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Abstract

Discovery of causal relations from data is a fundamental objective of several scientific dis-
ciplines. Most causal discovery algorithms that use observational data can infer causality
only up to a statistical equivalency class, thus leaving many causal relations undetermined.
In general, complete identification of causal relations requires experimentation to augment
discoveries from observational data. This has led to the recent development of several
methods for active learning of causal networks that utilize both observational and experi-
mental data in order to discover causal networks. In this work, we focus on the problem of
discovering local causal pathways that contain only direct causes and direct effects of the
target variable of interest and propose new discovery methods that aim to minimize the
number of required experiments, relax common sufficient discovery assumptions in order
to increase discovery accuracy, and scale to high-dimensional data with thousands of vari-
ables. We conduct a comprehensive evaluation of new and existing methods with data of
dimensionality up to 1,000,000 variables. We use both artificially simulated networks and
in-silico gene transcriptional networks that model the characteristics of real gene expression
data.
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1. Introduction

Discovery of causal relations from data is a fundamental objective of several scientific disci-
plines including computer science, statistics, and applied mathematics (Pearl, 2009; Spirtes
et al., 2000; Neapolitan, 2003; Pearl, 1997). Obtaining data from randomized controlled
experiments, while being essential for the discovery of causality, is very expensive and is
often infeasible or unethical. On the other hand, observational data that is collected with-
out experimental interference of the values of variables is highly abundant and can often
be collected cheaply. Over the last 20 years, many sound algorithms have been proposed
that can use observational data to infer causal relations (Pearl, 2009; Spirtes et al., 2000;
Glymour and Cooper, 1999) and several empirical studies have verified their applicability
and scalability to high-dimensional data (Aliferis et al., 2010a,b). However, observational
data is, in general, insufficient to completely unravel all causal relations among measured
variables, because many causal relations cannot be statistically distinguished with observa-
tional data alone (e.g., multiple graphs in the Markov equivalence class). Therefore, it is
essential to refine discoveries from observational data with limited and targeted experimen-
tal data (Spirtes et al., 2000). This has led to the recent development of several methods
for active learning of causal networks that utilize observational and experimental data in
order to discover causal networks (Tong and Koller, 2001; Murphy, 2001; He and Geng,
2008; Meganck et al., 2006; Hyttinen et al., 2010; Eberhardt et al., 2010; Hyttinen et al.,
2012; Pe’er et al., 2001; Sachs et al., 2005).

The present work is concerned with the problem of discovery of local causal pathways
that only contain direct causes and direct effects of the target variable of interest, rather
than learning the structure of the entire causal network that represents all causal rela-
tions among all measured variables. Knowledge of direct causes and effects is crucial for
understanding the mechanisms of causality, and knowledge of direct causes particularly fa-
cilitates the design of effective interventions. Existing methods for discovery of local causal
pathways fully rely on observational data and can discover causality up to a Markov equiv-
alence class, leaving many causal relations undetermined (Spirtes et al., 2000; Aliferis et al.,
2010a). Thus, experimental/manipulated data is needed to complement the discovery from
observational data. For experimental/manipulated data, we consider here only data from
fully randomized experiments (also known as surgical or edge-breaking). In the present
study, all decisions about edge orientation are based on experimental data exclusively. It
is noteworthy that the problem of local causal pathway discovery from observational and
limited experimental data has not been addressed in the literature previously.

While developing new methods for local causal pathway discovery from observational
and experimental data, we set four objectives. First, to minimize the number of experiments
needed to refine discoveries from observational data. Second, to relax sufficient assumptions
of existing discovery methods in order to take into account multiplicity of local causal path-
ways consistent with the data (Statnikov et al., 2013; Statnikov and Aliferis, 2010). The
latter has potential to reduce the number of false negative and false positives predictions
and improve overall discovery accuracy. Third, to scale to very high-dimensional data with
many thousands of variables. Finally fourth, to achieve sufficiently good structure discovery
performance.

As a result of this work, we introduce new ultra-scalable and experimentally efficient
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local causal pathway discovery methods and conduct a comprehensive evaluation of new
and existing techniques with high-dimensional data with up to 1,000,000 variables. We use
both artificially simulated networks and in-silico gene transcriptional networks that model
the characteristics of real gene expression data. In the latter networks, we focus on discov-
ery of local causal transcriptional pathways of genes. Learning transcriptional pathways is
one of the key problems in biomedicine and is a major component of the efforts to develop
new diagnostics, vaccines and therapies that will diagnose, prevent and treat deadly human
diseases.

The remainder of the paper is organized as follows. Section 2 provides general theory
and background. Section 3 provides an overview and discussion of prior methods for active
learning of causal networks and how these methods were applied in our study. Section 4
introduces new methods for local causal pathway discovery from observational and experi-
mental data. Section 5 describes empirical assessment of methods in artificially simulated
networks and realistic in-silico gene networks of high dimensionality. The paper concludes
with Section 6, which summarizes the main findings and outlines directions for future work.

2. Background and Theory

In this section, general theory and background on causal modeling is provided.

2.1 Notation and Key Definitions

In this paper upper-case letters in italics denote random variables (e.g., A, B, C) and lower-
case letters in italics denote their values (e.g., a, b, c). Upper-case bold letters in italics
denote random variable sets (e.g., X, Y ,Z) and lower-case bold letters in italics denote
their values (e.g., x, y, z). The terms variables and vertices are used interchangeably. If
a graph contains an edge X → Y , then X is a parent of Y and Y is a child of X. An
undirected edge X — Y denotes an adjacency relation between X and Y (i.e., presence of
an edge directly connecting X and Y ). A path p is a set of consecutive edges (indepen-
dent of the direction) without visiting a vertex more than once. A directed path p from
X to Y is a set of consecutive edges with same direction (“→”) connecting X with Y , i.e.
X → ...→ Y . X is an ancestor of Y (and Y is a descendant of X) if there exists a directed
path p from X to Y . A directed cycle is a nonempty directed path that starts and ends
on the same vertex X. We consider in this work two types of graphs: (i) directed graphs
where vertices are connected only with edges “→” and (ii) directed acyclic graphs (DAGs)
without directed cycles and where vertices are connected only with edges “→”.

When the two sets of variables X and Y are conditionally independent given a set of
variables Z in the joint probability distribution P, we denote this as X ⊥ Y |Z. For nota-
tional convenience, conditional dependence is defined as absence of conditional independence
and denoted as X 6⊥ Y |Z. Two sets of variables X and Y are considered independent and
denoted as X ⊥ Y , when X and Y are conditionally independent given an empty set of
variables. Similarly, the dependence of X and Y is defined and denoted as X 6⊥ Y .

We further refer the readers to (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003; Gly-
mour and Cooper, 1999) to review the standard definitions of conditional independence,
collider, blocked path, d-separation, and causal sufficiency that are used in this work. Be-
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low we review only several essential definitions:
Definition of local Markov condition: The joint probability distribution P over variables

V satisfies the local Markov condition for a directed acyclic graph (DAG) G =< V ,E > if
and only if for each W in V , W is conditionally independent of all variables in V excluding
descendants of W given parents of W (Richardson and Spirtes, 1999).

Definition of global Markov condition: The joint probability distribution P over vari-
ables V satisfies the global Markov condition for a directed graph G =< V ,E > if and only
if for any three disjoint subsets of variables X, Y , Z from V , if X is d-separated from Y
given Z in G then X is independent of Y given Z in P (Richardson and Spirtes, 1999).

If the underlying graph G is a DAG, then the global Markov condition is equivalent to
the local Markov condition (Richardson and Spirtes, 1999).

Definition of Bayesian network: N =< G,P > is a Bayesian network if the joint proba-
bility distribution P satisfies the local Markov condition for the DAG G.

Next we provide an operational definition of causation and of a causal Bayesian network
and local causal pathway. Notice that the following definition of causation matches the
notion of randomized controlled experiment, which is the de facto standard for assessing
macroscopic causation in the sciences (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003;
Glymour and Cooper, 1999).

Definition of causation, direct/indirect causation: Assume that a hypothetical experi-
menter can force a variable X to take specific values (i.e., to manipulate it). We say that
X is a cause of Y (and Y is an effect of X) if the probability distribution of Y changes for
some manipulation of X. X is the direct cause of Y with respect to V , if: (i) X is a cause
of Y , (ii) some manipulation of X would result in changes in the probability distribution
of Y , no matter whether any variable in V \ {X,Y } were manipulated. If X is a direct
cause of Y relative to V , we say that there is a causal chain from X to Y . X is an indirect
cause of Y with respect to V if there is a causal chain from X to Y of length greater than
2 (Pearl, 2009; Spirtes et al., 2000; Neapolitan, 2003; Glymour and Cooper, 1999).

We define causal Markov condition and causal Bayesian network by using the original
definitions with the additional semantics that if there is an edge A→ B in G then A directly
causes B (for all A and B ∈ V) (Spirtes et al., 2000).

Definition of local causal pathway: A local causal pathway of a target variable T is the
set of its parents (direct causes) and children (direct effects) of T in the data-generative
directed graph G =< V ,E >.

Definition of passenger: A passenger is a correlate of a target variable T and is neither
a cause nor an effect of T.

Definition of local causal sufficiency: The variable set V ′ satisfies the local causal suffi-
ciency condition if and only if it contains every common cause of all variables adjacent with
a target variable T in the data-generative directed graph G =< V ,E >.

Next we provide several definitions of the faithfulness condition. This condition is es-
sential for causal discovery from data.

Definition of graph faithfulness: If all and only the conditional independence relations
that are true in P defined over variables V are entailed by the global Markov condition
applied to a directed graph G =< V ,E >, then P and G are graph faithful to one another.

A relaxed version of graph faithfulness is given in the following definition:
Definition of adjacency faithfulness: Given a directed graph G =< V ,E > and a joint
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probability distribution P defined over variables V , P and G are adjacency faithful to one
another if every adjacency relation between X and Y in G implies that X and Y are con-
ditionally dependent given every subset of V \ {X,Y } in P (Ramsey et al., 2006).

The adjacency faithfulness condition can be relaxed to focus on the specific target vari-
able of interest:

Definition of local adjacency faithfulness: Given a directed graph G =< V ,E > and
a joint probability distribution P defined over variables V , P and G are locally adjacency
faithful with respect to T if every adjacency relation between T and X in G implies that T
and X are conditionally dependent given any subset of V \ {T,X} in P (Statnikov et al.,
2013).

It is known that some violations of the adjacency faithfulness condition can be attributed
to violations of the intersection property of probability distributions (Pearl, 1997; Statnikov
et al., 2013). This leads to distributions with variables that contain equivalent information
(Statnikov et al., 2013; Lemeire, 2007). Such violations of the adjacency faithfulness condi-
tion constitute the focus of the paper because they are abundant in real biological networks,
such as transcriptional gene regulatory networks (Statnikov et al., 2013; Statnikov and Alif-
eris, 2010; Dougherty and Brun, 2006), which are commonly investigated in computational
causal discovery. For completeness, we also note that other violations of faithfulness exist
in real biological networks and other real-life distributions, e.g. Simpsons paradox (Spirtes
et al., 2000). While the latter violations may be equally important and not infrequent, they
require a principally different treatment and often discovery techniques to address them are
yet to be discovered; therefore we focus here only on violations due to information equiva-
lencies.

Definition of target information equivalency: Two subsets of variables X and Y from
V are target information equivalent with respect to a variable T iff the following conditions
hold T 6⊥X, T 6⊥ Y , T ⊥X|Y , and T ⊥X|Y (Lemeire, 2007).

For example, consider a joint probability distribution P described by a causal Bayesian
network with graph A→ B → T where A, B, and T are binary random variables that take
values {0, 1}. Given the local Markov condition, the joint probability distribution can be
defined as follows: P (A = 0) = 0.3, P (B = 0|A = 1) = 1.0, P (B = 1|A = 0) = 1.0, P (T =
0|B = 1) = 0.2, P (T = 0|B = 0) = 0.4. It follows that A and B contain equivalent infor-
mation about T and adjacency faithfulness is violated because T ⊥ B|A.

While the above example showed information equivalencies resulting from deterministic
relations, information equivalencies follow from a broader class of distributions with both
deterministic and non-deterministic information equivalencies (e.g., see Figure 1 in Stat-
nikov et al. (2013)).

Finally, we provide a definition of a near-faithfulness condition, which is going to be
one of the sufficient assumptions for the novel causal discovery algorithms described in this
work.

Definition of target information equivalency (TIE) near-faithfulness: A joint probabil-
ity distribution P and a directed graph G =< V ,E > are target information equivalency
(TIE) near-faithful to one another if all violations of faithfulness can be attributed only to
presence of target information equivalency relations in P.
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Figure 1: Graphical representation of an example TIE near-faithful causal network around
a target variable T . The target variable T is shown in the middle of the network.
Variables that are shown with the same color contain equivalent information
about T . Variables in the local causal pathway of T are X1, X7, X12, X18, and
X21. Local causal discovery techniques that assume faithfulness (e.g., GLL-PC)
will output one variable of each colored group. TIE* will output all subsets
of the union of colored variables such that each subset has one variable from
each colored group. No existing method will precisely determine the correct set
{X1, X7, X12, X18, X21}.

2.2 Local Causal Pathway Discovery from Observational Data in Faithful and
Target Information Equivalency (TIE) Near-faithful Distributions

Prior research has provided sound conditional independence-based algorithms (e.g., GLL-
PC from the Generalized Local Learning (GLL) family) for discovery of local causal pathway
members from observational data under the assumptions of graph faithfulness (or local ad-
jacency faithfulness with causal Markov condition), local causal sufficiency, and correctness
of statistical decisions about dependence and independence (Aliferis et al., 2010a,b). To be
precise, these methods only output the set of direct causes and effects of the target variable,
but do not distinguish which members of the output set are direct causes and which ones are
direct effects. The latter task requires randomized experiments or determination of edge
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orientation through edge-orienting algorithms, temporal order, domain knowledge, or other
post-processing criteria.

When the distribution is TIE near-faithful but not faithful, GLL-PC and other local
causal discovery methods that assume faithfulness may lead to both false positives and
false negatives in their output. Furthermore, false positives may neither be causes nor
effects of the target variable. Consider an example causal network in Figure 1, which rep-
resents a TIE near-faithful distribution. The local causal pathway of the target variable
T consists of five variables: {X1, X7, X12, X18, X21}. Variables that are shown with circles
of the same color contain equivalent information about T . For example, since X1 and X6

contain equivalent information about T , the following relation holds: T ⊥ X1|X6. Thus,
for example, GLL-PC may erroneously eliminate X1 from the output (false negative) and
conclude that X6 is a member of the local causal pathway of T (false positive). In this
distribution, there are 1,620 sets of five variables (= 6 ’blue’ × 5 ’green’ × 6 ’red’ × 3 ’grey’
× 3 ’yellow’ variables) that contain equivalent information about T . Notice that while only
one of these 1,620 five-variable sets constitutes a local causal pathway of T , each of these
five-variable sets can be arbitrarily output by GLL-PC or another local causal discovery
algorithm that requires the same assumptions for soundness as GLL-PC, e.g. algorithms
from (Peña et al., 2007). We say in such cases that there is a multiplicity of local causal
pathways consistent with the data.

To address causal discovery in TIE near-faithful distributions, we have recently intro-
duced two sound and complete algorithms TIE* and iTIE* (Statnikov et al., 2013) (described
in Appendix F). These algorithms utilize conditional independence tests and allow discovery
of all possible local causal pathways consistent with the data. In the example in Figure 1,
these algorithms would identify all equivalency relations and output all 1,620 five-variable
sets that span over variables X1, ..., X23. To further identify direct causes and direct effects
of T in the variables output by the algorithms (the union of all equivalent sets of variables),
one would need to resort to randomized experiments both because of target information
equivalency and statistical indistinguishability of direct causes and effects in the context of
local learning.

Now consider the global network learning methods such as SGS, PC (Spirtes et al., 2000),
IC (Pearl, 2009), MMHC (Tsamardinos et al., 2006a), and LGL (Aliferis et al., 2010b) or
region-based learning methods such as PCD-by-PCD (Yin et al., 2008), that under graph
faithfulness, causal sufficiency, and correctness of statistical decisions can identify not only
adjacency relations but also some edge orientations. The graphs output by these methods
will be in general incomplete with regards to orientation because multiple graphs belong to
the same Markov equivalence class of graphs and thus cannot be distinguished with obser-
vational data alone (Spirtes et al., 2000).

3. Prior Methods and Variants

Because learning a global causal network (that spans all measured variables) is substantially
harder than learning a local causal pathway for a target variable, global methods fail to scale
as the local ones. In order to experimentally test prior methods in high dimensional set-
tings, we also introduce local versions of those that do not affect their soundness or quality.
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Overall, we have considered 58 existing methods/variants spanning three main algorith-
mic families: conditional independence constraint-based structure learning (He and Geng,
2008; Meganck et al., 2006), linear cyclic models (Hyttinen et al., 2010; Eberhardt et al.,
2010; Hyttinen et al., 2012) and Bayesian search-and-score (Pe’er et al., 2001; Sachs et al.,
2005). These methods were chosen because they (i) reflect the current state-of-the-art in
causal discovery, (ii) make use of observational and experimental data to produce directed
causal networks, and (iii) are likely to scale to data of high dimensionality, unlike early
methods for active learning of causal networks such as (Tong and Koller, 2001; Murphy,
2001). We describe the core ideas of each algorithmic family along with various variants
below.

3.1 Conditional Independence Constraint-based Structure Learning

This family includes the ALCBN (Meganck et al., 2006) method and the method due to
He and Geng (He and Geng, 2008). The main idea of these approaches is to learn an undi-
rected1 or partially directed graph from observational data (which represents the Markov
equivalence class of graphs consistent with observational data), and then perform experi-
ments to orient undirected edges. Both methods use the PC algorithm (Spirtes et al., 2000)
to obtain an undirected or partially directed graph from observational data. The methods
then use some decision criterion to select a variable for experimentation/manipulation, with
the goal of maximizing the number of edges that are oriented after the experiment. The AL-
CBN algorithm uses either the mini-max, maxi-min or Laplace decision criteria (Meganck
et al., 2006), whereas the method of He and Geng uses either the maxi-min or maximum
entropy criteria (He and Geng, 2008). Once the variable is selected and manipulated, they
perform a statistical independence test between the manipulated variable and each of its
unoriented adjacencies in the graph, using experimental data. Adjacent variables that are
associated with the manipulated variable are deduced to be direct effects, and all other ad-
jacencies are direct causes (Spirtes et al., 2000). The ALCBN method repeats this process
until all edges in the graph are oriented. The method of He and Geng first partitions the
graph into chain components which are only connected by directed edges and orients each
of these components separately. In addition to original methods, we also explored variants
of these methods that restrict experimentation to the local causal pathway around a vari-
able of interest/target or the chain component containing the variable of interest/target. A
detailed list of all employed 24 methods/variants from this family (denoted as ALCBN and
HE-GENG, accordingly) is given in Table A1 in Appendix A.

3.2 Linear Cyclic Models

This family includes three methods based on linear cyclic models with latent variables (Hyt-
tinen et al., 2010; Eberhardt et al., 2010; Hyttinen et al., 2012). The main idea of these

1. The original methods considered using PC to learn a partially directed graph from observational data
and then using experiments to further orient edges. Since orientation of PC is by design affected by
errors in the adjacency structure, we also included in this work variants of these methods that work from
the undirected graph obtained by PC from observational data.
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approaches is to assume that all relations between variables are linear and can therefore be
represented by an effects matrix. Discovering the causal structure then amounts to find-
ing the coefficients of the effects matrix, which can be obtained by manipulating variables
and deriving linear constraints on the effects. Specifically, these constraints are combined
into a linear system and solved to obtain the coefficients of the effects matrix. Optionally,
assuming faithfulness enables the use of the PC algorithm (Spirtes et al., 2000) on the
manipulated and possibly observational data to learn adjacencies between variables. Non-
adjacent variables imply additional constraints on the effects matrix, which are added to
the linear system. The adjacencies also define an optimal order of variables to manipulate,
which can minimize the number of required experiments. The derivation of constraints on
the effects matrix and solution of the resulting linear system can be performed using any of
the methods proposed by the authors, which we denote as LLC1 (Eberhardt et al., 2010),
LLC2 (Hyttinen et al., 2010) and LLC3 (Hyttinen et al., 2012) (“LLC” stands for “linear,
latents, cyclic”). The resulting effects matrix requires further filtering to obtain edges in
the output graph. We used several approaches recommended by the authors: (i) removing
all edges whose coefficients are less than a small fixed threshold, (ii) estimating the null
distribution of the coefficients by rerunning the algorithm many times on permuted data
and keeping only edges whose coefficients are statistically significant, and (iii) rerunning
the algorithm a number of times on data sampled with replacement and keeping only edges
whose mean coefficients are higher than their standard deviation. While the LLC method
uses data for all variables in the network in order to estimate the effects matrix and produce
the resulting causal graph, we limited the experiments only to variables with univariate as-
sociation with the target (these methods have names beginning with “LLC”). In addition,
we also experimented by limiting input data only for variables with univariate association
with the target (these methods have names beginning with “UNIV-LLC”). A detailed list
of all employed 32 methods/variants from this family is given in Table A2 in Appendix A.

3.3 Bayesian Search-and-score

This family includes the Biolearn method (Pe’er et al., 2001; Sachs et al., 2005). The main
idea of this method is to define a space of candidate models, along with a scoring function
that measures how well each model fits that data. Specifically, the score evaluates the
posterior probability of a graph given the data. If given only observational data, graphs
with the same undirected graph structure and unshielded colliders will have the same score
(Neapolitan, 2003), and thus one can learn at best an equivalence class of graphs. Given
experimental data, a score for each directed graph can be constructed by using the fact that
the score decomposes into the local contributions of each variable. For each variable, only
samples from experimental datasets where the variable was not manipulated were used, and
the contributions of each variable were combined into a global score. This method can yield
different scores for different orientations of the same graph structure, and thus can be used
to evaluate how well directed graphs fit the combination of observed and manipulated data.
Computing scores for all possible directed graphs is exponential in the number of variables,
and thus it is usually not feasible to find the graph with the absolute highest score. There-
fore, heuristics such as Greedy Hill-Climbing are used to limit the search space to a feasible
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number. This method starts with an initial graph structure (such as the empty graph) and
computes the score for closely related graphs obtained by adding, removing or reversing
different edges. It selects the graph with the highest score, and repeats the procedure until
it has found a local maximum. The entire process is repeated many times (e.g., 500), and
the final model consists of all the edges present in a significant portion (85%) of the graphs.
We used two variants of this method: one with the Normal Gamma scoring function (de-
noted as BIOLEARN.NG) and another one with the BDE scoring function (denoted as
BIOLEARN.BDE).

4. New Methods

Below we provide new algorithms for local causal discovery. These algorithms rely on ob-
servational data for identifying members of the local causal pathway of a target variable;
however all orientation decisions are based on experimental data exclusively. While prior
research has provided theoretically sound approaches for orienting edges from observational
data (e.g., V-structure based orientation in PC algorithm (Spirtes et al., 2000)), the empir-
ical accuracy of these methods is affected by errors in constructing undirected skeleton and
violations of faithfulness. We provide in Appendix D and Table D1 an empirical comparison
of orientation approaches that concludes that significantly higher quality of orientation can
be achieved from experimental data.

4.1 Algorithm ODLP*

In order to facilitate comprehension of the general methodology, we first address the prob-
lem of local causal pathway discovery in faithful distributions. The algorithm ODLP* is
shown in Figure 2.

Theoretical analysis of the algorithm correctness: ODLP* is sound and com-
plete under the sufficient assumptions of (i) local adjacency faithfulness; (ii) causal Markov
condition; (iii) local causal sufficiency; (iv) acyclicity of the data-generative graph; and (v)
correctness of statistical decisions. The proof of correctness relies on a previously estab-
lished theoretical result showing that GLL-PC algorithms can identify members of the local
causal pathway (direct causes and direct effects of the target variable) from observational
data under the above stated assumptions (Aliferis et al., 2010a,b). In principle ODLP* can
call another sound and complete algorithm for identification of local causal pathway mem-
bers in step 1. Notice however, that algorithms for identification of local causal pathway
members (such as GLL-PC) do not differentiate between direct causes and direct effects in
the local causal pathway, and in general this task has to be accomplished with additional
experimental data, as outlined in steps 2 and 3 of ODLP*.

Trace of the ODLP* algorithm : Consider running the ODLP* algorithm on obser-
vational data generated from the causal graph shown in Figure 2. We aim to identify the
local causal pathway of the target variable T. In step 1 of ODLP*, GLL-PC will identify
that variables X1, X2, X3, X4, X5 belong to the local causal pathway of T , however would
not define causal role of any of these variables. If it is possible to manipulate T , we would
do so (step 2.a) and reveal that X4 and X5 change due to manipulation of T , and thus are
direct effects of T (step 2.b); the remaining variables X1, X2, andX3 thus have to be direct
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EFFICIENT METHODS FOR LOCAL CAUSAL PATHWAY DISCOVERY 
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manipulation of X4 (step 3.b); therefore X4 is a direct effect of T (step 3.b). When steps 3.a and 3.b are 

applied to other variables in the local causal pathway, we will also find two additional direct causes of T 

(X2 and X3) and one additional direct effect (X5) of T. 

Analysis of the algorithm’s experimental strategy and its efficiency: The experimental strategy 

of ODLP* is efficient because it relies only on single-variable manipulation experiments that are 

expected to generate a small number of samples in order to assess univariate association of the 

manipulated variable with all other variables. Furthermore, the algorithm tries to minimize the number 

of single-variable manipulation experiments and will conduct only one experiment if T can be 

manipulated (step 2.a). If it is not possible to manipulate T (e.g., T is a disease in humans), it will conduct 

the same number of experiments as the number of variables in the output of GLL-PC (set V). In the most 

general case, it is impossible to further reduce this number of experiments because every variable in V 

can potentially be a direct cause of T and has to be confirmed by an experiment. We note that situations 

exist that can lead to additional savings in experiments (e.g., when X, a direct effect of T, is causing Y, 

another direct effect of T, then manipulation of X would also reveal that Y is an effect of T and save an 

experiment) and we do check for them in the algorithm implementation, although they are not 

described in the algorithm pseudo-code in order to help understanding of its basic principles. Finally, it is 

also worthwhile to point out that the ODLP* algorithm can incorporate background knowledge both 

during the stage of learning the local causal pathway members (step 1) and when determining the 

causal role of the involved variables (steps 2 and 3), which can potentially lead to further reducing the 

number of required manipulation experiments.  

We note that ODLP* does not represent a radical departure over previously known algorithms 

(it is a modest extension of preexisting ideas), however it is essential to conceptually describe the much 

more complex and generally applicable algorithm ODLP.  

 

Algorithm ODLP*  
 

· Input: 

× Observational data D
O
, including a target variable T; 

× Experimental protocols/methods to manipulate one variable at a 

time and generate experimental data D
E
 that quantifies response 

of the system to the manipulation. 

· Output: Local causal pathway of T. 
 

1. Apply GLL-PC or another sound and complete method to the 

observational data D
O
 to identify the set of variables V that are 

members of the local causal pathway of T. 

2. If it is possible to manipulate T,  

a. Manipulate T and obtain experimental data D
E
. 

b. Mark all variables in V that change in D
E
 due to manipulation of T 

as “direct effects” and mark remaining variables in V as “direct 

causes”. 

3. Else 

a. Manipulate a variable X in V to obtain experimental data D
E
. 

b. If T changes in D
E
 due to manipulation of X, mark X as a “direct 

cause”; otherwise mark X as a “direct effect”. 

c. Repeat steps 3.a and 3.b for all variables in V. 

4. Return the local causal pathway of T. 
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T

 

 

Figure 2: Pseudo-code of the ODLP* algorithm for faithful distributions. Left: Pseudo-code of the algorithm. Right: 

Graphical representation of an example causal network around a target variable T. Variables are shown with white 

circles, and edges represent direct causal influences. Variables in the local causal pathway of T are X1, X2, X3, X4, and X5. 

 

Figure 2: Pseudo-code of the ODLP* algorithm for faithful distributions. Left: Pseudo-
code of the algorithm. Right: Graphical representation of an example causal
network around a target variable T . Variables are shown with white circles, and
edges represent direct causal influences. Variables in the local causal pathway of
T are X1, X2, X3, X4, and X5.

causes of T (step 2.b). On the other hand, if T cannot be manipulated, we can manipulate
X1 (step 3.a) and observe that T changes due to manipulation of X1 (step 3.b); therefore
X1 is a direct cause of T (step 3.b). If we consider manipulating X4 (step 3.a), we would
observe that T does not change due to manipulation of X4 (step 3.b); therefore X4 is a
direct effect of T (step 3.b). When steps 3.a and 3.b are applied to other variables in the
local causal pathway, we will also find two additional direct causes of T (X2 and X3) and
one additional direct effect (X5) of T .

Analysis of the algorithm’s experimental strategy and its efficiency : The ex-
perimental strategy of ODLP* is efficient because it relies only on single-variable manipula-
tion experiments that are expected to generate a small number of samples in order to assess
univariate association of the manipulated variable with all other variables. Furthermore,
the algorithm tries to minimize the number of single-variable manipulation experiments and
will conduct only one experiment if T can be manipulated (step 2.a). If it is not possible to
manipulate T (e.g., T is a disease in humans), it will conduct the same number of exper-
iments as the number of variables in the output of GLL-PC (set V ). In the most general
case, it is impossible to further reduce this number of experiments because every variable
in V can potentially be a direct cause of T and has to be confirmed by an experiment. We
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note that situations exist that can lead to additional savings in experiments (e.g., when X,
a direct effect of T , is causing Y , another direct effect of T , then manipulation of X would
also reveal that Y is an effect of T and save an experiment) and we do check for them in the
algorithm implementation, although they are not described in the algorithm pseudo-code in
order to help understanding of its basic principles. Finally, it is also worthwhile to point out
that the ODLP* algorithm can incorporate background knowledge both during the stage of
learning the local causal pathway members (step 1) and when determining the causal role
of the involved variables (steps 2 and 3), which can potentially lead to further reducing the
number of required manipulation experiments.

We note that ODLP* does not represent a radical departure over previously known algo-
rithms (it is a modest extension of preexisting ideas), however it is essential to conceptually
describe the much more complex and generally applicable algorithm ODLP.

4.2 Algorithm ODLP

A more general algorithm ODLP shown in Figure 3 addresses the problem of local causal
pathway discovery in TIE near-faithful distributions. This algorithm is specifically designed
for situations when the target variable T can be manipulated.

Theoretical analysis of the algorithm correctness: The following theorem states
correctness of ODLP; the proof is given in Appendix G. Specifically, the theorem shows
that under certain assumptions, ODLP will return all and only members of the true local
causal pathway of a target variable T.

Theorem 1 ODLP is sound under the following sufficient assumptions: (i) TIE near-
faithfulness (as a relaxation of local adjacency faithfulness to allow for target informa-
tion equivalency relations); (ii) causal Markov condition; (iii) local causal sufficiency; (iv)
acyclicity of the data-generative graph; and (v) correctness of statistical decisions.

In non-technical terms, the first two assumptions mean that with the exception of empirical
target information equivalency relations, there is a direct correspondence between the data
and a directed acyclic data-generative graph in terms of statistical relations (specifically,
there is an edge between two variables if and only if they have association in the data condi-
tioned on every subset of other variables). The third assumption means that every common
cause of two or more measured variables is also measured in the dataset. If this assump-
tion is violated, direct causation cannot be discovered by using observational data together
with experiments limited to single-variable manipulations, as demonstrated in Figure 1 of
(Eberhardt et al., 2010). The fourth assumption means that there are no feedback cycles
in the graph. The fifth assumption means that determination of variable (in)dependency
in the population from the available data sample is correct.
Trace of the ODLP algorithm : Consider running ODLP on data generated from the
network in Figure 1. The algorithm aims to identify the local causal pathway of the target
variable T . In step 1, TIE* will find 1,620 local causal pathways of T consistent with the
data. The union of these data-consistent pathways (set V ) will be variables X1, ..., X23

(step 2). Then in step 3, ODLP will form five equivalence clusters of variables based on
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Algorithm ODLP 

 

• Input: 

⋅ Observational data D
O
, including a target variable T; 

⋅ Experimental protocols/methods to manipulate one variable at a time and generate experimental data D
E
 

that quantifies response of the system to the manipulation. 

• Output: Local causal pathway of T. 

 

1. Apply TIE* or iTIE* to the observational data D
O
 to identify all local causal pathways of T consistent with the 

data. 

2. V � Union of all variables that participate in local causal pathways of T consistent with the data (this is a 

draft of the local causal pathway). 

3. Form equivalence clusters over variables in V such that each equivalence cluster contains variables that have 

equivalent information about T (this can be accomplished directly from the output or the operation of TIE* or 

iTIE*). 
 

Identify effects of T 

4. Manipulate T and obtain experimental data D
E
. 

5. Mark all variables in V that change in D
E
 due to manipulation of T as “effects”.  

 

Identify direct and other causes of T 

6. Repeat 

a. If there is an equivalence cluster that contains a single unmarked variable X and all marked variables in 

this cluster (if any) are only passengers and/or effects, then mark X as a “direct cause” and go to step 6. 

b. Select (according to some heuristic function or at random) an unmarked variable X from an equivalence 

cluster. 

c. Manipulate X and obtain experimental data D
E
. 

d. If T does not change in D
E
 due to manipulation of X, mark X as a “passenger” and mark all other non-

effect variables that change in D
E
 due to manipulation of X as “passengers”; otherwise mark X as a 

“cause”. 

7. Until there are no equivalence clusters with unmarked variables. 

8. For every cause X, mark X as a “direct cause” if there exist no other cause in the same equivalence cluster 

that changes due to manipulation of X; otherwise mark X as an “other cause”. 
 

Identify direct effects of T 

9. Repeat 

a. If there is an equivalence cluster that contains a single effect variable X which has neither been marked 

as “other effect” nor as “direct effect” and other effect variables in this cluster (if any) are only other 

effects, then mark X as a “direct effect” and to go step 9. 

b. Select (according to some heuristic function or at random) an effect variable X that has neither been 

marked as “other effect” nor as “direct effect”. 

c. Manipulate X and obtain experimental data D
E
. 

d. Mark all effect variables that change in D
E
 due to manipulation of X and belong to the same equivalence 

cluster as “other effects”. 

10. Until all effect variables are either marked as “other effects” or “direct effects”. 

11. Return the local causal pathway of T, i.e. only direct causes and direct effects of T. 

 

Figure 3: Pseudo-code of the ODLP algorithm for TIE near-faithful distributions. Notice that even though the 

algorithm outputs the local causal pathway of T, during its execution it also discovers the causal role of other 

variables that will provide additional clues about underlying mechanisms. Steps 4, 6.c, 9.c provide an interface of 

the algorithm with the external world through experiments that are conducted by an experimentalist, and are 

shown with dark grey highlighting. 

 

Figure 3: Pseudo-code of the ODLP algorithm for TIE near-faithful distributions. Notice
that even though the algorithm outputs the local causal pathway of T , during its
execution it also discovers the causal role of other variables that will provide ad-
ditional clues about underlying mechanisms. Steps 4, 6.c, 9.c provide an interface
of the algorithm with the external world through experiments that are conducted
by an experimentalist, and are shown with dark grey highlighting.
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information that they provide about the T (the clustering will coincide with the color of
highlighting of variables in Figure 1). In steps 4 and 5 the algorithm will manipulate T
and identify its effects X18, ..., X23. Then the algorithm will proceed to identification of
direct/other causes (“other causes” are defined as causes that are not identified as direct
causes, they could be indirect causes or both direct and indirect causes at the same time) of
T in the candidate set of variables X1, ..., X17. There is no equivalence cluster that satisfies
criterion of step 6.a, so ODLP will proceed to step 6.b and select a variable for manipulation
(for example without loss of generality, X6) in step 6.c. The algorithm will then identify
that X6 is a passenger and so are X3 and X4 (step 6.d). Steps 6.a-6.d will be repeated until
the causal role of every non-effect variable is deciphered. Next, the algorithm will conclude
that X1, X7, and X12 are direct causes of T and X2, X8, and X9 are other causes (step 8).
Then ODLP will proceed to the identification of direct effects and other effects of T in the
set of effects (X18, ..., X23). Similarly, “other effects” are effects that are not identified as
direct effects, they could be indirect effects or both direct and indirect effects at the same
time. There is no equivalence cluster that satisfies criterion of step 9.a, so the algorithm
will proceed to step 9.b and select a variable for manipulation (for example without loss of
generality, X19) in step 9.c. In step 9.d ODLP will identify that X20 is other effect of T and
repeat iterations until all effects are either marked as “other effects” (X19, X20, X22, and
X23) or “direct effects” (X18 and X21). Thus the local causal pathway of T (that consists
of direct causes X1, X7, X12 and direct effects X18, X21) has been identified correctly.

Analysis of the algorithm’s experimental strategy and its efficiency : The
strategy of ODLP relies on single-variable manipulation experiments and usually requires
a small number of samples from each experiment to assess univariate associations of the
manipulated variable with other variables. In general, the number of experiments necessary
for identification of the local causal pathway would be manageable for experimentalists,
although it varies and depends on the structure of the local causal pathway. The number
of experiments for the best and worst case is 1 and |V | + 1, respectively, where the set V
is the union of all variables that participate in local causal pathways of T consistent with
the data. In any case, the number of experiments would be manageable because V in real
distributions, even in high-throughput datasets, is typically between 10 and 200 variables,
as we have observed by running TIE* in > 30 datasets (Statnikov et al., 2013; Statnikov
and Aliferis, 2010).

An important principle behind minimization of experiments is to first manipulate in
step 6.c passengers of T that are causing many other passengers of T . For example, ma-
nipulation of X6 in Figure 1 would lead to changes in X3, X4 but not in T . Therefore, X3,
X4, and X6 are not causes of T . The algorithm can also infer from manipulation of T that
X3, X4, and X6 do not change and thus are not effects of T . Therefore, they are passen-
gers. The algorithm determined the causal role of X3, X4, and X6 by manipulating only
one of these variables. However, the graphical structure is not known when the algorithm
performs experiments, and thus it has to resort to heuristics to manipulate first variables
that are likely to yield savings in experiments. The algorithm uses a partial network-based
heuristic that chooses a variable that has the highest topological order relative to T . The
topological order can be established from constraints learned from experimental data, as
well as from domain knowledge, temporal order information, computational edge orienta-
tion algorithms based on observational data, and other sources. In addition to the above

3232



H
y
b
r
id

O
b
se

r
v
a
t
io
n
a
l
a
n
d

E
x
p
e
r
im

e
n
t
a
l
L
o
c
a
l
C
a
u
sa

l
P
a
t
h
w
a
y
D
isc

o
v
e
r
y

Network
Name

Description Construction Methodology
Num.

Variable
Num.
Edges

Num.
Samples
in Obs.
Data

Num.
Samples
in Exp.
Data

Reference

REGED

Resimulated transcriptional gene
regulatory network from gene
expression data of human lung
cancer patients. Variables
represent expression levels of
genes, and target variable
represents lung cancer subtype.

Used a publicly available
microarray gene expression
dataset to learn a network
structure of transcriptional
interactions. Parameterized
the network using non-linear
regression.

1,000 1,148 500 100
Guyon
et al.
(2008)

ECOLI

Resimulated transcriptional gene
regulatory network based on the
current knowledge of regulation
in E.Coli. Variables represent
expression levels of genes.

Used large-scale experimental
data to infer the network
structure, and then used
principles of thermodynamics
and molecular kinetics to
parameterize the network.

1,565 3,648 1000 200

Marbach
et al.

(2009);
Schaffter

et al.
(2011)

YEAST

Resimulated transcriptional gene
regulatory network based on the
current knowledge of regulation
in S. Cerevisiae. Variables
represent expression levels of
genes.

Same as above 4,441 12,873 1000 200

Marbach
et al.

(2009);
Schaffter

et al.
(2011)

P1000

Artificially simulated network,
where the target information
equivalency phenomenon is
present in the local causal
pathway of the target variable.
As a result, the target variable
has multiple 1,620 data-consistent
local causal pathways.

Manually generated graph of
the network and parameterized
using Gaussian distribution.

1,000 51 1000 20 Novel

P1M
Large-scale version of P1000
network with 1,000,000 variables.

Tiled with P1000 as the basic
component with inter-tile
connections.

1,000,000 81,969 1000 20 Novel

Table 1: Description of networks and data used in empirical experiments.
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heuristic, other heuristic functions can be used. We refer interested readers to Appendix
H for more detailed examples explaining ODLP’s experimental strategy and its efficiency.
Similarly, prioritizing manipulation of direct effects in step 9.c allows saving experiments by
avoiding manipulation of indirect effects. Finally, it is also worthwhile to point out that the
ODLP algorithm can incorporate background knowledge both during the stage of drafting
the local causal pathway (step 1) and when determining the causal role of variables (steps
4-10), which can potentially lead to further reducing the number of required experiments.

We also note that in settings when the assumptions of the algorithm are violated and
TIE* outputs false positives, one may choose not to perform step 6.a and always manipulate
a single unmarked variable in the equivalence cluster to ensure that it is indeed the cause.
Otherwise, a false positive variable (e.g., passenger in the equivalence cluster consisting of
one variable) will be erroneously classified as “direct cause” in step 6.a. However, when the
sufficient assumptions of the algorithm hold, step 6.a does not lead to errors and provides
savings in the number of experiments. Similarly, step 9.a can be omitted which leads to
improving robustness in handling false positives but decreasing experimental efficiency.

5. Empirical Experiments

This section describes the data used in the empirical experiments, implementation of dif-
ferent causal discovery algorithms, performance metric and statistical comparison methods,
and results of the empirical experiments.

5.1 Networks and Data

The networks and data used in empirical experiments are summarized in Table 1. The
REGED, ECOLI, and YEAST networks produce resimulated gene expression data that
resembles data from real transcriptional gene regulatory networks. Since these networks
have been previously published (Guyon et al., 2008; Marbach et al., 2009; Schaffter et al.,
2011), we do not describe them in detail here. We will only mention that variables in
ECOLI and YEAST networks (genes) typically have very few (0-2) direct causes (direct
upstream regulators), and some variables (transcription factor genes) have a large number
of direct effects (direct downstream targets) that can even reach low hundreds. This is
consistent with the principles of transcriptional regulation. The P1000 network is intended
i) to resemble data from real transcriptional gene regulatory networks which are generally
very sparse and ii) to demonstrate the effect of multiplicity of causal pathways consistent
with the data, a phenomenon which is omni-present in real biological networks (Statnikov
et al., 2013; Statnikov and Aliferis, 2010; Dougherty and Brun, 2006). This network was
obtained by parameterizing the local causal pathway structure shown in Figure 1 using
linear Gaussian distribution and adding unconnected Gaussian variables, so that the total
number of variables is 1,000. The parameterization of the network is provided in Table
B1 in Appendix B. The P1M network was obtained by “tiling” the P1000 network one
thousand times. The structural and probabilistic properties of individual tiles were similar
to that of P1000, so that the distribution of P1M network resembles the distribution of the
P1000 network. More specifically, one thousand copies (i.e. tiles) of the P1000 network were
generated, each copy with the set of vertices Vi and the set of edges Ei that are copies of

3234



Hybrid Observational and Experimental Local Causal Pathway Discovery

VP1000 and EP1000, the vertex set and the edge set of the original P1000 network. Then,
the tiles were interconnected with edges between Vi to Vi+1. The vertices that received
inter-tile edges were re-parameterized to preserve their marginal distribution, following the
approach described in (Tsamardinos et al., 2006b). See Figure B1 in Appendix B for
visualization of the fragment of the connected components of the P1M network.

We generated 1,000 samples for the observational datasets for all networks, except for
REGED because this network has been previously used with 500 samples in the international
challenge on Causation and Prediction (Guyon et al., 2008). Prior to running experiments,
we generated experimental datasets by manipulating each variable in every network. The
sample size for experimental datasets was minimized for each network over {20, 100, 200} in
order to be realistic and at least have sufficient power to estimate univariate associations of
manipulated variables with other variables in the network. As a result, we used 100 samples
in REGED, 200 in ECOLI and YEAST, and 20 in P1000 and P1M networks for experimental
datasets. All generated experimental datasets were saved in a working database. Causal
pathway discovery methods could query this database to obtain an experimental dataset
where the variable of interest was manipulated. The decoupling of the two most time
consuming components of experiments, simulation of experimental data and running causal
discovery algorithms, allowed us to setup a robust algorithm evaluation environment (Figure
4). All data for the simulations is available on the manuscript supplemental website: http:
//ccdlab.org/odlp.html.

Since we are focusing here on discovery of local causal pathways, the next step is to
select target variables of interest. The networks REGED, P1000, and P1M have designated
target variables. However, there are no designated targets in YEAST and ECOLI networks.
Therefore, we selected four variables from each network (the number of selected variables
was limited by computational resources of the study) and designated them as targets. These
four variables were selected randomly from the subset of transcription factors (that play
key regulatory role in these networks) such that they represent local causal pathways of
varying sizes for each network. This also allows assessing sensitivity of methods to the size
of the local causal pathway. More details are given in Table 2.

5.2 Local Causal Pathway Discovery Methods and Implementations

In addition to ODLP, we evaluated 58 existing methods/variants for active learning of causal
networks that are described in Section 3. ODLP and conditional independence constraint-
based structure learning methods ALCBN and HE-GENG were implemented in Matlab and
used the implementation of Fisher’s Z test of conditional independence from the Causal Ex-
plorer library (Statnikov et al., 2010). ODLP was run using the iTIE* algorithm to find
all data-consistent local causal pathways, parameter max-k (denoting maximum cardinality
of the conditional test) set to 3, and 0.05 alpha for assessing dependence/independence.
ALCBN and HE-GENG used the implementation of the PC algorithm from the Causal
Explorer library (Statnikov et al., 2010) and were run with maximum cardinality of condi-
tional tests set to 2 and 0.05 alpha for assessing dependence/independence. We tried to run
the algorithms with larger cardinality of conditional tests, but it was not computationally
feasible because PC did not terminate in most cases in less than one month of single-core
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We generated 1,000 samples for the observational datasets for all networks, except for REGED 
because this network has been previously used with 500 samples in the international challenge on 
Causation and Prediction [1]. Prior to running experiments, we generated experimental datasets by 
manipulating each variable in every network. The sample size for experimental datasets was minimized 
for each network over {20, 100, 200} in order to be realistic and at least have sufficient power to 
estimate univariate associations of manipulated variables with other variables in the network. As a 
result, we used 100 samples in REGED, 200 in ECOLI and YEAST, and 20 in P1000 and P1M networks for 
experimental datasets. All generated experimental datasets were saved in a working database. Causal 
pathway discovery methods could query this database to obtain an experimental dataset where the 
variable of interest was manipulated. The decoupling of the two most time consuming components of 
experiments, simulation of experimental data and running causal discovery algorithms, allowed us to 
setup a robust algorithm evaluation environment (Figure 4). All data for the simulations is available on 
the manuscript supplemental website: http://ccdlab.org/odlp.html. 

Since we are focusing here on discovery of local causal pathways, the next step is to select 
target variables of interest. The networks REGED, P1000, and P1M have designated target variables. 
However, there are no designated targets in YEAST and ECOLI networks. Therefore, we selected four 
variables from each network (the number of selected variables was limited by computational resources 
of the study) and designated them as targets. These four variables were selected randomly from the 
subset of transcription factors (that play key regulatory role in these networks) such that they represent 
local causal pathways of varying sizes for each network. This also allows assessing sensitivity of methods 
to the size of the local causal pathway. More details are given in Table 2. 
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Figure 4: Data generation process/experimental setup. The depicted experimental setup allowed to decouple data 
generation and running of algorithms, therefore providing a robust algorithm evaluation environment. Figure 4: Data generation process/experimental setup. The depicted experimental setup

allowed to decouple data generation and running of algorithms, therefore provid-
ing a robust algorithm evaluation environment.

time. We used the original authors’ R implementations of methods based on linear cyclic
models (obtained directly from the authors) and improved their efficiency in Matlab, e.g. to
solve very large-dimensional sparse linear systems that cannot be solved easily in R due to
current memory restrictions. Finally, we used the original authors’ software implementation
of the Bayesian search-and-score method. Table E1 in Appendix E provides information
and location of publicly available software implementations of the above discovery methods.

5.3 Performance Metrics and Statistical Comparison

Assessment of the performance of algorithms was based on the following metrics: (i) sen-
sitivity, (ii) specificity, and (iii) number of required experiments. Sensitivity and speci-
ficity are metrics to assess the accuracy of structure learning, and they were computed
for the task of discovery of all direct causes and all direct effects of the target variable
T . Sensitivity and specificity range from 0 to 1 (or 0% to 100%), with larger values
denoting better performance. We also combined sensitivity and specificity into a single
metric, the Euclidean distance from the point with sensitivity and specificity equal to

1:

√
(1−sensitivity)2+(1−specificity)2√

2
. The latter metric is referred to as “distance” in the

manuscript and it ranges from 0 to 1 (or 0% to 100%), with larger values denoting worse
performance. In addition to using the raw values for the number of experiments, we also
normalized this metric by dividing it by the number of variables in the local causal path-
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Network
Name

Target Variable T
Num. Variables in
the Local Causal

Pathway of T

Num.
Direct
Causes

of T

Num.
Direct
Effects
of T

REGED
Adenocarcinoma vs. squamous
lung cancer subtype.

15 2 13

ECOLI

Expression levels of gene agaR 8 0 8
Expression levels of gene allR 10 0 10
Expression levels of gene zur 6 0 6
Expression levels of gene lexA 54 0 54

YEAST

Expression levels of gene
YBL005W

30 1 29

Expression levels of gene
YFL044C

15 0 15

Expression levels of gene
YLR014C

31 0 31

Expression levels of gene
YKL112W

300 2 298

P1000 Artificial 5 3 2

P1M Artificial 5 3 2

Table 2: Description of target variables chosen from each network and their local causal
pathways. As mentioned in the manuscript, the small number of direct causes of
the target variables in ECOLI and YEAST networks is representative of these two
networks and principles of transcriptional regulation.

way of T or by the number of variables in the entire network. To test whether the
differences in distance metric between the nominally best performing algorithm and other
algorithms are non-random for a specific local causal pathway discovery task, we used a sta-
tistical permutation-based test adapted from (Menke and Martinez, 2004). We obtained a
null distribution for each comparison task and computed the corresponding p-value. When
the p-values are not statistically significant at 0.05 alpha level after adjusting for multi-
ple comparisons using the methodology of (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001), the resulting algorithms are deemed to have statistically comparable dis-
tance with the algorithm with best distance value. We refer to such values of distance metric
as ‘optimal’ for a specific local causal pathway discovery task relative to the tested methods.

5.4 Computing Resources and Execution of Experiments

To run the experiments, we used three high-performance computing (HPC) clusters avail-
able to us at the time of experiments. These HPC clusters included: the Asclepius cluster
of the NYU Langone Medical Center, the Bowery cluster of the New York University main
campus, and the BuTina cluster of the New York University Abu Dhabi campus in the
United Arab Emirates. Asclepius had ∼ 1, 000 Intel x86 processing cores and 4TB of RAM
distributed among the cluster’s compute nodes. The Bowery cluster had ∼ 2, 500 cores and
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9TB of RAM total among all the nodes. The BuTina cluster had ∼ 6, 400 latest Intel x86
processing cores with a total of 26TB of RAM.

In addition to distributing the tasks of running various causal pathway discovery algo-
rithms for various networks/target variables among compute cores of the cluster, we also of-
ten divided the individual tasks (of running a single algorithm for a specific network/target)
into many sub-tasks. For example, Biolearn requires running Greedy Hill-Climbing proce-
dure 500 times, all of which can be run independently on individual cores. In many cases,
the independent nature of the sub-tasks enabled linear speedup. In order to complete ex-
ecution of experiments with available resources, we imposed three termination criteria: (i)
30 day single-core time limit for tasks that cannot be easily parallelized; (ii) 3,000 day
multi-core time limit for tasks that can be further parallelized (spread over 100 cores); and
(iii) 48 GB RAM. We used 500-700 cores at a time over 2.5 calendar years. We estimate
that the final results reported here required 800 core-years of computation.

5.5 Results

The detailed results of experiments are provided in Table C1 (for REGED, P1000, and
P1M networks), Table C2 (for ECOLI network), and Table C3 (for YEAST networks) in
Appendix C. These tables provide values of sensitivity, specificity, distance, and number of
experiments for each method and local causal pathway discovery task. As mentioned in the
previous sub-section, in some cases experiments were terminated due to extensive computa-
tional resource requirements or, for Biolearn, failure of the original software implementation
of the method. These cases are marked in the tables with special codes T1, T2, T3, T4,
and the legend is given in Table C1.

Before reporting detailed analysis of the results, it is worth noting that the ODLP algo-
rithm resulted in better performance than any other algorithm when applied to the P1000
dataset. This is partly due to the fact that TIE* and the ODLP algorithm specifically
address local pathway multiplicity, which is present in P1000 dataset. On the other hand,
many other algorithms rely on the PC algorithm, which assumes faithfulness.

Analysis based on the counts of successes/failures: In the following anal-
yses, presented in Figures 5-8, we provide for each method the number of counts of suc-
cesses/failures (according to various metrics) within 11 local causal discovery pathway tasks.

Figure 5 reports for each method the number of local causal pathway discovery tasks
where a method either exceeded available computational resources or its original software
implementation failed to run. ODLP is the only method that was able to run for all 11 local
causal pathway discovery tasks. No other method was able to run for P1M network with
1,000,000 variables. However, within each algorithmic family except for Biolearn, there are
methods that were able to run on the remaining 10 local causal pathway discovery tasks
(represented by a failure number of 1). From ALCBN and HE-GENG families, these are
mostly methods restricted to the local neighborhood of the target variable. From LLC fam-
ily, these are methods that use only variables with significant univariate association with the
target variable. This observation motivates the approach of using local methods for solv-
ing local causal pathway discovery problems. Also, for ALCBN and HE-GENG methods
that discover the global network, the ones that use undirected PC skeleton (ALCBN.S. or
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Figure 5: Number of local causal pathways where the algorithm was terminated/failed (out of 11 local causal pathways). Red circles denote methods designed 
for the discovery of local causal pathways. These include our modifications of the original global methods for local learning.  

 
Figure 5: Number of local causal pathways where the algorithm was terminated/failed (out

of 11 local causal pathways). Red circles denote methods designed for the dis-
covery of local causal pathways. These include our modifications of the original
global methods for local learning.

HE-GENG.S.*) fail more often in comparison to the ones that use partially directed global
graph (ALCBN.D.* or HE-GENG.D.*). This is due to the fact that more computation is
needed to determine which variable(s) to manipulate in the completely undirected graph,
and our experiments have a restriction on computational time. It is also worthwhile to
mention that the runtime of ODLP was under 10-15 minutes for all pathways, except for
YEAST pathway for gene YKL112W where it took the algorithm one hour to run because
the underlying local causal pathway was of large size (300 members). Other methods took
orders of magnitude more computing time, e.g. it took ALCBN and HE-GENG of the order
of 10 hours to obtain unoriented PC skeleton, and it took LLC of the order of several days
to derive constraints on the effects matrix and combine them into a linear system. These
run-time estimates are for the major computing components of the core methods, without
bootstrapping/permutations. If the latter techniques are used, the run-time typically in-
creases by more than two orders of magnitude due to a large number of independent runs
of the core method.

Figure 6 reports for each method the number of local causal pathway discovery tasks
where a method achieved optimal value of the distance metric (defined as a distance value
that is not significantly different from the best distance achieved by all method examined,
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Figure 6: Number of local causal pathways discovered by an algorithm with optimal distance (out of 11 local causal pathways).Red circles denote methods 
designed for the discovery of local causal pathways. These include our modifications of the original global methods for local learning. 

 
Figure 6: Number of local causal pathways discovered by an algorithm with optimal dis-

tance (out of 11 local causal pathways).Red circles denote methods designed for
the discovery of local causal pathways. These include our modifications of the
original global methods for local learning.

reflecting accuracy of structural discovery of the pathway). ODLP achieved optimal dis-
tance in eight out of 11 pathways, local versions of ALCBN based on unoriented PC skeleton
achieved optimal distance in six pathways, local versions of HE-GENG based on unoriented
PC skeleton and versions of ALCBN based on unoriented skeleton achieved optimal distance
in five pathways, and some versions of LLC limited to variables univariately associated with
the target achieved optimal distance in four pathways. Other methods achieved optimal
distance in three or fewer pathways.

Figure 7 reports for each method the number of local causal pathway discovery tasks
where a method achieved optimal values of the distance metric and did not perform more
experiments than the number of members in the pathway. Figure 8 provides similar data but
for the number of experiments limited by 10, which is commonly used in biological sciences
for expensive experiments. In both analyses, ODLP and local versions of ALCBN based on
the unoriented PC skeleton succeeded in six out of 11 pathways. Local versions of HE-GENG
also based on the unoriented PC skeleton succeed in five (if the number of experiments is
limited by the number of members in the pathway) or four (if the number of experiments is
limited by 10) pathways. Two versions of LLC limited to variables univariately associated
with the target succeeded in four pathways (if the number of experiments is limited by the
number of members in the pathway). All other methods/variants succeeded in three or
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Figure 7: Number of local causal pathways discovered by an algorithm with optimal distance and with the same or fewer experiments than members of the 
pathway (out of 11 local causal pathways).Red circles denote methods designed for the discovery of local causal pathways. These include our modifications of 
the original global methods for local learning. 

 

Figure 7: Number of local causal pathways discovered by an algorithm with optimal dis-
tance and with the same or fewer experiments than members of the pathway (out
of 11 local causal pathways).Red circles denote methods designed for the dis-
covery of local causal pathways. These include our modifications of the original
global methods for local learning.

fewer pathways.
Table 3 uses data from Figures 5-8 for 58 methods/variants for active learning of causal

networks to assess how the original global network learning methods (N = 28) perform
relative to the methods modified specifically for local learning (N = 30). As can be seen,
method variants modified for local learning fail in significantly fewer pathways, discover
more pathways with optimal distance metric (reflecting structural discovery accuracy), and
also achieve optimal distance metric with small number of experiments in more pathways
than the original global learning methods/variants.

Analysis based on averages: The following analyses in Figures 9-11 visualize values
of various metrics averaged over local causal pathway discovery tasks where all partici-
pating methods have completed and returned results (since we consider different number
pathways from different networks, we first average results within each network and then
over all networks). These analyses provide additional information compared to the counts
of successes/failures because they also quantify the magnitude of successes/failures by re-
porting the average values. However, since only one method (ODLP) has completed on all
11 pathways, we have to a use a subset with 10 pathways (excluding P1M) and focus only
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Figure 8: Number of local causal pathways discovered by an algorithm with optimal distance and with 10 or fewer experiments (out of 11 local causal 
pathways). Red circles denote methods designed for the discovery of local causal pathways. These include our modifications of the original global methods for 
local learning. 

Figure 8: Number of local causal pathways discovered by an algorithm with optimal dis-
tance and with 10 or fewer experiments (out of 11 local causal pathways). Red
circles denote methods designed for the discovery of local causal pathways. These
include our modifications of the original global methods for local learning.

on 24 out of all 59 methods that have completed for all pathways in the considered subset.
Figure 9 shows a bull’s eye plot for the distance metric and the number of experiments

averaged over 10 local causal pathways. Location of the circles corresponds to values of the
distance metric: the closer is circle to the center, the smaller (better) is the distance. The
color of the circles corresponds to the number of experiments: the lighter is color, the more
experiments are required. As can be seen, ODLP and a variant of LLC, UNIV-LLC3.THR,
have the smallest average values of the distance metric, 9.6% and 12%, respectively. ODLP
achieves this result with only 5 experiments, while the result of UNIV-LLC3.THR is based
on 280 experiments. It is fair to note here that the ODLP method specifically optimizes
the number of experiments, while UNIV-LLC3.THR uses experiments for all variables with
significant univariate association with the target variable. An alternative and more detailed
visualization of the data from Figure 9 is given in Figure 10 that shows a plot of distance
versus number of experiments/number of variables in the network averaged over 10 local
causal pathways.

Finally, Figure 11 shows a plot of sensitivity versus specificity averaged over 10 local
causal pathways. A variant of LLC, UNIV-LLC3.THR, is the only method that has larger
sensitivity than ODLP: sensitivity of ODLP and UNIV-LLC3.THR is 86.5% and 88.3%, re-
spectively. However, this small 1.8% increase in sensitivity is accompanied by a significant
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Global Learning Local Learning P-value
Number of methods/variants 28 30 N.A.

Number of local causal
pathways where the method was
terminated/failed

Mean = 6.57
(St. dev. = 3.97)

Mean = 2.13
(St. dev. = 1.68)

6.33× 10−7

Number of local causal
pathways discovered by a
method with optimal distance
(structural accuracy)

Mean = 1.61
(St. dev. = 1.73)

Mean = 3.10
(St. dev. = 1.56)

1.06× 10−3

Number of local causal
pathways discovered by a
method with optimal distance
and with the same or fewer
experiments than members of
the pathway

Mean = 0.57
(St. dev. = 1.03)

Mean = 2.10
(St. dev. = 2.12)

1.09× 10−3

Number of local causal
pathways discovered by a
method with optimal distance
and with 10 or fewer
experiments

Mean = 0.57
(St. dev. = 1.03)

Mean = 1.97
(St. dev. = 1.99)

1.62× 10−3

Table 3: Comparison of performance of local and global learning methods/variants. P-
values were obtained with a two-sample t-test. Statistical significance was assessed
at 5% alpha level.

loss of specificity: specificity of ODLP is 99.97%, while specificity of UNIV-LLC3.THR is
90.4%. Finally, there are no methods that have larger specificity than ODLP.

6. Discussion

Methods for experimentally efficient and accurate discovery of local causal pathways from
data can readily provide significant advances in many fields. For example, they can increase
efficiency of drug discovery, facilitate development of socio-economic policies with desirable
outcomes, or lead to successful marketing campaigns. Prior research has introduced several
methods for active learning of the entire/global causal networks that utilize both observa-
tional and limited experimental data. The current study introduced new methods (termed
ODLP) for discovery of local causal pathways around the target variable of interest us-
ing observational and experimental data, a topic not previously explored in the literature.
Our new methods aim to minimize the number of experiments and also have substantially
less restrictive theoretical assumptions for correctness compared to existing alternatives. An
extensive empirical comparison of ODLP with 58 state-of-the-art methods/variants in high-
dimensional datasets revealed that: (i) ODLP scales to datasets with 1,000,000 variables
unlike comparator methods, which often fail to terminate within reasonable time even on
datasets with of the order of 1,000 variables; (ii) ODLP achieves best local causal pathway
discovery accuracy with minimal number of experiments compared to existing techniques
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Figure 9: Bull’s eye plot for the distance metric and the number of experiments averaged over 10 local causal 
pathways. Methods are denoted by circles. Location of the circles corresponds to values of the distance metric: the 
closer is circle to the center, the smaller (better) is the distance. Color of the circles corresponds to the number of 
experiments: the lighter is color, the more experiments are required. 

Figure 9: Bulls eye plot for the distance metric and the number of experiments averaged
over 10 local causal pathways. Methods are denoted by circles. Location of
the circles corresponds to values of the distance metric: the closer is circle to the
center, the smaller (better) is the distance. Color of the circles corresponds to the
number of experiments: the lighter is color, the more experiments are required.

under the assumption that all variables in the local neighborhood of the target are manip-
ulable; and (iii) ODLP runs orders of magnitude faster than other methods (in most cases
within 10-15 minutes for datasets with thousands of variables). A secondary contribution
of this study is that we introduced local versions of prior methods for active learning of
the entire/global causal networks so that the modified methods scale much better than the
original techniques for this task.

There are several major directions for extending this work. First, further development
of ODLP for situations when the target variable cannot be manipulated (e.g., it is a disease
in humans) and therefore it is challenging to identify effects of the target variable. One
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Figure 10: Distance versus number of experiments/number of variables in the network av-
eraged over 10 local causal pathways. The vertical (z) dimension is used to
produce a jitter plot so that multiple methods that have the same values of
distance and number of experiments/number of variables in the network are not
hidden in the graph. Methods located in the pale red area have smaller (better)
distance than ODLP, and methods located in the pale green area require smaller
number of experiments relative to the number of variables in the network.

possible strategy to solve this problem is to first identify all causes of the target variable
and then identify effects through knowledge gained by manipulation of direct causes of the
target variable. Second, extension of the ODLP method to work when there are hidden
variables and/or feedback cycles. Related to this, the completeness of the algorithm can
be improved by incorporating multi-variable manipulation experiments. Third, utilizing
existing methods for causal orientation from non-experimental data to avoid unnecessary
experiments, to the extent that these methods can produce accurate results in given dis-
tributions. These include both classical independence constraint-based (e.g., v-structure)
techniques (Spirtes et al., 2000; Yin et al., 2008) or newer methods that can orient pairs
of variables (Statnikov et al., 2012; Shimizu et al., 2006; Hoyer et al., 2009; Zhang and
Hyvärinen, 2008; Daniusis et al., 2012; Janzing et al., 2012; Mooij et al., 2010). These
newer methods could uncover the orientation of edges in non-linear (e.g. additive noise
models (Hoyer et al., 2009)) or non-Gaussian (e.g. LinGAM (Shimizu et al., 2006)) cases,
which are common in data from the biomedical domain. Fourth, further modifications of
the existing state-of-the-art methods for active learning of the entire/global networks to
adopt them for local causal pathway discovery task and seek to minimize the number of
experiments. For instance, methods other than the PC algorithm could be implemented as
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Figure 11: Sensitivity versus specificity averaged over 10 local causal pathways. The vertical
(z) dimension is used to produce a jitter plot so that multiple methods that have
the same values of sensitivity and specificity in the network are not hidden in
the graph. Methods located in the pale red area have larger sensitivity than
ODLP. There are no methods that have larger specificity than ODLP.

the starting point for edge orientation. The PC-Stable (Colombo and Maathuis, 2014) and
GES algorithms (Chickering, 2003) might lead to increased accuracy, and Richardson’s CCD
Algorithm (Richardson, 1996) is applicable when acyclicity is not assumed. Finally fifth,
extending the empirical comparison study to real (i.e., non-simulated) high-dimensional
data. Use of real data is challenging because (i) for most large-scale systems the underlying
causal relations are not known, and (ii) obtaining real experimental data is very expensive.
Performing such studies in other domains (e.g., economics, marketing, ecology, etc.) is also
worthwhile.
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Appendix A. List of variants of the ALCBN, HE-GENG, and LLC methods used in this work 
 
Table A1: Conditional independence constraint-based structure learning methods/variants used in this work. Modifications of the original methods that focus on discovery of 
local causality are highlighted. 

ALCBN:  

 First use the PC algorithm to learn an undirected or partially directed global graph from observational data (i.e., graph over all observed variables).  

 Then orient edges by sequentially manipulating variables chosen by some decision criterion. 

Method variant name Method variant description 

1. ALCBN.S.MINIMAX Starting from the undirected graph, use mini-max decision criterion to select variables for manipulation. 

2. ALCBN.S.MAXIMIN Starting from the undirected graph, use maxi-min decision criterion to select variables for manipulation. 

3. ALCBN.S.LAPLACE Starting from the undirected graph, use Laplace decision criterion to select variables for manipulation. 

4. ALCBN.D.MINIMAX Starting from the partially directed graph, use mini-max decision criterion to select variables for manipulation. 

5. ALCBN.D.MAXIMIN Starting from the partially directed graph, use maxi-min decision criterion to select variables for manipulation. 

6. ALCBN.D.LAPLACE Starting from the partially directed graph, use Laplace decision criterion to select variables for manipulation. 

7. ALCBN-LN.S.MINIMAX Same as ALCBN.S.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

8. ALCBN-LN.S.MAXIMIN Same as ALCBN.S.MAXIMIN, but select variables for manipulation only from the local causal pathway of the target. 

9. ALCBN-LN.S.LAPLACE Same as ALCBN.S.LAPLACE, but select variables for manipulation only from the local causal pathway of the target. 

10. ALCBN-LN.D.MINIMAX Same as ALCBN.D.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

11. ALCBN-LN.D.MAXIMIN Same as ALCBN.D.MAXIMIN, but select variables for manipulation only from the local causal pathway of the target. 

12. ALCBN-LN.D.LAPLACE Same as ALCBN.D.LAPLACE, but select variables for manipulation only from the local causal pathway of the target. 
 

Method of He and Geng (HE-GENG):  

 First use the PC algorithm to learn an undirected or partially directed global graph from observational data (i.e., graph over all observed variables).  

 Then orient edges in each obtained chain component separately by sequentially manipulating variables chosen by some decision criterion.  

Method variant name Method variant description 

1. HE-GENG.S.MINIMAX Starting from the undirected graph, use mini-max decision criterion to select variables for manipulation. 

2. HE-GENG.S.ENTROPY Starting from the undirected graph, use maxi-min entropy decision criterion to select variables for manipulation. 

3. HE-GENG.D.MINIMAX Starting from the partially directed graph, use mini-max decision criterion to select variables for manipulation. 

4. HE-GENG.D.ENTROPY Starting from the partially directed graph, use maximum entropy decision criterion to select variables for manipulation. 

5. HE-GENG-LCC.S.MINIMAX Same as HE-GENG.S.MINIMAX, but select variables for manipulation only from the local chain component of the target. 

6. HE-GENG-LCC.S.ENTROPY Same as HE-GENG.S.ENTROPY, but select variables for manipulation only from the local chain component of the target. 

7. HE-GENG-LCC.D.MINIMAX Same as HE-GENG.D.MINIMAX, but select variables for manipulation only from the local chain component of the target. 

8. HE-GENG-LCC.D.ENTROPY Same as HE-GENG.D.ENTROPY, but select variables for manipulation only from the local chain component of the target. 

9. HE-GENG-LN.S.MINIMAX Same as HE-GENG.S.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

10. HE-GENG-LN.S.ENTROPY Same as HE-GENG.S.ENTROPY, but select variables for manipulation only from the local causal pathway of the target. 

11. HE-GENG-LN.D.MINIMAX Same as HE-GENG.D.MINIMAX, but select variables for manipulation only from the local causal pathway of the target. 

12. HE-GENG-LN.D.ENTROPY Same as HE-GENG.D.ENTROPY, but select variables for manipulation only from the local causal pathway of the target. 

Table A1: Conditional independence constraint-based structure learning methods/variants used in this work. Modifications of
the original methods that focus on discovery of local causality are highlighted.
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Table A2: Linear cyclic models-based structure learning methods/variants used in this work. Modifications of the original methods that focus on discovery of local causality are 
highlighted. 
 

LLC:  

 Assume linear relations between variables. These relations can be represented by an “effects matrix” where each element is the coefficient of the linear relation between variables. 

 From each manipulated dataset, derive constraints on the effects matrix which are combined into a linear system (we refer to these constraints as “main constraints”). 

 Additionally assuming faithfulness allows: 
o utilizing PC algorithm on manipulated data and possibly observational data to learn adjacencies between variables. Non-adjacent variables imply additional constraints on the effects matrix 

that are added to the linear system (we refer to these constraints as “0-constraints”). 
o defining an optimal order of variables for manipulation geared towards identification of the effects matrix.  

 Solve the above linear system to identify the effects matrix. 

 Elements in the effects matrix correspond to coefficients of the underlying linear relations. 

 Filter the effects matrix to obtain edges in the output graph using one of the following methods:  
- THR: Obtain edges by applying a threshold of 0.1 on the coefficients of the identified effects matrix. 
- ALPHA: Using 100 data permutations, estimate the null distribution of the coefficients of the effects matrix. Obtain edges by choosing significant coefficients at 5% alpha level. 
- FDR: Using 100 data permutations, estimate the null distribution of the coefficients of the effects matrix. Obtain edges by choosing significant coefficients at 5% FDR level. 
- BOOTSTRAP: Identify effects matrix in 30 datasets sampled from the original data with replacement. Obtain edges by choosing elements of the effects matrix whose mean coefficient over 

resampled datasets is higher than the standard deviation. 

Method variant name Method variant description 

1. LLC1.THR Manipulate all variables associated with the target to obtain manipulated data. Derive main constraints on the effects matrix and solve the linear system using the 
method LLC1. Find edges in graph by method THR. 

2. LLC1.ALPHA Same as LLC1.THR, but use method ALPHA to find edges in graph. 

3. LLC1.FDR Same as LLC1.THR, but use method FDR to find edges in graph. 

4. LLC2.THR Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system. 

5. LLC2.ALPHA Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system and method ALPHA to find edges in graph. 

6. LLC2.FDR Same as LLC1.THR, but use LLC2 method to derive main constraints on the effects matrix and solve the linear system and method FDR to find edges in graph. 

7. LLC3.THR Same as LLC1.THR, but use LLC3 method to derive main constraints on the effects matrix and solve the linear system. 

8. LLC3.BOOTSTRAP Same as LLC1.THR, but use LLC3 method to derive main constraints on the effects matrix and solve the linear system and method BOOTSTRAP to find edges in graph. 

9. LLC2-F1.THR Manipulate a random variable to obtain manipulated data. Apply PC algorithm on manipulated data to obtain 0-constraints on the effects matrix. Derive main 
constraints on the effects matrix and solve the linear system using the method LLC2. Determine optimal variable for manipulation. Repeat the above steps until the 
effects matrix has been identified. Find edges in graph by method THR. 

10. LLC2-F1.ALPHA Same as LLC2-F1.THR, but use method ALPHA to find edges in graph. 

11. LLC2-F1.FDR Same as LLC2-F1.THR, but use method FDR to find edges in graph. 

12. LLC2-F2.THR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix. 

13. LLC2-F2.ALPHA Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method ALPHA to find edges in 
graph. 

14. LLC2-F2.FDR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method FDR to find edges in graph. 

15. LLC3-F2.THR Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix and method LLC3 to derive main 
constraints on the effects matrix and solve the linear system. 

16. LLC3-F2.BOOTSTRAP Same as LLC2-F1.THR, but apply PC to both observational and manipulated data to obtain 0-constraints on the effects matrix, method LLC3 to derive main constraints 
on the effects matrix and solve the linear system, and method BOOTSTRAP to find edges in graph. 

17. UNIV-LLC1.THR 18. UNIV-LLC2.ALPHA 19. UNIV-LLC2-F1.THR 20. UNIV-LLC2-F2.ALPHA Same as above methods without prefix 
“UNIV“, except for using only variables that are 
univariately associated with the target to 
identify the effects matrix. All other variables 
are not considered at all by the method. 

21. UNIV-LLC1.ALPHA 22. UNIV-LLC2.FDR 23. UNIV-LLC2-F1.ALPHA 24. UNIV-LLC2-F2.FDR 

25. UNIV-LLC1.FDR 26. UNIV-LLC3.THR 27. UNIV-LLC2-F1.FDR 28. UNIV-LLC3-F2.THR 

29. UNIV-LLC2.THR 30. UNIV-LLC3.BOOTSTRAP 31. UNIV-LLC2-F2.THR 32. UNIV-LLC3-F2.BOOTSTRAP 

Table A2: Linear cyclic models-based structure learning methods/variants used in this work. Modifications of the original methods
that focus on discovery of local causality are highlighted.

3248



Hybrid Observational and Experimental Local Causal Pathway Discovery

Appendix B. Information about P1000 and P1M Networks

EFFICIENT METHODS FOR LOCAL CAUSAL PATHWAY DISCOVERY 

 

33 
 

Appendix B. Information about P1000 and P1M networks 

 

Table B1: Parameterization of the P1000 network. Data for a given vertex/variable V is a linear combination of its parents and 

Gaussian noise: . The data for vertices without any parents was sampled from 

Gaussian distribution N(0,1) and is not shown in the following table.  

 

Vertex Parent Coefficient 
Noise 

Coefficient  
Vertex Parent Coefficient 

Noise 
Coefficient 

1 2 0.9 0 
 

27 26 0.4 0.1 

2 
40 0.8 0.2 

 
28 17 0.5 0.1 

41 0.8 0.2 
 

29 30 0.1 0.1 

3 6 0.6 0 
 

30 31 0.7 0.2 

4 6 0.8 0 
 

31 32 0.9 0.1 

5 2 0.8 0 
 

32 35 0.6 0.1 

6 2 0.9 0 
 

33 35 0.9 0.2 

7 8 0.9 0 
 

34 35 0.5 0.3 

8 9 1.1 0 
 35 

36 0.1 0.2 

9 39 0.9 0 
 

37 0.6 0.2 

10 9 0.8 0 
 

37 38 0.8 0.2 

11 9 0.7 0 
 

38 39 0.1 0.1 

13 12 0.6 0 
 

40 39 0.5 0.2 

14 13 0.8 0 
 

47 44 0.7 0.3 

15 16 0.7 0 
 

48 45 0.9 0.3 

16 12 0.9 0 
 

49 46 0.1 0.1 

17 15 0.9 0 
 50 

48 0.3 0.2 

18 54 0.7 0.2 
 

49 0.4 0.2 

19 18 0.9 0 
 51 

20 0.9 0.1 

20 19 0.1 0 
 

50 0.4 0.1 

21 54 0.6 0.1 
 52 

20 0.6 0.2 

22 21 0.9 0 
 

53 0.8 0.2 

23 22 0.2 0 
 54  

(T) 

1 0.3 0.1 

24 23 0.4 0.3 
 

7 0.3 0.1 

26 
25 0.9 0.2 

 
12 0.3 0.1 

17 0.6 0.2 
     

 
 

Table B1: Parameterization of the P1000 network. Data for a given vertex/variable V is
a linear combination of its parents and Gaussian noise: V =

∑
p(Coefparentp +

N(0, Coefnoisep)). The data for vertices without any parents was sampled from
Gaussian distribution N(0, 1) and is not shown in the following table.
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Figure B1: A fragment of the P1M network. The little red dot in the middle (in the tile with yellow outline) represents the target 

variable, black dots represent other variables. Only the connected components of the first 100 tiles were shown. 

Figure B1: A fragment of the P1M network. The little red dot in the middle (in the tile
with yellow outline) represents the target variable, black dots represent other
variables. Only the connected components of the first 100 tiles were shown.
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Appendix C. Detailed results of empirical experiments 

 

Table C1: Detailed results of experiments for REGED, P1000, and P1M networks.  
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ODLP 86.7% 100.0% 9.4% 1 100.0% 100.0% 0.0% 18 100.0% 100.0% 0.0% 19   

Explanation of 
termination/ 
failure codes: 
 
T1 = Experiments 
when the 
algorithm was 
terminated after 
30 days of single-
core time limit 
for tasks that 
cannot be easily 
parallelized; 
 

T2 = Experiments 
when the 
algorithm was 
terminated after 
3,000 day multi-
core time limit 
(spread over 100 
cores) for tasks 
that can be easily 
parallelized; 
 

T3 = Experiments 
when the 
authors’ 
implementation 
of the algorithm 
failed for 
unknown reason; 
 
T4 = Experiments 
when the 
algorithm 
required more 
than 48 GB RAM. 
 

 

ALCBN.S.MINIMAX 86.7% 100.0% 9.4% 47 0.0% 99.8% 70.7% 577 T1        

ALCBN.S.MAXIMIN 86.7% 100.0% 9.4% 91 0.0% 99.8% 70.7% 368 T1        

ALCBN.S.LAPLACE 86.7% 100.0% 9.4% 62 0.0% 99.8% 70.7% 442 T1        

ALCBN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN.D.MAXIMIN 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN.D.LAPLACE 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.S.MINIMAX 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.S.MAXIMIN 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.S.LAPLACE 86.7% 100.0% 9.4% 1 0.0% 99.8% 70.7% 1 T1        

ALCBN-LN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.D.MAXIMIN 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

ALCBN-LN.D.LAPLACE 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG.S.MINIMAX 86.7% 100.0% 9.4% 337 0.0% 99.8% 70.7% 32 T1        

HE-GENG.S.ENTROPY 86.7% 100.0% 9.4% 337 0.0% 99.8% 70.7% 32 T1        

HE-GENG.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LCC.S.MINIMAX 86.7% 100.0% 9.4% 108 0.0% 99.8% 70.7% 63 T1        

HE-GENG-LCC.S.ENTROPY 86.7% 100.0% 9.4% 108 0.0% 99.8% 70.7% 63 T1        

HE-GENG-LCC.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LCC.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LN.S.MINIMAX 86.7% 100.0% 9.4% 13 0.0% 99.8% 70.7% 5 T1        

HE-GENG-LN.S.ENTROPY 86.7% 100.0% 9.4% 13 0.0% 99.8% 70.7% 5 T1        

HE-GENG-LN.D.MINIMAX 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

HE-GENG-LN.D.ENTROPY 26.7% 99.6% 51.9% 0 0.0% 99.8% 70.7% 0 T1        

LLC1.THR 86.7% 50.5% 36.3% 540 100.0% 51.1% 34.6% 85 T4        

LLC1.ALPHA 
ALPHA 

6.7% 98.8% 66.0% 540 0.0% 99.9% 70.7% 85 T4        

LLC1.FDR 6.7% 99.7% 66.0% 540 0.0% 100.0% 70.7% 85 T4        

LLC2.THR T1       0.0% 100.0% 70.7% 85 T4        

LLC2.ALPHA T2       T2       T4        

LLC2.FDR T2       T2       T4        

LLC3.THR 0.0% 100.0% 70.7% 540 0.0% 100.0% 70.7% 85 T4        

LLC3.BOOTSTRAP 100.0% 93.8% 4.4% 540 100.0% 69.9% 21.3% 85 T4        

LLC2-F1.THR T1       T1       T1        

LLC2-F1.ALPHA T2       T2       T2        

LLC2-F1.FDR T2       T2       T2        

LLC2-F2.THR T1       T1       T1        

LLC2-F2.ALPHA T2       T2       T2        

LLC2-F2.FDR T2       T2       T2        

LLC3-F2.THR T4       T4       T4        

LLC3-F2.BOOTSTRAP T4       T4       T4        

UNIV-LLC1.THR 80.0% 73.6% 23.4% 540 100.0% 95.0% 3.5% 85 T4        

UNIV-LLC1.ALPHA 6.7% 98.8% 66.0% 540 0.0% 99.5% 70.7% 85 T4        

UNIV-LLC1.FDR 6.7% 99.7% 66.0% 540 0.0% 100.0% 70.7% 85 T4        

UNIV-LLC2.THR 0.0% 100.0% 70.7% 540 100.0% 98.5% 1.1% 85 T4        

UNIV-LLC2.ALPHA T2       60.0% 99.9% 28.3% 85 T4        

UNIV-LLC2.FDR T2       40.0% 100.0% 42.4% 85 T4        

UNIV-LLC3.THR 80.0% 73.8% 23.3% 540 100.00% 93.48% 4.6% 85 T4        

UNIV-LLC3.BOOTSTRAP 13.3% 100.0% 61.3% 540 0.00% 100.00% 70.7% 85 T4        

UNIV-LLC2-F1.THR 0.0% 100.0% 70.7% 4 0.0% 100.0% 70.7% 5 T1        

UNIV-LLC2-F1.ALPHA T2       40.0% 99.1% 42.4% 5 T2        

UNIV-LLC2-F1.FDR T2       0.0% 100.0% 70.7% 5 T2        

UNIV-LLC2-F2.THR T1       0.0% 99.9% 70.7% 2 T1        

UNIV-LLC2-F2.ALPHA T2       40.0% 97.2% 42.5% 2 T2        

UNIV-LLC2-F2.FDR T2       20.0% 99.7% 56.6% 2 T2        

UNIV-LLC3-F2.THR T4       0.0% 100.0% 70.7% 11 T4        

UNIV-LLC3-F2.BOOTSTRAP T4       100.0% 96.8% 2.2% 11 T4        

BIOLEARN.NG T3       0.0% 99.6% 70.7% 85 T3        

BIOLEARN.BDE T3       20.0% 100.0% 56.6% 85 T3        

Table C1: Detailed results of experiments for REGED, P1000, and P1M networks.
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Table C2: Detailed results of experiments for ECOLI network (4 local causal neighborhoods). See Table C1 for explanation of 

termination/failure codes T1, T2, T3, and T4. 
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ODLP 87.5% 99.9% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 3 90.7% 99.9% 6.6% 1 
ALCBN.S.MINIMAX 87.5% 100.0% 8.8% 264 100.0% 99.9% 0.1% 162 100.0% 99.9% 0.1% 213 90.7% 99.9% 6.6% 4 

ALCBN.S.MAXIMIN 87.5% 100.0% 8.8% 269 100.0% 99.9% 0.1% 436 100.0% 99.9% 0.1% 288 90.7% 99.9% 6.6% 4 

ALCBN.S.LAPLACE 87.5% 100.0% 8.8% 212 100.0% 99.9% 0.1% 143 100.0% 99.9% 0.1% 292 90.7% 99.9% 6.6% 4 

ALCBN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 4 3.7% 98.3% 68.1% 0 

ALCBN.D.MAXIMIN 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 4 3.7% 98.3% 68.1% 0 

ALCBN.D.LAPLACE 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 3 3.7% 98.3% 68.1% 0 

ALCBN-LN.S.MINIMAX 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.S.MAXIMIN 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.S.LAPLACE 87.5% 100.0% 8.8% 1 100.0% 99.9% 0.1% 1 100.0% 99.9% 0.1% 1 90.7% 99.9% 6.6% 1 

ALCBN-LN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

ALCBN-LN.D.MAXIMIN 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

ALCBN-LN.D.LAPLACE 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 1 3.7% 98.3% 68.1% 0 

HE-GENG.S.MINIMAX 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG.S.ENTROPY 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 74 3.7% 98.3% 68.1% 0 

HE-GENG.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 74 3.7% 98.3% 68.1% 0 

HE-GENG-LCC.S.MINIMAX 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG-LCC.S.ENTROPY 87.5% 100.0% 8.8% 86 100.0% 99.9% 0.1% 25 T1       T1       

HE-GENG-LCC.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LCC.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LN.S.MINIMAX 87.5% 100.0% 8.8% 2 100.0% 99.9% 0.1% 6 100.0% 99.9% 0.1% 2 77.8% 99.6% 15.7% 30 

HE-GENG-LN.S.ENTROPY 87.5% 100.0% 8.8% 2 100.0% 99.9% 0.1% 6 100.0% 99.9% 0.1% 2 77.8% 99.6% 15.7% 30 

HE-GENG-LN.D.MINIMAX 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

HE-GENG-LN.D.ENTROPY 100.0% 100.0% 0.0% 0 100.0% 99.9% 0.1% 0 100.0% 99.9% 0.1% 5 3.7% 98.3% 68.1% 0 

LLC1.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

LLC1.ALPHA 100.0% 49.8% 35.5% 82 100.0% 50.3% 35.2% 88 100.0% 50.6% 35.0% 90 96.3% 51.7% 34.2% 147 

LLC1.FDR 100.0% 51.3% 34.4% 82 100.0% 51.4% 34.3% 88 100.0% 51.6% 34.2% 90 96.3% 52.8% 33.5% 147 

LLC2.THR T1       T1       T1       T1       

LLC2.ALPHA T2       T2       T2       T2       

LLC2.FDR T2       T2       T2       T2       

LLC3.THR 0.0% 100.0% 70.7% 82 10.0% 100.0% 63.6% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

LLC3.BOOTSTRAP 100.0% 67.2% 23.2% 82 100.0% 72.0% 19.8% 88 100.0% 69.4% 21.7% 90 98.2% 78.6% 15.2% 147 

LLC2-F1.THR T1       T1       T1       T1       

LLC2-F1.ALPHA T2       T2       T2       T2       

LLC2-F1.FDR T2       T2       T2       T2       

LLC2-F2.THR T1       T1       T1       T1       

LLC2-F2.ALPHA T2       T2       T2       T2       

LLC2-F2.FDR T2       T2       T2       T2       

LLC3-F2.THR T4       T4       T4       T4       

LLC3-F2.BOOTSTRAP T4       T4       T4       T4       

UNIV-LLC1.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

UNIV-LLC1.ALPHA 100.0% 99.7% 0.3% 82 100.0% 99.7% 0.3% 88 100.0% 99.3% 0.5% 90 94.4% 99.5% 3.9% 147 

UNIV-LLC1.FDR 87.5% 100.0% 8.8% 82 100.0% 99.9% 0.1% 88 100.0% 100.0% 0.0% 90 90.7% 100.0% 6.6% 147 

UNIV-LLC2.THR 0.0% 100.0% 70.7% 82 0.0% 100.0% 70.7% 88 0.0% 100.0% 70.7% 90 0.0% 100.0% 70.7% 147 

UNIV-LLC2.ALPHA 100.0% 99.7% 0.3% 82 100.0% 99.7% 0.3% 88 100.0% 99.3% 0.5% 90 94.4% 99.5% 3.9% 147 

UNIV-LLC2.FDR 87.5% 100.0% 8.8% 82 100.0% 99.9% 0.1% 88 100.0% 100.0% 0.0% 90 90.7% 100.0% 6.6% 147 

UNIV-LLC3.THR 100.0% 98.3% 1.2% 82 100.0% 98.6% 1.0% 88 100.0% 98.3% 1.2% 90 87.0% 97.7% 9.3% 147 

UNIV-LLC3.BOOTSTRAP 100.0% 98.0% 1.4% 82 100.0% 98.6% 1.0% 88 100.0% 97.8% 1.5% 90 88.9% 98.3% 8.0% 147 

UNIV-LLC2-F1.THR 0.0% 100.0% 70.7% 5 0.0% 100.0% 70.7% 7 50.0% 99.9% 35.4% 6 0.0% 100.0% 70.7% 12 

UNIV-LLC2-F1.ALPHA 75.0% 99.7% 17.7% 5 100.0% 99.1% 0.6% 7 100.0% 99.7% 0.2% 6 96.3% 96.4% 3.6% 12 

UNIV-LLC2-F1.FDR 62.5% 99.9% 26.5% 5 100.0% 99.8% 0.1% 7 100.0% 99.8% 0.1% 6 72.2% 99.5% 19.7% 12 

UNIV-LLC2-F2.THR 37.5% 99.9% 44.2% 4 0.0% 100.0% 70.7% 6 83.3% 99.8% 11.8% 5 0.0% 100.0% 70.7% 11 

UNIV-LLC2-F2.ALPHA 50.0% 99.8% 35.4% 4 100.0% 99.0% 0.7% 6 100.0% 99.6% 0.3% 5 98.2% 96.3% 2.9% 11 

UNIV-LLC2-F2.FDR 50.0% 99.9% 35.4% 4 100.0% 99.9% 0.1% 6 83.3% 99.8% 11.8% 5 66.7% 99.6% 23.6% 11 

UNIV-LLC3-F2.THR 0.0% 100.0% 70.7% 17 0.0% 100.0% 70.7% 27 0.0% 100.0% 70.7% 32 0.0% 100.0% 70.7% 57 

UNIV-LLC3-F2.BOOTSTRAP 75.0% 98.6% 17.7% 19 70.0% 99.1% 21.2% 25 83.3% 98.1% 11.9% 30 59.3% 97.5% 28.9% 46 

BIOLEARN.NG 75.0% 99.9% 17.7% 82 50.0% 99.9% 35.4% 88 66.7% 99.9% 23.6% 90 90.7% 99.9% 6.6% 147 

BIOLEARN.BDE 0.0% 99.8% 70.7% 82 0.0% 99.9% 70.7% 88 16.7% 99.9% 58.9% 90 50.0% 100.0% 35.4% 147 

Table C2: Detailed results of experiments for ECOLI network (4 local causal neighbor-
hoods). See Table C1 for explanation of termination/failure codes T1, T2, T3,
and T4.
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Table C3: Detailed results of experiments for YEAST network (4 local causal neighborhoods). See Table C1 for explanation of 

termination/failure codes T1, T2, T3, and T4. 
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ODLP 66.7% 99.93% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 
ALCBN.S.MINIMAX T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.S.MAXIMIN T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.S.LAPLACE T1       T1       T1       61.0% 99.9% 27.6% 1 

ALCBN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 21 5.3% 98.0% 67.0% 0 

ALCBN.D.MAXIMIN 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 24 5.3% 98.0% 67.0% 0 

ALCBN.D.LAPLACE 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 20 5.3% 98.0% 67.0% 0 

ALCBN-LN.S.MINIMAX 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.S.MAXIMIN 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.S.LAPLACE 66.7% 99.9% 23.6% 1 66.7% 100.0% 23.6% 1 64.5% 100.0% 25.1% 1 61.0% 99.9% 27.6% 1 

ALCBN-LN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

ALCBN-LN.D.MAXIMIN 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

ALCBN-LN.D.LAPLACE 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG.S.MINIMAX T1       T1       T1       T1       

HE-GENG.S.ENTROPY T1       T1       T1       T1       

HE-GENG.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 44 5.3% 98.0% 67.0% 0 

HE-GENG.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 44 5.3% 98.0% 67.0% 0 

HE-GENG-LCC.S.MINIMAX T1       T1       T1       T1       

HE-GENG-LCC.S.ENTROPY T1       T1       T1       T1       

HE-GENG-LCC.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG-LCC.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 1 5.3% 98.0% 67.0% 0 

HE-GENG-LN.S.MINIMAX 70.0% 100.0% 21.2% 13 66.7% 100.0% 23.6% 5 64.5% 100.0% 25.1% 11 23.0% 98.6% 54.5% 99 

HE-GENG-LN.S.ENTROPY 70.0% 100.0% 21.2% 13 66.7% 100.0% 23.6% 5 64.5% 100.0% 25.1% 11 23.0% 98.6% 54.5% 99 

HE-GENG-LN.D.MINIMAX 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 2 5.3% 98.0% 67.0% 0 

HE-GENG-LN.D.ENTROPY 6.7% 99.7% 66.0% 0 26.7% 99.9% 51.9% 0 35.5% 99.9% 45.6% 2 5.3% 98.0% 67.0% 0 

LLC1.THR 0.0% 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 0.0% 100.0% 70.7% 804 

LLC1.ALPHA T2       T2       T2       T2       

LLC1.FDR T2       T2       T2       T2       

LLC2.THR T1       T1       T1       T1       

LLC2.ALPHA T2       T2       T2       T2       

LLC2.FDR T2       T2       T2       T2       

LLC3.THR T4       T4       T4       T4       

LLC3.BOOTSTRAP T4       T4       T4       T4       

LLC2-F1.THR T1       T1       T1       T1       

LLC2-F1.ALPHA T2       T2       T2       T2       

LLC2-F1.FDR T2       T2       T2       T2       

LLC2-F2.THR T1       T1       T1       T1       

LLC2-F2.ALPHA T2       T2       T2       T2       

LLC2-F2.FDR T2       T2       T2       T2       

LLC3-F2.THR T4       T4       T4       T4       

LLC3-F2.BOOTSTRAP T4       T4       T4       T4       

UNIV-LLC1.THR 0 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 0.0% 100.0% 70.7% 804 

UNIV-LLC1.ALPHA 86.7% 92.9% 10.7% 328 93.3% 95.3% 5.8% 215 90.3% 95.4% 7.6% 220 90.0% 84.4% 13.1% 804 

UNIV-LLC1.FDR 86.7% 92.9% 10.7% 328 93.3% 95.3% 5.8% 215 90.3% 95.4% 7.6% 220 90.0% 84.4% 13.1% 804 

UNIV-LLC2.THR 0.0% 100.0% 70.7% 328 0.0% 100.0% 70.7% 215 0.0% 100.0% 70.7% 220 T1       

UNIV-LLC2.ALPHA 70.0% 99.4% 21.2% 328 73.3% 99.7% 18.9% 215 67.7% 99.6% 22.8% 220 T2       

UNIV-LLC2.FDR 53.3% 100.0% 33.0% 328 66.7% 100.0% 23.6% 215 61.3% 100.0% 27.4% 220 T2       

UNIV-LLC3.THR 73.3% 97.8% 18.9% 328 73.3% 98.7% 18.9% 215 83.9% 98.5% 11.5% 220 76.0% 89.5% 18.5% 804 

UNIV-LLC3.BOOTSTRAP 0.0% 100.0% 70.7% 328 60.0% 99.1% 28.3% 215 61.3% 99.4% 27.4% 220 0.0% 100.0% 70.7% 804 

UNIV-LLC2-F1.THR 3.3% 100.0% 68.4% 10 0.0% 100.0% 70.7% 6 0.0% 100.0% 70.7% 8 T1       

UNIV-LLC2-F1.ALPHA 36.7% 99.6% 44.8% 10 93.3% 97.7% 5.0% 6 90.3% 97.7% 7.0% 8 T2       

UNIV-LLC2-F1.FDR 3.3% 100.0% 68.4% 10 66.7% 99.9% 23.6% 6 61.3% 99.8% 27.4% 8 T2       

UNIV-LLC2-F2.THR 3.33% 100.0% 68.4% 9 0.0% 100.0% 70.7% 7 0.0% 100.0% 70.7% 7 T1       

UNIV-LLC2-F2.ALPHA 63.3% 98.2% 26.0% 9 93.3% 97.6% 5.0% 7 90.3% 97.7% 7.0% 7 T2       

UNIV-LLC2-F2.FDR 6.7% 100.0% 66.0% 9 60.0% 99.8% 28.3% 7 64.5% 99.8% 25.1% 7 T2       

UNIV-LLC3-F2.THR T4       0.0% 100.0% 70.7% 63 0.0% 100.0% 70.7% 60 T4       

UNIV-LLC3-F2.BOOTSTRAP T4       26.7% 99.1% 51.9% 63 41.9% 98.6% 41.1% 57 T4       

BIOLEARN.NG T3       T3       T3       T3       

BIOLEARN.BDE T3       T3       T3       T3       

Table C3: Detailed results of experiments for YEAST network (4 local causal neighbor-
hoods). See Table C1 for explanation of termination/failure codes T1, T2, T3,
and T4.
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Appendix D. Assessment of Various Edge Orientation Strategies

To evaluate the accuracy of edge orientation, five orientation methods were tested in two
datasets (REGED and ECOLI). All orientation experiments were conducted on the unori-
ented skeleton discovered by the PC algorithm from observational data. The following five
orientation methods were tested:

(1) observational: Edge orientation was determined using constraint-based orientation
rules specified in the PC algorithm. This orientation method applied on top of the unori-
ented PC skeleton is equivalent to the PC algorithm. Notice that some edges may be left
unoriented.

(2) experimental: This is a classic orientation approach, and it involves manipulating
a variable and assessing its statistical association with the undirected neighbors in order
to determine the orientation. For the implementation of this approach, variables with the
largest number of undirected neighbors were prioritized for manipulation in order to mini-
mize the number of required experiments (Meganck et al., 2006). Specifically the approach
was implemented as follows: (a) Select the vertex with the largest number of undirected
neighbors. Denote this variable as X, and its undirected neighbors Y1, ..., Yi, ...Yn; (b) Ma-
nipulate variable X. (c) For every undirected neighbor Yi, orient edge as X → Yi, if there
is a statistically significant association between X and Yi at α = 0.05. Otherwise, orient
edge as Yi → X; (d) repeat steps (a)-(c) until all edges are oriented.

(3) experimental: For every unoriented edge X −−Y in the skeleton, manipulate X and
assess the association between X and Y , denoted as AXY . Similarly, manipulate Y and
assess the association between X and Y , denoted as AY X . The larger is AXY (or AY X),
the stronger is association. If AXY > AY X , orient edge as X → Y , otherwise orient edge
as Y → X;

(4) observational + experimental: apply observational method (1) and orient the rest
of the unoriented edges with the experimental method (2);

(5) observational + experimental: apply observational method (1) and orient the rest
of the unoriented edges with the experimental method (3).

The results of experiments described above are given in Table D1. The accuracy of
orientation is defined as the number of correctly oriented edges divided by the number of
correctly inferred edges in the skeleton (i.e. evaluated only with respect to correctly in-
ferred edges by the PC algorithm). In both datasets, the observational orientation had an
accuracy that is close to or worse than random (55.2% for REGED and 40.9% for ECOLI).
On the other hand, both experimental orientation methods yielded much higher and non-
random accuracies up to 100% for REGED dataset and up to 91.2% for ECOLI dataset.
Performing observational orientation before experimental orientation reduces the number of
experiments as expected, however this also reduces the accuracy. These results indicate that
although PC orientation is theoretically sound, experimental orientation methods provide
better orientation accuracy.
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Table D1: Comparison of accuracy for various edge orientation methods. 

REGED 
        

Orientation Method 

# of edges 
in the 
gold-

standard 

# of 
edges in 

the 
skeleton 

# of 
correctly 
inferred 
edges in 

the 
skeleton 

# of 
oriented 
edges in 

the 
skeleton 

# of correctly 
inferred edges 
in the skeleton 

that are also 
oriented 

# of 
correctly 
oriented 

edges in the 
skeleton 

# of 
experi-
ments 

Accuracy of 
orientation* 

(1) observational 1148 6324 1137 6073 942 520 0 55.2% 

(2) experimental 1148 6324 1137 6324 1137 1116 645 98.2% 

(3) experimental 1148 6324 1137 6324 1137 1137 1000 100.0% 

(4) observational+experimental 1148 6324 1137 6324 1137 712 143 62.6% 

(5) observational+experimental 1148 6324 1137 6324 1137 715 336 62.9% 

 
ECOLI 

        

Orientation Method 

# of edges 
in the 
gold-

standard 

# of 
edges in 

the 
skeleton 

# of 
correctly 
inferred 
edges in 

the 
skeleton 

# of 
oriented 
edges in 

the 
skeleton 

# of correctly 
inferred edges 
in the skeleton 

that are also 
oriented 

# of 
correctly 
oriented 

edges in the 
skeleton 

# of  
experi-
ments 

Accuracy of 
orientation* 

(1) observational 3632 12091 1660 11964 1595 653 0 40.9% 

(2) experimental 3632 12091 1660 12091 1660 1348 1206 81.2% 

(3) experimental 3632 12091 1660 12091 1660 1514 1565 91.2% 

(4) observational+experimental 3632 12091 1660 12091 1660 718 62 43.3% 

(5) observational+experimental 3632 12091 1660 12091 1660 718 152 43.3% 
 

* Computed only over edges that have been correctly inferred in the skeleton. 

Table D1: Comparison of accuracy for various edge orientation methods.
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Appendix E. Publicly Available Software Implementations of the Core
Methods

Algorithm Implementation  Link to Publicly Available Software 

ODLP* Matlab http://ccdlab.org/odlp.html  

ALCBN - Can be requested from the authors of Meganck et al., 2006 

HE-GENG R http://www.math.pku.edu.cn:8000/people/view.php?uid=heyb&showdetail=1  

LLC R 
LLC1: Can be requested from the authors of Eberhardt et al., 2010 
LLC2: https://docs.google.com/file/d/0B7pSUZzmhZ33VnZjdG8xaUVIZDg/edit?pli=1   
LLC3: https://docs.google.com/file/d/0B7pSUZzmhZ33b1Zfb3l6XzMwQzQ/edit 

BIOLEARN Java http://www.c2b2.columbia.edu/danapeerlab/html/biolearn.html  

 

Table E1: Publicly available software implementation of different algorithms
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Appendix F. Description of the TIE* and iTIE* algorithms

The TIE* and iTIE* algorithms are described in detail in (Statnikov et al., 2013). Before
we review the algorithms below, we note that TIE* and iTIE* were originally introduced for
discovery of all Markov boundaries of the target variable T . However, TIE* is also suitable
for discovery of all local causal pathways of T consistent with the data when it is used
with the Markov boundary induction algorithm Semi-Interleaved HITON-PC; see proof of
Theorem 1 in Appendix G for discussion. Similarly, iTIE* which is derived by modifying
Semi-Interleaved HITON-PC can be also used for discovery of all local causal pathways
of T consistent with the data. When there is no multiplicity of local causal pathways,
TIE* and iTIE* will be equivalent to Semi-Interleaved HITON-PC and will output all and
only members of the true local causal pathway of T . When the multiplicity is present, the
union of Markov boundaries output by TIE* or iTIE* (i.e., all local causal pathways of
T consistent with the data) will contain all variables that constitute the true local causal
pathway of T and other variables that contain equivalent information about T .

Next, we present the generative TIE* algorithm. This generative algorithm describes
a family of related but not identical algorithms which can be seen as instantiations of the
same broad algorithmic principles. The pseudo-code of the TIE* generative algorithm is
provided in Figure F1. On input TIE* receives (i) a dataset D (a sample from distribution
P) for variables V , including a target variable T ; (ii) a single Markov boundary induction
algorithm X; (iii) a procedure Y to generate datasets De from the so-called embedded
distributions that are obtained by removing subsets of variables from the full set of variables
V in the original distribution P; and (iv) a criterion Z to verify Markov boundaries of T .
The inputs X,Y,Z are selected to be suitable for the distribution at hand and should satisfy
admissibility rules stated in (Statnikov et al., 2013) for correctness of the algorithm. The
algorithm outputs all Markov boundaries of T that exist in the distribution P.

To further facilitate understanding of the TIE* algorithm, we provide in Figure F2 a
concrete and specific instantiation of TIE*. Finally, we present in Figure F3 the algorithm
iTIE*.
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to generate datasets De from the so-called embedded distributions that are obtained by removing subsets of variables 
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inputs X, Y, Z are selected to be suitable for the distribution at hand and should satisfy admissibility rules stated in [20] 
for correctness of the algorithm. The algorithm outputs all Markov boundaries of T that exist in the distribution P. 

To further facilitate understanding of the TIE* algorithm, we provide in Figure F2 a concrete and specific 
instantiation of TIE*. Finally, we present in Figure F3 the algorithm iTIE*. 
  

Generative algorithm TIE* 
 

Inputs: 

 dataset D (a sample from distribution P) for variables V, including a target variable T; 

 Markov boundary induction algorithm X; 

 procedure Y to generate datasets from the embedded distributions; 

 criterion Z to verify Markov boundaries of T. 
 

Output: all Markov boundaries of T that exist in P. 
 
1. Use algorithm X to learn a Markov boundary M of T from the dataset D for variables V (i.e., in 

the original distribution P) 
2. Output M 
3. Repeat 
4. Use procedure Y to generate a dataset D

e
 from the embedded distribution by removing a 

subset of variables G from the full set of variables V in the original distribution (also 
denoted as D(V \ G)). 

5. Use algorithm X to learn a Markov boundary Mnew of T from the dataset D
e
 

6. If Mnew is a Markov boundary of T in the original distribution according to criterion Z, 
output Mnew 

7. Until all datasets D
e
 generated by procedure Y have been considered. 

 

Figure F1: TIE* generative algorithm. 

 
Figure F1: TIE* generative algorithm
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 
D for variables V (i.e., in the original distribution P) 

2. Output M 
3. Repeat 
4. Generate a dataset D

e 
= D(V \ G) from the embedded distribution by removing from the 

full set of variables V in the original distribution the smallest subset G of the so far 
discovered Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 
(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 
5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM | , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 
7. Until all datasets D

e
 generated in step 4 have been considered. 

 

Figure F2: An example of instantiated TIE* algorithm.  

 

Algorithm iTIE* 
 

Input: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: multiple Markov boundaries of T that exist in P. 
 
  Phase I: Forward 

1. Initialize  with an empty set 
2. Initialize M with an empty set 
3. Initialize the set of eligible variables E  V \ T 
4. Repeat 

5. Y  argmaxXE Association(T,  X) 
6. E  E \ Y 
7. If there is no subset Z Í M such that Z|YT   

then 

8. M  M  Y 
9. Else if Z exists and the following relations hold: YT  , ZT , YT |Z  

10. Record in  that Y and Z contain equivalent information with respect to T  
11. Until E is empty 

 
   Phase II: Backward 

12. For each X  M 
13. If there is a subset Z Í M \ X such that Z|XT   then 

14. M  M \ X 
 

   Phase III: Construction of multiple Markov boundaries 
15. Compute the Cartesian product of target information equivalency relations for subsets of M that 

are stored in  to construct multiple Markov boundaries of T 
16. Output multiple Markov boundaries of T 

 
Figure F3: iTIE* algorithm. 

Figure F2: An example of instantiated TIE* algorithm.
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Inputs: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 
D for variables V (i.e., in the original distribution P) 

2. Output M 
3. Repeat 
4. Generate a dataset D
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= D(V \ G) from the embedded distribution by removing from the 

full set of variables V in the original distribution the smallest subset G of the so far 
discovered Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 
(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
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 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 
5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM | , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 
7. Until all datasets D

e
 generated in step 4 have been considered. 

 

Figure F2: An example of instantiated TIE* algorithm.  

 

Algorithm iTIE* 
 

Input: dataset D (a sample from distribution P) for variables V, including a target variable T. 
 

Output: multiple Markov boundaries of T that exist in P. 
 
  Phase I: Forward 

1. Initialize  with an empty set 
2. Initialize M with an empty set 
3. Initialize the set of eligible variables E  V \ T 
4. Repeat 

5. Y  argmaxXE Association(T,  X) 
6. E  E \ Y 
7. If there is no subset Z Í M such that Z|YT   

then 

8. M  M  Y 
9. Else if Z exists and the following relations hold: YT  , ZT , YT |Z  

10. Record in  that Y and Z contain equivalent information with respect to T  
11. Until E is empty 

 
   Phase II: Backward 

12. For each X  M 
13. If there is a subset Z Í M \ X such that Z|XT   then 

14. M  M \ X 
 

   Phase III: Construction of multiple Markov boundaries 
15. Compute the Cartesian product of target information equivalency relations for subsets of M that 

are stored in  to construct multiple Markov boundaries of T 
16. Output multiple Markov boundaries of T 

 
Figure F3: iTIE* algorithm. Figure F3: iTIE* algorithm
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Appendix G. Proof of Correctness of ODLP

Theorem 1 ODLP is sound under the following sufficient assumptions: (i) TIE near-
faithfulness (as a relaxation of local adjacency faithfulness to allow for target informa-
tion equivalency relations); (ii) causal Markov condition; (iii) local causal sufficiency; (iv)
acyclicity of the data-generative graph; and (v) correctness of statistical decisions.

Proof First, we remind the readers that under DAG-faithfulness, the Markov boundary
is unique and consists of children, parents, and spouses of T . i.e., the Markov boundary
contains all members of the local causal pathway of T (consisting of parents and children
of T ), plus spouses that are not children of T . The latter spouses are marginally or con-
ditionally independent of T unlike members of the local causal pathways of T . Under
DAG-faithfulness, the Semi-Interleaved HITON-PC algorithm can discover all members of
the local causal pathway of T (Aliferis et al., 2010a,b). However under TIE near-faithfulness,
this algorithm will output a local causal pathway consistent with the data, which may or
may not contain parents and children of T .

We have previously established that an admissible instantiation of the generative al-
gorithm TIE* can correctly discover all Markov boundaries of the target variable T (see
Theorem 10 in (Statnikov et al., 2013)). When TIE* is instantiated with the Markov bound-
ary inducer Semi-Interleaved HITON-PC, it will identify in step 1 all local causal pathways
of T consistent with the data (Statnikov et al., 2013). The latter requires that members of all
local causal pathways consistent with the data are marginally and conditionally dependent
on T (except for violations of the intersection property that lead to equivalence relations),
which is satisfied given assumptions of this theorem, in particular TIE near-faithfulness.
Therefore, all members of the true local causal pathway will be contained in the output of
TIE* in step 1.

Similarly, it can be shown that iTIE* will identify in step 1 all local causal pathways
consistent with the data (and therefore all members of the true local causal pathway) given
assumptions of this theorem and an additional requirement that all equivalence relations in
the underlying distribution follow from equivalence relations of individual variables. The
latter requirement is one of sufficient assumptions for iTIE* correctness (Statnikov et al.,
2013).

Before we proceed with the remainder of the proof, we examine the contents of equiv-
alence clusters formed in step 3. Given three types of variables of interest (causes, effects,
and passengers) there are the following options for contents of the cluster: (1) causes; (2)
causes and effects; (3) causes and passengers; (4) causes, effects and passengers; (5) effects;
(6) effects and passengers; and (7) passengers. It can be shown by examples that options
(1)-(5) are possible and consistent with assumptions of this theorem. On the other hand,
options (6) and (7) cannot take place in the settings of this theorem.

Next we prove correctness of identification of effects, direct effects, other effects (“other
effects” are effects that are not identified as direct effects, they could be indirect effects
or both direct and indirect effects at the same time), causes, direct causes, other causes
(“other causes” are causes that are not identified as direct causes, they could be indirect
causes or both direct and indirect causes at the same time), and passengers within the vari-
able set V , which is the union of all variables that participate in the local causal pathways
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of T consistent with the data. Given that all members of the true local causal pathway are
contained in the set V , the correct identification of direct effects and direct causes within
the set V implies that ODLP is sound.

Identification of effects and direct/other effects: Based on the assumption of correctness
of statistical decisions and the definition of causation, all effects of T are correctly identified
by performing an experiment on T (step 4) and considering as effects all variables E ⊆ V
that change as a result of that experiment (step 5). Identification of direct/other effects is
performed within the subset E. We distinguish here three cases:

1. An equivalence cluster contains one variable X, which is an effect (step 9.a). Then
X has to be a direct effect. Otherwise, based on causal Markov condition and correctness
of statistical decisions, X will not belong to E because X will be rendered statistically
independent of T conditioned on a subset of variables from any local causal pathway of T
consistent with the data during execution of TIE* in step 1.

2. An equivalence cluster contains multiple variables, out of which only one variable X
(effect) has neither been identified yet as other effect nor as direct effect and all other effect
variables have been identified as other effects (step 9.a). Then, similarly to the previous
case, X has to be a direct effect. Otherwise, a cluster will only have an indirect but no direct
effect which cannot happen based on the assumptions of this theorem and the methodology
of constructing equivalence clusters by utilizing TIE* in steps 1-3.

3. An equivalence cluster contains multiple variables, out of which two or more effect
variables have neither been identified as other effects nor as direct effects. The algorithm
proceeds to execution of steps 9.b-9.d, whose correctness follows from the definition of cau-
sation and the assumption of correctness of statistical decisions.

Identification of causes and direct/other causes: Since we have already identified the set
of effects E, identification of causes (and direct/other causes) is performed within the set
of variables V \E. We distinguish here three cases:

1. An equivalence cluster contains one unmarked variable X (step 6.a). Since X is
unmarked, it is not an effect. Then X has to be a direct cause. Otherwise, based on causal
Markov condition and correctness of statistical decisions, X will not belong to V \ E be-
cause X will be rendered statistically independent of T conditioned on a subset of variables
from any local causal pathway of T consistent with the data during execution of TIE* in
step 1.

2. An equivalence cluster contains multiple variables, out of which only one variable X
has not been marked yet and all other variables have been identified as passengers and/or
effects (step 6.a). Again, since X is unmarked, it is not an effect. Then, similarly to the
previous case, X has to be a direct cause. Otherwise, a cluster will either have only effects
and passengers or effects, passengers, and an indirect cause. None of these cases can happen
based on the assumptions of this theorem and the methodology of constructing equivalence
clusters by utilizing TIE* in steps 1-3.

3. An equivalence cluster contains multiple variables, out of which two or more variables
have not been marked yet. The algorithm proceeds to execution of steps 6.b-6.d, whose
correctness follows from the definition of causation and the assumption of correctness of
statistical decisions.

Identification of passengers: Based on the assumption of correctness of statistical deci-
sions and the definition of causation, passengers are correctly identified in step 6.d. More
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specifically, all variables marked as passengers in that step have been previously unmarked
(and therefore are not effects of T ) and are not on the causal path to T (and therefore are
not causes of T ).
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Appendix H. More on ODLP’s Experimental Strategy and its Efficiency

Consider an example network shown in Figure H1.a. Variables A, B, C, D, and E contain
equivalent information about the target variable T and cannot be distinguished with obser-
vational data. Without any prior knowledge about the causal role of A, B, C, D, and E, we
will first need to manipulate T to determine that none of the above 5 variables is an effect
of T . Therefore, they can be either causes or passengers. If we manipulate C, we will realize
that D and E change but T does not change due to manipulation of C. Therefore, C,D,E
are all passengers and we do not need to manipulate D and E (we saved 2 experiments).
Next we manipulate A and observe that it leads to changes in T (and B, C, D, and E) and
thus it is a cause of T . Finally, we can manipulate B and observe that it leads to changes
only in T and thus it is a direct cause. So, in total we performed 4 experiments (manipulate
T , C, A, and B in order). However, if we did not choose C early on for manipulations,
we could end up doing up to 6 experiments (manipulate T , E, D, C, A, and B in order)
to identify the local causal pathway. In fact, it is not possible to conduct fewer than four
single-variable experiments in this example, and thus the sequence of experiments T , C, A,
B is optimal. The only problem is that we do not know the graphical structure when we
perform experiments, and thus we need to resort to heuristics to manipulate first variables
that are likely to yield savings in experiments (step 6.b of the ODLP algorithm; see Figure
3).

Consider another example network shown in Figure H1.b. Variables A, B, C, D, E,
F , and J contain equivalent information about the target variable T and cannot be distin-
guished with observational data. Assume that we have already manipulated T , A, and B,
and now we are deciding what variable to manipulate next. Manipulation of T , A, and B
provided us with partial information on topological (causal) order of variables. Specifically,
we know that (i) no variable is downstream of T (from manipulating T ), (ii) B, C, D, E,
F , J , and T are downstream of A (from manipulating A), and (iii) D, E, F , J , and T are
downstream of B (from manipulating B). As discussed in the text, one possibility is to use
a partial network-based heuristic that chooses a variable that has the highest topological
order relative to T . As established from constraints learned from experimental data, vari-
able C has the highest topological order and has not been manipulated yet. Manipulation
of C allows to immediately identify the local causal pathway because D, E, F , and J will
change and T will not change due to manipulation of C, thus C, D, E, F , and J are all
passengers. In summary we conducted 4 experiments, while alternative strategies will take
up to 8 experiments. To see the expected efficiency of the above heuristic function, we can
revisit this example and assume that we do not have knowledge to manipulate A and B
first. In this case, we will identify the local causal pathway in 4 experiments with prob-
ability 6.67% using the above heuristic and with probability 2.86% without the heuristic
and performing random selection of variables for manipulation (in step 6.b of the ODLP
algorithm; see Figure 3).
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Figure G1: Two causal networks used to 
illustrate ODLP’s experimental strategy and 
its efficiency. Variables are shown with 
circles, and edges represent direct causal 
influences. The target variable is T. 
Variables that are shown with the same 
color contain the same information about 
the target (they are target information 
equivalent).  

 

 

Figure H1: Two causal networks used to illustrate ODLPs experimental strategy and its
efficiency. Variables are shown with circles, and edges represent direct causal
influences. The target variable is T. Variables that are shown with the same
color contain the same information about the target (they are target information
equivalent).
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