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Abstract

In this article,1 we present a top-down theoretical study of general reinforcement learning
agents. We begin with rational agents with unlimited resources and then move to a setting
where an agent can only maintain a limited number of hypotheses and optimizes plans
over a horizon much shorter than what the agent designer actually wants. We axiomatize
what is rational in such a setting in a manner that enables optimism, which is important to
achieve systematic explorative behavior. Then, within the class of agents deemed rational,
we achieve convergence and finite-error bounds. Such results are desirable since they imply
that the agent learns well from its experiences, but the bounds do not directly guarantee
good performance and can be achieved by agents doing things one should obviously not.
Good performance cannot in fact be guaranteed for any agent in fully general settings. Our
approach is to design agents that learn well from experience and act rationally. We intro-
duce a framework for general reinforcement learning agents based on rationality axioms for
a decision function and an hypothesis-generating function designed so as to achieve guaran-
tees on the number errors. We will consistently use an optimistic decision function but the
hypothesis-generating function needs to change depending on what is known/assumed. We
investigate a number of natural situations having either a frequentist or Bayesian flavor,
deterministic or stochastic environments and either finite or countable hypothesis class.
Further, to achieve sufficiently good bounds as to hold promise for practical success we
introduce a notion of a class of environments being generated by a set of laws. None of the
above has previously been done for fully general reinforcement learning environments.

Keywords: reinforcement learning, rationality, optimism, optimality, error bounds

1. Introduction

A general reinforcement learning environment returns observations and rewards in cycles to
an agent that feeds actions to the environment. An agent designer’s aim is to construct an
agent that accumulates as much reward as possible. Ideally, the agent should maximize a
given quality measure like e.g., expected accumulated reward or the maximum accumulated
reward that is guaranteed with a certain given probability. The probabilities and expecta-
tion should be the actual, i.e., with respect to the true environment. Performing this task
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well in an unknown environment is an extremely challenging problem (Hutter, 2005). Hutter
(2005) advocated a Bayesian approach to this problem while we here introduce optimistic
agents as an alternative.

The Bayesian approach to the above task is to design an agent that approximately max-
imizes the quality measure with respect to an a priori environment chosen by the designer.
There are two immediate problems with this approach. The first problem is that the arbi-
trary choice of a priori environment, e.g., through a prior defining a mixture of a hypothesis
class, substantially influences the outcome. The defined policy is optimal by definition in
the sense of achieving the highest quality with respect to the a priori environment, but its
quality with respect to other environments like the true one or a different mixture, might
be much lower. The second problem is that computing the maximizing actions is typically
too hard, even approximately. We will below explain how a recent line of work attempts
to address these problems and see that the first problem is partially resolved by using
information-theoretic principles to make a “universal” choice of prior, while the second is
not resolved. Then we will discuss another way in which Bayesian methods are motivated
which is through rational choice theory (Savage, 1954).

The optimistic agents that we introduce in this article have the advantage that they
satisfy guarantees that hold regardless of which environment from a given class is the true
one. We introduce the concept of a class being generated by a set of laws and improve our
bounds from being linear in the number of environments to linear in the number of laws.
Since the number of environments can be exponentially larger than the number of laws this
is of vital importance and practically useful environment classes should be such that its
size is exponential in the number of laws. We will discuss such guarantees below as well as
the mild modification of the classical rationality framework required to deem an optimistic
agent rational. We also explain why such a modification makes sense when the choice to be
made by an agent is one in a long sequence of such choices in an unknown environment.

Information-theoretic priors and limited horizons. Hutter (2005) and Veness et al. (2011)
choose the prior, which can never be fully objective (Leike and Hutter, 2015), through
an information-theoretic approach based on the code length of an environment by letting
environments with shorter implementations be more likely. Hutter (2005) does this for
the universal though impractical class of all lower semi-computable environments while
Veness et al. (2011) use a limited but useful class based on context trees. For the latter,
the context tree weighting (CTW) algorithm (Willems et al., 1995) allows for efficient
calculation of the posterior. However, to optimize even approximately the quality measure
used to evaluate the algorithm for the actual time-horizon (e.g., a million time steps), is
impossible in complex domains. The MC-AIXI-CTW agent in Veness et al. (2011), which
we employ to illustrate the point, uses a Monte-Carlo tree search method to optimize a
geometrically discounted objective. Given a discount factor close to 1 (e.g., 0.99999) the
effective horizon becomes large (100000). However, the tree search is only played out until
the end of episode in the tasks considered in Veness et al. (2011). Playing it out for 100000
time steps for each simulation at each time step would be completely infeasible. When an
agent maximizes the return from a much shorter horizon than the actual, e.g., one game
instead of a 1000 games of PacMan, the exploration versus exploitation dilemma shows up.
If the environment is fully known, then maximizing the return for one episode is perfect.
In an unknown environment such a strategy can be a fatal mistake. If the expected return
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is maximized for a shorter working horizon, i.e., the agent always exploits, then it is likely
to keep a severely sub-optimal policy due to insufficient exploration. Veness et al. (2011)
addressed this heuristically through random exploration moves.

Our agent framework. In Section 3, we introduce a framework that combines notions of
what is considered desirable in decision theory with optimality concepts from reinforcement
learning. In this framework, an agent is defined by the choice of a decision function and
a hypothesis-generating function. The hypothesis-generating function feeds the decision
function a finite class of environments at every time step and the decision function chooses
an action/policy given such a class. The decision-theoretic analysis of rationality is used
to restrict the choice of the decision function, while we consider guarantees for asymptotic
properties and error bounds when designing the hypothesis-generating function.

All the agents we study can be expressed with an optimistic decision function but we
study many different hypothesis-generating functions which are suitable under different
assumptions. For example, with a domination assumption there is no need to remove en-
vironments, it would only worsen the guarantees. Hence a constant hypothesis-generating
function is used. If we know that the environment is in a certain finite class of deter-
ministic environments, then a hypothesis-generating function that removes contradicted
environments but does not add any is appropriate. Similarly, when we have a finite class
of stochastic but non-dominant environments that we assume the truth belongs to, the
hypothesis-generating function should not add to the class but needs to exclude those en-
vironments that have become implausible.

If we only know that the true environment is in a countable class and we choose an
optimistic decision function, the agent needs to have a growing finite class. In the countable
case, a Bayesian agent can still work with the whole countable class at once (Lattimore,
2014), though to satisfy the desired guarantees that agent (BayesExp) was adjusted in a
manner we here deem irrational. Another alternative adjustment of a Bayesian agent that
is closer to fitting our framework is the Best of Sampled Set (BOSS) algorithm (Asmuth
et al., 2009). This agent samples a finite set of environments (i.e., hypothesis-generation)
from the posterior and then constructs an optimistic environment by combining transition
dynamics from all those environments in the most optimistic manner and then optimize for
this new environment (optimistic decision). This is an example of an agent that uses what
we refer to as environments constructed by combining laws, though BOSS belongs in the
narrow Markov Decision Process setting, while we here aim for full generality.

Rationality. In the foundations of decision theory, the focus is on axioms for rational
preferences (Neumann and Morgenstern, 1944; Savage, 1954) and on making a single decision
that does not affect the event in question but only its utility. The single decision setting
can actually be understood as incorporating sequential decision-making since the one choice
can be for a policy to follow for a period of time. This latter perspective is called normal
form in game theory. We extend rational choice theory to the full reinforcement learning
problem. It follows from the strictest version of the axioms we present that the agent must
be a Bayesian agent. These axioms are appropriate when an agent is capable of optimizing
the plan for its entire life. Then we loosen the axioms in a way that is analogous to the
multiple-prior setting by Gilboa and Schmeidler (1989), except that ours enable optimism
instead of pessimism and are based on a given utility function. These more permissive
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axioms are suitable for a setting where the agent must actually make the decisions in a
sequence due to not being able to optimize over the full horizon. We prove that optimism
allows for asymptotic optimality guarantees and finite error bounds not enjoyed by a realist
(expected utility maximizer).

Guarantees. In the field of reinforcement learning, there has been much work dedicated
to designing agents for which one can prove asymptotic optimality or sample complexity
bounds. The latter are high probability bounds on the number of time steps where the
agent does not make a near optimal decision (Strehl et al., 2009). However, a weakness
with sample complexity bounds is that they do not directly guarantee good performance
for the agent. For example, an agent who has the opportunity to self-destruct can achieve
subsequent optimality by choosing this option. Hence, aiming only for the best sample
complexity can be a very bad idea in general reinforcement learning. If the environment is
an ergodic MDPs or value-stable environment (Ryabko and Hutter, 2008) where the agent
can always recover, these bounds are more directly meaningful. However, optimizing them
blindly is still not necessarily good. Methods that during explicit exploration phases, aim at
minimizing uncertainty by exploring the relatively unknown, can make very bad decisions.
If one has an option offering return in the interval [0, 0.3] and another option has return
in the interval [0.7, 0.8] one should have no interest in the first option since its best case
scenario is worse than the worst case scenario of the other option. Nevertheless, some devised
algorithms have phases of pure exploration where the most uncertain option is chosen. On
the other hand, we will argue that one can rationally choose an option with return known to
be in [0.2, 0.85] over either. Assuming uniform belief over those intervals, the latter option
is, however, not strictly rational under the classical axioms that are equivalent to choosing
according to maximum subjective expected utility. We will sometimes use the term weakly
rational for the less strict version of rationality considered below.

Here we consider agents that are rational in a certain decision-theoretic sense and within
this class we design agents that make few errors. Examples of irrational agents, as discussed
above, are agents that rely on explicit phases of pure exploration that aim directly at
excluding environments while a category of prominent agents instead rely on optimism
(Szita and Lörincz, 2008; Strehl et al., 2009; Lattimore and Hutter, 2012). Optimistic
agents investigate whether a policy is as good as the hypothesis class says it might be but
not whether something is bad or very bad. We extend these kinds of agents from MDP to
general reinforcement learning and we deem them rational according to axioms presented
here in Section 2.

The bounds presented here, like discussed above, are of a sort that the agent is guaran-
teed to eventually act nearly as well as possible given the history that has been generated.
Since the risk of having all prospects destroyed cannot be avoided in the fully general set-
ting, we have above argued that the bounds should be complemented with a demand for
acting rationally. This does of course not prevent disaster, since nothing can. Hutter (2005)
brings up a heaven and hell example where either action a1 takes the agent to hell (min
reward forever) and a2 to heaven (max reward forever) or the other way around with a2

to hell and a1 to heaven. If one assumes that the true environment is safe (Ryabko and
Hutter, 2008) as in always having the same optimal value from all histories that can occur,
this kind of bounds are directly meaningful. Otherwise, one can consider an agent that is
first pessimistic and rules out all actions that would lead to disaster for some environment
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in its class and then takes an optimistic decision among the remaining actions. The bounds
then apply to the environment class that remains after the pessimist has ruled out some
actions. The resulting environments might not have as good prospects anymore due to the
best action being ruled out, and in the heaven and hell example both actions would be ruled
out and one would have to consider both. However, we repeat: there are no agents that
can guarantee good outcomes in general reinforcement learning (Hutter, 2005).

The bounds given in Section 5 have a linear dependence on the number of environments
in the class. While this rate is easily seen to be the best one can do in general (Lattimore
et al., 2013a), it is exponentially worse than what we are used to from Markov Decision
Processes (MDPs) (Lattimore and Hutter, 2012) where the linear (up to logarithms) depen-
dence is on the size of the state space instead. In Section 5.2 we introduce the concept of
laws and environments generated by sets of laws and we achieve bounds that are linear in
the number of laws instead of the number of environments. All environment classes are triv-
ially generated by sets of laws that equal the environments but some can also be represented
as generated by exponentially fewer laws than there are environments. Such environment
classes have key elements in common with an approach that has been heuristically devel-
oped for a long time, namely collaborative multi-agent systems called Learning Classifier
Systems (LCS) (Holland, 1986; Hutter, 1991; Drugowitsch, 2007) or artificial economies
(Baum and Durdanovic, 2001; Kwee et al., 2001). Such systems combine sub-agents that
make recommendations and predictions in limited contexts (localization), sometimes com-
bined with other sub-agents’ predictions for the same single decision (factorization). The
LCS family of approaches are primarily model-free by predicting the return and not future
observations while what we introduce here is model-based and has a dual interpretation as
an optimistic agent, which allows for theoretical guarantees.

Related work. Besides the work mentioned above, which all use discounted reward sums,
Maillard et al. (2011); Nguyen et al. (2013); Maillard et al. (2013) extend the UCRL algo-
rithm and regret bounds (Auer and Ortner, 2006) from undiscounted MDPs to problems
where the environments are defined by combining maps from histories to states with MDP
parameters as in Hutter (2009b); Sunehag and Hutter (2010). Though Maillard et al. (2011,
2013) study finite classes, Nguyen et al. (2013) extend their results by incrementally adding
maps. Their algorithms use undiscounted reward sums and are, therefore, in theory not
focused on a shorter horizon but on average reward over an infinite horizon. However, to
optimize performance over long horizons is practically impossible in general. The online
MDP with bandit feedback work (Neu et al., 2010; Abbasi-Yadkori et al., 2013) aims at
general environments but limited to finitely many policies called experts to choose between.
We instead limit the environment class in size, but consider any policies.

Outline. We start below with notation and background for general reinforcement learning
and then in Section 2 we introduce the axioms for rational and rational optimistic agents.
In Section 3 we introduce an agent framework that fits all the agents studied in this article
and we make the philosophy fully explicit. It consists of two main parts, rational deci-
sion functions (Section 3.1) and hypothesis-generating functions (Section 3.2) that given
a history delivers a class of environments to the decision function. In Section 4 we show
the importance of optimism for asymptotic optimality for a generic Bayesian reinforcement
learning agent called AIXI and we extend this agent to an optimistic multiple-prior agent
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with stronger asymptotic guarantees. The required assumption is the a priori environments’
dominance over the true environment and that at least one a priori environment is optimistic
for the true environment.

In Section 5 and Section 6 we continue to study optimistic agents that pick an opti-
mistic hypothesis instead of an optimistic a priori distribution. This is actually the very
same mathematical formula for how to optimistically make a decision given a hypothesis
class. However, in this case we do not assume that the environments in the class dominate
the truth and the agent, therefore, needs to exclude environments which are not aligned
with observations received. Instead of assuming dominance as in the previous section, we
here assume that the truth is a member of the class. It is interesting to notice that the
only difference between the two sections, despite their very different interpretations, is the
assumptions used for the mathematical analysis. In Section 5.2 we also show that under-
standing environment classes as being generated by finite sets of partial environments that
we call laws, allows for error bounds that are linear in the number of laws instead of in the
number of environments. This can be an exponential improvement.

In earlier sections the hypothesis-generating functions either deliver the exact same class
(except for conditioning the environments on the past) at all times or just remove implausi-
ble environments from an initial class while in Section 7 we consider hypothesis-generating
functions that also add new environments and exhaust a countable class in the limit. We
prove error bounds that depend on how fast new environments are introduced. Section 8
contains the conclusions. The appendix contains extensions of various results.

We summarize our contributions and where they can be found in the following list:

• Axiomatic treatment of rationality and optimism: Section 2.

• Agent framework: Section 3

• Asymptotic results for AIXI (rational) and optimistic agents using finite classes of
dominant stochastic environments: Section 4

• Asymptotic and finite error bounds for optimistic agents with finite classes of deter-
ministic (non-dominant) environments containing the truth, as well as improved error
rates for environment classes based on laws: Section 5

• Asymptotic results for optimistic agents with finite classes of stochastic non-dominant
environments containing the truth: Section 6

• Extensions to countable classes: Section 7.

• Extending deterministic results from smaller class of conservative optimistic agents to
larger class of liberal optimistic agents: Appendix A

• Extending axioms for rationality to countable case: Appendix B

• A list of important notation can be found in Appendix C
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General reinforcement learning: notation and background. We will consider an agent (Rus-
sell and Norvig, 2010; Hutter, 2005) that interacts with an environment through performing
actions at from a finite set A and receives observations ot from a finite set O and rewards
rt from a finite set R ⊂ [0, 1] resulting in a history ht := a0o1r1a1, ..., otrt. These sets
can be allowed to depend on time or context but we do not write this out explicitly. Let
H := ε ∪ (A × ∪n(O × R × A)n × (O × R)) be the set of histories where ε is the empty
history and A× (O ×R×A)0 × (O ×R) := A×O ×R . A function ν : H×A → O ×R
is called a deterministic environment. A function π : H → A is called a (deterministic)
policy or an agent. We define the value function V based on geometric discounting by
V π
ν (ht−1) =

∑∞
i=t γ

i−tri where the sequence ri are the rewards achieved by following π from
time step t onwards in the environment ν after having seen ht−1.

Instead of viewing the environment as a function H×A → O ×R we can equivalently
write it as a function H×A×O ×R → {0, 1} where we write ν(o, r|h, a) for the function
value. It equals zero if in the first formulation (h, a) is not sent to (o, r) and 1 if it is. In the
case of stochastic environments we instead have a function ν : H×A×O×R → [0, 1] such
that

∑
o,r ν(o, r|h, a) = 1 ∀h, a. The deterministic environments are then just a degenerate

special case. Furthermore, we define ν(ht|π) := Πt
i=1ν(oiri|ai, hi−1) where ai = π(hi−1).

ν(·|π) is a probability measure over strings, actually one measure for each string length with
the corresponding power set as the σ-algebra. We define ν(·|π, ht−1) by conditioning ν(·|π)
on ht−1 and we let V π

ν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri and V ∗ν (ht−1) := maxπ V
π
ν (ht−1).

Examples of agents: AIXI and Optimist. Suppose we are given a countable class of envi-
ronments M and strictly positive prior weights wν for all ν ∈ M. We define the a priori
environment ξ by letting ξ(·) =

∑
wνν(·) and the AIXI agent is defined by following the

policy

π∗ := arg max
π

V π
ξ (ε) (1)

which is its general form. Sometimes AIXI refers to the case of a certain universal class and
a Solomonoff style prior (Hutter, 2005). The above agent, and only agents of that form,
satisfies the strict rationality axioms presented first in Section 2 while the slightly looser
version we present afterwards enables optimism. The optimist chooses its next action after
history h based on

π◦ := arg max
π

max
ξ∈Ξ

V π
ξ (h) (2)

for a set of environments (beliefs) Ξ which we in the rest of the article will assume to be
finite, though results can be extended further.

2. Rationality in Sequential Decision-Making

In this section, we first derive the above introduced AIXI agent from rationality axioms in-
spired by the traditional literature (Neumann and Morgenstern, 1944; Ramsey, 1931; Savage,
1954; deFinetti, 1937) on decision-making under uncertainty. Then we suggest weakening
a symmetry condition between accepting and rejecting bets. The weaker condition only
says that if an agent considers one side of a bet to be rejectable, it must be prepared to
accept the other side but it can accept either. Since the conditions are meant for sequential
decision and one does not accept several bets at a time, considering both sides of a bet to
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be acceptable is not necessarily vulnerable to combinations of bets that would otherwise
cause our agent a sure loss. Further, if an outcome is only revealed when a bet is accepted,
one can only learn about the world by accepting bets. What is learned early on can lead
to higher earnings later. The principle of optimism results in a more explorative agent and
leads to multiple-prior models or the imprecise probability by Walley (2000). Axiomatics
of multiple-prior models has been studied by Gilboa and Schmeidler (1989); Casadesus-
Masanell et al. (2000). These models can be understood as quantifying the uncertainty in
estimated probabilities by assigning a whole set of probabilities. In the passive prediction
case, one typically combines the multiple-prior model with caution to achieve more risk
averse decisions (Casadesus-Masanell et al., 2000). In the active case, agents need to take
risk to generate experience that they can learn successful behavior from and, therefore,
optimism is useful.

Bets. The basic setting we use is inspired by the betting approach of Ramsey (1931);
deFinetti (1937). In this setting, the agent is about to observe a symbol from a finite
alphabet and is offered a bet x = (x1, ..., xn) where xi ∈ R is the reward received for the
outcome i.

Definition 1 (Bet) Suppose that we have an unknown symbol from an alphabet with m
elements, say {1, ...,m}. A bet (or contract) is a vector x = (x1, ..., xm) in Rm where xj is
the reward received if the symbol is j.

In our definition of decision maker we allow for choosing neither accept nor reject, while
when we move on to axiomatize rational decision makers we will no longer allow for neither.
In the case of a strictly rational decision maker it will only be the zero bet that can, and
actually must, be both acceptable and rejectable. For the rational optimist the zero bet is
always accepted and all bets are exactly one of acceptable or rejectable.

Definition 2 (Decision maker, Decision) A decision maker (for bets regarding an un-
known symbol) is a pair of sets (Z, Z̃) ⊂ Rm × Rm which defines exactly the bets that
are acceptable (Z) and those that are rejectable (Z̃). In other words, a decision maker is
a function from Rm to {accepted,rejected,either,neither}. The function value is called the
decision.

Next we present the stricter version of the axioms and a representation theorem.

Definition 3 (Strict rationality) We say that (Z, Z̃) is strictly rational if it has the fol-
lowing properties:

1. Completeness: Z ∪ Z̃ = Rm

2. Symmetry: x ∈ Z ⇐⇒ −x ∈ Z̃

3. Convexity of accepting: x, y ∈ Z, λ, γ > 0⇒ λx+ γy ∈ Z

4. Accepting sure profits: ∀k xk > 0 ⇒ x ∈ Z \ Z̃
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Axiom 1 in Definition 3 is really describing the setting rather than an assumption. It
says that the agent must always choose at least one of accept or reject. Axiom 2 is a
symmetry condition between accepting and rejecting that we will replace in the optimistic
setting. In the optimistic setting we still demand that if the agent rejects x, then it must
accept −x but not the other way around. Axiom 3 is motivated as follows: If x ∈ Z and
λ ≥ 0, then λx ∈ Z since it is simply a multiple of the same bet. Also, the sum of two
acceptable bets should be acceptable. Axiom 4 says that if the agent is guaranteed to win
money it must accept the bet and cannot reject it.

The following representation theorem says that a strictly rational decision maker can
be represented as choosing bets to accept based on if they have positive expected utility
for some probability vector. The same probabilities are consistently used for all decisions.
Hence, the decision maker can be understood as a Bayesian agent with an a priori environ-
ment distribution. In Sunehag and Hutter (2011) we derived Bayes rule by showing how
the concepts of marginal and conditional probabilities also come out of the same rational
decision-making framework.

Theorem 4 (Existence of probabilities, Sunehag&Hutter 2011) Given a rational de-
cision maker, there are numbers pi ≥ 0 that satisfy

{x |
∑

xipi > 0} ⊆ Z ⊆ {x |
∑

xipi ≥ 0}. (3)

Assuming
∑

i pi = 1 makes the numbers unique probabilities and we will use the notation
Pr(i) = pi.

Proof The third property tells us that Z and −Z (= Z̃ according to the second property)
are convex cones. The second and fourth property tells us that Z 6= Rm. Suppose that
there is a point x that lies in both the interior of Z and of −Z. Then, the same is true
for −x according to the second property and for the origin according to the third property.
That a ball around the origin lies in Z means that Z = Rm which is not true. Thus the
interiors of Z and −Z are disjoint open convex sets and can, therefore, according to the
Hahn-Banach Theorem be separated by a hyperplane which goes through the origin since
according to the first and second property the origin is both acceptable and rejectable. The
first two properties tell us that Z ∪−Z = Rm. Given a separating hyperplane between the
interiors of Z and −Z, Z must contain everything on one side. This means that Z is a half
space whose boundary is a hyperplane that goes through the origin and the closure Z̄ of Z
is a closed half space and can be written as

Z̄ = {x |
∑

xipi ≥ 0}

for some vector p = (pi) such that not every pi is 0. The fourth property tells us that
pi ≥ 0 ∀i.

In Appendix B we extend the above results to the countable case with Banach sequence
spaces as the spaces of bets. Sunehag and Hutter (2011) showed how one can derive basic
probability-theoretic concepts like marginalization and conditionalization from rationality.

Rational optimism. We now present four axioms for rational optimism. They state proper-
ties that the set of accepted and the set of rejected bets must satisfy.
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Definition 5 (Rational optimism, Weak rationality) We say that the decision maker
(Z, Z̃) ⊂ Rm × Rm is a rational optimist or weakly rational if it satisfies the following:

1. Disjoint Completeness: x /∈ Z̃ ⇐⇒ x ∈ Z

2. Optimism: x ∈ Z̃ ⇒ −x /∈ Z̃

3. Convexity of rejecting: x, y ∈ Z̃ and λ, γ > 0⇒ λx+ γy ∈ Z̃

4. Rejecting sure losses: ∀k xk < 0 ⇒ x ∈ Z̃ \ Z

The first axiom is again a completeness axiom where we here demand that each contract
is either accepted or rejected but not both. We introduce this stronger disjoint completeness
assumption since the other axioms now concern the set of rejected bets, while we want to
conclude something about what is accepted. The following three axioms concern rational
rejection. The second says that if x is rejected then −x must not be rejected. Hence, if the
agent rejects one side of a bet it must, due to the first property, accept its negation. This
was also argued for in the first set of axioms in the previous setting but in the optimistic
set we do not have the opposite direction. In other words, if x is accepted then −x can also
be accepted. The agent is strictly rational about how it rejects bets. Rational rejection also
means that if the agent rejects two bets x and y, it also rejects λx+ γy if λ ≥ 0 and γ ≥ 0.
The final axiom says that if the reward is guaranteed to be strictly negative the bet must
be rejected.

The representation theorem for rational optimism differs from that of strict rationality
by not having a single unique environment distribution. Instead the agent has a set of such
and if the bet has positive expected utility for any of them, the bet is accepted.

Theorem 6 (Existence of a set of probabilities) Given a rational optimist, there is a
set P ⊂ Rm that satisfies

{x | ∃p ∈ P :
∑

xipi > 0} ⊆ Z ⊆ {x | ∃p ∈ P :
∑

xipi ≥ 0}. (4)

One can always replace P with an extreme set the size of the alphabet. Also, one can demand
that all the vectors in P be probability vectors, i.e.,

∑
pi = 1 and ∀i pi ≥ 0.

Proof Properties 2 and 3 tell us that the closure ¯̃Z of Z̃ is a (one sided) convex cone.

Let P = {p ∈ Rm |
∑
pixi ≤ 0 ∀(xi) ∈ ¯̃Z}. Then, it follows from convexity that

¯̃Z = {(xi) |
∑
xipi ≤ 0 ∀p ∈ P}. Property 4 tells us that it contains all the elements

of only strictly negative coefficients and this implies that for all p ∈ P, pi ≥ 0 for all i.
It follows from property 1 and the above that {x |

∑
xipi > 0} ⊆ Z for all p ∈ P. Nor-

malizing all p ∈ P such that
∑
pi = 1 does not change anything. Property 1 tells us that

Z ⊆ {x | ∃p ∈ P :
∑
xipi ≥ 0}.

Remark 7 (Pessimism) If one wants an axiomatic system for rational pessimism, one
can reverse the roles of Z and Z̃ in the definition of rational optimism and the theorem
applies with a similar reversal: The conclusion could be rewritten by replacing ∃ with ∀ in
the conclusion of Theorem 6.
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Making choices. To go from agents making decisions on accepting or rejecting bets to agents
choosing between different bets xj , j = 1, 2, 3, ..., we define preferences by saying that x is
better than or equal to y if x− y ∈ Z̄ (the closure of Z), while it is worse or equal if x− y is
rejectable. For the first form of rationality stated in Definition 3, the consequence is that the
agent chooses the option with the highest expected utility. If we instead consider optimistic
rationality, and if there is p ∈ P such that

∑
xipi ≥

∑
yiqi ∀q ∈ P then

∑
pi(xi − yi) ≥ 0

and, therefore, x− y ∈ Z̄. Therefore, if the agent chooses the bet xj = (xji )i by

arg max
j

max
p∈P

∑
xjipi

it is guaranteed that this bet is preferable to all other bets. We call this the optimistic
decision or the rational optimistic decision. If the environment is reactive, i.e., if the proba-
bilities for the outcome depends on the action, then pi is above replaced by pji . We discussed
this in more detail in Sunehag and Hutter (2011).

Rational sequential decisions. For the general reinforcement learning setting we consider the
choice of policy to use for the next T time steps. After one chooses a policy to use for those
T steps the result is a history hT and the value/return

∑T
t=1 rtγ

t. There are finitely many
possible hT , each of them containing a specific return. If we enumerate all the possible hT
using i and the possible policies by j then for each policy and history there is a probability
pji for that history to be the result when policy j is used. Further we will denote the return
achieved in history i by xi. The bet xi does depend on j since the rewards are part of the
history.

By considering the choice to be for a policy π (previously j), an extension to finitely
many sequential decisions is directly achieved. The discounted value

∑
rtγ

t achieved then
plays the role of the bet xi and the decision on what policy to follow is taken according to

π∗ ∈ arg max
π

V π
ξ

where ξ is the probabilistic a priori belief (the pji ) and V π
ξ =

∑
pji (
∑
ritγ

t) where rit is
the reward achieved at time t in outcome sequence i in an enumeration of all the possible
histories. The rational optimist chooses the next action based on a policy

π◦ ∈ arg max
π

max
ξ∈Ξ

V π
ξ

for a finite set of environments Ξ (P before) and recalculates this at every time step.

3. Our Agent Framework

In this section, we introduce an agent framework that all agents we study in this paper can
be fitted into by a choice of what we call a decision function and a hypothesis-generating
function.

3.1 Decision Functions

The primary component of our agent framework is a decision function f : M → A where
M is the class of all finite sets M of environments. The function value only depends on
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the class of environments M that is the argument. The decision function is independent
of the history, however, the class M fed to the decision function introduces an indirect
dependence. For example, the environments at time t+ 1 can be the environments at time
t, conditioned on the new observation. Therefore, we will in this section often write the
value function without an argument: V π̃

νt = V π
ν0(ht) if νt = ν0(·|ht) where the policy π̃ on

the left hand side is the same as the policy π on the right, just after ht have been seen. It
starts at a later stage, meaning π̃(h) = π(hth), where hth is a concatenation.

Definition 8 (Rational decision function) Given alphabets A, O and R we say that a
decision function f : M→ A is a function f(M) = a that for any class of environments M
based on those alphabets produces an action a ∈ A. We say that f is strictly rational for
the class M if there are ων ≥ 0, ν ∈M,

∑
ν∈Mwν = 1 and there is a policy

π ∈ arg max
π̃

∑
ν∈M

ωνV
π̃
ν (5)

such that a = π(ε).

Agents as in Definition 8 are also called admissible if wν > 0 ∀ν ∈ M since then they are
Pareto optimal (Hutter, 2005). Being Pareto optimal means that if another agent (of this
form or not) is strictly better (higher expected value) than a particular agent of this form
in one environment, then it is strictly worse in another. A special case is when |M| = 1
and (5) becomes

π ∈ arg max
π̃

V π̃
ν

where ν is the environment in M. The more general case connects to this by letting
ν̃(·) :=

∑
ν∈Mwνν(·) since then V π

ν̃ =
∑
wνV

π
ν (Hutter, 2005). The next definition defines

optimistic decision functions. They only coincide with strictly rational ones for the case
|M| = 1, however agents based on such decision functions satisfy the looser axioms that
define a weaker form of rationality as presented in Section 2.

Definition 9 (Optimistic decision function) We call a decision function f optimistic
if f(M) = a implies that a = π(ε) for an optimistic policy π, i.e., for

π ∈ arg max
π̃

max
ν∈M

V π̃
ν . (6)

3.2 Hypothesis-Generating Functions

Given a decision function, what remains to create a complete agent is a hypothesis-generating
function G(h) = M that for any history h ∈ H produces a set of environments M. A
special form of hypothesis-generating function is defined by combining the initial class
G(ε) = M0 with an update function ψ(Mt−1, ht) = Mt. An agent is defined from a
hypothesis-generating function G and a decision function f by choosing action a = f(G(h))
after seeing history h. We discuss a number of examples below to elucidate the framework
and as a basis for the results we later present.

1356



Optimistic General Reinforcement Learning

Example 10 (Bayesian agent) Suppose that ν is a stochastic environment and G(h) =
{ν(·|h)} for all h and let f be a strictly rational decision function. The agent formed by
combining f and G is a rational agent in the stricter sense . Also, if M is a finite or
countable class of environments and G(h) = {ν(·|h) |ν ∈ M} for all h ∈ H (same M for
all h) and there are ων > 0, ν ∈M,

∑
ν∈Mwν = 1 such that a = π(ε) for a policy

π ∈ arg max
π̃

∑
ν∈G(h)

ωνV
π̃
ν , (7)

then we say that the agent is Bayesian and it can be represented more simply in the first
way by G(h) = {

∑
wνν(·|h)} due to linearity of the value function (Hutter, 2005)

Example 11 (Optimist deterministic case) Suppose that M is a finite class of deter-
ministic environments and let G(h) = {ν(·|h) | ν ∈M consistent with h}. If we combine G
with the optimistic decision function we have defined the optimistic agents for classes of de-
terministic environments (Algorithm 1) from Section 4. In Section 7 we extend these agents
to infinite classes by letting G(ht) contain new environments that were not in G(ht−1).

Example 12 (Optimistic AIXI) Suppose that M is a finite class of stochastic environ-
ments and that G(h) = {ν(·|h) | ν ∈ M}. If we combine G with the optimistic decision
function we have defined the optimistic AIXI agent (Equation 2 with Ξ =M).

Example 13 (MBIE) The Model Based Interval Estimation (MBIE) (Strehl et al., 2009)
method for Markov Decision Processes (MDPs) defines G(h) as a set of MDPs (for a given
state space) with transition probabilities in confidence intervals calculated from h. This is
combined with the optimistic decision function. MBIE satisfies strong sample complexity
guarantees for MDPs and is, therefore, an example of what we want but in a narrower
setting.

Example 14 (Optimist stochastic case) Suppose that M is a finite class of stochastic
environments and that G(h) = {ν(·|h) | ν ∈M : ν(h) ≥ zmaxν̃∈M ν̃(h)} for some z ∈ (0, 1).
If we combine G with the optimistic decision function we have defined the optimistic agent
with stochastic environments from Section 5.

Example 15 (MERL and BayesExp) Agents that switch explicitly between exploration
and exploitation are typically not satisfying even our weak rationality demand. An exam-
ple is Lattimore et al. (2013a) where the introduced Maximum Exploration Reinforcement
Learning (MERL) agent performs certain tests when the remaining candidate environments
are disagreeing sufficiently. This decision function is not satisfying rationality while our
Algorithm 3, which uses the exclusion criteria of MERL but with an optimistic decision
function, does satisfy our notion of rationality. Another example of an explicitly exploring
irrational agent is BayesExp (Lattimore, 2014).

4. Finite Classes of Dominant A Priori Environments

In this section, we study convergence results for optimistic agents with finite classes of dom-
inant environments. In terms of the agent framework we here use an optimistic decision
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function and a hypothesis-generating function that neither adds to nor removes from the
initial class but just updates the environments through conditioning. Such agents were pre-
viously described in Example 12. In the next section we consider a setting where we instead
of domination assume that one of the environments in the class is the true environment.
The first setting is natural for Bayesian approaches, while the second is more frequentist
in flavor. If we assume that all uncertainty is epistemic, i.e., caused by the agent’s lack of
knowledge, and that the true environment is deterministic, then for the first (Bayesian) set-
ting the assumption means that the environments assign strictly positive probability to the
truth. In the second (frequentist) setting, the assumption says that the environment class
must contain this deterministic environment. In Section 6, we also consider a stochastic
version of the second setting where the true environment is potentially stochastic in itself.

We first prove that AIXI is asymptotically optimal if the a priori environment ξ both
dominates the true environment µ in the sense that ∃c > 0 : ξ(·) ≥ cµ(·) and optimistic in
the sense that ∀ht V ∗ξ (ht) ≥ V ∗µ (ht) (for large t). We extend this by replacing ξ with a finite
set Ξ and prove that we then only need there to be, for each ht (for t large), some ξ ∈ Ξ such
that V ∗ξ (ht) ≥ V ∗µ (ht). We refer to this second domination property as optimism. The first
domination property, which we simply refer to as domination, is most easily satisfied for
ξ(·) =

∑
ν∈Mwνν(·) with wν > 0 whereM is a countable class of environments with µ ∈M.

We provide a simple illustrative example for the first theorem and a more interesting one
after the second theorem. First, we introduce some definitions related to the purpose of
domination, namely it implies absolute continuity which according to the Blackwell-Dubins
Theorem (Blackwell and Dubins, 1962) implies merging in total variation.

Definition 16 (Total variation distance, Merging, Absolute continuity)
i) The total variation distance between two (non-negative) measures P and Q is defined to
be

d(P,Q) = sup
A
|P (A)−Q(A)|

where A ranges over the σ-algebra of the relevant measure space.
ii) P and Q are said to merge iff d(P (·|ω1:t), Q(·|ω1:t)) → 0 P -a.s. as t → ∞, i.e., almost
surely if the sequence ω is generated by P . The environments ν1 and ν2 merge under π if
ν1(·|ht, π) and ν2(·|ht, π) merge.
iii) P is absolutely continuous with respect to Q if Q(A) = 0 implies that P (A) = 0.

We will make ample use of the classical Blackwell-Dubins Theorem (Blackwell and Du-
bins, 1962) so we state it explicitly.

Theorem 17 (Blackwell-Dubins Theorem) If P is absolutely continuous with respect
to Q, then P and Q merge P -almost surely.

Lemma 18 (Value convergence for merging environments) Given a policy π and en-
vironments µ and ν it follows that for all h

|V π
µ (h)− V π

ν (h)| ≤ 1

1− γ
d(µ(·|h, π), ν(·|h, π)).
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Proof The lemma follows from the general inequality∣∣EP (f)− EQ(f)
∣∣ ≤ sup |f | · sup

A

∣∣P (A)−Q(A)
∣∣

by letting f be the return in the history and P = µ(·|h, π) and Q = ν(·|h, π), and using
0 ≤ f ≤ 1/(1− γ) that follows from the rewards being in [0, 1].

The next theorem is the first of the two convergence theorems in this section. It relates to
a strictly rational agent and imposes two conditions. The domination condition is a standard
assumption that a Bayesian agent satisfies if it has strictly positive prior weight for the truth.
The other assumption, the optimism assumption, is restrictive but the convergence result
does not hold if only domination is assumed and the known alternative (Hutter, 2005) of
demanding that a Bayesian agent’s hypothesis class is self-optimizing is only satisfied for
environments of very particular form such as ergodic Markov Decision Processes.

Algorithm 1: Optimistic-AIXI Agent (π◦)

Require: Finite class of dominant a priori environments Ξ
1: t = 1, h0 = ε
2: repeat
3: (π∗, ξ∗) ∈ arg maxπ∈Π,ξ∈Ξ V

π
ξ (ht−1)

4: at−1 = π∗(ht−1)
5: Perceive otrt from environment µ
6: ht ← ht−1at−1otrt
7: t← t+ 1
8: until end of time

Theorem 19 (AIXI convergence) Suppose that ξ(·) ≥ cµ(·) for some c > 0 and µ is the
true environment. Also suppose that there µ-almost surely is T1 < ∞ such that V ∗ξ (ht) ≥
V ∗µ (ht) ∀t ≥ T1. Suppose that the policy π∗ acts in µ according to the AIXI agent based on
ξ, i.e.,

π∗ ∈ arg max
π

V π
ξ (ε)

or equivalently Algorithm 1 with Ξ = {ξ}. Then there is µ-almost surely, i.e., almost surely
if the sequence ht is generated by π∗ acting in µ, for every ε > 0, a time T <∞ such that
V π∗
µ (ht) ≥ V ∗µ (ht)− ε ∀t ≥ T .

Proof Due to the dominance we can (using the Blackwell-Dubins merging of opinions
theorem (Blackwell and Dubins, 1962)) say that µ-almost surely there is for every ε′ > 0,
a T < ∞ such that ∀t ≥ T d(ξ(·|ht, π∗), µ(·|ht, π∗)) < ε′ where d is the total variation
distance. This implies that |V π∗

ξ (ht) − V π∗
µ (ht)| < ε′

1−γ := ε which means that, if t ≥ T ,

V π∗
µ (ht) ≥ V ∗ξ (ht)− ε ≥ V ∗µ (ht)− ε.
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Figure 1: Line environment

Example 20 (Line environment) We consider an agent who, when given a class of en-
vironments, will choose its prior based on simplicity in accordance with Occam’s razor (Hut-
ter, 2005). First let us look at a class M of two environments which both have six states
(Figure 1) s1, ..., s6 and two actions L (left) and R (right). Action R changes sk to sk+1, L
to sk−1. Also L in s1 or R in s6 result in staying. We start at s1. Being at s1 has a reward
of 0, s2, s3, s4, s5 have reward −1 while the reward in s6 depends on the environment. In
one of the environments ν1, this reward is +1 while in ν2 it is −1. Since ν2 is not simpler
than ν1 it will not have higher weight and if γ is only modestly high the agent will not
explore along the line despite that in ν2 it would be optimal to do so. However, if we define
another environment ν3 by letting the reward at s6 be really high, then when including ν3

in the mixture, the agent will end up with an a priori environment that is optimistic for ν1

and ν2 and we can guarantee optimality for any γ.

In the next theorem we prove that for the optimistic agent with a class of a priori
environments, only one of them needs to be optimistic at a time while all are assumed to
be dominant. As before, domination is achieved if the a priori environments are of the form
of a mixture over a hypothesis class containing the truth. The optimism is in this case
milder and is e.g., trivially satisfied if the truth is one of the a priori environments. Since
the optimistic agent is guaranteed convergence under milder assumptions we believe that it
would succeed in a broader range of environments than the single-prior rational agent.

Theorem 21 (Multiple-prior convergence) Suppose that Ξ is a finite set of a priori
environments such that for each ξ ∈ Ξ there is cξ,µ > 0 such that ξ(·) ≥ cξ,µµ(·) where
µ is the true environment. Also suppose that there µ-almost surely is T1 < ∞ such that
for t ≥ T1 there is ξt ∈ Ξ such that V ∗ξt(ht) ≥ V ∗µ (ht). Suppose that the policy π◦, defined
as in (2) or equivalently Algorithm 1, acts according to the rational optimistic agent based
on Ξ in µ. Then there is µ-almost surely, for every ε > 0, a time T < ∞ such that
V π◦
µ (ht) ≥ V ∗µ (ht)− ε ∀t ≥ T .

The theorem is proven by combining the proof technique from the previous theorem with
the following lemma. We have made this lemma easier to formulate by formulating it for
time t = 0 (when the history is the empty string ε), though when proving Theorem 21 it is
used for a later time point when the environments in the class have merged sufficiently under
π◦ in the sense of total variation diameter. The lemma simply says that if the environments
are sufficiently close under π◦, then π◦ must be nearly optimal. This follows from optimism
since it means that the value function that π◦ maximizes is the highest among the value
functions for the environments in the class and it is also close to the actual value by the
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assumption. The only thing that makes the proof non-trivial is that π◦ might maximize
for different environments at each step but since they are all close, the conclusion that
would otherwise have been trivial is still true. One can simply construct a new environment
that combines the dynamics of the environments that are optimistic at different times.
Then, the policy maximizes value for this environment at each times step and this new
environment is also close to all the environments in the class. We let ν∗h be an environment
in arg maxν maxπ V

π
ν (h) that π◦ uses to choose the next action after experiencing h.

Definition 22 (Environment used by π◦) Suppose that Ξ is a finite set of environ-
ments and that π◦ is the optimistic agent. Let ν∗h be an environment in arg maxν maxπ V

π
ν (h)

that π◦ uses to choose the next action after experiencing h, i.e., ν∗h is such that V ∗ν∗h
(h) =

maxν,π V
π
ν (h) and π◦(h) = π̃(h) for some π̃ ∈ arg maxπ V

π
ν∗h

(h). Note, the choice might not

be unique.

The next definition introduces the concept of constructing an environment that is con-
sistently used.

Definition 23 (Constructed environment) Define ν̂ by ν̂(o, r|h, a) = ν∗h(o, r|h, a).

The following lemma is intuitively obvious. It says that if at each time step we define an
environment by using the dynamics of the environment in the class that promises the most
value, then the resulting environment will always be optimistic relative to any environment
in the class. The proof is only complicated by the cumbersome notation required due to
studying fully general reinforcement learning. The key tool is the Bellman equation that
for general reinforcement learning is

V π
ν (h) =

∑
o,r

ν(o, r|h, π(h))[r + γV π
ν (h′)]

where h′ = hπ(h)or. Together with induction this will be used to prove the next lemma.

Lemma 24 V π◦
ν̂ ≥ maxν∈M,π V

π
ν (ε)

Proof Let V π
ν denote V π

ν (ε). We reason by induction using a sequence of environments
approaching ν̂. Let

ν̂s(otrt|ht−1, a) = ν̂(otrt|ht−1, a) ∀ht−1∀a, t ≤ s

and

ν̂s(otrt|ht−1, a) = ν∗hs(otrt|ht−1, a), ∀ht−1∀a, t > s.

ν̂1 equals ν∗ε at all time points and thus V π
ν̂1

= V π
ν∗ε

. Let R̂νt be the expected accumulated

(discounted) reward (E
∑t

i=1 γ
i−1ri) up to time t when following π◦ up until that time in

the environment ν. We first do the base case t = 1.

max
π2:∞

V π◦0:1π2:∞
ν̂2

= max
π1:∞

(R̂
ν∗ε
1 + γEh1|ν∗ε ,π◦V

π1:∞
ν∗h1

(h1)) ≥
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max
π1:∞

(R̂
ν∗ε
1 + γEh1|ν∗ε ,π◦V

π1:∞
ν∗ε

(h1)) = max
π

V π
ν̂1 .

The middle inequality is due to maxπ V
π
ν∗h1

(h1) ≥ maxπ V
π
ν (h1) ∀ν ∈ Ξ. The first equality

is the Bellman equation together with the fact that π◦ makes a first action that optimize
for ν∗ε . The second is due to ν̂1 = ν∗ε and the Bellman equation. In the same way,

∀k max
πk:∞

V
π◦0:k−1πk:∞
ν̂k

≥ max
πk−1:∞

V
π◦0:k−2πk−1:∞
ν̂k−1

and it follows by induction that V π◦
ν̂ ≥ maxπ,ν∈M V π

ν ≥ V ∗µ .

Lemma 25 (Optimism is nearly optimal) Suppose that the assumptions of Theorem
21 hold and that we denote the optimistic agent again by (π◦). Then for each ε > 0 there
exists ε̃ > 0 such that V π◦

µ (ε) ≥ maxπ V
π
µ (ε)− ε whenever

∀h,∀ν1, ν2 ∈ Ξ, |V π◦
ν1 (h)− V π◦

ν2 (h)| < ε̃.

Proof We will show that if we choose ε̃ small enough, then

|V π◦
ν̂ − V π◦

µ | < ε (8)

where µ is the true environment. Equation (8), when proven to hold when ε̃ is chosen small
enough, concludes the proof since then |V ∗µ − V π◦

µ | < ε, due to V π◦
ν̂ ≥ V ∗µ ≥ V π◦

µ . This is
easy since

|V π◦
ν̂ε − V

π◦
ν̂ | <

ε̃

1− γ

and if ε̃ + ε̃
1−γ ≤ ε then (8) holds and the proof is complete as we concluded above since

|V π◦
ν̂ε
− V π◦

µ | < ε̃.

Proof of Theorem 21. Since Ξ is finite and by using Theorem 17 (Blackwell-Dubins),
there is for every ε′, a T < ∞ when ∀ξ ∈ Ξ ∀t ≥ T, d(ξ(·|ht, π◦), µ(·|ht, π◦)) < ε′. This
implies that ∀ξ ∈ Ξ |V π◦

ξ (ht)−V π◦
µ (ht)| < ε′

1−γ by Lemma 18. Choose ε′ such that ε′

1−γ = ε.

Applying Lemma 25 with class Ξ̃ = {ξ(·| hT ) : ξ ∈ Ξ} now directly proves the result. The
application of Lemma 25 is viewing time T from this proof as time zero and the ε context.

Example 26 (Multiple-prior AIXI) For any Universal Turing Machine (UTM) U the
corresponding Solomonoff distribution ξU is defined by putting coin flips on the input tape
(see Li and Vitani (2008); Hutter (2005) for details). ξU is dominant for any lower semi-
computable semi-measure over infinite sequences. Hutter (2005) extends these constructions
and introduces an environment ξU that is dominant for all reactive lower semi-computable
reactive environments and defines the AIXI agent based on it as in Theorem 19. A difficulty
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is to choose the UTM to use. Many have without success tried to find a single “natural”
Turing machine and it might in fact be impossible (Müller, 2010). Examples includes defin-
ing a machine from a programming language like C or Haskell and another possibility is
to use Lambda calculus. With the approach that we introduce in this article one can pick
finitely many machines that one considers to be natural. Though this does not fully resolve
the issue, and the issue might not be fully resolvable, it alleviates it.

5. Finite Classes of Deterministic (Non-Dominant) A Priori
Environments

In this section, we perform a different sort of analysis where it is not assumed that all the
environments in Ξ dominate the true environment µ. We instead rely on the assumption
that the true environment is a member of the agent’s class of environments. The a priori
environments are then naturally thought of as a hypothesis class rather than mixtures
over some hypothesis class and we will write M instead of Ξ to mark this difference. We
begin with the deterministic case, where one could not have introduced the domination
assumption, in this section and look at stochastic non-dominant a priori environments in
the next. The agent in this section can be described, as was done in Example 11 as having
an optimistic decision function and a hypothesis-generating function that begins with an
initial class and removes excluded environments.

5.1 Optimistic Agents for Deterministic Environments

Given a finite class of deterministic environmentsM = {ν1, ..., νm}, we define an algorithm
that for any unknown environment from M eventually achieves optimal behavior in the
sense that there exists T such that maximum reward is achieved from time T onwards.
The algorithm chooses an optimistic hypothesis from M in the sense that it picks the
environment in which one can achieve the highest reward and then the policy that is optimal
for this environment is followed. If this hypothesis is contradicted by the feedback from
the environment, a new optimistic hypothesis is picked from the environments that are still
consistent with h. This technique has the important consequence that if the hypothesis is
not contradicted, the agent acts optimally even when optimizing for an incorrect hypothesis.

Let hπ,νt be the history up to time t generated by policy π in environment ν. In particular
let h◦ := hπ

◦,µ be the history generated by Algorithm 2 (policy π◦) interacting with the
actual “true” environment µ. At the end of cycle t we know h◦t = ht. An environment ν

is called consistent with ht if hπ
◦,ν
t = ht. Let Mt be the environments consistent with ht.

The algorithm only needs to check whether oπ
◦,ν
t = ot and rπ

◦,ν
t = rt for each ν ∈ Mt−1,

since previous cycles ensure hπ
◦,ν
t−1 = ht−1 and trivially aπ

◦,ν
t = at. The maximization

in Algorithm 2 that defines optimism at time t is performed over ν ∈ Mt−1, the set of
consistent hypotheses at time t, and π ∈ Π = Πall is the class of all deterministic policies. In
Example 11, we described the same agent by saying that it combines an optimistic decision
function with a hypothesis generating function that begins with an initial finite class of
deterministic environments and excludes those that are contradicted. More precisely, we
have here first narrowed down the optimistic decision function further by saying that it
needs to stick to hypothesis until contradicted, while we will below further discuss not

1363



Sunehag and Hutter

Algorithm 2: Optimistic Agent (π◦) for Deterministic Environments

Require: Finite class of deterministic environments M0 ≡M
1: t = 1
2: repeat
3: (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt−1

V π
ν (ht−1)

4: repeat
5: at−1 = π∗(ht−1)
6: Perceive otrt from environment µ
7: ht ← ht−1at−1otrt
8: Remove all inconsistent ν from Mt (Mt := {ν ∈Mt−1 : hπ

◦,ν
t = ht})

9: t← t+ 1
10: until ν∗ 6∈ Mt−1

11: until M is empty

making this simplifying extra specification. Its an important fact, proven below, that an
optimistic hypothesis does not cease to be optimistic until contradicted. The guarantees we
prove for this agent are stronger than in the previous chapter where only dominance was
assumed while here we assume that the truth belongs to the given finite class of deterministic
environments.

Theorem 27 (Optimality, Finite deterministic class) Suppose M is a finite class of
deterministic environments. If we use Algorithm 2 (π◦) in an environment µ ∈ M , then
there is T <∞ such that

V π◦
µ (ht) = max

π
V π
µ (ht) ∀t ≥ T.

A key to proving Theorem 27 is time-consistency (Lattimore and Hutter, 2011b) of geometric
discounting. The following lemma tells us that if the agent acts optimally with respect to
a chosen optimistic hypothesis, this hypothesis remains optimistic until contradicted.

Lemma 28 (Time-consistency) Suppose (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt−1
V π
ν (ht−1) and that

an agent acts according to π∗ from a time point t to another time point t̃ − 1, i.e., as =
π∗(hs−1) for t ≤ s ≤ t̃ − 1. For any choice of t < t̃ such that ν∗ is still consistent at time
t̃, it holds that (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt̃

V π
ν (ht̃).

Proof Suppose that V π∗
ν∗ (ht̃) < V π̃

ν̃ (ht̃) for some π̃, ν̃. It holds that V π∗
ν∗ (ht) = C +

γ t̃−tV π∗
ν∗ (ht̃) where C is the accumulated reward between t and t̃ − 1. Let π̂ be a pol-

icy that equals π∗ from t to t̃ − 1 and then equals π̃. It follows that V π̂
ν̃ (ht) = C +

γ t̃−tV π̂
ν̃ (ht̃) > C + γ t̃−tV π∗

ν∗ (ht̃) = V π∗
ν∗ (ht) which contradicts the assumption (π∗, ν∗) ∈

arg maxπ∈Π,ν∈Mt
V π
ν (ht). Therefore, V π∗

ν∗ (ht̃) ≥ V π̃
ν̃ (ht̃) for all π̃, ν̃.

Proof (Theorem 27) At time t we know ht. If some ν ∈ Mt−1 is inconsistent with ht,

i.e., hπ
◦,ν
t 6= ht, it gets removed, i.e., is not in Mt′ for all t′ ≥ t.
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Since M0 = M is finite, such inconsistencies can only happen finitely often, i.e., from
some T onwards we have Mt = M∞ for all t ≥ T . Since hπ

◦,µ
t = ht ∀t, we know that

µ ∈Mt ∀t.
Assume t ≥ T henceforth. The optimistic hypothesis will not change after this point. If

the optimistic hypothesis is the true environment µ, the agent has obviously chosen a truly
optimal policy.

In general, the optimistic hypothesis ν∗ is such that it will never be contradicted while
actions are taken according to π◦, hence (π∗, ν∗) do not change anymore. This implies

V π◦
µ (ht) = V π∗

µ (ht) = V π∗
ν∗ (ht) = max

ν∈Mt

max
π∈Π

V π
ν (ht) ≥ max

π∈Π
V π
µ (ht)

for all t ≥ T . The first equality follows from π◦ equals π∗ from t ≥ T onwards. The
second equality follows from consistency of ν∗ with h◦1:∞. The third equality follows from
optimism, the constancy of π∗, ν∗, and Mt for t ≥ T , and time-consistency of geometric
discounting (Lemma 28). The last inequality follows from µ ∈ Mt. The reverse inequality
V π∗
µ (ht) ≤ maxπ V

π
µ (ht) follows from π∗ ∈ Π. Therefore π◦ is acting optimally at all times

t ≥ T .

Besides the eventual optimality guarantee above, we also provide a bound on the number
of time steps for which the value of following Algorithm 2 is more than a certain ε > 0 less
than optimal. The reason this bound is true is that we only have such suboptimality
for a certain number of time steps immediately before the current hypothesis becomes
inconsistent and the number of such inconsistency points are bounded by the number of
environments. Note that the bound tends to infinity as ε→ 0, hence we need Theorem 27
with its distinct proof technique for the ε = 0 case.

Theorem 29 (Finite error bound) Following π◦ (Algorithm 2),

V π◦
µ (ht) ≥ max

π∈Π
V π
µ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most K− log ε(1−γ)
1−γ ≤ |M − 1|− log ε(1−γ)

1−γ time steps t where K is the number
of times that some environment is contradicted.

Proof Consider the `-truncated value

V π
ν,`(ht) :=

t+∑̀
i=t+1

γi−t−1ri

where the sequence ri are the rewards achieved by following π from time t + 1 to t + `
in ν after seeing ht. By letting ` = log ε(1−γ)

log γ (which is positive due to negativity of both

numerator and denominator) we achieve |V π
ν,`(ht)− V π

ν (ht)| ≤ γl

1−γ = ε. Let (π∗t , ν
∗
t ) be the

policy-environment pair selected by Algorithm 2 in cycle t.

Let us first assume hπ
◦,µ
t+1:t+` = h

π◦,ν∗t
t+1:t+`, i.e., ν∗t is consistent with h◦t+1:t+`, and hence π∗t

and ν∗t do not change from t+ 1, ..., t+ ` (inner loop of Algorithm 2). Then

V π◦
µ (ht)

drop terms,
↓
≥ V π◦

µ,` (ht)

same ht+1:t+`,
↓
= V π◦

ν∗t ,`
(ht)

π◦=π∗t on ht+1:t+`,
↓
= V

π∗t
ν∗t ,`

(ht)
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≥
↑

bound extra terms

V
π∗t
ν∗t

(ht)− γ`

1−γ =
↑

def. of (π∗t , ν
∗
t ) and ε := γ`

1−γ

max
ν∈Mt

max
π∈Π

V π
ν (ht)− ε ≥

↑
µ ∈Mt

max
π∈Π

V π
µ (ht)− ε.

Now let t1, ..., tK be the times t at which the currently selected ν∗t becomes inconsistent
with ht, i.e., {t1, ..., tK} = {t : ν∗t 6∈ Mt}.

Therefore h◦t+1:t+` 6= h
π◦,ν∗t
t+1:t+` (only) at times t ∈ T× :=

⋃K
i=1{ti − `, ..., ti − 1}, which

implies V π◦
µ (ht) ≥ maxπ∈Π V

π
µ (ht)− ε except possibly for t ∈ T×. Finally

|T×| = `·K =
log ε(1− γ)

log γ
K ≤ K

log ε(1− γ)

γ − 1
≤ |M− 1| log ε(1− γ)

γ − 1

Conservative or liberal optimistic agents. We refer to the algorithm above as the conserva-
tive agent since it keeps its hypothesis for as long as it can. We can define a more liberal
agent that re-evaluates its optimistic hypothesis at every time step and can switch between
different optimistic policies at any time. Algorithm 2 is actually a special case of this as
shown by Lemma 28. The liberal agent is really a class of algorithms and this larger class of
algorithms consists of exactly the algorithms that are optimistic at every time step without
further restrictions. The conservative agent is the subclass of algorithms that only switch
hypothesis when the previous is contradicted. The results for the conservative agent can be
extended to the liberal one. We do this for Theorem 27 in Appendix A together with analyz-
ing further subtleties about the conservative case. It is worth noting that the liberal agent
can also be understood as a conservative agent but for an extended class of environments
where one creates a new environment by letting it have, at each time step, the dynamics of
the chosen optimistic environment. Contradiction of such an environment will then always
coincide with contradiction of the chosen optimistic environment and there will be no extra
contradictions due to these new environments. Hence, the finite-error bound can also be
extended to the liberal case. In the stochastic case below, we have to use a liberal agent.
Note that both the conservative and liberal agents are based on an optimistic decision func-
tion and the same hypothesis-generating function. There can be several optimistic decision
functions due to ties.

5.2 Environments and Laws

The bounds given above have a linear dependence on the number of environments in the
class and though this is the best one can do in general (Lattimore et al., 2013a), it is bad
compared to what we are used to from Markov Decision Processes (Lattimore and Hutter,
2012) where the linear (up to logarithms) dependence is on the size of the state space
instead. Markov Decision Processes are finitely generated in a sense that makes it possible
to exclude whole parts of the environment class together, e.g., all environments for which
a state s2 is likely to follow the state s1 if action a1 is taken. Unfortunately, the Markov
assumption is very restrictive.

In this section we will improve the bounds above by introducing the concept of laws and
of an environment being generated by a set of laws. Any environment class can be described
this way and the linear dependence on the size of the environment class in the bounds is
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replaced by a linear dependence on the size of the smallest set of laws that can generate the
class. Since any class is trivially generated by the laws that simply equal an environment
from the class each, we are not making further restrictions compared to previous results.
However, in the worst situations the bounds presented here equal the previous bounds,
while for other environment classes the bounds in this section are exponentially better. The
latter classes with good bounds are the only option for practical generic agents. Classes of
such form have the property that one can exclude laws and thereby exclude whole classes
of environments simultaneously like when one learns about a state transition for an MDP.

Environments defined by laws. We consider observations of the form of a feature vector
o = ~x = (xj)

m
j=1 ∈ O = ×mj=1Oj including the reward as one coefficient where xj is an

element of some finite alphabet Oi. Let O⊥ = ×mj=1(Oj ∪ {⊥}), i.e., O⊥ consists of the
feature vectors from O but where some elements are replaced by a special letter ⊥. The
meaning of ⊥ is that there is no prediction for this feature. We first consider deterministic
laws.

Definition 30 (Deterministic laws) A law is a function τ : H×A → O⊥.

Using a feature vector representation of the observations and saying that a law predicts
some of the features is a convenient special case of saying that the law predicts that the next
observation will belong to a certain subset of the observation space. Each law τ predicts,
given the history and a new action, some or none but not necessarily all of the features
xj at the next time point. We first consider sets of laws such that for any given history
and action, and for every feature, there is at least one law that makes a prediction of this
feature. Such sets are said to be complete.

Definition 31 (Complete set of laws) A set of laws T̃ is complete if

∀h, a∀j ∈ {1, ...,m} ∃τ ∈ T̃ : τ(h, a)j 6= ⊥.

We will only consider combining deterministic laws that never contradict each other and
we call such sets of laws coherent. The main reason for this restriction is that one can then
exclude a law when it is contradicted. If one does not demand coherence, an environment
might only sometimes be consistent with a certain law and the agent can then only exclude
the contradicted environment, not the contradicted law which is key to achieving better
bounds.

Definition 32 (Coherent set of laws) We say that T̃ is coherent if for all τ ∈ T̃ , h, a
and j

τ(h, a)j 6= ⊥ ⇒ τ̃(h, a)j ∈ {⊥, τ(h, a)j} ∀τ̃ ∈ T̃ .

Definition 33 (Environment from a complete and coherent set of laws) Given a
complete and coherent set of laws T̃ , ν(T̃ ) is the unique environment ν which is such that

∀h, a∀j ∈ {1, ...,m}∃τ ∈ T̃ : ν(h, a)j = τ(h, a)j .

The existence of ν(T̃ ) follows from completeness of T̃ and uniqueness is due to coherence.
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Definition 34 (Environment class from deterministic laws) Given a set of laws T ,
let C(T ) denote the complete and coherent subsets of T . Given a set of laws T , we define
the class of environments generated by T through

M(T ) := {ν(T̃ ) |T̃ ∈ C(T )}.

Example 35 (Deterministic laws for fixed vector) Consider an environment with a
constant binary feature vector of length m. There are 2m such environments. Every such
environment can be defined by combining m out of a class of 2m laws. Each law says what
the value of one of the features is, one law for 0 and one for 1. In this example, a coherent
set of laws is simply one feature for each coefficient. The generated environment is the
constant vector defined by that vector and the set of all the generated environments is the
full set of 2m environments.

Error analysis. Every contradiction of an environment is a contradiction of at least one
law and there are finitely many laws. This is what is needed for the finite error result
from Section 4 to hold but with |M| replaced by |T | (see Theorem 36 below) which can
be exponentially smaller. Furthermore, the extension to countable T works the same as in
Theorem 45.

Theorem 36 (Finite error bound when using laws) Suppose that T is a finite class
of deterministic laws and let G(h) = {ν(·|h) | ν ∈ M({τ | τ ∈ T consistent with h})}. We
define π̄ by combining G with the optimistic decision function. Following π̄ for a finite class
of deterministic laws T in an environment µ ∈M(T ), we have for any 0 < ε < 1

1−γ that

V π̄
µ (ht) ≥ max

π
V π
µ (ht)− ε (9)

for all but at most |T − l|− log ε(1−γ)
1−γ time steps t where l is the minimum number of laws

from T needed to define a complete environment.

Proof This theorem follows from Theorem 29 since there are at most K = |T − l| time
steps with a contradiction.

6. Finite Classes of Stochastic Non-Dominant A Priori Environments

A stochastic hypothesis may never become completely inconsistent in the sense of assigning
zero probability to the observed sequence while still assigning very different probabilities
than the true environment. Therefore, we exclude based on a threshold for the probability
assigned to the generated history proportional to the highest probability assigned by some
environment in the remaining class. An obvious alternative is to instead compare to a
weighted average of all the remaining environments as done by Lattimore et al. (2013b) for
the BayesExp algorithm. This latter alternative means that one can interpret the criterion
as excluding environments of low posterior probability where the weights define the prior.
The alternatives differ only by a constant factor depending on the weights.
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Unlike in the deterministic case, a hypothesis can cease to be optimistic without having
been excluded. We, therefore, only consider an algorithm that re-evaluates its optimistic
hypothesis at every time step. Algorithm 3 specifies the procedure and Theorem 37 states
that it is asymptotically optimal. We previously introduced the agent described in Algo-
rithm 3, in Example 14 by saying it has an optimistic decision function and by describing
the hypothesis-generating function based on a criterion for excluding environments from
an initial class. We also consider a different exclusion criterion, i.e., a different hypothesis-
generating function, for an optimistic agent to be able to present sample complexity bounds
that we believe also holds for the first agent. The criterion used to achieve near-optimal sam-
ple complexity has previously been used in the MERL algorithm (Lattimore et al., 2013a),
which has a decision function that we deem irrational according to our theory. Our agent
instead uses an optimistic decision function but the same hypothesis-generating function as
MERL. A very similar agent and bound can also be achieved as an optimistically acting
realization of the adaptive k-meteorologists’ algorithm by Diuk et al. (2009) and its bound.
This agent would only have a slightly different exclusion criterion compared to MERL. A
further step that we do not take here would be to improve the bounds dramatically by using
stochastic laws (Sunehag and Hutter, 2015) as we did with deterministic laws previously.

Algorithm 3: Optimistic Agent (π◦) with Stochastic Finite Class

Require: Finite class of stochastic environments M1 ≡M, threshold z ∈ (0, 1)
1: t = 1
2: repeat
3: (π∗, ν∗) = arg maxπ,ν∈Mt

V π
ν (ht−1)

4: at−1 = π∗(ht−1)
5: Perceive otrt from environment µ
6: ht ← ht−1at−1otrt
7: t← t+ 1
8: Mt := {ν ∈Mt−1 : ν(ht|a1:t)

maxν̃∈M ν̃(ht|a1:t) > z}
9: until the end of time

Theorem 37 (Optimality, Finite stochastic class) Define π◦ by using Algorithm 3 with
any threshold z ∈ (0, 1) and a finite class M of stochastic environments containing the true
environment µ, then with probability 1 − z|M − 1| there exists, for every ε > 0, a number
T <∞ such that

V π◦
µ (ht) > max

π
V π
µ (ht)− ε ∀t ≥ T.

We borrow some techniques from Hutter (2009a) that introduced a “merging of opinions”
result that generalized the classical theorem by Blackwell and Dubins (1962), restated here
as Theorem 17. The classical result says that it is sufficient that the true measure (over
infinite sequences) is absolutely continuous with respect to a chosen a priori distribution to
guarantee that they will almost surely merge in the sense of total variation distance. The
generalized version is given in Lemma 38. When we combine a policy π with an environment
ν by letting the actions be taken by the policy, we have defined a measure, denoted by
ν(·|π), on the space of infinite sequences from a finite alphabet. We denote such a sample
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sequence by ω and the a:th to b:th elements of ω by ωa:b. The σ-algebra is generated by
the cylinder sets Γy1:t := {ω|ω1:t = y1:t} and a measure is determined by its values on those
sets. To simplify notation in the next lemmas we will write P (·) = ν(·|π), meaning that
P (ω1:t) = ν(ht|a1:t) where ωj = ojrj and aj = π(hj−1). Furthermore, ν(·|ht, π) = P (·|ht).

The results from Hutter (2009a) are based on the fact that Zt = Q(ω1:t)
P (ω1:t)

is a martingale

sequence if P is the true measure and therefore converges with P probability 1 (Doob,
1953). The crucial question is if the limit is strictly positive or not. The following lemma
shows that with P probability 1 we are either in the case where the limit is 0 or in the case
where d(P (·|ω1:t), Q(·|ω1:t))→ 0.

Lemma 38 (Generalized merging of opinions Hutter (2009a)) For any measures P
and Q it holds that P (Ω◦ ∪ Ω̄) = 1 where

Ω◦ :=
{
ω :

Q(ω1:t)

P (ω1:t)
→ 0

}
and Ω̄ :=

{
ω : d(P (·|ω1:t), Q(·|ω1:t))→ 0

}
The following lemma replaces the property for deterministic environments that either

they are consistent indefinitely or the probability of the generated history becomes 0.

Lemma 39 (Merging of environments) Suppose we are given two environments µ (the
true one) and ν and a policy π (defined e.g., by Algorithm 3). Let P (·) = µ(·|π) and
Q(·) = ν(·|π). Then with P probability 1 we have that

lim
t→∞

Q(ω1:t)

P (ω1:t)
= 0 or lim

t→∞
|V π
µ (ht)− V π

ν (ht)| = 0.

Proof This follows from a combination of Lemma 38 and Lemma 18.

Proof (Theorem 37) Given a policy π, let P (·) = µ(·|π) where µ ∈ M is the true
environment and Q = ν(·|π) where ν ∈ M. Let the outcome sequence (o1r1), (o2r2), ...
be denoted by ω. It follows from Doob’s martingale inequality (Doob, 1953) that for all
z ∈ (0, 1)

P
(

sup
t

Q(ω1:t)

P (ω1:t)
≥ 1/z

)
≤ z, which implies P

(
inf
t

P (ω1:t)

Q(ω1:t)
≤ z
)
≤ z.

This implies, using a union bound, that the probability of Algorithm 3 ever excluding the
true environment is less than z|M− 1|.

The limits ν(ht|π◦)
µ(ht|π◦) converge µ-almost surely as argued before using the martingale con-

vergence theorem. Lemma 39 tells us that any given environment (with probability one)
is eventually excluded or is permanently included and merges with the true one under π◦.
Hence, the remaining environments do merge with the true environment, according to and
in the sense of Lemma 39. Lemma 18 tells us that the difference between value functions
(for the same policy) of merging environments converges to zero. Since there are finitely
many environments and the ones that remain indefinitely in Mt merge with the true envi-
ronment under π◦, there is for every ε̃ > 0 a T such that for all continuations h of hT , it
holds that

|V π◦
ν1 (h)− V π◦

ν2 (h)| < ε̃ ∀ν1, ν2 ∈M`(h).
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The proof is concluded by Lemma 25 (applied to Ξ = Mt) in the case where the true
environment remains indefinitely included which happens with probability z|M− 1|.

Optimal sample complexity for optimistic agent. We state the below results for γ = 0 even
if some of the results referred to are more general, both for simplicity and because we can
only prove that our new agent is optimal for this myopic case and only conjecture that the
result extends to 0 < γ < 1. For γ = 0 we can replace π by a in e.g., V π because the value
then only depends on the immediate action.

Definition 40 (ε-error) Given 0 ≤ ε < 1, we define the number of ε-errors for γ = 0 in
history h to be

m(h, ε) = |{t ≤ `(h) | V at
µ (ht) < V ∗µ (ht)− ε}|

where µ is the true environment, `(h) is the length of h, at is the t:th action of an agent π
and V ∗µ (h) = maxa V

a
µ (h). Each such time point t where V at

µ (ht) < V ∗µ (ht)− ε is called an
ε-error.

In Lattimore et al. (2013a), an agent (MERL) that achieves optimal sample complex-
ity for general finite classes of stochastic environments was presented and we provided a
high-level description of it in Example 15 in terms of an irrational decision function and
a hypothesis-generating function. Here we point out that one can take the hypothesis-
generating function of MERL and combine it with an optimistic decision function and still
satisfy optimal sample complexity for the case γ = 0. We conjecture that our optimistic
agent also satisfies MERL’s bound for 0 < γ < 1, but it is even harder to prove than the
difficult analysis of MERL, which was designed to enable the proof. Our resulting optimistic
agent is described in Algorithm 4. Lattimore et al. (2013a) proves the matching lower bound
O( M

ε2(1−γ)3
log 1

δ ). We conjecture that the optimistic agent just like MERL satisfies an upper

bound matching the generic lower up to logarithmic factors for all γ < 1 and not just for
γ = 0, which we can prove it for.

The advantage of the optimistic agent is that its exploration is not irrationally exploring
an option with values in e.g., the interval [0, 0.3] if there is an option with guaranteed value
of 0.9. MERL does this because it looks for the maximum discrepancy in values, which
is why it is called Maximum Exploration Reinforcement Learning. The agent eliminates
all wrong environments regardless if this is useful or not. The exclusion criterion is based
on what return is predicted by the remaining environments. If the most optimistic and
the most pessimistic differ substantially one of them will turn out to be wrong and the
plausibility of it being the truth decreases. When an environment becomes sufficiently
implausible it is excluded. The technical difficulty is about both making sure that the truth
is with high probability not excluded while also not keeping an environment unnecessarily
long which would cause excess exploration. Investigating this particular technical difficulty,
while important, is not among the main conceptual issues this article is focused on.

Theorem 41 (Sample complexity for optimistic agent) Suppose we have a finite class
of M (stochastic) environments M. Letting α = 1 + (4

√
M − 1)−1 and δ1 = δ(32(3 +

log2 1/ε)M3/2)−1 in Algorithm 4, the number of ε-errors, i.e., time points t such that
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Algorithm 4: Optimistic agent with hypothesis-generation from Lattimore et al. (2013a)

Require: ε, δ1, α,M = {ν1, ..., νM}
Ensure: t = 1, h = ε, αj = dαje, nν,κ := 0 ∀ν ∈M, κ ∈ N

while True do
(ν, at) := arg maxν∈M,a∈A V

a
ν (h) # Choosing the optimistic action.

Take action at, receive rt,ot # h is not appended until the end of the loop
ν := arg minν∈M V at

ν (h) # Find the pessimistic environment for at
∆ = V at

ν (h)− V at
ν (h) # Difference between optimistic and pessimistic

if ∆ > ε/4 # If large, one of them is significantly off
# and we got an effective test

then
κ = max{k ∈ N : ∆ > ε2k−2}
nν,κ = nν,κ + 1, nν,κ = nν,κ + 1
X
nν,κ
ν,κ = V at

ν (h)− rt
X
nν,κ
ν,κ = rt − V at

ν (h)

if ∃j, κ : nν,κ = αj and
∑nν,κ

i=1 X
i
ν,κ ≥

√
2nν,κ log

nν,κ
δ1

then

M =M\ {ν}
end if
if ∃j, κ : nν,κ = αj and

∑nν,κ
i=1 X

i
ν,κ ≥

√
2nν,κ log

nν,κ
δ1

then

M =M\ {ν}
end if
t := t+ 1, h := hatotrt

end if
end while

V ∗µ (ht) − V π
µ (ht) > ε where π is Algorithm 4, resulting from running it on any environ-

ment in M is with probability 1− δ less than

Õ(
M

ε2
log2 1

δ
)

where Õ means O but up to logarithmic factors.

Proof The result follows from the analysis in Lattimore et al. (2013a) and we only provide
an overview here. More precisely, the claim follows from the proofs of Lemma 2 and 4 in
Lattimore et al. (2013a) which are both based on Azuma’s inequality. Lemma 2 proves that
the true environment will not be excluded with high probability (we need this to be at least
1 − δ/2). Lemma 4 shows that the number of exploration phases will not be larger than
Õ(M

ε2
log2 1

δ ) with high probability, at least 1− δ/2. The proof shows that before we reach
that many we will with at least that probability have excluded all but the true environ-
ment. However, all environments do not have to be excluded and some environments might
remain indefinitely by offering just slightly less reward for the optimal action than the true
environment. For our agent, unlike MERL, an environment might also remain by differing
arbitrarily much on actions that will never optimistically be taken.
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For a reader that is familiar with MERL we explain why the bound for our agent should
naturally be expected to be the same as for the MERL agent for γ = 0. To ensure that
it can be guaranteed that no ε-errors are made during exploitation, MERL checks the
maximum distance between environments for any policy and decides based on this if it
needs to explore. Our agent, however, will still have this guarantee in the case γ = 0 and
we can, from the analysis of MERL in Lattimore et al. (2013a), conclude that it makes, with
probability 1 − δ, at most Õ(M

ε2
log2 1

δ ) ε-errors. In fact, for γ = 0 we only need to know
that the maximum difference between any two environments’ values under the optimistic
action is less than ε/2, to guarantee that the agent does not make an ε-error.

Model-free vs model-based. We will here discuss our two main ways of excluding environ-
ments, namely exclusion by accuracy of return predictions (Algorithm 4 and MERL) and
plausibility given observations and rewards (Algorithm 3 and BayesExp). Algorithm 4
above is essentially a model-free algorithm since what is used from each environment are
two things; a recommended policy and a predicted return (its value in the given environ-
ment). Algorithm 4 evaluates the plausibility of an environment based on its predicted
return. Hence, for each time step it only needs pairs of policy and return prediction and
not complete environments. Such pairs are exactly what is considered in the Learning Clas-
sifier Systems (LCS) approach as mentioned in the introduction and as will be discussed in
Section 5.2.

We will primarily consider a model-based situation where predictions are made also for
future observations. Also, including the observations in the evaluation of one’s hypotheses
makes better use of available data. However, Hutter (2009b) argues that observations can
be extremely complex and that focusing on reward prediction for selecting a model, may still
be preferable due its more discriminative nature. We do not here take a definite position.

Lattimore et al. (2013b) studied confidence and concentration in sequence prediction and
used exclusion based on a probability ratio, in that case with a weighted average instead of
the max in our Algorithm 3. This alternative expression, which is closely related to the one
used by Algorithm 3, differing only by a constant factor, can be interpreted as the posterior
probability for the hypothesis and hypotheses with low posterior probability are excluded.
Lattimore (2014) extended this work to a reinforcement learning algorithm BayesExp that
like MERL above switches between phases of exploitation and pure exploration. When
the remaining environments are sufficiently concentrated, one can guarantee that an agent
does not make a mistake and the agent exploits this. The exploitation in BayesExp is
performed by maximizing value for a weighted average, although one can also use optimism
and not make a mistake. We deem both behaviors rational based on the definitions in
Section 2. However, when the environments are not close enough, BayesExp explores by
maximizing Bayesian information gain or by acting greedily with respect to the policy with
the largest Hellinger distance to the Bayes mixture. Pure exploration is in this article not
deemed rational and we suggest replacing it with acting greedily with respect to the most
optimistic environment, i.e., being optimistic. This results again in an always optimistic
agent with a criterion for when to exclude environments and we conjecture that this agent
satisfies near optimal sample-complexity.
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Compact classes. One can extend our results for finite classes to classes that are compact
in a suitable topology, e.g., defined by the pseudo-metric

d̃(ν1, ν2) = sup
h,π
|V π
ν1(h)− V π

ν2(h)|

used by Lattimore et al. (2013a) or a variant based on total variation distance used for the
same purpose in Sunehag and Hutter (2012a). If one wants accuracy of ε > 0 one can cover
the compact space with finitely many d̃-balls of radius ε/2 and then apply an algorithm
for finite classes to the finite class of ball centers to achieve accuracy ε/2. This adds up to
accuracy ε for the actual compact class. The number of environments in the finite class is
then equal to the number of balls. This number also feature prominently in the theory of
supervised learning using reproducing kernel Hilbert spaces (Cucker and Smale, 2002).

Feature Markov decision processes. One can define interesting compact classes of envi-
ronments using the feature Markov decision process framework (φMDP) (Hutter, 2009b;
Sunehag and Hutter, 2010). The main idea in this framework is to reduce an environment
to an MDP through applying a function φ to the history ht and define a state st = φ(ht).
Given a class of functions of this sort, Sunehag and Hutter (2010) define a class of environ-
ments that consists of those that can be exactly represented as an MDP using a function
from the class. The class of feature Markov decision processes defined from a finite set of
maps is a compact continuously parameterized class. Given a map φ from histories to a
finite state set S, a sequence of actions, observations, rewards is transformed into a sequence
of states s1, ..., sn where st = φ(ht). Defining probability distributions Pr(or|s, a) leads to
having defined an environment. In other words, a combination of a map from histories to
states with probability parameters stating, for each state-action pair (s, a) the probability
of each possible perception or ∈ O ×R, is a fully specified environment. Furthermore,

Pr(st+1, rt+1|st, at+1) =
∑

ot+1rt+1|φ(htat+1ot+1rt+1)=st+1

Pr(ot+1rt+1|st, at+1)

and we have, therefore, also defined a Markov Decision Process based on the states defined
by the map φ. When considering an environment’s optimal policy, this means that we can
restrict our study to policies that are functions from the states of the environment to actions.
Finding the best such stationary policy becomes the goal in this setting. Considering a finite
class of maps, each map gives us a compact class of environments and we can embed all
of them into Rd for some d. Since a finite union of compact sets is compact, we have
defined a compact class. Hence, one can cover the space with finite many balls regardless
of how small positive radius one chooses. However, the bounds are linear in the number
of balls which can be very large. This is because those bounds are worst case bounds for
fully general environments. In the feature MDP case we learn simultaneously about large
subsets of environments and one should be able to have bounds that are linear in the size
of a maximal state space (see Section 5.2).

Example 42 (Automata) A special form of maps are those that can be defined by a
deterministic function (a table) τ(s, a, o, r) = s′. Maps of this sort have been considered by
Mahmud (2010) for the class of Probabilistic-Deterministic Finite Automata.
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7. Countable and Growing Classes

In this section, we extend the agents and analysis from the previous section to arbitrary
countable environment classes.

Properties of hypothesis-generating functions. After seeing examples of decision functions
and hypothesis generating functions above, we will discuss what properties are desirable
in a hypothesis-generating function. We discussed what a decision function should be like
in Section 3.1 based on decision-theoretic axioms defining rationality. In the choice of
hypothesis-generating functions we focus on what kind of performance can be guaranteed
in terms of how many suboptimal decisions will be taken. First, however, we want to restrict
our study to hypothesis-generating functions that are following Epicurus’ principle that says
that one should keep all consistent hypotheses. In the case of deterministic environments
it is clear what it means to have a contradiction between a hypothesis and an observation
while in the stochastic case it is not. One can typically only say that the data makes
a hypothesis unlikely as in Example 14. We say that a hypothesis generating function
satisfies Epicurus if the update function is such that it might add new environments in any
way while removing environments if a hypothesis becomes implausible (likely to be false)
in light of the observations made. Aside from satisfying Epicurus’ principle, we design
hypothesis generating functions based mainly on wanting few mistakes to be made. For
this purpose we first define the term ε-(in)confidence. We are going to formulate the rest of
the definitions and results in this section for γ = 0, while explaining also how the general
0 < γ < 1 works. We choose to formulate the formal results for this case (γ = 0) to clarify
the reasoning and conceptual issues that apply to endless variations of the setting.

Since the true environment is unknown, an agent cannot know if it has made an ε-error
or not. However, if one assumes that the true environment is in the class G(ht), or more
generally that the class contains an environment that is optimistic with respect to the true
environment, and if the class is narrow in total variation distance in the sense (of Lemma
25) that the distance between any pair of environments in the class is small, then one can
conclude that an error is not made. Since we do not know if this extra assumption holds
for G(ht), we will use the terms ε-confident and ε-inconfident.

If the value functions in the class G(ht) differ in their predicted value by more than ε > 0,
then we cannot be sure not to make an ε-error even if we knew that the true environment
is in G(ht). We call such points ε-inconfidence points.

Definition 43 (ε-(in)confidence) Given 0 < ε < 1, we define the number of ε-inconfidence
points in the history h to be

n(h, ε) := |{t ≤ `(h) | max
ν1,ν2∈G(ht)

|V π∗
ν1 − V

π∗
ν2 | > ε}|

where π∗ := arg maxπ maxν∈G(ht) V
π
ν . In the γ = 0 case studied here, we can equiva-

lently write a∗ := arg maxa maxν∈G(ht) V
a
ν instead of π∗. The individual time points where

maxν1,ν2∈G(ht) |V π∗
ν1 − V

π∗
ν2 | > ε are the points of ε-inconfidence and the other points are the

points of ε-confidence.

Hypothesis-generating functions with budget. We suggest defining a hypothesis-generating
function from a countable enumerated classM based on a budget function for ε-inconfidence.
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The budget function N : N → N is always such that N(t) → ∞ as t → ∞. The idea is
simply that when the number of ε-inconfidence points is below budget the next environment
is introduced into the class. The intuition is that if the current hypotheses are frequently
contradictory, then the agent should resolve these contradictions before adding more. The
definition is also mathematically convenient for proving bounds on ε-errors. Besides the
budget function we also require a criterion for excluding environments. An exclusion func-
tion (criterion) is here a function ψ(M̃, h) = M′i for M̃ ⊂ M and h ∈ H such that
M′ ⊂ M̃. We will use the trivial ψ(M̃, h) = M̃ when the class of environments is guaran-
teed to asymptotically merge with the truth. The definitions below are slightly complicated
by the fact that the hypothesis class G(h) consists of environments ν̃(·) = ν(·|h) for ν in a
subset of M that can be described as {ν ∈M | ν(·|h) ∈ G(h)}.

Definition 44 (Hypothesis generation with budget and exclusion function) The
hypothesis-generating function G with class M, initial class M0 ⊂ M, accuracy ε ≥ 0,
budget N and exclusion criterion ψ, is defined recursively: First, let G(ε) := M0. If
n(ht, ε) ≥ N(t), then

G(ht) := {ν(·|ht) | ν ∈ ψ({ν ∈M | ν(·|ht−1) ∈ G(ht−1)}, ht)}

while if n(ht, ε) < N(t), let ν̃ be the environment in M with the lowest index that is not in⋃t−1
i=1{ν ∈M | ν(·|hi) ∈ G(hi)} (i.e., the next environment to introduce) and let

G(ht) := {ν(·|ht) | ν ∈ {ν̃ ∪ ψ({ν ∈M | ν(·|ht−1) ∈ G(ht−1)}, ht)}}.

7.1 Error Analysis

We now extend the agents described in Example 11 and Example 12 by removing the
demand for the classM to be finite and analyze the effect on the number of ε-errors made.
We still use the optimistic decision function and apply it to finite classes but incrementally
add environments from the full class to the finite working class of environments. The
resulting agent differs from agents such as the one in Example 15 by (among other things)
instead of having exploration phases as part of the decision function, it has a hypothesis-
generating function that sometimes adds an environment. This may cause new explorative
behavior if it becomes the optimistic hypothesis and it deviates significantly from the other
environments. A point to note about our results is that the agent designer chooses the
asymptotic error rate but a constant term gets higher for slower rates. This trade-off is due
to the fact that if new environments are included at a slower rate, then it takes longer until
the right environment is introduced while the error rate afterwards is better. If the agent
knew that the true environment had been found, then it could stop introducing more but
this is typically impossible to know.

Deterministic environments. We first extend the agent for finite classes of deterministic
environments in Example 11 to the countable case. In the finite case with a fixed class,
the proof of the finite error bound builds on the fact that every ε-error must be within
− log(ε(1−γ))

1−γ time steps before a contradiction and the bound followed immediately because
there are at most |M− 1| contradictions. In the case where environments are being added,
errors occur either before the truth is added or within that many time steps before a
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contradiction or that many time steps before the addition of a new environment. The
addition of a new environment can change the optimistic policy without a contradiction,
because the event temporarily breaks time-consistency. Hence, every added environment
after the truth has been included can add at most 2− log(ε(1−γ))

1−γ ε-errors. In the γ = 0 case
it is only at contradictions and when the truth has not been added that errors occur.

Theorem 45 (Countable deterministic class) Suppose we have a countable class of
deterministic environments M with a chosen enumeration and containing the true envi-
ronment. Also suppose we have a hypothesis-generating function G with a finite initial class
G(ε) := M0 ⊂ M, budget function N : N → N, accuracy ε = 0 and exclusion function
ψ(M̃, h) := {ν ∈ M̃ | ν consistent with h}. π◦ is defined by combining G with an optimistic
decision function. It follows that
i) The number of 0-errors m(ht, 0) is for all t at most n(ht, 0) +C for some constant C ≥ 0
(the time steps until the true environment is introduced) dependent on choice of budget
function N but not on t.
ii) ∀i ∈ N there is ti ∈ N such that ti < ti+1 and n(hti , 0) < N(ti).
Further, if we modify the hypothesis-generating function above by delaying a new environ-
ment from being introduced if more than N(t) environments (including the initial class)
have been introduced at time t, then
iii) ∀t : n(ht, 0) < N(t)
iv) m(ht, 0)/t→ 0 if N(t)/t→ 0, i.e., π◦ satisfies weak asymptotic optimality

In the theorem above, ii) says that we will always see the number of errors fall within
the budget N(t) again (except for a constant term) even if it can be temporarily above.
This means that we will always introduce more environments and exhaust the class in the
limit. The final conclusion (iv) is that π◦ satisfies weak asymptotic optimality as defined
by Lattimore and Hutter (2011a) and previously considered by Orseau (2010) who showed
that AIXI does not achieve this for the class of all computable environments. An agent with
explicit exploration phases that achieved such weak asymptotic optimality was presented
by Lattimore and Hutter (2011a) where it was also showed that for the specific countable
class of all computable environments, no agent can achieve strong asymptotic optimality,
i.e., convergence to optimal performance without averaging.

Comparing to the previous results on finite deterministic environments, we then assumed
that the truth was already in that initial class and, therefore, C = 0. Further, one will in
that case have at most have |M− 1| inconfidence points as argued in the proof of Theorem
29. Hence, m(ht, 0) ≤ n(ht, 0) + C says that we will at most have |M− 1| errors as stated
also by Theorem 29 with γ = 0. The second part of the conclusion of Theorem 45 does not
mean anything for the finite case since it relates to an indefinitely increasing budget and
environments being continually added. Therefore, the case with a finite fixed class is more
cleanly studied first by itself to then reuse the techniques adapted to the setting of growing
classes in this section.

Proof Suppose that at time t, the true environment µ is in G(ht). Then, if we do not have
a 0-inconfidence point, it follows from optimism that

V π◦
µ (ht) = max

a
V a
µ (ht) (10)
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since all the environments in G(ht) agree on the reward for the optimistic action. Hence
m(ht, 0) ≤ n(ht, 0) + C where C is the time the true environment is introduced.

However, we need to show that the truth will be introduced by proving that the
class will be exhausted in the limit. If this was not the case, then there is T such that
n(0, ht) ≥ N(t) ∀t ≥ T . Since we have 0-inconfidence points exactly when a contradic-
tion is guaranteed, n(0, ht) is then bounded by the number of environments that have
been introduced up to time t if we include the number of environments in the initial class.
Hence n(0, ht) is bounded by a finite number while (by the definition of budget function)
N(t)→∞ which contradicts the assumption. iii) follows because if there are at most N(t)
environments, and if the truth has been introduced, then one cannot have had more than
N(t) contradictions. iv) follows directly from iii).

Stochastic environments. We continue by also performing the extension of the agent in
Example 12 from finite to countable classes of stochastic environments. The absolute conti-
nuity assumption (Definition 16) is best understood in a Bayesian setting but with multiple
priors. That is, the environment class can arise as different mixtures of the environments
in a hypothesis class that the true environment is assumed to belong to. An alternative
stochastic setting is the one in Example 14 where one does not make this assumption but
instead assumes that the true environment is in the class and the agent needs to have an ex-
clusion criterion. In this section no exclusion is necessary but we instead rely on the merging
of environments guaranteed by Theorem 17. As for the deterministic setting, one can derive
the corresponding finite class result, Theorem 21, from the inequality m(ht, ε) ≤ n(ht, ε)+C
but it requires some of the reasoning of its proof.

Theorem 46 (Countable stochastic class) Suppose we have a enumerated countable
class of stochastic environments M such that the true environment µ is absolutely con-
tinuous with respect to every environment in M, a hypothesis-generating function G with a
finite initial class G(ε) =M0 ⊂ M, a budget function N : N → N and accuracy ε > 0 and
exclusion function ψ(M̃, h) := M̃ . The agent is defined by combining G with an optimistic
decision function. If for all h, there is νh ∈M that is optimistic in the sense that

max
a

V a
νh

(h) ≥ max
a

V a
µ (h),

then there is
i) µ-almost surely a C ≥ 0 such that

∀t m(ht, ε) ≤ n(ht, ε) + C

ii) µ-almost surely a sequence ti → ∞ such that n(hti , ε) < N(ti) and, therefore, any
environment in M is eventually included in G(ht) for sufficiently large t.

Proof Suppose we have a finite class Ξ of stochastic environments such that the true
environment µ is absolutely continuous with respect to all of them. Suppose that ε > 0
and that π is defined by letting G(ht) = {ν(·|ht) | ν ∈ Ξ} for all t and letting the decision
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function be optimistic. If we act according to π then we will first show that there will
µ-almost surely only be finitely many ε-inconfidence points. Furthermore, if Ξ contains an
environment that is optimistic relative to µ then only ε -inconfidence points can be ε-errors
so there are only finitely many of those.

By Theorem 17 and the finiteness of the class, there is (µ-almost surely) for any ε > 0 and
policy π, a T <∞ such that d(ξ(·|ht, π), µ(·|ht, π)) < ε ∀ξ ∈ Ξ ∀t ≥ T . We cannot know for
sure when the environments in Ξ have merged with the truth (under policy π) in this sense
but we do know when the environments have merged with each other. That they will merge
with each other follows from the fact that they all merge with µ under π. More precisely,
for all ε′ > 0 there is T < ∞ such that d(ξ1(·|ht, π), ξ2(·|ht, π)) < ε′ ∀ξ1, ξ2 ∈ Ξ ∀t ≥ T . It
follows that then |V π

ξ1
(ht) − V π

ξ2
(ht)| < ε′

1−γ ∀ξ1, ξ2 ∈ Ξ ∀t ≥ T by Lemma 18. Hence, for
any ε > 0 there are only finitely many ε-inconfidence points.

Now, let ti, i = 1, 2, 3, ... be the points where n(ε, ht) < N(t), i.e., where new environ-
ments are added. ti < ti+1 by definition. One of the aims is to show that ti → ∞ as
i → ∞. Before that we do not know if there is a ti defined for each i. Suppose that i is
such that ti is defined and suppose that there is no ti+1, i.e., that n(ht, ε) ≥ N(t) ∀t > ti.
Let Ξ := G(hti+1). Then the argument above shows that there are only finitely many ε-
inconfidence points which contradicts the assumption that n(ht, ε) ≥ N(t) ∀t > ti since
N(t)→∞. Hence ti is defined for all i and since ti < ti+1, ti →∞ as i→∞.

Finally, ε-errors can only occur at time points before there always is an optimistic envi-
ronment for µ in G(ht), before an environment in the class has merged sufficiently with µ
or at points of ε-inconfidence and this proves the claims.

Remark 47 (Extensions: γ > 0, Separable classes) As in the deterministic case, the
difference between the γ = 0 case and the 0 < γ < 1 case is that ε-errors can then also occur
within − log(ε(1−γ))

1−γ time steps before a new environment is introduced, hence the Theorem
still holds. Further, one can extend our algorithms for countable classes to separable classes
since they can by definition be covered by countably many balls of arbitrarily small radius.

Discussion and future plans. The agent studied above has the behaviour that after its
current class merges it could remain confident for such a long time that its average number
of points of inconfidence gets close to zero, but then when a new environments is introduced
a finite but potentially very long stretch of inconfidence sets in before we are back to a stretch
of confidence. Since we do not have bound on how long the inconfidence will last, we can
not set the budget function such as to guarantee convergence to zero for the average number
of errors.

If we want to achieve such convergence, extending the agent that excludes implausible
stochastic environments is more promising. The reasoning is closer to the deterministic case.
In particular if we look at the adaptive k-meteorologist algorithm, when two environments
have disagreed sufficiently much m times, one of them is excluded. The number m depends
on the desired confidence. In the deterministic case m = 1 and the confidence is complete.
Having an environment excluded after m disagreements, bounds the amount of inconfidence
caused by adding a new environment. If one wants asymptotic optimality in average,
the agent also needs to decrease ε when a new environment is introduced. We intend in
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the future to pursue the investigation into asymptotic optimality for countable classes of
stochastic environments, which together with stochastic laws (Sunehag and Hutter, 2015)
and practical implementation constitute important questions not addressed here.

8. Conclusions

We studied sequential decision-making in general reinforcement learning. Our starting
point was decision-theoretic axiomatic systems of rational behavior and a framework to
define agents within. We wanted to axiomatically exclude agents that are doing things that
one clearly should not, before considering achieving good performance guarantees. This is
important because if the guarantees are for a relatively short horizon they can sometimes be
achieved by highly undesirable strategies. The guarantees only imply that the agent learns
well from its experiences.

After introducing two sets of rationality axioms, one for agents with a full horizon and
one for agents with a limited horizon that required optimism, we then introduced a frame-
work using hypothesis-generating functions and decision functions to define rational general
reinforcement learning agents. Further, we designed optimistic agents within this frame-
work for different kinds of environment classes and proved error bounds and asymptotic
properties. This was first done for finite classes and then extended to arbitrary countable
classes. Along the way we introduced the concept of deterministic environments defined by
combining partial laws and showed that the studied optimistic agents satisfy more desirable,
potentially exponentially better, guarantees in such a setting. A further step would be to
also apply that strategy in the stochastic setting.
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Appendix A. Asymptotic Optimality of the Liberal Agent

This section contains a proof of the asymptotic optimality Theorem 27 for the liberal version
of Algorithm 1 called Algorithm 1’, which can (but does not have to) leave the inner loop
even when ν∗ ∈ Mt−1. We are also more explicit and provide some intuition behind the
subtleties hidden in the conservative case. The notation used here is somewhat different
to the main paper. The fact that environments and policies are deterministic is heavily
exploited in notation and proof technique.

Policies versus action sequences. A deterministic policy π : H → A in some fixed deter-
ministic environment ν : H×A → O ×R induces a unique history hπ,ν , and in particular
an action an sequence a1:∞. Conversely, an action sequence a1:∞ defines a policy in a fixed
environment ν. Given ν, a policy and an action sequence are therefore equivalent. But a
policy applied to multiple environments is more than just an action sequence. More on this
later. For now we only consider action sequences a1:∞ rather than policies.

Definitions. Let

M∞ = finite class of environments

rνt (a1:t) = reward at time t when performing actions a1:t in environment ν

V at:∞
ν (a<t) =

∑∞
k=t r

ν
k(a1:k)γ

k−t = value of ν and a1:∞ from time t on

V at:∞
∗ (a<t) = maxν∈M∞ V

at:∞
ν (a<t) = optimistic value from time t on

a∗1:∞∈A∗1:∞ = {arg maxa1:∞ V
a1:∞
∗ (ε)} = set of optimistic action sequences

h◦t = hπ
◦,µ
t = ȧ1ȯ1ṙ1...ȧtȯtṙt = actually realized history

by Algorithm π◦ in true environment µ

generated via µ(h◦t−1, ȧt) = ȯtṙt and π◦(h◦t−1) = ȧt

Consistency. There is a finite initial phase during which environments ν can become incon-
sistent with h◦t in the sense of hπ

◦,ν
t 6= h◦t . Algorithm 1 eliminates environments as soon as

they become known to be inconsistent. Since here we are interested in asymptotic optimal-
ity only, we can ignore this finite initial phase 1, ..., T − 1 and shift time T back to 1. This
simplifies notation considerable. We hence assume that all environments in M∞ are from
the outset and forever consistent, i.e., hπ

◦,ν
∞ = h◦∞ ∀ν ∈M∞. This implies that

ṙt = rνt (ȧ1:t) is independent of ν ∈M∞ for all t (∞-consistency) (11)
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It does not imply that all environments in M∞ are the same, they only look the same on
the one chosen action path ȧ1:∞, but different actions, e.g., ãt =look-left instead of ȧt =look-
right could reveal that ν differs from µ, and ãt =go-left instead of ȧt =go-right can probe
completely different futures. This is relevant and complicates analysis and actually foils
many naively plausible conjectures, since an action ȧt is only optimal if alternative actions
are not better, and this depends on how the environment looks off the trodden path, and
there the environments in M∞ can differ.

Optimistic liberal algorithm π◦. At time t, given ȧ<t, Algorithm π◦ chooses action ȧt
optimistically, i.e., among

ȧt ∈ {arg max
at

max
at+1:∞

V at:∞
∗ (ȧ<t)} (12)

More precisely, we define Algorithm 1’ properly with usingMt−1 at time t generating action
sequence ȧ1:∞. After t > T , we can use M∞ =Mt−1, i.e., (12) is equivalent to Algorithm
1’ for t > T . Now we shift back T  1, and (12), which usesM∞, is a correct formalization
of Algorithm 1’. Note thatM∞ depends on the choice of ȧ1:∞ the algorithm actually makes
in case of ambiguities. From now on ȧ1:∞ will be a single fixed sequence, chosen by some
particular deterministic optimistic algorithm.

Lemma 48 (Optimistic actions) ȧ1:∞ ∈ A∗1:∞ i.e., V ȧ1:∞
∗ (ε) = maxa1:∞ V

a1:∞
∗ (ε).

Proof For |M∞| = 1, this follows from the well-known fact in planning that optimal action
trees lead to optimal policies and vice versa (under time-consistency (Lattimore and Hutter,
2011b)). For general |M∞| ≥ 1, ∞-consistency (11) is crucial. Using the value recursion

V a1:∞
ν (ε) =

t−1∑
k=1

rνk(a1:k) γ
k−1 + γtV at:∞

ν (a<t), we get:

γt max
at:∞

V at:∞
∗ (ȧ<t) = max

at:∞
max
ν∈M∞

[
V ȧ<tat:∞
ν (ε)−

∑t−1
k=1

=ṙk︷ ︸︸ ︷
rνk(ȧ1:k) γ

k−1︸ ︷︷ ︸
independent ν and at:∞

]
= max

at:∞
V ȧ<tat:∞
∗ (ε)− const.

Replacing maxat by arg maxat we get

arg max
at

max
at+1:∞

V at:∞
∗ (ȧ<t) = arg max

at
max
at+1:∞

V ȧ<tat:∞
∗ (ε) (13)

We can define the set of optimistic action sequences A∗1:∞ = {arg maxa1:∞ V
a1:∞
∗ (ε)} recur-

sively as

A∗1:t := {arg max
a1:t

max
at+1:∞

V a1:∞
∗ (ε))}

= {(a∗<t, arg max
at

max
at+1:∞

V
a∗<tat:∞
∗ (ε)) : a∗<t ∈ A∗<t},

A∗1:∞ = {a1:∞ : a1:t ∈ A∗1:t ∀t}

This shows that any sequence ã1:∞ that satisfies the recursion

ãt ∈ {arg max
at

max
at+1:∞

V ã<tat:∞
∗ (ε))} (14)
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is in A∗1:∞. Plugging (13) into (12) shows that ã1:∞ = ȧ1:∞ satisfies recursion (14), hence
ȧ1:∞ ∈ A∗1:∞.

Lemma 49 (Optimism is optimal) V ȧ1:∞
µ (ε) = maxa1:∞ V

a1:∞
µ (ε).

Note that by construction and Lemma 48, ȧ1:∞ maximizes the (known) optimistic value
V a1:∞
∗ and by Lemma 49 also the (unknown) true value V a1:∞

µ ; a consequence of the strong

asymptotic consistency condition (11). Also note that V ȧ1:∞
µ = V ȧ1:∞

∗ but V a1:∞
µ 6= V a1:∞

∗
for a1:∞ 6= ȧ1:∞ is possible and common.
Proof The ≤ direction is trivial (since maximization is over all action sequences. For lim-
ited policy spaces Π 6= Πall this may no longer be true). The following chain of (in)equalities
proves the ≥ direction

max
a1:∞

V a1:∞
µ (ε) ≤ max

a1:∞
V a1:∞
∗ (ε) = V ȧ1:∞

∗ (ε) = max
ν∈M∞

∞∑
k=1

rνk(ȧ1:k)γ
k−1

= max
ν∈M∞

∞∑
k=1

ṙkγ
k−1︸ ︷︷ ︸

indep.ν

=
∞∑
k=1

ṙkγ
k−1 =

∞∑
k=1

rµk (ȧ1:k)γ
k−1 = V ȧ1:∞

µ (ε)

where we used in order: definition, Lemma 48, definition, consistency of ν ∈M∞, indepen-
dence of ν, µ ∈M∞ and consistency again, and definition.

Proof of Theorem 27 for liberal Algorithm 1.
As mentioned, for a fixed deterministic environment ν, policies and action sequences are

interchangeable. In particular maxπ V
π
ν (ε) = maxa1:∞ V

a1:∞
ν (ε). This is no longer true for

V∗: There are π such that for all a1:∞, V π
∗ 6= V a1:∞

∗ , since π may depend on ν but a1:∞ not.
This causes us no problems, since still maxπ V

π
∗ = maxa1:∞ V

a1:∞
∗ , since

max
π

max
ν

V π
ν (ε) = max

ν
max
π

V π
ν (ε) = max

ν
max
a1:∞

V a1:∞
ν (ε) = max

a1:∞
max
ν

V a1:∞
ν (ε)

Similar (non)equalities hold for V (ht). Hence Lemmas 48 and 49 imply V π◦
∗ = maxπ V

π
∗

and V π◦
µ = maxπ V

π
µ .

Now if we undo the shift T  1, actually shift T  t, Lemma 49 implies V π◦
µ (h◦t ) =

maxπ V
π
µ (h◦t ) for all t ≥ T . This is just Theorem 1 for the liberal algorithm.

Appendix B. Countable Sets of Events

Instead of a finite set of possible outcomes, we will in this section assume a countable set.
We suppose that the set of bets is a vector space of sequences xk, k = 0, 1, 2, ... where we use
point-wise addition and multiplication with a scalar. We will define a space by choosing a
norm and let the space consist of the sequences that have finite norm as is common in Banach
space theory. If the norm makes the space complete it is called a Banach sequence space
(Diestel, 1984). Interesting examples are `∞ of bounded sequences with the maximum norm
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‖(αk)‖∞ = max |αk|, c0 of sequence that converges to 0 equipped with the same maximum
norm and `p which for 1 ≤ p <∞ is defined by the norm

‖(αk)‖p = (
∑
|αk|p)1/p.

For all of these spaces we can consider weighted versions (wk > 0) where

‖(αk)‖p,wk = ‖(αkwk)‖p.

This means that α ∈ `p(w) iff (αkwk) ∈ `p, e.g., α ∈ `∞(w) iff supk |αkwk| < ∞. Given a
Banach (sequence) spaceX we use X ′ to denote the dual space that consists of all continuous
linear functionals f : X → R. It is well known that a linear functional on a Banach space is
continuous if and only if it is bounded, i.e that there is C <∞ such that |f(x)|

‖x‖ ≤ C ∀x ∈ X.

Equipping X ′ with the norm ‖f‖ = sup |f(x)|
‖x‖ makes it into a Banach space. Some examples

are (`1)′ = `∞, c′0 = `1 and for 1 < p < ∞ we have that (`p)′ = `q where 1/p + 1/q = 1.
These identifications are all based on formulas of the form

f(x) =
∑

xipi

where the dual space is the space that (pi) must lie in to make the functional both well
defined and bounded. It is clear that `1 ⊂ (`∞)′ but (`∞)′ also contains “stranger” objects.

The existence of these other objects can be deduced from the Hahn-Banach theorem (see
e.g., Kreyszig (1989) or Naricia and Beckenstein (1997)) that says that if we have a linear
function defined on a subspace Y ∈ X and if it is bounded on Y then there is an extension
to a bounded linear functional on X. If Y is dense in X the extension is unique but in
general it is not. One can use this Theorem by first looking at the subspace of all sequences
in `∞ that converge and let f(α) = limk→∞ αk. The Hahn-Banach theorem guarantees the
existence of extensions to bounded linear functionals that are defined on all of `∞. These
are called Banach limits. The space (`∞)′ can be identified with the so called ba space of
bounded and finitely additive measures with the variation norm ‖ν‖ = |ν|(A) where A is the
underlying set. Note that `1 can be identified with the smaller space of countably additive
bounded measures with the same norm. The Hahn-Banach Theorem has several equivalent
forms. One of these identifies the hyper-planes with the bounded linear functionals (Naricia
and Beckenstein, 1997).

Definition 50 (Rationality (countable case)) Given a Banach sequence space X of
bets, we say that the decision maker (subset Z of X defining acceptable bets and Z̃ the
rejectable bets) is rational if

1. Every bet x ∈ X is either acceptable or rejectable or both

2. x is acceptable if and only if −x is rejectable.

3. x, y ∈ Z, λ, γ ≥ 0 then λx+ γy ∈ Z

4. If xk > 0 ∀k then x is acceptable and not rejectable

In the case of a finite dimensional space X, the above definition reduces to Definition 8.
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Theorem 51 (Linear separation) Suppose that we have a space of bets X that is a Ba-
nach sequence space. Given a rational decision maker there is a positive continuous linear
functional f : X → R such that

{x | f(x) > 0} ⊆ Z ⊆ {x | f(x) ≥ 0}. (15)

Proof The third property tells us that Z and −Z are convex cones. The second and fourth
property tells us that Z 6= X. Suppose that there is a point x that lies in both the interior
of Z and of −Z. Then the same is true for −x according to the second property and for the
origin. That a ball around the origin lies in Z means that Z = X which is not true. Thus
the interiors of Z and −Z are disjoint open convex sets and can, therefore, be separated by
a hyperplane (according to the Hahn-Banach theorem) which goes through the origin (since
according to the second and fourth property the origin is both acceptable and rejectable).
The first two properties tell us that Z ∪−Z = X. Given a separating hyperplane (between
the interiors of Z and −Z), Z must contain everything on one side. This means that Z is
a half space whose boundary is a hyperplane that goes through the origin and the closure
Z̄ of Z is a closed half space and can be written as {x | f(x) ≥ 0} for some f ∈ X ′. The
fourth property tells us that f is positive.

Corollary 52 (Additivity) 1. If X = c0 then a rational decision maker is described by a
countably additive (probability) measure.
2. If X = `∞ then a rational decision maker is described by a finitely additive (probability)
measure.

It seems from Corollary 52 that we pay the price of losing countable additivity for
expanding the space of bets from c0 to `∞ but we can expand the space even more by
looking at c0(w) where wk → 0 which contains `∞ and X ′ is then `1((1/wk)). This means
that we get countable additivity back but we instead have a restriction on how fast the
probabilities pk must tend to 0. Note that a bounded linear functional on c0 can always be
extended to a bounded linear functional on `∞ by the formula f(x) =

∑
pixi but that is not

the only extension. Note also that every bounded linear functional on `∞ can be restricted
to c0 and there be represented as f(x) =

∑
pixi. Therefore, a rational decision maker for

`∞-bets has probabilistic beliefs (unless pi = 0 ∀i), though it might also take asymptotic
behavior of a bet into account. For example the decision maker that makes decisions based
on asymptotic averages limn→∞

1
n

∑n
i=1 xi when they exist. This strategy can be extended

to all of `∞ and is then called a Banach limit. The following proposition will help us decide
which decision maker on `∞ is endowed with countably additive probabilities.

Proposition 53 Suppose that f ∈ (`∞)′. For any x ∈ `∞, let xji = xi if i ≤ j and xji = 0
otherwise. If for any x,

lim
j→∞

f(xj) = f(x),

then f can be written as f(x) =
∑
pixi where pi ≥ 0 and

∑∞
i=1 pi <∞.
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Proof The restriction of f to c0 gives us numbers pi ≥ 0 such that
∑∞

i=1 pi < ∞ and

f(x) =
∑
pixi for x ∈ c0. This means that f(xj) =

∑j
i=1 pixi for any x ∈ `∞ and j < ∞.

Thus limj→∞ f(xj) =
∑∞

i=1 pixi.

Definition 54 (Monotone decisions) We define the concept of a monotone decision
maker in the following way. Suppose that for every x ∈ `∞ there is N < ∞ such that
the decision is the same for all (as defined above) xj , j ≥ N as for x. Then we say that the
decision maker is monotone.

Example 55 Let f ∈ `∞ be such that if limαk → L then f(α) = L (i.e., f is a Banach
limit). Furthermore define a rational decision maker by letting the set of acceptable bets
be Z = {x | f(x) ≥ 0}. Then f(xj) = 0 (where we use notation from Proposition 53) for
all j < ∞ and regardless of which x we define xj from. Therefore, all sequences that are
eventually zero are acceptable bets. This means that this decision maker is not monotone
since there are bets that are not acceptable.

Theorem 56 (Monotone rationality) Given a monotone rational decision maker for
`∞ bets, there are pi ≥ 0 such that

∑
pi <∞ and

{x |
∑

xipi > 0} ⊆ Z ⊂ {x |
∑

xipi ≥ 0}. (16)

Proof According to Theorem 51 there is f ∈ (`∞)′ such that (the closure of Z) Z̄ =
{x| f(x) ≥ 0} . Let pi ≥ 0 be such that

∑
pi <∞ and such that f(x) =

∑
xipi for x ∈ c0.

Remember that xj (notation as in Proposition 53) is always in c0. Suppose that there is x
such that x is accepted but

∑
xipi < 0. This violate monotonicity since there exists N <∞

such that
∑n

i=1 xipi < 0 for all n ≥ N and, therefore, xj is not accepted for j ≥ N but x
is accepted. We conclude that if x is accepted then

∑
pixi ≥ 0 and if

∑
pixi > 0 then x is

accepted.

Appendix C. List of important notation

t generic time point

T special time point

A,O,R action/observation/reward sets

ht = a1o1r1...atotrt = (action,observation,reward) history

h0 = ε empty history/string

ε ≥ 0 accuracy

δ probability/confidence

0 ≤ γ < 1 discount factor

Oj set for the j:th feature

~x = (xi) ∈ O = ×mj=1Oj feature vector in Section 5
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⊥ not predicted feature

O⊥ = ×mj=1(Oj ∪ {⊥}) observation set enhanced by ⊥
π : H → A generic policy π ∈ Π

π̃ some specific policy π

π◦ optimistic policy actually followed.

(π∗t , ν
∗
t ) optimistic (policy,environment) (used only) at time t

V π
ν (ht) future value of π interacting with ν given ht

M,M̃,M̂ finite or countable class of environments

M0 initial class of environments

m(h, ε) number of ε-errors during h

n(h, ε) number of ε-inconfidence points

Ξ finite class of dominant environments

ν ∈M generic environment

ξ ∈ Ξ dominant environment

µ true environment

T finite class of laws

τ ∈ T generic law

q1(τ, h, a) features not predicted by τ in context h, a

q2(τ, h, a) features predicted by τ in context h, a

M(T ) environments generated by deterministic laws

Ξ(T ) environments generated by stochastic laws

M̄(P, T ) semi-deterministic environments from background and laws

ω elementary random outcome from some sample space

ωt = otrt = perception at time t

x = (xi) bet in Section 2

y = (yi) bet in Section 2

p = (pi) probability vector

f decision function

G hypothesis-generating function
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