
Journal of Machine Learning Research 16 (2015) 371-416 Submitted 8/13; Revised 4/14; Published 3/15

Composite Self-Concordant Minimization

Quoc Tran-Dinh quoc.trandinh@epfl.ch

Anastasios Kyrillidis anastasios.kyrillidis@epfl.ch

Volkan Cevher volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

CH1015-Lausanne, Switzerland

Editor: Benjamin Recht

Abstract

We propose a variable metric framework for minimizing the sum of a self-concordant func-
tion and a possibly non-smooth convex function, endowed with an easily computable proxi-
mal operator. We theoretically establish the convergence of our framework without relying
on the usual Lipschitz gradient assumption on the smooth part. An important highlight of
our work is a new set of analytic step-size selection and correction procedures based on the
structure of the problem. We describe concrete algorithmic instances of our framework for
several interesting applications and demonstrate them numerically on both synthetic and
real data.

Keywords: proximal-gradient/Newton method, composite minimization, self-concordance,
sparse convex optimization, graph learning

1. Introduction

The literature on the formulation, analysis, and applications of composite convex minimiza-
tion is ever expanding due to its broad applications in machine learning, signal processing,
and statistics. By composite minimization, we refer to the following optimization problem:

F ∗ := min
x∈Rn

{F (x) | F (x) := f(x) + g(x)} , (1)

where f and g are both closed and convex, and n is the problem dimension. In the canonical
setting of the composite minimization problem (1), the functions f and g are assumed to be
smooth and non-smooth, respectively (Nesterov, 2007). Such composite objectives naturally
arise, for instance, in maximum a posteriori model estimation, where we regularize a model
likelihood function as measured by a data-driven smooth term f with a non-smooth model
prior g, which carries some notion of model complexity (e.g., sparsity, low-rankness, etc.).

In theory, many convex problem instances of the form (1) have a well-understood struc-
ture, and hence high accuracy solutions can be efficiently obtained with polynomial time
methods, such as interior point methods (IPM) after transforming them into conic quadratic
programming or semidefinite programming formulations (Ben-Tal and Nemirovski, 2001;
Grant et al., 2006; Nesterov and Nemirovski, 1994). In practice, however, the curse-of-
dimensionality renders these methods impractical for large-scale problems. Moreover, the

c©2015 Quoc Tran-Dinh, Anastasios Kyrillidis, Volkan Cevher.

Tran-Dinh, Kyrillidis, and Cevher

FL

Fµ

F2F2,⌫

F : smooth Class Property
x,y ∈ dom(f), v ∈ Rn, 0 ≤ µ ≤ L < +∞

FL ‖∇f(x)−∇f(y)‖∗ ≤ L ‖x− y‖

Fµ µ
2
‖x− y‖2 + f(x) +∇f(x)T (y − x) ≤ f(y)

F2 |ϕ′′′(t)| ≤ 2ϕ′′(t)3/2: ϕ(t) = f(x + tv), t ∈ R

F2,ν F2 and supv∈Rn

{
2∇f(x)Tv − ‖v‖2x

}
≤ ν

Figure 1: Common structural assumptions on the smooth function f .

presence of a non-smooth term g prevents direct applications of scalable smooth optimiza-
tion techniques, such as sequential linear or quadratic programming.

Fortunately, we can provably trade-off accuracy with computation by further exploiting
the individual structures of f and g. Existing methods invariably rely on two structural
assumptions that particularly stand out among many others. First, we often assume that
f has Lipschitz continuous gradient (i.e., f ∈ FL: cf., Figure 1). Second, we assume
that the proximal operator of g (proxH

g (y) := arg min
x∈Rn

{
g(x) + (1/2)‖x− y‖2H

}
) is, in a

user-defined sense, easy to compute for some H � 0 (e.g., H is diagonal); i.e., we can
computationally afford to apply the proximal operator in an iterative fashion. In this
case, g is said to be “tractably proximal”. On the basis of these structures, we can design
algorithms featuring a full spectrum of (nearly) dimension-independent, global convergence
rates with well-understood analytical complexity (see Table 1).

Order Method example Main oracle Analytical complexity

1-st [Accelerated]a-[proximal]-gradientb ∇f,proxLIng [O(ε−1/2)] O(ε−1)

1+-th Proximal-quasi-Newtonc Hk,∇f, proxHk
g O(log ε−1) or faster

2-nd Proximal-Newtond ∇2f,∇f,prox∇
2f

g O(log log ε−1)[local]

See (Beck and Teboulle, 2009a)a,b,(Becker and Fadili, 2012)c,(Lee et al., 2012)d,(Nesterov, 2004, 2007)a,b.

Table 1: Taxonomy of [accelerated] [proximal]-gradient methods when f ∈ FL or proximal-
[quasi]-Newton methods when f ∈ FL ∩ Fµ to reach an ε-solution (e.g., F (xk) −
F ∗ ≤ ε).

Unfortunately, existing algorithms have become inseparable with the Lipschitz gradient
assumption on f and are still being applied to solve (1) in applications where this assump-
tion does not hold. For instance, when proxH

g (y) is not easy to compute, it is still possible
to establish convergence—albeit slower—with smoothing, splitting or primal-dual decom-
position techniques (Chambolle and Pock, 2011; Eckstein and Bertsekas, 1992; Nesterov,
2005a,b; Tran-Dinh et al., 2013c). However, when f /∈ FL, the composite problems of the
form (1) are not within the full theoretical grasp. In particular, there is no known global
convergence rate. One kludge to handle f /∈ FL is to use sequential quadratic approxima-
tion of f to reduce the subproblems to the Lipschitz gradient case. For local convergence of
these methods, we need strong regularity assumptions on f (i.e., µI � ∇2f(x) � LI) near

372

Composite Self-concordant Minimization

the optimal solution. Attempts at global convergence require a globalization strategy such
as line search procedures (cf., Section 1.2). However, neither the strong regularity nor the
line search assumptions can be certified a priori.

To this end, we address the following question in this paper: “Is it possible to ef-
ficiently solve non-trivial instances of (1) for non-global Lipschitz continuous gradient f
with rigorous global convergence guarantees?” The answer is positive (at least for a broad
class of functions): We can still cover a full spectrum of global convergence rates with
well-characterizable computation and accuracy trade-offs (akin to Table 1 for f ∈ FL)
for self-concordant f (in particular, self-concordant barriers) (Nemirovskii and Todd, 2008;
Nesterov and Nemirovski, 1994):

Definition 1 (Self-concordant (barrier) functions) A convex function f : Rn → R is
said to be self-concordant (i.e., f ∈ FM) with parameter M ≥ 0, if |ϕ′′′(t)| ≤ Mϕ′′(t)3/2,
where ϕ(t) := f(x + tv) for all t ∈ R, x ∈ dom(f) and v ∈ Rn such that x + tv ∈ dom(f).
When M = 2, the function f is said to be a standard self-concordant, i.e., f ∈ F2.1 A
standard self-concordant function f ∈ F2 is a ν-self-concordant barrier of a given convex
set Ω with parameter ν > 0, i.e., f ∈ F2,ν , when ϕ also satisfies |ϕ′(t)| ≤ √νϕ′′(t)1/2 and
f(x)→ +∞ as x→ ∂Ω, the boundary of Ω.

While there are other definitions of self-concordant functions and self-concordant barriers
(Boyd and Vandenberghe, 2004; Nemirovskii and Todd, 2008; Nesterov and Nemirovski,
1994; Nesterov, 2004), we use Definition 1 in the sequel, unless otherwise stated.

1.1 Why is the Assumption f ∈ F2 Interesting for Composite Minimization?

The assumption f ∈ F2 in (1) is quite natural for two reasons. First, several important ap-
plications directly feature a self-concordant f , which does not have global Lipschitz continu-
ous gradient. Second, self-concordant composite problems can enable approximate solutions
of general constrained convex problems where the constraint set is endowed with a ν-self-
concordant barrier function.2 Both settings clearly benefit from scalable algorithms. Hence,
we now highlight three examples below, based on compositions with the log-functions. Keep
in mind that this list of examples is not meant to be exhaustive.

Log-determinant: The matrix variable function f(Θ) := − log det Θ is self-concordant
with dom(f) := {Θ ∈ Sp | Θ � 0}, where Sp is the set of p × p symmetric matrices. As
a stylized application, consider learning a Gaussian Markov random field (GMRF) of p
nodes/variables from a data set D := {φ1,φ2, . . . ,φm}, where φj ∈ D is a p-dimensional

random vector with Gaussian distributionN (µ,Σ). Let Θ := Σ−1 be the inverse covariance
(or the precision) matrix for the model. To satisfy the conditional dependencies with respect
to the GMRF, Θ must have zero in (Θ)ij corresponding to the absence of an edge between
node i and node j; cf., (Dempster, 1972).

1. We use this constant for convenience in the derivations since if f ∈ FM , then (M2/4)f ∈ F2.
2. Let us consider a constrained convex minimization x∗C := arg minx∈C g(x), where the feasible convex

set C is endowed with a ν-self-concordant barrier ΨC(x). If we let f(x) := ε
ν

ΨC(x), then the solution
x∗ of the composite minimization problem (1) well-approximates x∗C as g(x∗) ≤ g(x∗C) + (∇f(x∗) +
∂g(x∗))T (x∗−x∗C) + ε. The middle term can be controlled by accuracy at which we solve the composite
minimization problem (Nesterov, 2007, 2011).

373

Tran-Dinh, Kyrillidis, and Cevher

We can learn GMRFs with theoretical guarantees from as few as O(d2 log p) data sam-
ples, where d is the graph node degree, via `1-norm regularization formulation (see Raviku-
mar et al. 2011):

Θ∗ := arg min
Θ�0

{
− log det(Θ) + tr(Σ̂Θ)︸ ︷︷ ︸

=:f(Θ)

+ ρ‖vec(Θ)‖1︸ ︷︷ ︸
=:g(Θ)

}
, (2)

where ρ > 0 parameter balances a Gaussian model likelihood and the sparsity of the so-
lution, Σ̂ is the empirical covariance estimate, and vec is the vectorization operator. The
formulation also applies for learning models beyond GMRFs, such as the Ising model, since
f(Θ) acts also as a Bregman distance (Banerjee et al., 2008).

Numerical solution methods for solving problem (2) have been extensively studied, e.g.
in (Banerjee et al., 2008; Hsieh et al., 2011; Lee et al., 2012; Lu, 2010; Olsen et al., 2012;
Rolfs et al., 2012; Scheinberg and Rish, 2009; Scheinberg et al., 2010; Yuan, 2012). However,
none so far exploits f ∈ F2,ν and feature global convergence guarantees: cf., Sect. 1.2.

Log-barrier for linear inequalities: The function f(x) := − log(aTx − b) is a self-
concordant barrier with dom(f) :=

{
x ∈ Rn | aTx > b

}
. As a stylized application, consider

the low-light imaging problem in signal processing (Harmany et al., 2012), where the imag-
ing data is collected by counting photons hitting a detector over the time. In this setting,
we wish to accurately reconstruct an image in low-light, which leads to noisy measurements
due to low photon count levels. We can express our observation model using the Poisson
distribution as

P(y|A(x)) =
m∏
i=1

(aTi x)yi

yi!
e−aTi x,

where x is the true image, A is a linear operator that projects the scene onto the set of
observations, ai is the i-th row of A, and y ∈ Zm+ is a vector of observed photon counts.

Via the log-likelihood formulation, we stumble upon a composite minimization problem:

x∗ := arg min
x∈Rn

{ m∑
i=1

aTi x−
m∑
i=1

yi log(aTi x)︸ ︷︷ ︸
=:f(x)

+g(x)
}
, (3)

where f(x) is self-concordant (but not standard). In the above formulation, the typical
image priors g(x) include the `1-norm for sparsity in a known basis, total variation semi-
norm of the image, and the positivity of the image pixels. While the formulation (3) seems
specific to imaging, it is also common in sparse regression with unknown noise variance
(Städler et al., 2012), heteroscedastic LASSO (Dalalyan et al., 2013), barrier approximations
of, e.g., the Dantzig selector (Candes and Tao, 2007) and quantum tomography (Banaszek
et al., 1999) as well.

The current state of the art solver is called SPIRAL-TAP (Harmany et al., 2012), which
biases the logarithmic term (i.e., log(aTi x + ε)→ log(aTi x), where ε� 1) and then applies
non-monotone composite gradient descent algorithms for FL with a Barzilai-Borwein step-
size as well as other line-search strategies.

Logarithm of concave quadratic functions: The function f(x) := − log
(
σ2−‖Ax−y‖22

)
is self-concordant with dom(f) :=

{
x ∈ Rn | ‖Ax− y‖22 < σ2

}
. As a stylized application,

374

Composite Self-concordant Minimization

we consider the basis pursuit denoising (BPDN) formulation (van den Berg and Friedlander,
2008) as

x∗ := arg min
x∈Rn

{
g(x) | ‖Ax− y‖22 ≤ σ2

}
. (4)

The BPDN criteria is commonly used in magnetic resonance imaging (MRI) where A is a
subsampled Fourier operator, y is the MRI scan data, and σ2 is a known machine noise level
(i.e., obtained during a pre-scan). In (4), g is an image prior, e.g., similar to the Poisson
imaging problem. Approximate solutions to (4) can be obtained via a barrier formulation

x∗t := arg min
x∈Rn

{
−t log

(
σ2 − ‖Ax− y‖22

)
︸ ︷︷ ︸

=:f(x)

+ g(x)
}
, (5)

where t > 0 is a penalty parameter which controls the quality of the approximation. The
BPDN formulation is quite generic and has several other applications in statistical regres-
sion, geophysics, and signal processing.

Several different approaches solve the BPDN problem (4), some of which require pro-
jections onto the constraint set, including Douglas-Rachford splitting, proximal methods,
and the SPGL1 method (van den Berg and Friedlander, 2008; Combettes and Wajs, 2005).

1.2 Related Work

Our attempt is to briefly describe the work that revolves around (1) with the main as-
sumptions of f ∈ FL and the proximal operator of g being computationally tractable.
In fact, Douglas-Rachford splitting methods can obtain numerical solutions to (1) when
the self-concordant functions are endowed with tractable proximal maps. However, it is
computationally easier to calculate the gradient of f ∈ F2 than their proximal maps.

One of the main approaches in this setting is based on operator splitting. By presenting
the optimality condition of problem (1) as an inclusion of two monotone operators, one
can apply splitting techniques, such as forward-backward or Douglas-Rachford methods, to
solve the resulting monotone inclusion (Briceno-Arias and Combettes, 2011; Facchinei and
Pang, 2003; Goldstein and Osher, 2009). In our context, several variants of this approach
have been studied. For example, projected gradient or proximal-gradient methods and fast
proximal-gradient methods have been considered, see, e.g., (Beck and Teboulle, 2009a; Mine
and Fukushima, 1981; Nesterov, 2007). In all these methods, the main assumption required
to prove the convergence is the global Lipschitz continuity of the gradient of the smooth
function f . Unfortunately, when f /∈ FL but f ∈ F2, these theoretical results on the global
convergence and the global convergence rates are no longer applicable.

Other mainstream approaches for (1) include augmented Lagrangian and alternating
techniques: cf., (Boyd et al., 2011; Goldfarb and Ma, 2012). These methods have empiri-
cally proven to be quite powerful in specific applications. The main disadvantage of these
methods is the manual tuning of the penalty parameter in the augmented Lagrangian func-
tion, which is not yet well-understood for general problems. Consequently, the analysis of
global convergence as well as the convergence rate is an issue since the performance of the
algorithms strongly depends on the choice of this penalty parameter in practice. Moreover,
as indicated in a recent work (Goldstein et al., 2012), alternating direction methods of mul-
tipliers as well as alternating linearization methods can be viewed as splitting methods in

375

Tran-Dinh, Kyrillidis, and Cevher

the convex optimization context. Hence, it is unclear if this line of work is likely to lead to
any rigorous guarantees when f ∈ F2.

An emerging direction for solving composite minimization problems (1) is based on the
proximal-Newton method. The origins of this method can be traced back to the work of
(Bonnans, 1994), which relies on the concept of strong regularity introduced by (Robinson,
1980) for generalized equations. In the convex case, this method has been studied by
several authors such as (Becker and Fadili, 2012; Lee et al., 2012; Schmidt et al., 2011).
So far, methods along this line are applied to solve a generic problem of the form (1) even
when f ∈ F2. The convergence analysis of these methods is encouraged by standard Newton
methods and requires the strong regularity of the Hessian of f near the optimal solution (i.e.,
µI � ∇2f(x) � LI). This assumption used in (Lee et al., 2012) is stronger than assuming
∇2f(x∗) to be positive definite at the solution x∗ as in our approach below. Moreover, the
global convergence can only be proved by applying a certain globalization strategy such as
line-search (Lee et al., 2012) or trust-region. Unfortunately, none of these assumptions can
be verified before the algorithm execution for the intended applications. By exploiting the
self-concordance concept, we can show the global convergence of proximal-Newton methods
without any globalization strategy (e.g., line search or trust-region approach).

1.3 Our Contributions

Interior point methods are always an option while solving the self-concordant composite
problems (1) numerically by means of disciplined convex programming (Grant et al., 2006;
Löfberg, 2004). More concretely, in the IPM setting, we set up an equivalent problem to
(1) that typically avoids the non-smooth term g(x) in the objective by lifting the problem
dimensions with slack variables and introducing additional constraints. The new constraints
may then be embedded into the objective through a barrier function. We then solve a
sequence of smooth problems (e.g., with Newton methods) and “path-follow”3 to obtain
an accurate solution (Nemirovskii and Todd, 2008; Nesterov, 2004). In this loop, many
of the underlying structures within the original problem, such as sparsity, can be lost due
to pre-conditioning or Newton direction scaling (e.g., Nesterov-Todd scaling, Nesterov and
Todd 1997). The efficiency and the memory bottlenecks of the overall scheme then heavily
depends on the workhorse algorithm that solves the smooth problems.

In stark contrast, we introduce an algorithmic framework that directly handles the
composite minimization problem (1) without increasing the original problem dimensions.
For problems of larger dimensions, this is the main argument in favor of our approach.
Instead of solving a sequence of smooth problems, we solve a sequence of non-smooth
proximal problems with a variable metric (i.e., our workhorse). Fortunately, these proximal
problems feature the composite form (1) with a Lipschitz gradient (and oft-times strongly
convex) smooth term. Hence, we leverage the tremendous amount of research (cf., Table 1)
done over the last decades. Surprisingly, we can even retain the original problem structures
that lead to computational ease in many cases (e.g., see Section 4.1).

Our specific contributions can be summarized as follows:

1. We develop a variable metric framework for minimizing the sum f + g of a self-
concordant function f and a convex, possibly nonsmooth function g. Our approach

3. It is also referred to as a homotopy method.

376

Composite Self-concordant Minimization

relies on the solution of a convex subproblem obtained by linearizing and regularizing
the first term f . To achieve monotonic descent, we develop a new set of analytic
step-size selection and correction procedures based on the structure of the problem.

2. We establish both the global and the local convergence of different variable metric
strategies. We first derive an expected result: when the variable metric is the Hes-
sian ∇2f(xk) of f at iteration k, the resulting algorithm locally exhibits quadratic
convergence rate within an explicit region. We then show that variable metrics sat-
isfying the Dennis-Moré-type condition (Dennis and Moré, 1974) exhibit superlinear
convergence.

3. We pay particular attention to diagonal variable metrics as many of the proximal
subproblems can be solved exactly (i.e., in closed form). We derive conditions on
when these variants achieve locally linear convergence.

4. We apply our algorithms to the aforementioned real-world and synthetic problems
to highlight the strengths and the weaknesses of our scheme. For instance, in the
graph learning problem (2), our framework can avoid matrix inversions as well as
Cholesky decompositions in learning graphs. In Poisson intensity reconstruction (3),
up to around 80× acceleration is possible over the state-of-the-art solver.

We highlight three key practical contributions to numerical optimization. First, in the
proximal-Newton method, our analytical step-size procedures allow us to do away with any
globalization strategy (e.g., line-search). This has a significant practical impact when the
evaluation of the functions is expensive. We show how to combine the analytical step-size
selection with the standard backtracking or forward line-search procedures to enhance the
global convergence of our method. Our analytical quadratic convergence characterization
helps us adaptively switch from damped step-size to a full step-size. Second, in the proximal-
gradient method setting, we establish a step-size selection and correction mechanism. The
step-size selection procedure can be considered as a predictor, where existing step-size rules
that leverage local information can be used. The step-size corrector then adapts the local
information of the function to achieve the best theoretical decrease in the objective function.
While our procedure does not require any function evaluations, we can further enhance
convergence whenever we are allowed function evaluations. Finally, our framework, as we
demonstrate in (Tran-Dinh et al., 2014a), accommodates a path-following strategy, which
enable us to approximately solve constrained non-smooth convex minimization problems
with rigorous guarantees.

Paper outline. In Section 2, we first recall some fundamental concepts of convex op-
timization and self-concordant functions used in this paper. Section 3 presents our al-
gorithmic framework using three different instances with convergence results, complexity
estimates and modifications. Section 4 deals with three concrete instances of our algorith-
mic framework. Section 5 provides numerical experiments to illustrate the impact of the
proposed methods. Section 6 concludes the paper.

377

Tran-Dinh, Kyrillidis, and Cevher

2. Preliminaries

Notation: We reserve lower-case and bold lower-case letters for scalar and vector represen-
tation, respectively. Upper-case bold letters denote matrices. We denote Sp+ (reps., Sp++)
for the set of symmetric positive definite (reps., positive semidefinite) matrices of size p×p.
For a proper, lower semicontinuous convex function f from Rn to R∪ {+∞}, we denote its
domain by dom(f), i.e., dom(f) := {x ∈ Rn | f(x) < +∞} (see, e.g., Rockafellar 1970).

Weighted norm and local norm: Given a matrix H ∈ Sn++, we define the weighted

norm ‖x‖H :=
√

xTHx, ∀x ∈ Rn; its dual norm is defined as ‖x‖∗H := max‖y‖H≤1 yTx =√
xTH−1x. If H is only positive semidefinite (i.e., H ∈ Sn+), then ‖x‖H reduces to a

semi-norm. Let f ∈ F2 and x ∈ dom(f) so that ∇2f(x) is positive definite. For a given
vector v ∈ Rn, the local norm around x ∈ dom(f) with respect to f is defined as ‖v‖x :=(
vT∇2f(x)v

)1/2
, while the corresponding dual norm is given by ‖v‖∗x =

(
vT∇2f(x)−1v

)1/2
.

Subdifferential and subgradient: Given a proper, lower semicontinuous convex function,
we define the subdifferential of g at x ∈ dom(g) as

∂g(x) :=
{
v ∈ Rn | g(y)− g(x) ≥ vT (y − x), ∀y ∈ dom(g)

}
.

If ∂g(x) 6= ∅ then each element in ∂g(x) is called a subgradient of g at x. In particular, if g is
differentiable, we use ∇g(x) to denote its derivative at x ∈ dom(g), and ∂g(x) ≡ {∇f(x)}.

Proximity operator: A basic tool to handle the nonsmoothness of a convex function g
is its proximity operator (or proximal operator) proxH

g , whose definition is given in Section
1. For notational convenience in our derivations, we alter this definition in the sequel as
follows: Let g be a proper lower semicontinuous and convex in Rn and H ∈ Sn+. We define

P gH(u) := arg min
x∈Rn

{
g(x) + (1/2)xTHx− uTx

}
, ∀u ∈ Rn, (6)

as the proximity operator for the nonsmooth g, which has the following properties Hiriart-
Urruty and Lemaréchal (2001).

Lemma 2 Assume that H ∈ Sn++. Then, the operator P gH in (6) is single-valued and
satisfies the following property:

(P gH(u)− P gH(v))T (u− v) ≥
∥∥P gH(u)− P gH(v)

∥∥2

H
, (7)

for all u,v ∈ Rn. Consequently, P gH is a nonexpansive mapping, i.e.,∥∥P gH(u)− P gH(v)
∥∥

H
≤ ‖u− v‖∗H . (8)

Proof This lemma is already known in the literature, see, e.g., (Rockafellar, 1976). For
the sake of completeness, we give a short proof here. The single-valuedness of P gH is ob-
vious due to the strong convexity of the objective function in (6). Let ξu := P gH(u) and
ξv := P gH(v). By the definition of P gH, we have u−Hξu ∈ ∂g(ξu) and v −Hξu ∈ ∂g(ξv).

Since g is convex, we have (u−Hξu − (v −Hξv))T(ξu − ξv) ≥ 0. This inequality leads to
(u − v)T (ξu − ξv) ≥ (ξu − ξv)TH(ξu − ξv) = ‖ξu − ξv‖2H which is indeed (7). Via the
generalized Cauchy-Schwarz inequality, (7) leads to (8).

378

Composite Self-concordant Minimization

Key self-concordant bounds: Based on (Nesterov, 2004, Theorems 4.1.7 and 4.1.8), for
a given standard self-concordant function f , we recall the following inequalities

ω(‖y − x‖x) +∇f(x)T (y − x) + f(x) ≤ f(y), (9)

f(y) ≤ f(x) +∇f(x)T (y − x) + ω∗(‖y − x‖x), (10)

where ω : R → R+ is defined as ω(t) := t − ln(1 + t) and ω∗ : [0, 1] → R+ is defined
as ω∗(t) := −t − ln(1 − t). These functions are both nonnegative, strictly convex and
increasing. Hence, (9) holds for all x,y ∈ dom(f), and (10) holds for all x,y ∈ dom(f)
such that ‖y − x‖x < 1. In contrast to the “global” inequalities for the function classes
FL and Fµ (cf., Figure 1), the self-concordant inequalities are based on “local” quantities.
Moreover, these bounds are no longer quadratic which prevents naive applications of the
methods from FL,µ.

Remark 3 The proof of (9)-(10) is based on the condition ∇2f(x) � 0 for all x ∈ dom(f),
see (Nesterov, 2004). In this paper, we work with the function f defined by f(x) := ϕ(Ax+
b), where ϕ is a standard self-concordant function such that ∇2ϕ(u) � 0 for all u ∈
dom(ϕ). Therefore, we have ∇2f(x) = AT∇2ϕ(Ax + b)A, which is possibly singular
without further conditions on matrix A. Consequently, the local norm ‖ · ‖x defined via
∇2f(x) reduces to a semi-norm. However, the inequalities (9)-(10) still hold w.r.t.this semi-
norm. Indeed, since ϕ is standard self-concordant with ∇2ϕ(u) � 0 for all u ∈ dom(ϕ), we
have ϕ(û) ≥ ϕ(u) +∇ϕ(u)T (û−u) +ω

(
‖û−u‖u

)
. By substituting u = Ax + b ∈ dom(ϕ)

and û = Ax̂ + b ∈ dom(ϕ), (x, x̂ ∈ dom(f)) into this inequality we obtain f(x̂) ≥ f(x) +
∇f(x)T (x̂−x) +ω(‖x̂−x‖x), which is indeed (9). The inequality (10) is proved similarly.

3. Composite Self-Concordant Optimization

In this section, we propose a variable metric optimization framework that rigorously trades
off computation and accuracy of solutions without transforming (1) into a higher dimension
smooth convex optimization problem. We assume theoretically that the proximal subprob-
lems can be solved exactly. However, our theory can be analyze for the inexact case, when
we solve these problems up to a sufficiently high accuracy (typically, it is at least higher than
(e.g., 0.1ε) the desired accuracy ε of (1) at the few last iterations), see, e.g., (Tran-Dinh
et al., 2013b, 2014a). In our theoretical characterizations, we only rely on the following
assumption:

Assumption A.1 The function f is convex and standard self-concordant (see Definition
1). The function g : Rn → R ∪ {+∞} is proper, closed and convex.

Under Assumption A.1, we have dom(F) = dom(f) ∩ dom(g).
Unique solvability of (1) and its optimality condition: First, we show that problem (1)

is uniquely solvable. The proof of this lemma can be done similarly as (Nesterov, 2004,
Theorem 4.1.11) and is provided in Appendix A.1.

Lemma 4 Suppose that the functions f and g of problem (1) satisfy Assumption A.1. If
λ(x) := ‖∇f(x) + v‖∗x < 1, for some x ∈ dom(F) and v ∈ ∂g(x) such that ∇2f(x) � 0,
then the solution x∗ of (1) exists and is unique.

379

Tran-Dinh, Kyrillidis, and Cevher

Since this problem is convex, the following optimality condition is necessary and sufficient:

0 ∈ ∇f(x∗) + ∂g(x∗). (11)

The solution x∗ is called strongly regular if∇2f(x∗) � 0. In this case,∞ > σ∗max ≥ σ∗min > 0,
where σ∗min and σ∗max are the smallest and the largest eigenvalue of ∇2f(x∗), respectively.

Fixed-point characterization: Let H ∈ Sn+. We define SH(x) := Hx − ∇f(x). Then,
from (11), we have

SH(x∗) ≡ Hx∗ −∇f(x∗) ∈ Hx∗ + ∂g(x∗).

By using the definition of P gH(·) in (6), one can easily derive the fixed-point expression:

x∗ = P gH (SH(x∗)) , (12)

that is, x∗ is the fixed-point of the mapping RgH(·), where RgH(·) := P gH(SH(·)). The
formula in (12) suggests that we can generate an iterative sequence based on the fixed-
point principle, i.e., xk+1 := RgH(xk) starting from x0 ∈ dom(F) for k ≥ 0. Theoretically,
under certain assumptions, one can ensure that the mapping RgH is contractive and the
sequence generated by this scheme is convergent.

We note that if g ≡ 0 and H ∈ Sn++, then P gH defined by (6) reduces to P gH(·) =
H−1(·). Consequently, the fixed-point formula (12) becomes x∗ = x∗ −H−1∇f(x∗), which
is equivalent to ∇f(x∗) = 0.

Our variable metric framework: Given a point xk ∈ dom(F) and a symmetric positive
semidefinite matrix Hk, we consider the function

Q(x; xk,Hk) := f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THk(x− xk), (13)

for x ∈ dom(F). The function Q(·; xk,Hk) is—seemingly—a quadratic approximation of f
around xk. Now, we study the following scheme to generate a sequence

{
xk
}
k≥0

:

xk+1 := xk + αkd
k, (14)

where αk ∈ (0, 1] is a step size and dk is a search direction.
Let sk be a solution of the following problem:

sk ∈ S(xk,Hk) := arg min
x∈dom(F)

{
Q(x; xk,Hk) + g(x)

}
= P gHk

(
Hkx

k −∇f(xk)
)
. (15)

Since we do not assume that Hk to be positive definite, the solution sk may not exist. We
require the following assumption:

Assumption A.2 The subproblem (15) has at least one solution sk, i.e., S(xk,Hk) 6= ∅.

In particular, if Hk ∈ Sn++, then the solution sk of (15) exists and is unique, i.e., S(xk,Hk) ={
sk
}
6= ∅. Up to now, we have not required the uniqueness of sk. This assumption will be

specified later in the next sections. Throughout this paper, we assume that both Assump-
tions A.1 and A.2 are satisfied without referring to them specifically.

380

Composite Self-concordant Minimization

Now, given sk, the direction dk is computed as

dk := sk − xk. (16)

If we define Gk := Hkd
k, then Gk is called the gradient mapping of (1) (Nesterov, 2004),

which behaves similarly as gradient vectors in non-composite minimization. Since problem
(15) is solvable due to Assumption A.2, we can write its optimality condition as

0 ∈ ∇f(xk) + Hk(s
k − xk) + ∂g(sk). (17)

It is easy to see that if dk = 0, i.e., sk ≡ xk, then (17) reduces to 0 ∈ ∇f(xk) + ∂g(xk),
which is exactly (11). Hence, xk is a solution of (1).

In the variable metric framework, depending on the choice of Hk, the iteration scheme
(14) leads to different methods for solving (1). For instance:

1. If Hk := ∇2f(xk), then the method (14) is a proximal-Newton method.

2. If Hk is a symmetric positive definite matrix approximation of ∇2f(xk), then the
method (14) is a proximal-quasi Newton method.

3. If Hk := LkI, where Lk is, say, an approximation for the local Lipschitz constant of f
and I is the identity matrix, then the method (14) is a proximal-gradient method.

Many of these above methods have been studied for (1) when f ∈ FL: cf., (Beck and
Teboulle, 2009a; Becker and Fadili, 2012; Chouzenoux et al., 2013; Lee et al., 2012). Note
however that, since the self-concordant part f of F is not (necessarily) globally Lipschitz
continuously differentiable, these approaches are generally not applicable in theory.

Given the search direction dk defined by (16), we define the following proximal-Newton
decrement4 λk and the weighted [semi-]norm βk

λk := ‖dk‖xk =
(

(dk)T∇2f(xk)dk
)1/2

and βk := ‖dk‖Hk
. (18)

In the sequel, we study three different instances of the variable metric strategy in detail.
Since we do not assume ∇2f(xk) � 0, λk = 0 may not imply dk = 0.

Remark 5 If g ≡ 0 and ∇2f(xk) ∈ Sn++, then dk = −∇2f(xk)−1∇f(xk) is the standard
Newton direction. In this case, λk defined by (18) reduces to λk ≡ ‖∇f(xk)‖∗

xk
, the Newton

decrement defined in (Nesterov, 2004, Chapter 4). Moreover, we have λk ≡ λ(xk), as
defined in Lemma 4.

3.1 A Proximal-Newton Method

If we choose Hk := ∇2f(xk), then the method described in (14) is called the proximal
Newton algorithm. For notational ease, we redefine skn := sk and dkn := dk, where the
subscript n is used to distinguish proximal Newton related quantities from the other variable

4. This notion is borrowed from standard the Newton decrement defined in (Nesterov, 2004, Chapter 4).

381

Tran-Dinh, Kyrillidis, and Cevher

metric strategies. Moreover, we use the shorthand notation P gx̄ := P g∇2f(x̄)
, whenever x̄ ∈

dom(f). Using (15) and (16), skn and dkn are given by

skn := P g
xk

(
∇2f(xk)xk −∇f(xk)

)
, dkn := skn − xk. (19)

Then, the proximal-Newton method generates a sequence
{
xk
}
k≥0

starting from x0 ∈
dom(F) according to

xk+1 := xk + αkd
k
n, (20)

where αk ∈ (0, 1] is a step size. If αk < 1, then the iteration (20) is called the damped
proximal-Newton iteration. If αk = 1, then it is called the full-step proximal-Newton itera-
tion.

Global convergence: We first show that with an appropriate choice of the step-size
αk ∈ (0, 1], the iterative sequence

{
xk
}
k≥0

generated by the damped-step proximal Newton

scheme (20) is a decreasing sequence; i.e., F (xk+1) ≤ F (xk)−ω(σ) whenever λk ≥ σ, where
σ > 0 is fixed. The following theorem provides an explicit formula for the step size αk
whose proof can be found in Appendix A.2.

Theorem 6 If αk := (1 + λk)
−1 ∈ (0, 1], then the scheme in (20) generates xk+1 satisfies

F (xk+1) ≤ F (xk)− ω(λk). (21)

Moreover, the step αk is optimal. The number of iterations to reach the point xk such that

λk < σ for some σ ∈ (0, 1) is kmax :=
⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1.

Local quadratic convergence rate: For any x ∈ dom(f) such that ∇2f(x) � 0, we define
the Dikin ellipsoid W0(x, r) as W0(x, r) :=

{
y ∈ dom(f) : ‖y − x‖x < r

}
, see (Nesterov,

2004). We now establish the local quadratic convergence of the scheme (20). A complete
proof of this theorem can be found in Appendix A.3.

Theorem 7 Suppose that x∗ is the unique solution of (1) and is strongly regular. Suppose
further that ∇2f(x) � 0 for all x ∈ W0(x∗, 1). Let

{
xk
}
k≥0

be a sequence generated by the

proximal Newton scheme (20) with αk ∈ (0, 1]. Then:

a) If αkλk < 1− 1√
2
, then it holds that

λk+1 ≤
(

1− αk + (2α2
k − αk)λk

1− 4αkλk + 2α2
kλ

2
k

)
λk. (22)

b) If the sequence
{
xk
}
k≥0

is generated by the damped proximal-Newton scheme (20),

starting from x0 such that λ0 ≤ σ̄ :=
√

5 − 2 ≈ 0.236068 and αk := (1 + λk)
−1, then

{λk}k locally converges to 0+ at a quadratic rate.

c) Alternatively, if the sequence
{
xk
}
k≥0

is generated by the full-step proximal-Newton

scheme (20) starting from x0 such that λ0 ≤ σ̄ := 0.25(5 −
√

17) ≈ 0.219224 and
αk = 1, then {λk}k locally converges to 0+ at a quadratic rate.

382

Composite Self-concordant Minimization

Consequently, the sequence
{
xk
}
k≥0

also locally converges to x∗ at a quadratic rate in both

cases b) and c), i.e.,
{
‖xk − x∗‖x∗

}
k≥0

locally converges to 0+ at a quadratic rate.

A two-phase algorithm for solving (1): Now, by the virtue of the above analysis, we can
propose a two-phase proximal-Newton algorithm for solving (1). Initially, we perform the
damped-step proximal-Newton iterations until we reach the quadratic convergence region
(Phase 1). Then, we perform full-step proximal-Newton iterations, until we reach the desired
accuracy (Phase 2). The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1 (Proximal-Newton algorithm)

Inputs: x0 ∈ dom(F), tolerance ε > 0.

Initialization: Select a constant σ ∈ (0, (5−
√

17)
4], e.g., σ := 0.2.

for k = 0 to Kmax do
1. Compute the proximal-Newton search direction dkn as in (19).
2. Compute λk :=

∥∥dkn∥∥xk
.

3. if λk > σ then xk+1 := xk + αkd
k
n, where αk := (1 + λk)

−1.
4. elseif λk > ε then xk+1 := xk + dkn.
5. else terminate.

end for

The radius σ of the quadratic convergence region in Algorithm 1 can be fixed at any
value in (0, σ̄], e.g., at its upper bound σ̄. An upper bound Kmax of the iterations can also
be specified, if necessary. The computational bottleneck in Algorithm 1 is typically incurred
Step 1 in Phase 1 and Phase 2, where we need to solve the subproblem (15) to obtain a
search direction dkn. When problem (15) is strongly convex, i.e., ∇2f(xk) ∈ Sn++, one can
apply first order methods to efficiently solve this problem with a linear convergence rate
(see, e.g., Beck and Teboulle 2009a; Nesterov 2004, 2007) and make use of a warm-start
strategy by employing the information of the previous iterations.

Remark 8 From Remark 3 we see that if ∇f(xk) � 0, then λk = 0 may not imply dk = 0.
Therefore, we can add an auxiliary stopping criterion βk := ‖dk‖2 ≤ ε to Algorithm 1 so
that we can avoid the termination of Algorithm 1 at a non-optimal point xk.

Iteration-complexity analysis.The choice of σ in Algorithm 1 can trade-off the number
of iterations between the damped-step and full-step iterations. If we fix σ = 0.2, then the
complexity of the full-step Newton phase becomes O

(
ln ln

(
0.28
ε

))
. The following theorem

summarizes the complexity of the proposed algorithm.

Theorem 9 The maximum number of iterations required in Algorithm 1 does not exceed

Kmax :=
⌊
F (x0)−F (x∗)

0.017

⌋
+
⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 2 provided that σ = 0.2 to obtain λk ≤ ε.

Consequently, ‖xk − x∗‖x∗ ≤ 2ε, where x∗ is the unique solution of (1).

Proof Let σ = 0.2. From the estimate (22) of Theorem 7 and αk−1 = 1 we have λk ≤
(1 − 4λk−1 + 2λ2

k−1)−1λ2
k−1 for k ≥ 1. Since λ0 ≤ σ, by induction, we can easily show

383

Tran-Dinh, Kyrillidis, and Cevher

that λk ≤ (1 − 4σ + 2σ2)−1λ2
k−1 ≤ cλ2

k−1, where c := 3.57. This implies λk ≤ c2k−1λ2k
0 ≤

c2k−1σ2k . The stopping criterion λk ≤ ε in Algorithm 1 is ensured if (cσ)2k ≤ cε. Since

cσ ≈ 0.71 < 1, the last condition leads to k ≥ (ln 2)−1 ln
(
− ln(cσ)
− ln(cε)

)
. By using c = 3.57,

σ = 0.2 and the fact that ln(2)−1 < 1.5, we can show that the last requirement is fulfilled if
k ≥

⌊
1.5
(
ln ln

(
0.28
ε

))⌋
+ 1. Now, combining the last conclusion and Theorem 6 with noting

that ω(σ) > 0.017 we obtain Kmax as in Theorem 9.

Finally, we prove ‖xk−x∗‖x∗ ≤ 2ε. Indeed, we have rk := ‖xk−x∗‖x∗ ≤ ‖x
k+1−xk‖

xk

1−‖xk−x∗‖x∗
+

‖xk+1 − xk‖x∗ = λk
1−rk + rk+1, whenever rk < 1. Next, using (84) with αk = 1, we have

rk+1 ≤ (3−rk)r2k
1−4rk+2r2k

. Combining these inequalities, we obtain
(1−rk)(1−7rk+3r2k)rk

1−4rk+2r2k
≤ λk ≤ ε.

Since the function s(r) := (1−r)(1−7r+3r2)r
1−4r+2r2

attains a maximum at r∗ ≈ 0.08763 and it

is increasing on [0, r∗]. Moreover,
(1−rk)(1−7rk+3r2k)

1−4rk+2r2k
≥ 0.5 for rk ∈ [0, r∗], which leas to

0.5rk ≤ (1−rk)(1−7rk+3r2k)rk
1−4rk+2r2k

≤ ε. Hence, rk ≤ 2ε provided that rk ≤ r0 ≤ r∗ ≈ 0.08763.

Remark 10 When g ≡ 0, we can modify the proof of estimate (22) to obtain a tighter

bound λk+1 ≤ λ2k
(1−λk)2

. This estimate is exactly (Nesterov, 2004), which implies that the

radius of the quadratic convergence region is σ̄ := (3−
√

5)/2.

A modification of the proximal-Newton method: In Algorithm 1, if we remove Step 4 and
replace analytic step-size selection calculation in Step 3 with a backtracking line-search, then
we reach the proximal Newton method of (Lee et al., 2012). Hence, this approach in practice
might lead to reduced overall computation since our step-size αk is selected optimally with
respect to the worst case problem structures as opposed to the particular instance of the
problem. Since the backtracking approach always starts with the full-step, we also do not
need to know whether we are within the quadratic convergence region. Moreover, the cost
of evaluating the objective at the full-step in certain applications may not be significantly
worse than the cost of calculating αk or may be dominated by the cost of calculating the
Newton direction.

In stark contrast to backtracking, our new theory behooves us to propose a new forward
line-search procedure as illustrated by Figure 2. The idea is quite simple: we start with the

0 1

pppppppp
pppppppru
α∗k

			s R R

Enhanced backtracking

@@R

Standard backtracking

��	

Forward line-search

�
�
���

Overjump���

Figure 2: Illustration of step-size selection procedures.

“optimal” step-size αk and increase it towards full-step with a stopping condition based on
the objective evaluations. Interestingly, when we analytically calculate the step, we also have

384

Composite Self-concordant Minimization

access to the side information on whether or not we are within the quadratic convergence
region, and hence, we can automatically switch to Step 4 in Algorithm 1. Alternatively,
calculation of the analytic step-size can enhance backtracking since the knowledge of αk
reduces the backtracking range from (0, 1] to (αk, 1] with the side-information as to when
to automatically take the full-step without function evaluation.

3.2 A Proximal Quasi-Newton Scheme

Even if the function f is self-concordant, the numerical evaluation of ∇2f(x) can be expen-
sive in many applications (e.g., f(x) :=

∑p
j=1 fj(Ajx), with p� n). Hence, it is interesting

to study proximal quasi-Newton method for solving (1). Our interest in the quasi-Newton
methods in this paper is for completeness; we do not provide any algorithmic details or
implementations on our quasi-Newton variant.

To this end, we need a symmetric positive definite matrix Hk that approximates∇2f(xk)
at the iteration k. As a result, our main assumption here is that matrix Hk+1 at the next
iteration k + 1 satisfies the secant equation:

Hk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (23)

For instance, it is well-known that the sequence of matrices {Hk}k≥0 updated by the fol-
lowing BFGS formula satisfies the secant equation (23) (Nocedal and Wright, 2006):

Hk+1 := Hk +
1

(yk)T zk
yk(yk)T − 1

(zk)THkzk
Hkz

k(Hkz
k)T , (24)

where zk := xk+1−xk and yk := ∇f(xk+1)−∇f(xk). Other methods for updating matrix
Hk can be found in (Nocedal and Wright, 2006), which are not listed here.

In this subsection, we only analyze the full-step proximal quasi-Newton scheme based
on the BFGS updates. The global convergence characterization of the BFGS quasi-Newton
method can be obtained using our analysis in the next subsection. To this end, we have the
following update equation, where the subscript q is used to distinguish the quasi-Newton
method:

xk+1 := xk + dkq . (25)

Here we use dkq to stand for the proximal quasi-Newton search direction.

Under certain assumptions, one can prove that the sequence
{
xk
}
k≥0

generated by (25)

converges to x∗ the unique solution of (1). One of the common assumptions used in quasi-
Newton methods is the Dennis-Moré condition, see (Dennis and Moré, 1974). Adopting the
Dennis-Moré criterion, we impose the following condition in our context:

lim
k→∞

∥∥[Hk −∇2f(x∗)
]

(xk+1 − xk)
∥∥∗

x∗

‖xk+1 − xk‖x∗
= 0. (26)

The Dennis-Moré condition becomes standard in smooth optimization. Examples can be
found, e.g., in (Byrd and Nocedal, 1989; Nocedal and Wright, 2006). Now, we establish the
superlinear convergence of the sequence

{
xk
}
k≥0

generated by (25) as follows.

385

Tran-Dinh, Kyrillidis, and Cevher

Theorem 11 Assume that x∗ is the unique solution of (1) and is strongly regular. Let
matrix Hk maintains the secant equation (23) and let

{
xk
}
k≥0

be a sequence generated by

scheme (25). Then the following statements hold:

(a) Suppose, in addition, that the sequence of matrices {Hk}k≥0 satisfies the Dennis-Moré

condition (26) for sufficiently large k. Then the sequence
{
xk
}
k≥0

converges to the

solution x∗ of (1) at a superlinear rate provided that
∥∥x0 − x∗

∥∥
x∗
< 1.

(b) Suppose that a matrix H0 � 0 is chosen. Then (yk)T zk > 0 for all k ≥ 0 and hence
the sequence {Hk}k≥0 generated by (24) is symmetric positive definite and satisfies the

secant equation (23). Moreover, if the sequence
{
xk
}
k≥0

generated by (25) satisfies∑∞
k=0

∥∥xk − x∗
∥∥

x∗
< +∞, then this sequence converges to x∗ at a superlinear rate.

The proof of this theorem can be found in Appendix A.3. We note that if the sequence{
xk
}
k≥0

locally converges to x∗ at a linear rate w.r.t. the local norm at x∗, i.e.
∥∥xk+1 − x∗

∥∥
x∗
≤

κ
∥∥xk − x∗

∥∥
x∗

for some κ ∈ (0, 1) and k ≥ 0, then the condition
∑∞

k=0

∥∥xk − x∗
∥∥

x∗
< +∞

automatically holds. From (26) we also observe that the matrix Hk is required to well
approximate ∇2f(x∗) along the direction dkq , which is not in the whole space.

3.3 A Proximal-Gradient Method

If we choose matrix Hk := Dk, where Dk is a positive diagonal matrix, then the iterative
scheme (14) is called the proximal-gradient scheme. In this case, we can write (14) as

xk+1 := xk + αkd
k
g = (1− αk)xk + αks

k
g , (27)

where αk ∈ (0, 1] is an appropriate step size, dkg is the proximal-gradient search direction

and skg ≡ sk as in (15).

The following lemma shows how we can choose the step size αk corresponding to Dk

such that we obtain a descent direction in the proximal-gradient scheme (27). The proof of
this lemma can be found in Appendix A.2.

Lemma 12 Let
{
xk
}
k≥0

be a sequence generated by (27). Suppose that the matrix Dk � 0

is chosen such that the step size αk satisfies αk :=
β2
k

λk(λk+β2
k)
∈ (0, 1] (see below), where

βk := ‖dkg‖Dk
and λk := ‖dkg‖xk . Then

{
xk
}
k≥0
⊂ dom(F) and the following estimate

holds

F (xk+1) ≤ F (xk)− ω
(
β2
k/λk

)
, (28)

where ω(τ) := τ − ln(1 + τ) ≥ 0.

From Lemma 12, we observe that αk ≤ 1 if
λ2k
β2
k

+ λk ≥ 1. It is obvious that if λk ≥ 1

then the last condition is automatically satisfied. We only consider the case λk < 1. In fact,

since λk ≥ 0, we relax actually the condition
λ2k
β2
k

+ λk ≥ 1 to a simpler condition λk ≥ βk.

386

Composite Self-concordant Minimization

Algorithm 2 (Proximal-gradient method)

Inputs: x0 ∈ dom(F), tolerance ε > 0.

for k = 0 to kmax do
1. Choose an appropriate Dk � 0 based on (30).
2. Compute dkg := PgDk

(
Dkx

k −∇f(xk)
)
− xk due to (15).

3. Compute βk := ‖dkg‖Dk
and λk := ‖dkg‖xk .

4. If ek := ‖dkg‖2 ≤ ε then terminate.

5. Update xk+1 := xk + αkd
k
g , where αk :=

β2
k

λk(λk+β2
k)
∈ (0, 1].

end for

We now study the case Dk := LkI, where Lk ≥ L > 0 is a positive constant and I is the
identity matrix with dimensions apparent from the context. Hence, β2

k = Lk‖dkg‖22 and

λ2
k

β2
k

=
(dkg)

T∇2f(xk)dkg
Lk‖dkg‖22

.

However, since

σmin(∇2f(xk)) ≤ σk :=
(dkg)

T∇2f(xk)dkg
‖dkg‖22

≤ σmax(∇2f(xk)), (29)

the condition λk ≥ βk is equivalent to

Lk ≤ σk, (30)

where σkmin := σmin(∇2f(xk)) and σkmax := σmax(∇2f(xk)) are the smallest and largest
eigenvalue of∇2f(xk), respectively. Under the assumption that dom(f) contains no straight-
line, then we have the Hessian ∇2f(xk) � 0 by (Nesterov, 2004, Theorem 4.1.3), which
implies that σkmin > 0. Therefore, in the worst-case, we can choose Lk := σkmin. However,
this lower bound may be too conservative. In practice, we can apply a bisection procedure
to meet the condition (30). It is not difficult to prove via contradiction that the number of
bisection steps is upper bounded by a constant.

We note that if g is separable, i.e., g(x) :=
∑n

i=1 gi(xi) (e.g., g(x) := ρ ‖x‖1), then we
can compute skDk

in (15) in a component-wise fashion as

(skLk)i := Pgi
τki

(
xki − τki (∇f(xk))i

)
, i = 1, . . . , n, (31)

where τki := 1/(Dk)ii and Pgiτi (·) is the proximity operator of gi function, with parameter
τi. The computation of λk only requires one matrix-vector multiplication and one vector
inner-product; but it can be reduced by exploiting concrete structure of the smooth part f .

Based on Lemma 12, we describe the proximal-gradient scheme (27) in Algorithm 2.
The main computation cost of Algorithm 2 is incurred at Step 2 and in calculating λk. If
g is separable, then the computation of Step 2 can be done in a closed form. One main

387

Tran-Dinh, Kyrillidis, and Cevher

step of Algorithm 2 is Step 2, which depends on the cost of prox-operator PgDk
. In practice,

Dk is determined by a bisection procedure whenever λk < 1, which requires additional
computational cost. If we choose Dk := LkI, then in order to fulfill (30), we can perform a
back-tracking line search procedure on Lk. This line search procedure does not require the
evaluations of the objective function. We modify Steps 1-3 of Algorithm 2 as

1. Initialize Lk := L0
k > 0, e.g., by a Barzilai-Borwein step.

2. Compute dkg := PgLkIk
(
Lkx

k −∇f(xk)
)
− xk due to (15).

3a. Compute βk := ‖dkg‖LkI and λk := ‖dkg‖xk .

3b. If λ2
k/β

2
k + λk < 1, then set Lk := Lk/2 and go back to Step 2.

We note that computing λk at Step 3 does not need to form the full Hessian ∇2f(xk), it
only requires a directional derivative, which is relatively cheap in applications (Nocedal and
Wright, 2006, Chapter 7).

Global and local convergence. The global and local convergence of Algorithm 2 is stated
in the following theorems, whose proof can be found in Appendix A.2.

Theorem 13 Assume that there exists L > 0 such that Dk � LI for k ≥ 0, and the solution
x∗ of (1) is unique. Let the sublevel set

LF (F (x0)) :=
{
x ∈ dom(F) | F (x) ≤ F (x0)

}
be bounded. Then, the sequence

{
xk
}
k≥0

, generated by Algorithm 2, converges to the unique

solution x∗ of (1).

Theorem 14 Assume that x∗ is the unique solution of (1) and is strongly regular. Let{
xk
}
k≥0

be the sequence generated by Algorithm 2. Then, for k sufficiently large, if∥∥[Dk −∇2f(x∗)]dkg
∥∥∗

x∗

‖dkg‖x∗
<

1

2
, (32)

then
{
xk
}
k≥0

locally converges to x∗ at a linear rate. In particular, if Dk := LkI and

γ∗ := max
{∣∣∣1− Lk

σ∗min

∣∣∣ , ∣∣∣1− Lk
σ∗max

∣∣∣} < 1
2 , then the condition (32) holds.

We note that x∗ is unknown; thus, evaluating γ∗ a priori is infeasible in reality. In
implementation, one can choose an appropriate value Lk ≥ L > 0 and then adaptively
update Lk based on the knowledge of the eigenvalues of∇2f(xk) near to the solution x∗. The
condition (32) can be expressed as (dkg)

T [L2
k∇2f(x∗)−1 +∇2f(x∗)−2LkI]dkg ≤ (1/4)‖dkg‖2x∗ ,

which leads to

(3/4)‖dkg‖2x∗ + L2[‖dkg‖∗x∗]2 < 2Lk‖dkg‖22. (33)

We note that to find Lk such that (33) holds, we require ‖dkg‖∗x∗‖dkg‖x∗ <
√

4
3‖dkg‖22. If

the last condition in Theorem 14 is satisfied then the condition (33) also holds. While the

388

Composite Self-concordant Minimization

last condition in Theorem 14 seems too imposing, we claim that, for most f and g, we
only require (33) to be satisfied (see also the empirical evidence in Subsection 5.2.1). The
condition (32) (or (33)) can be referred to as a restricted approximation gap between Dk

and the true Hessian ∇2f(x∗) along the direction dkg for k sufficiently large. For instance,

when g is based on the `1-norm/the nuclear norm, the search direction dkg have at most
twice the sparsity/rank of x∗ near the convergence region.

Remark 15 From the scheme (27) we observe that the step size αk < 1 may not preserve
some of the desiderata on xk+1 due to the closed form solution of the prox-operator PgDk

.
For instance, when g is based on the `1-norm, αk < 1, might increase the sparsity level of
the solution as opposed to monotonically increasing it. However, in practice, the numerical
values of αk are often 1 near the convergence, which maintain properties, such as sparsity,
low-rankedness, etc.

Global convergence rate: In proximal gradient methods, proving global convergence rate
guarantees requires a global constant to be known a priori—such as the Lipschitz constant.
However such an assumption does not apply for the class of just self-concordant functions
that we consider in this paper. We only characterize the following property in an ergodic
sense. Let

{
xk
}
k≥0

be the sequence generated by (2). We define

x̄k := S−1
k

k∑
j=0

αjx
j , where Sk :=

k∑
j=0

αj > 0. (34)

Then we can show that F (x̄k)−F ∗ ≤ L̄k
2Sk

∥∥x0 − x∗
∥∥2

2
, where L̄k := max

0≤j≤k
Lj . If αj ≥ α > 0

for 0 ≤ j ≤ k, then Sk ≥ α(k + 1), which leads to F (x̄k) − F ∗ ≤ L̄k
2(k+1)α

∥∥x0 − x∗
∥∥2

2
. The

proof of this statement can be found in (Tran-Dinh et al., 2014b), which we omit here.
A modification of the proximal-gradient method: If the point skg generated by (15) belongs

to dom(F), then F (skg) < +∞. Similarly to the definition of xk+1 in (27), we can define a
new trial point:

x̂k := (1− αk)xk + αks
k
g . (35)

If F (skg) ≤ F (xk), then, by the convexity of F , it is easy to show that:

F (x̂k) = F
(
(1− αk)xk + αks

k
g

)
≤ (1− αk)F (xk) + αkF (skg)

F (skg)≤F (xk)

≤ F (xk).

In this case, based on the function values F (skg), F (x̂k) and F (xk) we can eventually choose

the next iteration xk+1 as follows:

xk+1 :=

{
skg if sk ∈ dom(F) and F (skg) < F (x̂k) (Case 1),

x̂k otherwise (Case 2).
(36)

The idea of this greedy modification is illustrated in Figure 3. We note that here we need
to check skg ∈ dom(F) such that F (skg) < F (xk) and additional function evaluations F (skg)

and F (x̂k). However, careful implementations can recycle quantities that enable us to
evaluate the objective at skg and at xk+1 with very little overhead over the calculation of αk
(see Section 4). By using (36), we can specify a modified proximal gradient algorithm for
solving (1), whose details we omit here since it is quite similar to Algorithm 2.

389

Tran-Dinh, Kyrillidis, and Cevher

-

6r
r
r

r

r
r

0
x∗xk skg skg xx̂k

F (xk)

F (skg)

F (skg)
F (x̂k)

F (x)Q(·; xk,Hk)

x̂k :=(1−αk)xk+αks
k
g

x̂k := skg Case 1

Case 2

Figure 3: Illustration of the modified proximal-gradient method

4. Concrete Instances of our Optimization Framework

We illustrate three instances of our framework for some of the applications described in
Section 1. For concreteness, we describe only the first and second order methods. Quasi-
Newton methods based on (L-)BFGS updates or other adaptive variable metrics can be
similarly derived in a straightforward fashion.

4.1 Graphical Model Selection

We customize our optimization framework to solve the graph selection problem (2). For
notational convenience, we maintain a matrix variable Θ instead of vectorizing it. We
observe that f(Θ) := − log(det(Θ)) + tr(Σ̂Θ) is a standard self-concordant function, while
g(Θ) := ρ ‖vec(Θ)‖1 is convex and nonsmooth. The gradient and the Hessian of f can be

computed explicitly as ∇f(Θ) := Σ̂−Θ−1 and ∇2f(Θ) := Θ−1⊗Θ−1, respectively. Next,
we formulate our proposed framework to construct two algorithmic variants for (2).

4.1.1 Dual Proximal-Newton Algorithm

We consider a second order algorithm via a dual solution approach for (15). This approach
is first introduced in our earlier work (Tran-Dinh et al., 2013a), which did not consider the
new modifications we propose in Section 3.1.

We begin by deriving the following dual formulation of the convex subproblem (15). Let
pk := ∇f(xk), the convex subproblem (15) can then be written equivalently as

min
x∈Rn

{
(1/2)xTHkx + (pk −Hkx

k)Tx + g(x)
}
. (37)

By using the min-max principle, we can write (37) as

max
u∈Rn

min
x∈Rn

{
(1/2)xTHkx + (pk −Hkx

k)Tx + uTx− g∗(u)
}
, (38)

where g∗ is the Fenchel conjugate function of g, i.e., g∗(u) := sup
x

{
uTx− g(x)

}
. Solving

the inner minimization in (38) we obtain

min
u∈Rn

{
(1/2)uTH−1

k u + p̃Tk u + g∗(u)
}
, (39)

390

Composite Self-concordant Minimization

where p̃k := H−1
k pk−xk. Note that the objective function ϕ(u) := g∗(u)+(1/2)uTH−1

k u+
p̃Tk u of (39) is strongly convex, one can apply the fast projected gradient methods with a
linear convergence rate for solving this problem, see (Nesterov, 2007; Beck and Teboulle,
2009a).

In order to recover the solution of the primal subproblem (15), we note that the solution
of the parametric minimization problem in (38) is given by x∗(u) := xk−H−1

k (pk +u). Let
u∗

xk
be the optimal solution of (39). We can recover the primal proximal-Newton search

direction dk defined in (16) as

dkn = −∇2f(xk)−1
(
∇f(xk) + u∗xk

)
. (40)

To compute the quantity λk defined by (18) in Algorithm 1, we use (40) such that:

λk = ‖dkn‖xk = ‖∇f(xk) + u∗xk‖∗xk . (41)

Note that computing λk by (41) requires the inverse of the Hessian matrix ∇2f(xk).
Surprisingly, this dual approach allows us to avoid matrix inversion as well as Cholesky

decomposition in computing the gradient ∇f(Θi) and the Hessian ∇2f(Θi) of f in graph
selection. An alternative is of course to solve (15) in its primal form. Though, in such case,
we need to compute Θ−1

i at each iteration i (say, via Cholesky decompositions).
The dual subproblem (39) becomes as

U∗ = arg min
‖vec(U)‖∞≤1

{
(1/2)tr((ΘiU)2) + tr(Q̃U)

}
, (42)

for the graph selection, where Q̃ := ρ−1[ΘiΣ̂Θi−2Θi]. Given the dual solution U∗ of (42),
the primal proximal-Newton search direction (i.e. the solution of (15)) is computed as

∆i := −
(
(ΘiΣ̂− I)Θi + ρΘiU

∗Θi

)
. (43)

The quantity λi defined in (41) can be computed as follows, where Wi := Θi(Σ̂ + ρU∗):

λi :=
(
p− 2 · tr (Wi) + tr

(
W2

i

))1/2
. (44)

Algorithm 3 summarizes the description above. Overall, this proximal-Newton (PN) al-
gorithm does not require any matrix inversions or Cholesky decompositions. It only needs
matrix-vector and matrix-matrix calculations, which might be attractive for different com-
putational platforms (such as GPUs or simple parallel implementations). Note however that
as we work through the dual problem, the primal solution can be dense even if majority of
the entries are rather small (e.g., smaller than 10−6).5

We now explain the underlying costs of each step in Algorithm 3, which is useful when
we consider different strategies for the selection of the step size αk. The computation of Q̃
and ∆i require basic matrix multiplications. For the computation of λi, we require two trace
operations: tr(Wi) in O(p) time-complexity and tr(W2

i) in O(p2) complexity. We note here

5. In our MATLAB implementation below, we have not exploited the fact that the primal solutions are
sparse. The overall efficiency can be improved via thresholding tricks, both in terms of time-complexity
(e.g., less number of iterations) and matrix estimation quality.

391

Tran-Dinh, Kyrillidis, and Cevher

Algorithm 3 (Dual PN for graph selection (DPNGS))

Input: Matrix Σ̂ � 0 and a given tolerance ε > 0. Set σ := 0.25(5−
√

17).
Initialization: Find a starting point Θ0 � 0.
for i = 0 to imax do

1. Set Q̃ := ρ−1
(
ΘiΣ̂Θi − 2Θi

)
.

2. Compute U∗ in (42).
3. Compute λi by (44), where Wi :=Θi(Σ̂+ρU∗).
4. If λi ≤ ε terminate.
5. Compute ∆i := −

(
(ΘiΣ̂− I)Θi + ρΘiU

∗Θi

)
.

6. If λi > σ, then set αi := (1 + λi)
−1. Otherwise, set αi = 1.

7. Update Θi+1 := Θi + αi∆i.
end for

that, while Wi is a dense matrix, the trace operation in the latter case requires only the
computation of the diagonal elements of W2

i . Given Θi, αi and ∆i, the calculation of Θi+1

has O(p2) complexity. In contrast, evaluation of the objective can be achieved through
Cholesky decompositions, which has O(p3) time complexity.

To compute (42), we can use the fast proximal-gradient method (FPGM) (Nesterov,
2007; Beck and Teboulle, 2009a) with step size 1/L where L is the Lipschitz constant of the
gradient of the objective function in (42). It is easy to observe that L := γ2

max(Θi) where
γmax(Θi) is the largest eigenvalue of Θi. For sparse Θi, we can approximately compute
γmax(Θi) is O(p2) by using iterative power methods (typically, 10 iterations suffice). The
projection onto ‖vec(U)‖∞ ≤ 1 clips the elements by unity in O(p2) time. Since FPGM
requires a constant number of iterations kmax (independent of p) to achieve an εin solution
accuracy, the time-complexity for the solution in (42) is O(kmaxM), where M is the cost of
matrix multiplication. We have also implemented block coordinate descent and active set
methods which scale O(p2) in practice when the solution is quite sparse.

Overall, the major operation with general proximal maps in the algorithm is typically
the matrix-matrix multiplications of the form ΘiUΘi, where Θi and U are symmetric
positive definite. This operation can naturally be computed (e.g., in a GPU) in a parallel or
distributed manner. For more details of such computations we refer the reader to (Bertsekas
and Tsitsiklis, 1989). It is important to note that without Cholesky decompositions used
in objective evaluations, the basic DPNGS approach theoretically scales with the cost of
matrix-matrix multiplications.

4.1.2 Proximal-Gradient Algorithm

Since g(Θ) := ρ ‖vec(Θ)‖1 and ∇f(Θi) = vec(Σ̂−Θ−1
i), the subproblem (15) becomes:

∆i+1 := Tτiρ
(
Θi − τi(Σ̂−Θ−1

i)
)
−Θi, (45)

where Tτ : Rp×p → Rp×p is the component-wise matrix thresholding operator which is
defined as Tτ (Θ) := max {0, |Θ| − τ}. We also note that the computation of ∆i+1 requires a
matrix inversion Θ−1

i . Since Θi is positive definite, one can apply Cholesky decompositions
to compute Θ−1

i in O(p3) operations. To compute the quantity λi, we have λi := ‖∆i‖Θi
=

392

Composite Self-concordant Minimization

∥∥Θ−1
i ∆i

∥∥
2
. We also choose Li := 0.5‖∇2f(Θi)‖2 = 0.5‖Θ−1

i ‖22. The above are summarized
in Algorithm 4.

Algorithm 4 (Proximal-gradient method for graph selection (ProxGrad1))

Initialization: Choose a starting point Θ0 � 0 .
for i = 0 to imax do

1. Compute Θ−1
i via Cholesky decomposition.

2. Choose Li satisfying (30) and set τi := L−1
i .

3. Compute the search direction ∆i as (45).
4. Compute βi := Li‖vec(∆i)‖2 and λi := ‖Θ−1

i ∆i‖2.

5. Determine the step size αi := βi
λi(λi+βi)

.
6. Update Θi+1 := Θi + αi∆i.

end for

The per iteration complexity is dominated by matrix-matrix multiplications and Cholesky
decompositions for matrix inversion calculations. In particular, Step 1 requires a Cholesky
decomposition with O(p3) time-complexity. Step 2 requires to compute `2-norm of a sym-
metric positive matrix, which can be done by a power-method in O(p2) time-complexity.
The complexity of Steps 3, 4 and 6 requires O(p2) operations. Step 2 may require additional
bisection steps as mentioned in Algorithm 2 whenever λk < 1.

4.2 Poisson Intensity Reconstruction

We now describe a variant of Algorithm 2; a similar instance based on Algorithm 1 can be
easily devised and we omit the details here. First, we can easily check that the function
f̃(x) :=

∑m
i=1

(
aTi x− yi log(aTi x)

)
in (3) is convex and self-concordant with parameter

Mf̃ := 2 ·max
{

1√
yi
| yi > 0, i = 1, . . . ,m

}
, see (Nesterov, 2004, Theorem 4.1.1). We define

the functions f and g as

f(x) :=
M2
f̃

4
f̃(x), g(x) :=

M2
f̃

4

(
ρφ(x) + δ{u | u≥0}(x)

)
, (46)

where f and g satisfy Assumption 1 and δC is the indicator function of C. Thus, the problem
in (3) can be equivalently transformed into (1). Here, the gradient and the Hessian of f
satisfy:

∇f(x) =
M2
f̃

4

m∑
i=1

(
1− yi

aTi x

)
ai and ∇2f(x) =

M2
f̃

4

m∑
i=1

yi

(aTi x)2
aia

T
i , (47)

respectively. For a given vector d ∈ Rn, the local norm ‖d‖x can then be written as

‖d‖x :=
(
dT∇2f(x)d

)1/2
=
Mf̃

2

(
m∑
i=1

yi(a
T
i d)2

(aTi x)2

)1/2

. (48)

Computing this quantity requires one matrix-vector multiplication and O(m) operations.

393

Tran-Dinh, Kyrillidis, and Cevher

For the Poisson model, the subproblem (15) is expressed as follows:

min
x≥0

{
(1/2)‖x−wk‖22 + ρkφ(x)

}
, (49)

where wk := xk − L−1
k ∇f(xk) and ρk :=

ρM2
f̃

4Lk
. As a penalty function φ in the Poisson

intensity reconstruction, we use the Total Variation norm (TV-norm), defined as φ(x) :=
‖Dx‖1 (isotropic) or φ(x) := ‖Dx‖1,2 (anti-isotropic), where D is a forward linear operator
(Chambolle and Pock, 2011; Beck and Teboulle, 2009b). For both TV-norm regularizers,
the method proposed in (Beck and Teboulle, 2009b) can solve (49) efficiently.

The above discussion leads to Algorithm 5. We note that the constant Lk at Step 2 of
this algorithm can be estimated based on different rules. In our implementation below, we

initialize Lk at a Barzilai-Borwein step size, i.e., Lk := (∇f(xk)−∇f(xk−1))T (xk−xk−1)
‖xk−xk−1‖22

and may

perform a few backtracking iterations on Lk to ensure the condition (30) whenever λk < 1.

Algorithm 5 (ProxGrad for Poisson intensity reconstruction (ProxGrad2))

Inputs: x0 ≥ 0, ε > 0 and ρ > 0.

Compute Mf̃ := 2 max
{

1√
yi
| yi > 0, i = 1, . . . ,m

}
.

for k = 0 to kmax do
1. Evaluate the gradient of f as (47).
2. Compute an appropriate value Lk > 0 that satisfies (30).
3. Compute ρk := 0.25ρM2

f̃
L−1
k and wk := xk − L−1

k ∇f(xk).

4. Compute skg by solving (49) and then compute dkg := skg − xk.

5. Compute βk := Lk‖dkg‖22 and λk := ‖dkg‖xk as (48).

6. If ek := L−1
k

√
βk ≤ ε then terminate.

7. Determine the step size αk := βk
λk(λk+βk) .

8. Update xk+1 := xk + αkd
k
g .

end for

Note that we can modify Step 8 in Algorithm 5 by using the update scheme (36) to
obtain a new variant of this algorithm. We omit the details here.

4.3 Heteroscedastic LASSO

We focus on a convex formulation of the unconstrained LASSO problem with unknown
variance studied in (Städler et al., 2012) as

(β∗, σ∗) := arg min
β∈Rp,σ∈R++

{
− log(σ) + (1/(2n)) ‖Xβ − σy‖22 + ρ ‖β‖1

}
. (50)

However, our algorithm can be applied to solve the multiple unknown variance case consid-
ered in (Dalalyan et al., 2013).

By letting x := (βT , σ)T ∈ Rp+1, f(x) := − log(σ) + (1/(2n)) ‖Xβ − σy‖22. Then, it is
easy to see that the function f is standard self-concordant. Hence, we can apply Algorithm 2
to solve this problem. To highlight the salient differences in the code, we note the following:

394

Composite Self-concordant Minimization

• Define z := Xβ − σy, then the gradient vector of function f can be computed as

∇f(x) :=
(
n−1zTX,−σ−1 − n−1yT z

)T
.

This computation requires two matrix-vector multiplications and one inner product.

• The quantity λk can be explicitly computed as

λk :=
((
σ−2
k + n−1yTy

)
(dkσ)2 + n−1zTk zk − 2n−1dkσy

T zk

)1/2
,

where zk := Xdkβ and dkg := ((dkβ)T ,dkσ)T is the search direction. This quantity
requires one matrix-vector multiplication and two inner products. Moreover, this
matrix-vector product can be reused to compute the gradient for the next iteration.

The final algorithm is very similar to Algorithm 5 and hence we omit the details.

5. Numerical Experiments

In this section, we illustrate our optimization framework via numerical experiments on the
variants discussed in Section 4. We only focus on proximal gradient and Newton variants
and encourage the interested reader to try out the quasi-Newton variants for their own
applications. All the tests are performed in MATLAB 2011b running on a PC Intel Xeon
X5690 at 3.47GHz per core with 94Gb RAM.6

5.1 Proximal-Newton Method in Action

By using the graph selection problem, we first show that the modifications on the proximal-
Newton method provides advantages in practical convergence as compared to state-of-the-
art strategies and provides a safeguard for line-search procedures in optimization routines.
We then highlight the impact of different subsolvers for (37) in the practical convergence of
the algorithms.

5.1.1 Comparison of Different Step-Size Selection Procedures

We apply four different step-size selection procedures in our proximal-Newton framework to
solve problem (2). Specifically, we test the algorithm based on the following configuration:

(i) We implement Algorithm 3 in MATLAB using FISTA (Beck and Teboulle, 2009a)
to solve the dual subproblem with the following stopping criterion: ‖Θi+1 −Θi‖F ≤
10−8 ×max {‖Θi+1‖F , 1}.

(ii) We consider four different globalization procedures, whose details can be found in
Section 3.1: a) NoLS which uses the analytic step size α∗k = (1+λk)

−1, b) BtkLS which
is an instance of the proximal-Newton framework of (Lee et al., 2012) and uses the
standard backtracking line-search based on Armijo’s rule, c) E-BtkLS which is based
on the standard backtracking line-search enhanced by the lower bound α∗k and, d)

6. We also provide MATLAB implementations of the examples in this section as a software package
(SCOPT) at http://lions.epfl.ch/software.

395

Tran-Dinh, Kyrillidis, and Cevher

FwLS as the forward line-search by starting from α∗k and increasing the step size until
either αk = 1, infeasibility or the objective value does not improve.

(iii) We test our implementation on four problem cases: The first problem is a synthetic ex-
amples of size p = 10, where the data is generated as in (Kyrillidis and Cevher, 2013).
We run this test for 10 times and report computational primitives in average. Three re-
maining problems are based on real data from http://ima.umn.edu/~maxxa007/send_SICS/,
where the regularization parameters are chosen as the standard values (cf., Tran-Dinh
et al. (2013a); Lee et al. (2012); Hsieh et al. (2011)). We terminate the proximal-
Newton scheme if λk ≤ 10−6.

The numerical results are summarized in Table 2. Here, #iter denotes the (average)
number of iterations, #chol represents the (average) number of Cholesky decompositions
and #Mm is the (average) number of matrix-matrix multiplications.

Synthetic (ρ = 0.01) Arabidopsis (ρ = 0.5) Leukemia (ρ = 0.1) Hereditary (ρ = 0.1)

LS Scheme #iter #chol #Mm #iter #chol #Mm #iter #chol #Mm #iter #chol #Mm

NoLS 25.4 - 3400 18 - 1810 44 - 9842 72 - 20960
BtkLS 25.5 37.0 2436 11 25 718 15 50 1282 19 63 2006
E-BtkLS 25.5 36.2 2436 11 24 718 15 49 1282 15 51 1282
FwLS 18.1 26.2 1632 10 17 612 12 34 844 14 44 1126

Table 2: Metadata for the line search strategy comparison

We can see that our new step-size selection procedure FwLS shows superior empirical
performance as compared to the rest: The standard approach NoLS usually starts with
pessimistic step-sizes which are designed for worst-case problem structures. Therefore,
we find it advantageous to continue with a forward line-search procedure. Whenever it
reaches the quadratic convergence, no Cholesky decompositions are required. This makes a
difference, compared to standard backtracking line-search BtkLS where we need to evaluate
the objective value at every iteration. While there is no free lunch, the cost of computing
λk is O(p2) in FwLS, which turns out to be quite cheap in this application. The E-BtkLS

combines both backtrack line-search and our analytic step-size α∗k := (1 + λk)
−1, which

outperforms BtkLS as the regularization parameter becomes smaller. Finally, we note that
the NoLS variant needs more iterations but it does not require any Cholesky decompositions,
which might be advantageous in homogeneous computational platforms.

5.1.2 Impact of Different Solvers for the Subproblems

As mentioned in the introduction, an important step in our second order algorithmic frame-
work is the solution of the subproblem (15). If the variable matrix Hk is not diagonal, com-
puting skHk

corresponds to solving a convex subproblem. For a given regularization term
g, we can exploit different existing approaches to tackle this problem. We illustrate that
the overall framework to be quite robust against the solution accuracy of the individual
subsolver.

In this test, we consider the broad used `1-norm function as the regularizer. Hence, (15)
collapses to an unconstrained LASSO problem; cf. (Wright et al., 2009). To this end, we
implement the proximal-Newton algorithm to solve the graph learning problem (2) where

396

Composite Self-concordant Minimization

Estrogen (p = 692) Arabidopsis (p = 834) Leukemia (p = 1255) Hereditary(p = 1869)

Sub-solvers #iter #chol time[s] #iter #chol time[s] #iter #chol time[s] #iter #chol time[s]

ρ = 0.5

#nnz = 0.022p2 #nnz = 0.030p2 #nnz = 0.022p2 #nnz = 0.020p2

pFISTA 9 29 13.10 10 35 24.76 9 31 286.57 17 80 1608.66
pFISTA[gpu] 9 29 10.70 10 35 16.81 9 31 231.97 17 80 1265.97
dFISTA 8 16 4.66 10 17 10.92 14 22 50.19 14 27 147.86
dFISTA[gpu] 8 16 4.16 10 17 7.89 14 22 43.53 14 27 120.16
FastAS 7 24 28.69 8 27 96.93 9 31 532.11 11 40 1682.28
BCDC 8 25 90.35 9 28 227.27 9 31 549.80 12 47 3452.82
MatQUIC 11 29 21.61 10 35 50.67 10 35 119.06 14 44 891.29
ProxGrad1 175 175 8.82 226 226 17.78 230 230 44.06 660 660 350.52

ρ = 0.1

#nnz = 0.072p2 (∼ 6%) #nnz = 0.074p2 #nnz = 0.065p2 #nnz = 0.063p2

pFISTA 34 101 357.25 57 148 1056.90 143 242 7490.27 - - -
pFISTA[gpu] 34 101 300.90 57 148 730.07 143 242 6083.06 - - -
dFISTA 14 32 12.51 12 35 15.53 12 34 38.73 14 44 150.03
dFISTA[gpu] 14 32 11.18 12 35 11.18 12 34 33.45 14 44 121.37
FastAS - - - - - - - - - - - -
BCDC 13 48 1839.17 15 50 4806.62 - - - - - -
MatQUIC 30 88 573.87 36 95 1255.13 36 95 4260.97 - - -
ProxGrad1 4345 4345 224.95 6640 6640 532.77 9225 9225 1797.49 - - -

Table 3: Metadata for the subsolver efficiency comparison

g(x) := ρ ‖x‖1. To show the impact of the subsolver in (2), we implement the following
methods, which are all available in our software package SCOPT:

(i) pFISTA and dFISTA: in these cases, we use the FISTA algorithm (Beck and Teboulle,
2009a) for solving the primal (37) and the dual subproblem (39). Moreover, to speedup
the computations, we further run these methods on the GPU [NVIDIA Quadro 4000].

(ii) FastAS: this method corresponds to the exact implementation of the fast active-set
method proposed in (Kim and Park, 2010) for solving the primal-dual (37).

(iii) BCDC: here, we consider the block-coordinate descent method implemented in (Hsieh
et al., 2011) for solving the primal subproblem (37).

We also compare the above variants of the proximal-Newton approach with (i) the proximal-
gradient method (Algorithm 4) denoted by ProxGrad1 and (ii) a precise MATLAB imple-
mentation of QUIC (MatQUIC), as described in (Hsieh et al., 2011). For the proximal-Newton
and MatQUIC approaches, we terminate the execution if the maximum number of iterations
exceeds 200 or the total execution time exceeds the 5 hours. The maximum number of
iterations in ProxGrad1 is set to 104.

The results are reported in Table 3. Overall, we observe that dFISTA shows superior
performance across the board in terms of computational time and the total number of
Cholesky decompositions required. Here, #nnz represents the number of nonzero entries
in the final solution. The notation “−” indicates that the algorithms exceed either the
maximum number of iterations or the time limit (5 hours).

397

Tran-Dinh, Kyrillidis, and Cevher

If the parameter ρ is relatively large (i.e., the solution is expected to be quite sparse),
FastAS, BCDC and MatQUIC perform well and converge in a reasonable time. This is expected
since all three approaches vastly rely on the sparsity of the solution: the sparser the solution
is, the faster their computations are performed, as restricted on the active set of variables.
However, when ρ is small, the performance of these methods significantly degrade due to
the increased number of active (non-zero) entries.

Aside from the above, ProxGrad1 performs well in terms of computational time, as com-
pared to the rest of the methods. Unfortunately, the number of Cholesky decompositions
in this method can become as many as the number of iterations, which indicates a com-
putational bottleneck in high-dimensional problem cases. Moreover, when ρ is small, this
method also slows down and requires more iterations to converge.

On the other hand, we also note that pFISTA is rather sensitive to the accuracy of the
subsolver within the quadratic convergence region. In fact, while pFISTA reaches medium
scale accuracies in a manner similar to dFISTA, it spends most of its iterations trying to
achieve the higher accuracy values.

5.2 Proximal-Gradient Algorithm in Action

In this subsection, we illustrate the performance of proximal gradient algorithm in practice
on various problems with different regularizers.

5.2.1 Linear Convergence

To show the linear convergence of ProxGrad1 (Algorithm 2) in practice, we consider the
following numerical test. Our experiment is based on the Lymph and Estrogen problems
downloaded from http://ima.umn.edu/~maxxa007/send_SICS/. For both problem cases,
we use different values for ρ as ρ = [0.1 : 0.05 : 0.6] in MATLAB notation. For each
configuration, we measure the quantity:

ckres :=

∥∥(Dk −∇2f(x∗))dkg
∥∥∗

x∗

‖dkg‖x∗
, (51)

for few last iterations. This quantity can be referred to as the restricted approximation
gap of Dk to ∇2f(x∗) along the proximal-gradient direction dkg . We first run the proximal-
Newton method up to 10−16 accuracy to obtain the solution x∗ and then run the proximal-
gradient algorithm up to 10−8 accuracy to compute ckres and the norm ‖xk − x∗‖x∗ . From
the proof of Theorem 14, we can show that if ckres < 0.5 for sufficiently large k, then the
sequence

{
xk
}
k≥0

locally converges to x∗ at a linear rate. We note that this condition is
much weaker than the last condition given in Theorem 14 but more difficult to interpret.
Note that the requirement in Theorem 14 leads to a restriction on the condition number
of ∇2f(x∗) to be less than 3. We perform this test on two problem instances with 11
different values of the regularization parameter and then compute the median of ckres for
each problem. Figure 4 shows the median of the restricted approximation gap ckres and the
real condition number of ∇2f(x∗), respectively.

As expected, we observe that the real condition number of ∇2f(x∗) increases as the
regularization parameter decreases. Moreover, the last condition given in Theorem 14 does
not hold in this example. However, if we look at the restricted condition number computed

398

Composite Self-concordant Minimization

0.2 0.4 0.6

0.4

0.6

0.8

1

1.2

cres = 0.5

c
k r
e
s

ρ
0.2 0.4 0.6

100

200

300

co
n
d
(∇

2
f
(x

∗
))

ρ

(a) Lymph data set (p = 578)

0.2 0.4 0.6

0.4

0.6

0.8

1

1.2

cres = 0.5

c
k r
e
s

ρ
0.2 0.4 0.6

100

200

300

400

co
n
d
(∇

2
f
(x

∗
))

ρ

(b) Estrogen data set (p = 692)

Figure 4: For each test case: (Left) Restricted approximation gap ckres (Right) The actual
condition number of ∇2f(x∗).

by (51), we can observe that for ρ & 0.3, this value is strictly smaller than 0.5. In this case,
the local linear convergence is actually observed in practice.

While ckres < 0.5 is only a sufficient condition and can possibly be improved, we find
it to be a good indicator of the convergence behavior. Figure 5 shows the last 100 iter-
ations of our gradient method for the Lymph problem with ρ = 0.15 and ρ = 0.55. The
number of iterations needed to achieve the final solution in these cases is 1525 and 140,
respectively. In the former case, the calculated restricted condition number is above 0.5
and the final convergence rate suffers. For instance, the contraction factor κ in the esti-
mate

∥∥xk+1 − x∗
∥∥

x∗
≤ κ

∥∥xk − x∗
∥∥

x∗
is close to 1 when ρ = 0.15, while it is smaller when

ρ = 0.55. We can observe from Figure 5 (left) that the error ‖xk − x∗‖x∗ drops rapidly
at the last few iterations due to the affect of the bisection procedure, where we check the
condition (30) for λk < 1.

0 20 40 60 80 100

10
−4

10
−3

10
−2

10
−1

100 last ite rat ions

‖
x

k
−

x
∗
‖
x

∗
in

lo
g
-s
c
a
le

0 20 40 60 80 100

10
−4

10
−3

10
−2

10
−1

100 last ite rat ions

‖xk
− x

∗‖x
∗ in log-scale

based line w ith κ = 0.9935

‖xk
− x

∗‖x
∗ in log-scale

based line w ith κ = 0.9462

Figure 5: Linear convergence of ProxGrad1 for Lymph: Left: ρ = 0.15 and Right: ρ = 0.55.

5.2.2 TV`1-regularizer

In this experiment, we consider the Poisson intensity reconstruction problem, where the
regularizer g, the TV`1-norm which is called the anisotropic-TV; as an example, cf. (Beck
and Teboulle, 2009b). Hence, we implement Algorithm 5 (ProxGrad2) to solve (3), improve
it using the greedy step-size modification as described in Section 3.3 (ProxGrad2g), and

399

Tran-Dinh, Kyrillidis, and Cevher

compare its performance with the state-of-the-art Sparse Poisson Intensity Reconstruction
Algorithms (SPIRAL-TAP) toolbox (Harmany et al., 2012).

As a termination criterion, we have ‖dkg‖2 ≤ 10−5 max
{

1, ‖xk‖2
}

or when the ob-
jective value does not significantly change after 5 successive iterations, i.e., for each k,∣∣f(xk+j)− f(xk)

∣∣ ≤ 10−8 max
{

1,
∣∣f(xk)

∣∣} for j = 1, . . . , 5.
We first illustrate the convergence behavior of the three algorithms under comparison.

We consider two image test cases: house and cameraman, and we set the regularization
parameter of the TV`1-norm to ρ = 2.5 × 10−5. Figure 9 illustrate the convergence of the
algorithms both in iteration count and the timing.

100 200 300 400 500
10

−8

10
−6

10
−4

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad2
ProxGrad2g
SPIRAL−TAP

10
−4

10
−2

10
0

10
2

10
4

10
−8

10
−6

10
−4

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

Time (sec.) in log-scale

ProxGrad2
ProxGrad2g
SPIRAL−TAP

100 200 300 400 500

10
−8

10
−6

10
−4

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad2
ProxGrad2g
SPIRAL−TAP

10
−4

10
−2

10
0

10
2

10
4

10
−8

10
−6

10
−4

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

Time (sec.) in log-scale

ProxGrad2
ProxGrad2g
SPIRAL−TAP

Figure 6: Convergence of three algorithms for house (top) and cameraman (bottom). Left:
in iteration scale Right: in time log-scale.

Overall, ProxGrad2g exhibits the best convergence behavior in terms of iterations and
time. Due to the inaccurate solutions of the subproblem (49), the methods might exhibit
oscillations. Since SPIRAL-TAP employs a Barzilai-Borwein step-size and performs a line-
search procedure up to very small step-size, the objective value is not sufficiently decreased;
as a result of this, we observe more oscillations in the objective value.

In stark contrast, ProxGrad2 and ProxGrad2g use the Barzilai-Borwein step-size as an
initial-guess for computing a search direction and then use the step-size correction procedure
to ensure that the objective function decreases a certain amount at each iteration. This
strategy turns out to be more effective since milder oscillations in the objective values are
observed in practice (which are due to the inaccuracy of the TV-proximal operator).

Finally, we test the performance of ProxGrad2, ProxGrad2g and SPIRAL-TAP on 4 dif-
ferent image cases: barbara, cameraman, house and lena. We set ρ to two different
values: ρ ∈ {10−5, 2.5 · 10−5}. These values are chosen in order to obtain the best visual

400

Composite Self-concordant Minimization

Orginal image Poisson noise image Reconstructed image [ProxGrad2] Reconstructed image [SPRIAL−TAP]

Figure 7: The reconstructed images for barbara (ρ = 2.5× 10−5)

reconstructions (e.g., see Figure 7) and are previously used in (Harmany et al., 2012). The
summary results reported in Table 4. Here, AC denotes the multiplicative factor in time ac-
celeration of ProxGrad2 as compared to SPIRAL-TAP, and ∆F is the difference between the
corresponding obtained objective values between ProxGrad2 and SPIRAL-TAP (a positive
∆F means that SPIRAL-TAP obtains a higher objective value at termination).

ProxGrad2g / ProxGrad2 / SPIRAL-TAP

Image ρ× 10−5 #iteration CPU time [s] AC Fkmin ∆F

house 1.0 116 256 500 27.45 56.95 1658.00 60 29 -10718352.93 0.31 0.70
(256× 256) 2.5 92 244 500 18.18 50.26 1431.94 79 28 -10711758.80 3.20 3.32

barbara 1.0 200 324 500 46.92 77.77 1204.36 26 15 -7388497.47 0.05 0.30
(256× 256) 2.5 164 268 500 36.45 67.98 1620.95 44 24 -7377424.50 1.90 2.02

cameraman 1.0 396 516 500 99.56 117.75 389.79 4 3 -9186631.65 0.19 0.07
(256× 256) 2.5 256 368 500 59.75 85.25 1460.62 24 17 -9175307.33 2.29 2.31

lena 1.0 152 220 500 27.43 41.31 1212.69 44 29 -5797053.79 0.10 0.10
(204× 204) 2.5 304 184 500 59.20 36.77 1132.04 19 31 -5789554.53 1.52 1.25

Table 4: The results and performance of three algorithms

From Table 4 we observe that ProxGrad2 and ProxGrad2g are superior to SPIRAL-TAP,
both in terms of CPU time and the final objective value in majority of problems. As the
table shows, ProxGrad2g can be 4 to 79 times faster than SPIRAL-TAP. Moreover, it reports
a better objective values in all cases.

5.2.3 A Comparison to Standard Gradient Methods Based on FL Assumption

In this subsection, we use the LASSO problem (50) with unknown variance as a simple test
case to illustrate the improvements over the “standard” methods. Note that the standard
Lipschitz gradient assumption no longer holds in this example due to the log-term log(σ).
For this comparison, we dub our algorithm as ProxGrad3(g) and compare it against a state-
of-the-art TFOCS software package (Becker et al., 2011). The input data is synthetically
generated based on the linear model y = Xβ∗ + s, where β is the true sparse parameter
vector; X is a Gaussian n × p matrix and s ∼ N (0, σ2), where σ = 0.01. In TFOCS, we
configure the Nesterov’s accelerated algorithm with two proximal operations (TFOCS-N07)
and adaptive restart as well as the standard gradient method (TFOCS-GRA). Both options

401

Tran-Dinh, Kyrillidis, and Cevher

use a backtracking step-size selection procedure due to the presence of the logarithmic term
in the objective.

As we can see in Figure 9 and Table 5 that ProxGrad3g performs the best and manages
to converge to a high accuracy solution at a linear rate in both examples. Interestingly, we
find the per iteration complexity of ProxGrad3g is similar to ProxGrad3 and TFOCS-GRA.
In terms of per iteration cost, TFOCS-N07 is the most expensive one as it uses dual prox
operations and adaptive restart, and requires more backtracking operations. Hence, while
it takes less iterations as compared to the TFOCS-GRA, it performs worse in terms of
timing. For illustration purposes, we ran the algorithms to high accuracy. However, if a
typical stopping criteria such as 10−6 is used, our algorithm ProxGrad3g obtains ×3 to ×8
speed-ups over the standard gradient algorithm with backtracking enhancements.

20 40 60 80

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

20 40 60 80 100

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

50 100 150

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

Figure 8: Convergence plots of algorithms under comparison for n = 3000 and p = 10000.
From left to right, ρ = 10−3, 2

3 · 10−4, 5 · 10−4.

20 40 60 80 100

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

20 40 60 80 100 120

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

50 100 150

10
−10

10
−5

F
(
x
k
)
−
F
(
x
∗
)

|F
(
x
∗
)
|

in
lo
g
-s
ca

le

of iterations

ProxGrad3
ProxGrad3g
TFOCS−N07
TFOCS−GRA

Figure 9: Convergence plots of algorithms under comparison for n = 15000 and p = 50000.
From left to right, ρ = 2 · 10−4, 4

3 · 10−4, 10−4.

6. Conclusions

We propose a variable metric method for minimizing convex functions that are compositions
of proximity functions with self-concordant smooth functions. Our framework does not
rely on the usual Lipschitz gradient assumption on the smooth part for its convergence
theory. A highlight of this work is the new set of analytic step-size selection and correction
procedures, which are best matched to the underlying problem structures. Our empirical
results illustrate that the new theory leads to significant improvements in the practical
performance of the algorithmic instances when tested on a variety of different applications.

In this work, we present a convergence proof for composite minimization problems under
the assumption of exact algorithmic calculations at each step of the methods. As future
research direction, an interesting problem to pursue is the extension of this analysis to

402

Composite Self-concordant Minimization

Problem ProxGrad3 / ProxGrad3g / TFOCS-N07 / TFOCS-GRA

(3000, 10000) #iteration CPU time [s] ‖β‖0 ‖β̂‖0 Overlap (%)

ρ = 10−3 36 24 79 88 1.0096 0.7862 3.2759 1.7648

360

166 44.72

ρ = 2
3
· 10−4 54 54 94 119 1.2974 1.2918 3.6499 2.4002 378 92.22

ρ = 5 · 10−4 78 78 97 166 1.7420 1.7513 3.7794 3.3416 412 100

(15000, 50000) #iteration CPU time [s] ‖β‖0 ‖β̂‖0 Overlap (%)

ρ = 2 · 10−4 36 30 99 110 21.7937 19.3241 82.3298 46.0475

1800

845 44.98

ρ = 4
3
· 10−4 60 54 108 136 31.7884 29.1194 89.4279 57.9088 1886 87.91

ρ = 10−4 90 90 113 166 44.2692 44.0611 95.3060 70.0946 2201 100

Table 5: Metadata on the Lasso problem with unknown variance

include inexact calculations and study how these errors propagate into the convergence and
convergence rate guarantees (Kyrillidis et al., 2014). We hope this paper triggers future
efforts along this direction.

Acknowledgments

This work is supported in part by the European Commission under Grant MIRG-268398,
ERC Future Proof and SNF 200021-132548, SNF 200021-146750 and SNF CRSII2-147633.
The authors are also grateful to three anonymous reviewers as well as to the action editor
for their thorough reviews of this work, comments and suggestions on improving the content
and the presentation of this paper.

Appendix A. Technical proofs

In this appendix, we provide the detailed proofs of the theoretical results in the main text.
It consists of global convergence and local convergence rate of our algorithms and other
technical proofs.

A.1 Proof of Lemma 4

Since g is convex, we have g(y) ≥ g(x) + vT (y − x) for all v ∈ ∂g(x). By adding this
inequality to (9) and noting that F (x) := f(x) + g(x), we obtain

F (y) ≥ F (x) + (∇f(x) + v)T (y − x) + ω(‖y − x‖x)
(52)

≥ F (x)− λ(x) ‖y − x‖x + ω(‖y − x‖x).

Here, the last inequality is due to the generalized Cauchy-Schwartz inequality and λ(x) :=
‖∇f(x) + v‖∗x. Let LF (F (x)) := {y ∈ dom(F) | F (y) ≤ F (x)} be a sublevel set of F .
Then, for any y ∈ LF (F (x)), we have F (y) ≤ F (x) which leads to

λ(x) ‖y − x‖x ≥ ω(‖y − x‖x),

due to (52). Let s(t) := ω(t)
t = 1− ln(1+t)

t . The last inequality leads to s(‖y − x‖x) ≤ λ(x).
Since the equation ln(1 + t) = (1− λ(x)) has unique solution t∗ > 0 if λ(x) < 1. Moreover,

403

Tran-Dinh, Kyrillidis, and Cevher

the function s is strictly increasing and s(t) < 1 for t ≥ 0, which leads to 0 ≤ t ≤ t∗. Since
s(‖y − x‖x) ≤ λ(x), we have ‖y − x‖x ≤ t∗. Thus, LF (F (x)) is bounded. Hence, x∗ exists
due to the well-known Weierstrass theorem.

The uniqueness of x∗ follows from the strict increase of ω(·). Indeed, for any x ∈ dom(F),
by the convexity of g we have g(x)− g(x∗) ≥ vT∗ (x− x∗), where v∗ ∈ ∂g(x∗). By the self-
concordant property of f , we also have f(x)− f(x∗) ≥ ∇f(x∗)T (x− x∗) + ω(‖x− x∗‖x∗).
Adding these inequalities and using the optimality condition (11), i.e., 0 = v∗ + ∇f(x∗),
we have F (x) − F (x∗) ≥ ω(‖x − x∗‖x∗). Now, let x̂∗ 6= x∗ is also an optimal solution of
(1). We have 0 = F (x̂∗)−F (x∗) ≥ ω(‖x−x∗‖x∗) > 0, which leads to a contradiction. This
implies that x∗ ≡ x̂∗. �

A.2 Proofs of Global Convergence: Theorem 6, Lemma 12 and Theorem 13

In this subsection, we provide the proofs of Theorem 6, Lemma 12 and Theorem 13 in a
unified fashion. We first provide a key result quantifying the improvement of the objective
as a function of the step-size αk.

Maximum decrease of the objective function: Let βk := ‖dk‖Hk , λk := ‖dk‖xk and:

xk+1 := xk + αkd
k = (1− αk)xk + αks

k,

where αk :=
β2
k

λk(λk+β2
k)
∈ (0, 1]. We will prove below that the following holds at each

iteration of the algorithms:

F (xk+1) ≤ F (xk)− ω
(
β2
k

λk

)
. (53)

Moreover, the choice of αk is optimal (in the analytical worst-case sense).
Proof Indeed, since g is convex and αk ∈ (0, 1], we have g(xk+1) = g

(
(1− αk)xk + αks

k
)
≤

(1− αk)g(xk) + αkg(sk), which leads to

g(xk+1)− g(xk) ≤ αk(g(sk)− g(xk)). (54)

For xk+1 ∈ dom(F) so that ‖xk+1−xk‖xk < 1, the bound (10) holds. Combining (54) with
the self-concordant property (10) of f , we obtain

F (xk+1) ≤ F (xk) +∇f(xk)T (xk+1 − xk) + ω∗
(
‖xk+1 − xk‖xk

)
+ αk

(
g(sk)− g(xk)

)
(55)

(16)

≤ F (xk) + αk∇f(xk)Tdk + ω∗
(
αk‖dk‖xk

)
+ αk

(
g(sk)− g(xk)

)
.

Since sk is the unique solution of (15), by using the optimality condition (17), we get

−∇f(xk)−Hk(s
k − xk) ∈ ∂g(sk)⇒

(56)
−∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk

∈ (sk − xk)T∂g(sk).

Combining (56) with g(xk)− g(sk) ≥ vT (xk − sk), v ∈ ∂(sk), due to the convexity of g(·),
we have

g(sk)− g(xk) ≤ −∇f(xk)T (sk − xk)− ‖sk − xk‖2Hk
. (57)

404

Composite Self-concordant Minimization

Using (57) in (55) together with the definitions of βk and λk, we obtain

F (xk+1)
(16)

≤ F (xk)− αkβ2
k + ω∗ (αkλk) . (58)

Let us consider the function ϕ(α) := αβ2
k − ω∗(αλk). By the definition of ω∗(·), we can

easily show that ϕ(α) attains the maximum at:

αk :=
β2
k

λk(λk + β2
k)
, (59)

provided that αk ∈ (0, 1]. We note that the choice of αk as (59) preserves the condition
‖xk+1 − xk‖xk < 1. Moreover, ϕ(αk) = ω(β2

k/λk), which proves (53).

Proof of Theorem 6: Since Hk := ∇2f(xk), we observe βk := ‖dk‖Hk
≡ ‖dk‖xk =: λk,

where dk ≡ dkn. In this case, the step size αk in (59) becomes αk = 1
1+λk

which is in (0, 1).
Moreover, (53) reduces to:

F (xk+1) ≤ F (xk)− ω(λk),

which is indeed (21).

Finally, we assume that, for a given σ ∈ (0, 1), we have λk ≥ σ for 0 ≤ k ≤ kmax − 1.
Since ω strictly increases, it follows from (21) by induction that:

F (x∗) ≤ F (xk) ≤ F (x0)−
k−1∑
j=0

ω(λj) ≤ F (x0)− kω(σ).

This estimate shows that the number of iterations to reach λk < σ is at most kmax =⌊
F (x0)−F (x∗)

ω(σ)

⌋
+ 1. �

Proof of Lemma 12: Proof of Lemma 12 immediately follows from (53) by taking Hk ≡
Dk and dk ≡ dkg . �

Proof of Theorem 13: We consider the sequence
{
F (xk)

}
k≥0

. By Lemma 12, this

sequence is nonincreasing. Moreover, F (x0) ≥ F (xk) ≥ F (x∗) for all k ≥ 0. As a result,
the sequence

{
F (xk)

}
k≥0

converges to a finite value F ∗. By Lemma 12, we can derive

∞∑
j=0

ω

(
‖djg‖2Dj

‖djg‖xj

)
≤ F (x0)− F ∗ < +∞.

Since the function ω(τ) = τ − ln(1 + τ) ≥ τ2

4 for τ ∈ (0, 1] is increasing, this implies that

limj→∞ ‖djg‖22/‖djg‖xj = 0 due to the fact that Dk � LI � 0. Since LF (F (x0)) is bounded,
by applying Zangwill’s convergence theorem in (Zangwill, 1969), we can show that every
limit point x∗ of the sequence

{
xk
}
k≥0

is the stationary point of (11). Since x∗ is unique,

the whole sequence
{
xk
}
k≥0

converges to x∗. �

405

Tran-Dinh, Kyrillidis, and Cevher

A.3 Proofs of Local Convergence: Theorem 7, Theorem 11 and Theorem 14

We first provide a fixed-point representation of the optimality conditions and prove some
key estimates used in the sequel.

Optimality conditions as fixed-point formulations: Let f be a given standard self-
concordant function, g be a given proper, lower semicontinuous and convex function, and
Hk be a given symmetric positive definite matrix. Besides the two key inequalities (9) and
(10), we also need the following inequality (Nesterov and Nemirovski, 1994; Nesterov, 2004,
Theorem 4.1.6) in the proofs below:

(1− ‖y − x‖x)2∇2f(x) � ∇2f(y) � (1− ‖y − x‖x)−2∇2f(x), (60)

for any x,y ∈ dom(f) such that ‖y − x‖x < 1.
Let x∗ be the unique solution of (1) and x∗ be strongly regular, i.e., ∇2f(x∗) � 0.

Then the Dikin ellipsoid W (x∗, 1) := {x ∈ Rn | ‖x− x∗‖x∗ < 1} also belongs to dom(f).
Moreover, ∇2f(x) � 0 for all x ∈W (x∗, 1) due to (Nesterov, 2004, Theorem 4.1.5). Hence,
the strong regularity assumption is sufficient to ensure that ∇2f is positive definite in the
neighborhood W (x∗, 1).

For a fixed x̄ ∈ dom(F), where F := f + g, we redefined the following operators, based
on the fixed-point characterization and (15):

P gx̄(z) := P g∇2f(x̄)
(z), Sx̄(z) := ∇2f(x̄)z−∇f(z), (61)

and
ex̄(Hk, z) :=

(
∇2f(x̄)−Hk

)
(z− xk). (62)

Here, P gx̄ and Sx̄ can be considered as a generalized proximal operator of g and the gradient
step of f , respectively. While ex̄(Hk, ·) measures the error between ∇2f(x̄) and Hk along
the direction z− xk.

Next, given sk is the unique solution of (15), we characterize the optimality condition
of the original problem (1) and the subproblem (15) based on the P gx̄ , Sx̄ and ex̄(Hk, ·)
operators. From (17), we have

Sx̄(xk) + ex̄(Hk, s
k) ∈ ∇2f(x̄)sk + ∂g(sk).

By the definition of P gx̄ in (61), the above expression leads to

sk = P gx̄
(
Sx̄(xk) + ex̄(Hk, s

k)
)
. (63)

By replacing x̄ with x∗, i.e., the unique solution of (1), into (63) we obtain

sk = P gx∗
(
Sx∗(x

k) + ex∗(Hk, s
k)
)
. (64)

Moreover, if we replace Hk by ∇2f(x∗) (which is assumed to be positive definite) in the
fixed-point expression (12), we finally have

x∗ = P gx∗ (Sx∗(x
∗)) . (65)

Formulas (63) to (65) represent the fixed-point formulation of the optimality conditions.

406

Composite Self-concordant Minimization

Key estimates: Let rk := ‖xk − x∗‖x∗ and λk be defined by (18). For any αk ∈ (0, 1],
we prove the following estimates:

‖sk+1
n − skn‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk , (66)

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(Hk −∇2f(x∗))dk‖∗x∗ , (67)

provided that αkλk < 1, rk < 1 and the first estimate (66) requires Hk = ∇2f(xk).
Proof First, by using the nonexpansiveness of P g

xk
in Lemma 2, it follows from (63) that:

‖sk+1 − sk‖xk =
∥∥∥P gxk(Sxk(xk+1) + exk(Hk+1, s

k+1))− P g
xk

(Sxk(xk) + exk(Hk, s
k))
∥∥∥

xk

(8)

≤
∥∥∥Sxk(xk+1) + exk(Hk, s

k)− Sx∗(x
∗)
∥∥∥∗

xk

≤
∥∥∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1 − xk)

∥∥∥∗
xk (68)

+
∥∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∥∗

xk

(i)
=
∥∥∥∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
(xk+1 − xk)dτ

∥∥∥∗
xk

+
∥∥∥exk(Hk+1, s

k+1)− exk(Hk, s
k)
∥∥∥∗

xk
,

where (i) is due to the mean-value theorem, respectively.
Second, we estimate the first term in (68). For this purpose, we define

Σk :=
∫ 1

0

(
∇2f(xk + τ(xk+1 − xk))−∇2f(xk)

)
dτ,

Mk := ∇2f(xk)−1/2Σk∇2f(xk)−1/2.
(69)

Based on the proof of (Nesterov, 2004, Theorem 4.1.14), we can show that:

‖Mk‖2 ≤
‖xk+1 − xk‖xk

1− ‖xk+1 − xk‖xk
.

Using this estimate, the definition (69) and noting that xk+1 = xk + αkd
k, we obtain

‖Σk(x
k+1 − xk)‖∗xk =

[
(xk+1 − xk)TΣk∇2f(xk)−1Σk(x

k+1 − xk)
]1/2

=
[
(xk+1 − xk)T∇2f(xk)1/2MT

kMk∇2f(xk)1/2(xk+1 − xk)
]1/2

= ‖Mk∇2f(xk)1/2(xk+1 − xk)‖2
(i)

≤ ‖Mk‖2
[
(xk+1 − xk)T∇2f(xk)(xk+1 − xk)

]1/2
(70)

= ‖Mk‖2‖xk+1 − xk‖xk

≤
‖xk+1 − xk‖2

xk

1− ‖xk+1 − xk‖xk

=
α2
k‖dk‖2xk

1− αk‖dk‖xk
,

407

Tran-Dinh, Kyrillidis, and Cevher

where (i) is due to the Cauchy-Schwartz inequality.
Third, we consider the second term in (68) for Hk ≡ ∇2f(xk). By the definition of ex̄,

it is obvious that exk(∇2f(xk), sk) = 0. Hence, we have

T2 :=
∥∥exk(∇2f(xk+1), sk+1)− exk(∇2f(xk), sk)

∥∥∗
xk

=
∥∥exk(∇2f(xk+1), sk+1)

∥∥∗
xk

(71)

=
∥∥∥(∇2f(xk+1)−∇2f(xk)

)
dk+1

∥∥∥∗
xk
.

We now define the following quantity, whose spectral norm we bound below

Nk := ∇2f(xk)−1/2
(
∇2f(xk+1)−∇2f(xk)

)
∇2f(xk)−1/2. (72)

By applying (60) with x = xk and y = xk+1, we can bound the spectral norm of Nk as
follows:

‖Nk‖2 ≤ max
{

1−
(
1− ‖xk+1 − xk‖xk

)2
,
(
1− ‖xk+1 − xk‖xk

)−2 − 1
}

(73)

=
2‖xk+1 − xk‖xk − ‖xk+1 − xk‖2

xk

(1− ‖xk+1 − xk‖xk)2
.

Therefore, from (71) we can obtain the following estimate:

(T2)2 = exk(∇2f(xk+1), sk+1)T∇2f(xk)−1exk(∇2f(xk+1), sk+1)

= (dk+1)T ∇2f(xk)1/2 N2
k ∇2f(xk)1/2 dk+1 (74)

≤ ‖Nk‖22 ‖dk+1‖2xk .
By substituting (73) into (74) and noting that αkd

k = xk+1 − xk, we obtain

T2 ≤
2αk

∥∥dk∥∥
xk
− α2

k

∥∥dk∥∥2

xk

(1− αk ‖dk‖xk)2
‖dk+1‖xk . (75)

Now, by substituting (70) and (75) into (68) and noting that Hk ≡ ∇2f(xk), sk ≡ skn,
dk ≡ dkn and λk ≡

∥∥dkn∥∥xk
, we obtain

∥∥sk+1
n − skn

∥∥
xk
≤

α2
k

∥∥dkn∥∥2

xk

1− αk ‖dkn‖xk
+

2αk
∥∥dkn∥∥xk

− α2
k

∥∥dkn∥∥2

xk

(1− αk ‖dkn‖xk)2
‖dk+1

n ‖xk .

which is indeed (66).
Similarly to the proof of (68) and (70), we have

‖sk − x∗‖x∗
(65)
=
∥∥P gx∗(Sx∗(x

k) + ex∗(Hk, s
k))− P gx∗(Sx∗(x

∗))
∥∥

x∗

(8)

≤
∥∥Sx∗(x

k) + ex∗(Hk, s
k)− Sx∗(x

∗)
∥∥∗

x∗

≤
∥∥∥∇f(xk)−∇f(x∗)−∇2f(x∗)(xk − x∗)

∥∥∥∗
x∗

+ ‖ex∗(Hk, s
k)‖∗x∗ (76)

=

∥∥∥∥∫ 1

0

(
∇2f(x∗ + τ(xk − x∗))−∇2f(x∗)

)
(xk − x∗)dτ

∥∥∥∥∗
x∗

+ ‖ex∗(Hk, s
k)‖∗x∗

(70)

≤ ‖xk − x∗‖2x∗
1− ‖xk − x∗‖x∗

+
∥∥ (Hk −∇2f(x∗)

)
dk
∥∥∗

x∗
,

408

Composite Self-concordant Minimization

which is indeed (67) since rk = ‖xk − x∗‖x∗ .

Proof of Theorem 7: Since xk = skn − dkn due to (20), we have xk+1 = xk + αkd
k
n =

skn − (1− αk)dkn, which leads to

dk+1
n = sk+1

n − xk+1 = sk+1
n − skn + (1− αk)dkn.

By applying the triangle inequality to the above expression, we have

‖dk+1
n ‖xk = ‖sk+1

n − skn + (1− αk)dkn‖xk ≤ ‖sk+1
n − skn‖xk + (1− αk)‖dkn‖xk . (77)

Substituting (66) into (77) we obtain

‖dk+1
n ‖xk ≤

α2
kλ

2
k

1− αkλk
+

2αkλk − α2
kλ

2
k

(1− αkλk)2
‖dk+1‖xk + (1− αk)λk.

Rearranging this inequality we get

‖dk+1
n ‖xk ≤

(
(1− αkλk)

(
1− αk + (2α2

k − αk)λk
)

1− 4αkλk + 2α2
kλ

2
k

)
λk, (78)

provided that 1 − 4αkλk + 2α2
kλ

2
k > 0. Now, by applying (60) with x = xk and y = xk+1,

one can show that

‖dk+1
n ‖xk+1 ≤ ‖dk+1

n ‖xk
1− αk‖dkn‖xk

. (79)

We note that 1− 4αkλk + 2α2
kλ

2
k > 0 if αkλk < 1− 1/

√
2. By combining (78) and (79) we

obtain

‖dk+1
n ‖xk+1 ≤

(
1− αk + (2α2

k − αk)λk
1− 4αkλk + 2α2

kλ
2
k

)
λk,

which is (22).
Next, we consider the sequence

{
xk
}
k≥0

generated by damped step proximal Newton

method (20) with the step size αk = (1 + λk)
−1. It is clear that (22) is transformed into:

λk+1 ≤
2λk

1− 2λk − λ2
k

λk. (80)

Assuming λk ≤ σ̄ :=
√

5− 2, we can easily deduce that 2λk
1−2λk−λ2k

≤ 1 and thus, λk+1 ≤ λk.
By induction, if λ0 ≤ σ̄ then, λk+1 ≤ λk for all k ≥ 0. Moreover, we have λk+1 ≤

2
1−2σ̄−σ̄2λ

2
k, which shows that the sequence {λk}k≥0 converges to zero at a quadratic rate,

which completes the proof of part b).

Now, since αk = 1, the estimate (22) reduces to λk+1 ≤ λ2k
1−4λk+2λ2k

. By the same

argument as in the proof of part b), we can show that the sequence {λk}k≥0 converges to
zero at a quadratic rate.

409

Tran-Dinh, Kyrillidis, and Cevher

Finally, we prove the last statement in Theorem 7. By substituting Hk := ∇2f(xk) into
(66), we obtain

‖sk − x∗‖x∗ ≤
r2
k

1− rk
+ ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . (81)

Let T3 := ‖(∇2f(xk)−∇2f(x∗))dk‖∗x∗ . Similarly to the proof of (75), we can show that:

T3 ≤
[

2‖xk − x∗‖x∗ − ‖xk − x∗‖2x∗
(1− ‖xk − x∗‖x∗)2

]
‖dk‖x∗ ≤ αk

(2− rk)rk
(1− rk)2

(rk+1 + rk). (82)

Here the second inequality follows from the fact that ‖dk‖x∗ = αk‖xk+1−xk‖x∗ ≤ αk[‖xk+1−
x∗‖x∗ + ‖xk −x∗‖x∗] = αk(rk+1 + rk). We also have rk+1 = ‖xk+1−x∗‖x∗ = ‖(1−αk)xk +
αks

k − x∗‖x∗ ≤ (1− αk)rk + αk‖sk − x∗‖x∗ . Using these inequalities, (82) and (81) we get

rk+1 ≤ (1− αk)rk + αk
r2
k

1− rk
+ α2

k

(2− rk)rk
(1− rk)2

(rk+1 + rk). (83)

Rearranging this inequality to obtain

rk+1 ≤
(

1− αk + (2α2
k + 3αk − 2)rk + (1− αk − α2

k)r
2
k

1− 2(1 + α2
k)rk + (1 + α2

k)r
2
k

)
rk. (84)

We consider two cases:

Case 1: αk = 1: We have rk+1 ≤ 3−rk
1−4rk+2r2k

r2
k. Hence, if rk < 1−1/

√
2 then 1−4rk+2r2

k > 0.

Moreover, rk+1 ≤ rk if 3rk − r2
k < 1 − 4rk + 2r2

k, which is satisfied if rk < (7 −
√

37)/6 ≈
0.152873. Now, if we assume that r0 ≤ σ ∈ (0, (7 −

√
37)/6), then, by induction, we have

rk+1 ≤ 3−σ
1−4σ+2σ2 r

2
k. This shows that {rk}k≥0 locally converges to 0+ at a quadratic rate.

Since rk :=
∥∥xk − x∗

∥∥
x∗

, we can conclude that xk → x∗ at a quadratic rate as k →∞.

Case 2: αk = (1 + λk)
−1: Since λk =

∥∥xk+1 − xk
∥∥

xk
≤ ‖x

k+1−x∗‖
x∗+‖xk−x∗‖

x∗

1−‖xk−x∗‖
x∗

=
rk+1+rk

1−rk .

We have 1 − αk ≤ rk+1+rk
(1+λk)(1−rk) ≤

rk+1+rk
1−rk . Substituting this into (83) and using the fact

that αk ≤ 1, we have

rk+1 ≤
(rk+1 + rk)rk

1− rk
+

r2
k

1− rk
+

(2− rk)rk
(1− rk)2

(rk+1 + rk).

Rearranging this inequality, we finally get

rk+1 ≤
4− 3rk

1− 5rk + 3r2
k

r2
k. (85)

Since 1− 5rk + 3r2
k > 0 if rk < (5−

√
13)/6, we can see from (85) that rk < (9−

√
57)/12 ≈

0.120847 then rk+1 ≤ rk. By induction, if we choose r0 ≤ σ̄ ∈ (0, (9−
√

57)/12) then rk+1 ≤
4−3σ̄

1−5σ̄+3σ̄2 r
2
k, which shows that {rk}k≥0 converges to 0+ at a quadratic rate. Consequently,

the sequence
{
xk
}
k≥0

locally converges to x∗ at a quadratic rate. �

410

Composite Self-concordant Minimization

Proof of Theorem 11: We first prove the statement (a). Since xk+1 ≡ skq due to (25),
from (67) we have

rk+1 ≤
r2
k

1− rk
+
∥∥ (Hk −∇2f(x∗)

)
(xk+1 − xk)

∥∥∗
x∗
. (86)

Now, by using the condition (26), we can easily show that the sequence
{
xk
}
k≥0

converges

super-linearly to x∗ provided that
∥∥x0 − x∗

∥∥
x∗
≤ ρ0 < 1.

Next, we prove the statement (b). It is well-known (see, e.g., Nocedal and Wright
(2006)) that if matrix Hk is positive definite and (yk)T (zk) > 0 then the matrix Hk+1

updated by (24) is also positive definite. Indeed, we have (yk)T (zk) =
∫ 1

0 (zk)T∇2f(xk +
tzk)zkdt. Therefore, under the condition

∥∥zk∥∥
xk

< 1, we can show that (yk)T (zk) ≥
(zk)T∇2f(xk)zk =

∥∥zk∥∥2

xk
> 0. By multiplying (24) by zk we can easily see that Hk+1

satisfies the secant equation (23).

Finally, we estimate
∥∥yk −∇2f(x∗)zk

∥∥∗
x∗

as follows:

‖yk −∇2f(x∗)zk‖∗x∗ ≤
rk + rk+1

(1− rk)(1− rk+1)
‖zk‖x∗ . (87)

Now, by assumption that
∑∞

k=0 rk < +∞, we obtain from (87) that
∑∞

k=0 εk < +∞, where

εk :=
rk+rk+1

(1−rk)(1−rk+1) . By applying (Byrd and Nocedal, 1989, Theorem 3.2.), we can show

that the Dennis-Moré condition (26) is satisfied. This implies that the sequence
{
xk
}
k≥0

generated by scheme (25) converges super-linearly to x∗. �
Proof of Theorem 14: For

∥∥xk − x∗
∥∥

x∗
< 1, from (67), we have

‖skg − x∗‖x∗ ≤
‖xk − x∗‖2x∗

1− ‖xk − x∗‖x∗
+
∥∥ (Dk −∇2f(x∗)

)
dk
∥∥∗

x∗
. (88)

Now, using the condition
∥∥(Dk −∇2f(x∗)

)
dk
∥∥∗

x∗
≤ (1/2)‖dkg‖x∗ , (88) implies:

‖skg − x∗‖x∗ ≤
‖xk − x∗‖2x∗

1− ‖xk − x∗‖x∗
+ γ‖dkg‖x∗

≤ ‖xk − x∗‖2x∗
1− ‖xk − x∗‖x∗

+ γ‖skg − x∗‖x∗ + γ‖xk − x∗‖x∗ ,

where γ ∈ (0, 1/2). Rearranging this inequality, we obtain

‖skg − x∗‖x∗ ≤
1

1− γ

(
γ +

‖xk − x∗‖x∗
1− ‖xk − x∗‖x∗

)
‖xk − x∗‖x∗ . (89)

Now, since xk+1 = xk + αkd
k
g = (1− αk)xk + αks

k
g , we can further estimate from (89) as

‖xk+1 − x∗‖x∗ ≤ (1− αk)‖xk − x∗‖x∗ + αk‖skg − x∗‖x∗
(90)

≤
[
1− αk +

αk
1− γ

(
γ +

‖xk − x∗‖x∗
1− ‖xk − x∗‖x∗

)]
‖xk − x∗‖x∗ .

411

Tran-Dinh, Kyrillidis, and Cevher

Let us define ψ̃k := (1 − αk) + αk
1−γ

(
γ +

‖xk−x∗‖
x∗

1−‖xk−x∗‖
x∗

)
. Then, for γ < 1/2, ψ̃k < 1 if∥∥xk − x∗

∥∥
x∗

< 1−2γ
2(1−γ) . Therefore, by induction, if we choose

∥∥x0 − x∗
∥∥

x∗
< 1−2γ

2(1−γ) , then∥∥xk − x∗
∥∥

x∗
< 1−2γ

2(1−γ) for all k ≥ 0. Moreover,
∥∥xk+1 − x∗

∥∥
x∗
≤ ψ̃k

∥∥xk − x∗
∥∥

x∗
for k ≥ 0

and ψ̃k ∈ [0, 1). This implies that
{∥∥xk − x∗

∥∥
x∗

}
k≥0

linearly converges to zero with the

factor ψ̃k.

Finally, we assume that Dk := LkI, the quantity in (72) satisfies

N∗ := ∇2f(x∗)−1/2
(
∇2f(x∗)−Hk

)
∇2f(x∗)−1/2 = I− Lk∇2f(x∗)−1.

Then, we can easily observe that:

‖N∗‖2 =
∥∥I− Lk∇2f(x∗)−1

∥∥
2
≤ max

{∣∣∣1− Lk
σ∗min

∣∣∣, ∣∣∣1− Lk
σ∗max

∣∣∣} := γ∗, (91)

where σ∗min (respectively, σ∗max) is the smallest (respectively, largest) eigenvalue of ∇2f(x∗).
Using the estimate (91), we can derive

∥∥ (Dk −∇2f(x∗)
)
dkg
∥∥∗

x∗

(91)

≤ ‖N∗‖2‖sk − xk‖x∗ ≤ γ∗‖dkg‖x∗ ,

which proves the last conclusion of Theorem 14. �

References

K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi. Maximum-likelihood
estimation of the density matrix. Phys. Rev. A., 61(010304):1–4, 1999.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum
likelihood estimation for multivariate gaussian or binary data. The Journal of Machine
Learning Research, 9:485–516, 2008.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009a.

A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. IEEE Trans Image Process., 18(11):2419–2434,
2009b.

S. Becker and M.J. Fadili. A quasi-Newton proximal splitting method. In Proceedings of
Neutral Information Processing Systems Foundation, 2012.

S. Becker, E. Candès, and M. Grant. Templates for convex cone problems with applications
to sparse signal recovery. Mathematical Programming Computation, 3:165–218, 2011.
ISSN 1867-2949.

A. Ben-Tal and A.K. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. SIAM, 2001.

412

Composite Self-concordant Minimization

D.P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-
ods. Prentice Hall, 1989.

J.F. Bonnans. Local analysis of Newton-type methods for variational inequalities and non-
linear programming. Appl. Math. Optim, 29:161–186, 1994.

S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

L.M. Briceno-Arias and P.L. Combettes. A monotone + skew splitting model for composite
monotone inclusions in duality. SIAM J. Optim., 21(4):1230–1250, 2011.

R. H. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods with application
to unconstrained minimization. SIAM J. Numer. Anal., 26(3):727–739, 1989.

E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger
than n. Annals of Statistics, 35(6):2313–2351, 2007.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145,
2011.

E. Chouzenoux, J.-C. Pesquet, and A. Repetti. Variable metric forward-backward algorithm
for minimizing the sum of a differentiable function and a convex function. J. Optim.
Theory Appl., DOI 10.1007/s10957-013-0465-7:1–22, 2013.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Model. Simul., 4:1168–1200, 2005.

A. S. Dalalyan, M. Hebiri, K. Meziani, and J. Salmon. Learning heteroscedastic models
by convex programming under group sparsity. Proc. of the International conference on
Machine Learning, pages 1–8, 2013.

A. P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

J.E. Dennis and J. J. Moré. A characterisation of superlinear convergence and its application
to quasi–Newton methods. Mathemathics of Computation, 28:549–560, 1974.

J. Eckstein and D. Bertsekas. On the Douglas - Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Math. Program., 55:293–318, 1992.

F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, volume 1-2. Springer-Verlag, 2003.

D. Goldfarb and S. Ma. Fast alternating linearization methods of minimization of the sum
of two convex functions. Math. Program., Ser. A, pages 1–34, 2012.

413

Tran-Dinh, Kyrillidis, and Cevher

T. Goldstein and S. Osher. The split Bregman method for `1-pegularized problems. SIAM
J. Imaging Sciences, 2(2):323–343, 2009.

T. Goldstein, B. ODonoghue, and S. Setzer. Fast alternating direction optimization meth-
ods. Tech. report., Department of Mathematics, University of California, Los Angeles,
USA, May 2012.

M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In L. Liberti and N. Mac-
ulan, editors, Global Optimization: From Theory to Implementation, Nonconvex Opti-
mization and its Applications, pages 155–210. Springer, 2006.

Z.T. Harmany, R.F. Marcia, and R. M. Willett. This is SPIRAL-TAP: Sparse poisson
intensity reconstruction algorithms - theory and practice,. IEEE Transactions on Image
Processing, 21(3):1084–1096, 2012.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex Analysis.
Springer, 2001.

C. J. Hsieh, M.A. Sustik, I.S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix
estimation using quadratic approximation. Advances in Neutral Information Processing
Systems (NIPS), 24:1–18, 2011.

J. Kim and H. Park. Fast active-set-type algorithms for `1-regularized linear regression. In
Proceedings of the 13th International Conference on Artificial Intelligience and Statistics
(AISTATS), volume 9, pages 397–404, Sardinia, Italy, 2010.

A. Kyrillidis and V. Cevher. Fast proximal algorithms for self-concordant function min-
imization with application to sparse graph selection. Proc. of the 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 1–5, 2013.

A. Kyrillidis, R. Karimi Mahabadi, Q. Tran-Dinh, and V. Cevher. Scalable sparse covari-
ance estimation via self-concordance. In Proc. of the 28th International Conference on
Artificial Intelligence (AAAI-14), pages 1–9. 2014.

J.D. Lee, Y. Sun, and M.A. Saunders. Proximal Newton-type methods for convex optimiza-
tion. Advances in Neural Information Processing Systems (NIPS), 25:827–835, 2012.

J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings
of the CACSD Conference, Taipei, Taiwan, 2004.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection. SIAM
Journal on Matrix Analysis and Applications, 31(4):2000–2016, 2010.

H. Mine and M. Fukushima. A minimization method for the sum of a convex function and
a continuously differentiable function. J. Optim. Theory Appl., 33:9–23, 1981.

A.S. Nemirovskii and M.J. Todd. Interior-point methods for optimization. Acta Numerica,
pages 191–234, 2008.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87
of Applied Optimization. Kluwer Academic Publishers, 2004.

414

Composite Self-concordant Minimization

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–
152, 2005a.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. Opti-
mization, 16(1):235–249, 2005b.

Y. Nesterov. Gradient methods for minimizing composite objective function. Math. Pro-
gram., 140(1):125–161, 2007.

Y. Nesterov. Barrier subgradient method. Math. Program., Ser. B, 127:31–56, 2011.

Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms in Convex Program-
ming. Society for Industrial Mathematics, 1994.

Y. Nesterov and M.J. Todd. Self-scaled barriers and interior-point methods for convex
programming. Math. Oper. Research, 22(1):1–42, 1997.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer, 2 edition, 2006.

P.A. Olsen, F. Oztoprak, J. Nocedal, and S.J. Rennie. Newton-like methods for sparse in-
verse covariance estimation. Advances in Neural Information Processing Systems (NIPS),
pages 1–9, 2012.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance
estimation by minimizing `1-penalized log-determinant divergence. Electron. J. Statist.,
5:935–988, 2011.

S. M. Robinson. Strongly Regular Generalized Equations. Mathematics of Operations
Research, Vol. 5, No. 1 (Feb., 1980), pp. 43-62, 5:43–62, 1980.

R. T. Rockafellar. Convex Analysis, volume 28 of Princeton Mathematics Series. Princeton
University Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Opt., 14:877–898, 1976.

B. Rolfs, B. Rajaratnam, D. Guillot, I. Wong, and A. Maleki. Iterative thresholding al-
gorithm for sparse inverse covariance estimation. In Advances in Neural Information
Processing Systems 25, pages 1583–1591, 2012.

K. Scheinberg and I. Rish. SINCO-a greedy coordinate ascent method for sparse inverse
covariance selection problem. Tech. Report, IBM RC24837:1–21, 2009.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating
linearization methods. Neural Information Processing Systems (NIPS), pages 1–9, 2010.

M. Schmidt, N.L. Roux, and F. Bach. Convergence rates of inexact proximal-gradient
methods for convex optimization. Neural Information Processing Systems (NIPS), 2011.

415

Tran-Dinh, Kyrillidis, and Cevher

N. Städler, P. Bülmann, and S. Van de Geer. `1-Penalization for Mixture Regression Models.
Tech. Report., pages 1–35, 2012.

Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. A proximal newton framework for composite
minimization: Graph learning without Cholesky decompositions and matrix inversions.
International Conference on Machine Learning (ICML), 28(2):271–279, 2013a.

Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl. An inexact perturbed path-following
method for Lagrangian decomposition in large-scale separable convex optimization. SIAM
J. Optim., 23(1):95–125, 2013b.

Q. Tran-Dinh, C. Savorgnan, and M. Diehl. Combining Lagrangian decomposition and
excessive gap smoothing technique for solving large-scale separable convex optimization
problems. Compt. Optim. Appl., 55(1):75–111, 2013c.

Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. An inexact proximal path-following algorithm
for constrained convex minimization. SIAM J. Optimization (accepted), 2014a.

Q. Tran-Dinh, Y. H. Li, and V. Cevher. Barrier smoothing for nonsmooth convex mini-
mization. In Proc. of the 2014 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 1–4, 2014b.

E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM J. Sci. Comput., 31(2):890–912, 2008.

S. J. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable approxi-
mation. IEEE Trans. Signal Processing, 57:2479–2493, 2009.

X. Yuan. Alternating direction method for covariance selection models. Journal of Scientific
Computing, 51(2):261–273, 2012.

W.I. Zangwill. Nonlinear Programming. Prentice Hall, 1969.

416

	Introduction
	Why is the Assumption f F2 Interesting for Composite Minimization?
	Related Work
	Our Contributions
	Preliminaries
	Composite Self-Concordant Optimization
	A Proximal-Newton Method
	A Proximal Quasi-Newton Scheme
	A Proximal-Gradient Method

	Concrete Instances of our Optimization Framework
	Graphical Model Selection
	Dual Proximal-Newton Algorithm
	Proximal-Gradient Algorithm

	Poisson Intensity Reconstruction
	Heteroscedastic LASSO

	Numerical Experiments
	Proximal-Newton Method in Action
	Comparison of Different Step-Size Selection Procedures
	Impact of Different Solvers for the Subproblems

	Proximal-Gradient Algorithm in Action
	Linear Convergence
	TV1-regularizer
	A Comparison to Standard Gradient Methods Based on FL Assumption

	Conclusions
	Technical proofs
	Proof of Lemma 4
	Proofs of Global Convergence: Theorem 6, Lemma 12 and Theorem 13
	Proofs of Local Convergence: Theorem 7, Theorem 11 and Theorem 14

