X»—+Y »—=Z is an unshielded triple in M;, so unshielded({X,Y, Z),P;)
is satisfied by S as described above. Moreover, since either Y—X in M;, or Y—2
in M;, by Lemma 16 ancestor(Y, X,i) V ancestor(Y, Z,1i) is satisfied by S.

4. Discriminating (non) collider constraints added in Lines 19, 20,21, 22 of
Algorithm 4. If (W,..., X, Y, Z) is a discriminating path for Y in P;, and Y is a
collider on the path in P;, the following constraint is added in ® A F and in Lines 19
and 21 of Algorithm 4:

COl(<X7 Y, Z>7 PZ)/\
[col((X,Y, Z), P;) — discriminating(pw z, Y, Pi) A collider((X,Y, Z), P;)],

which is equivalent to
discriminating(pw z,Y, Pi) A collider((X,Y, Z), P;).

Since M; € P;, the path is discriminating for Y in M, and the triple is a collider in
M;. The constraint for the discriminating path is analyzed as a conjunction of the
individual features ((non) adjacencies and endpoints) of the path as shown in Figure
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4. Since the path is discriminating in M;, all these adjacency and ancestry constraints
are satisfied by S, by the proof for adjacency constraints and Lemma 16. In addition,
the triple is a collider in M;, thus collider((X,Y, Z), P;) is satisfied by S as described
for unshielded colliders.

Similarly, if (W, ..., XY, Z) is a discriminating path for Y in P;, and Y is a definite
non collider on the path in P;, the following constraint is added in ® A F and in Lines
20 and 22 of Algorithm 4:

dnc((X,Y, Z), P;i)A
[dnc((X, Y, Z), Pi) — discriminating(pwz, Y, Pi) A —collider((X,Y, Z>77>i)],

which is equivalent to
discriminating(pwz,Y, Pi) A —collider((X,Y, Z), P;).

Since M; € P;, the path is discriminating for Y in M; and the triple is a non-collider
in M;. The constraint for the discriminating path satisfied by S as described above.
In addition, the triple is a non-collider in M;, thus —collider((X,Y, Z), P;) is satisfied
by S as described for unshielded definite non colliders.

Thus, S satisfies all constraints in ® A F. |

To prove completeness for Algorithm 4, we must show that the opposite also holds: If S
is a truth-setting assignment of ® A F, S entails all and only the conditional independencies
observed in {7;}X, for each experiment. According to Theorem 14, we need to show that
any truth setting assignment of ® A F results, in each experiment 7 (after the respective
procedures of manipulation, conversion to MAG and marginalization) in a MAG M; that
belongs to the Markov equivalence class represented by P;. Thus, we need to show that M;
has the same adjacencies and colliders with order as any MAG M’ € P;. Proving that M;
and any M’ € P; have the same adjacencies is straight-forward. We then use induction to
the order of the triple to show that the two MAGs also share the same colliders with order.
The following lemma proves that discriminating paths with order are present in all members
of the equivalence class, and therefore they are (definite) discriminating paths with order
in P; (Lemma 18.) Thus, all (non) colliders with order in P; are identified and added to
the SAT formula in Lines 19 and 20 of Algorithm 4.

Lemma 18 Ifp = (W, Vi,...,V,,,Y,Q) is a discriminating path with order r in M, then
the path is a discriminating path with order r in P = [M].

Proof We will show that the path is a discriminating path with order r in any M’ € P.
Since M’ and M are Markov equivalent, the two share the same colliders with order. Thus,
every triple (V;_1,V;, Vit1) is a collider with order in M. Lemma 3.10 in Ali et al. (2009)
states that if a path (W, Vi,...,V,,Y, Q) is discriminating for Y in a MAG M, then in any
Markov equivalent MAG M’ in which V; are colliders on the same path, V; — @ in M’ for
t=1,..., N, and therefore the path is discriminating with order r in M’. Thus, the path
is discriminating with order r in all members of [M]. It is therefore a discriminating path
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with order r in P. [}

We can now prove that any truth-setting assignment for ® A F corresponds to a SMCM
S that is possibly underlying for {7}, and {I;}}¥,.

Lemma 19 For an oracle of conditional independence, if ® AN F is the conjunction of the
outputs of Algorithm 4, and S a mized graph that satisfies ® AN F, then S is a possibly
underlying SMCM for {T;}., and {I;}Y,.

Proof We need to prove that (a) S is an acyclic mixed graph and (b) M; = SMCMtoMAG (S%)[r,, €
P; Vi. To prove the latter, we need to prove that for each i, if M’ € P;, M; and M’ are
Markov equivalent. Thus, we must show that M; and M’ share the same edges and colliders

with order.

e S is a SMCM: S satisfies the constraints added in Lines 8 and 9 respectively. There-
fore, S has no tail-tail edges, every endpoint is an arrow or a tail (not exclusively)
and S has no directed cycles.

e M; and M’ share the same edges: If X and Y are adjacent in M’ then X and
Y are adjacent in P;. S satisfies the constraints added in Line 4 of Algorithm 4,
therefore there exists an inducing path with respect to L; in ST. Thus, X and Y are
adjacent in M;. If X and Y are not adjacent in M’, X and Y are not adjacent in P;
and by the same constraints there exists no inducing path with respect to L; in S%,
therefore X and Y are not adjacent in M.

e M; and M’ share the same colliders with order: We will prove this by induction
to order r: For order = 0, if (X,Y, Z) is an unshielded collider in M’, the triple is an
unshielded collider in P;. Since M’ and M; share the same edges, Xsx—+Y»—Z7 is
an unshielded triple in M;. S satisfies the constraints added in Line 13 of Algorithm
4, and therefore Y is not an ancestor of X nor Z in ST. Thus, X*—Y «—Z in M;.
If the triple is an unshielded collider in M;, then the triple is unshielded in M’. If
the triple is a non-collider in M’, then S satisfies the constraints added in Line 14
of Algorithm 4, and Y is an ancestor of either X or Z in S%. But then the triple
is a non-collider in M;, which is a contradiction. Thus, M; and M’ share the same
colliders with order 0.

For the induction step, we assume that M; and M’ share the same colliders with order
s < r. We will show that the two MAGs also share the same colliders with order r.
We will first show that a path (W, Vi,...,V,,Y,Q) is discriminating for (V,,,Y,Q)
with order r in M; iff the path is discriminating for (V,,,Y, Q) with order r in M.

It (W, Vq,...,V,,Y,Q) is discriminating with order » in M’, by Lemma 18 the path
is discriminating with order r in P;. S satisfies the constraints added in Lines 20 and
19 and therefore the path is discriminating in M;. Moreover, every triple on the path
is a collider with order < r in M’ and by the induction hypothesis M’ and M; share
the same colliders with order < r, thus the path has order r in M;.

If (W, Vi,...,V,,,Y,Q) is discriminating with order r in M;, then, by the induction
hypothesis, every triple on the path is a collider with the same order < r in M’
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We will show that V; — @ Vi, and therefore (W, V1,...,V,, Y, Q) is a discriminating
path with order r in M’

The proof is similar to that of Lemma 3.10 in Ali et al. (2009). We will use induction
on i. First, consider the (V1,Q) edge in M. If Vi«—=Q, then Wx—V;+—=(Q forms
a collider with order 0 in M’, but an non-collider with order 0 in M;, which is a
contradiction. Thus, Vi—@Q in M’.

Suppose that V;—@Q for 1 < j <4 in M’. Then, the path (W, V1,...,V;, Q) forms a
discriminating path for V; with the same order < r in both graphs, and (V;_1,V;, Q) is
a non-collider in M;. By Lemma 18, the path is a discriminating path with order in
P;, and therefore ® A F includes discriminating path constraints for this path added
in Lines 19 and 21 or 20 and 22 of Algorithm 4. Thus, the triple can only be a non-
collider in M; if it is a non-collider in M’. Since V;_1«=V; in M’, V;—Q Vi and
the path is discriminating in M’ with order 7.

We have shown that M; and M’ share the same discriminating paths with order r.
It is now easy to show that a triple is a collider with order r in M’ iff it is a collider
with order r in M,;. If (V,,,Y,Z) is a collider with order r in M’, then there exists
a discriminating path with order » in both graphs and in P;. Thus, S satisfies the
constraints added in Lines 19 and 21 of Algorithm 4, by which Y is not an ancestor of
V,, nor @ in S¥, and therefore the triple is a collider in M;, and it has order at most
r. But by the induction hypothesis, the M’ and M; share the same colliders with
order < r, thus the triple has order r in M;. Similarly, if the triple is a collider with
order r in M;, there exists a discriminating path with order r in M; and therefore in
P;. Thus, S satisfies the constraints added in Lines 19 and 21 of Algorithm 4 or in
Lines 20 and 22 of Algorithm 4. Hence, the triple must be in M’, otherwise the triple
would be a non-collider in M;. In addition, the triple has order at most r in M’ and
by the induction hypothesis the triple can not have order < r in M’, so the triple has
order r in M’. Thus, M’ and M, share the same colliders with order.

Thus, if S a mixed graph that satisfies ®AF, then S is a SMCM and SMCMtoMAG (S%i)[y,, €
P; Vi, so by Theorem 14, S is a possibly underlying SMCM for {7;}¥, and {I;}¥,. ®

We can now prove soundness and completeness of Algorithm 2:

Theorem 20 (Soundness and completeness of Algorithm 2) If H is the output of
Algorithm 2, then the following hold:

Soundness: If a feature (edge, absent edge, endpoint) is solid in H, then this feature is
present in all SMCMs that are possibly underlying for { Ji}IY., and {L;}Y,.
Completeness: If a feature is present in all SMCMs that are possibly underlying for
{TAY, and {I;}Y,, the feature is solid in H.

Proof Soundness: Solid features correspond to backbone variables. By Lemma 17 every
possibly underlying SMCM S for {7}~ | and {I;}}, satisfies the final formula ® AF. Thus,
if a core variable has the same value in all the possible truth-setting assignments of ® A F,
this feature is present in all possibly underlying SMCMs. Completeness: By Lemma 19 the
final formula ® A F of Algorithm 2 is satisfied only by possibly underlying SMCMs. Thus,
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if a core variable is present in all consistent SMCMs, the corresponding core variable will
be a backbone variable for ® A F. |
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