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Abstract

We consider the problem of learning a non-negative linear classifier with a `1-norm of at
most k, and a fixed threshold, under the hinge-loss. This problem generalizes the problem
of learning a k-monotone disjunction. We prove that we can learn efficiently in this setting,
at a rate which is linear in both k and the size of the threshold, and that this is the best
possible rate. We provide an efficient online learning algorithm that achieves the optimal
rate, and show that in the batch case, empirical risk minimization achieves this rate as
well. The rates we show are tighter than the uniform convergence rate, which grows with
k2.

Keywords: linear classifiers, monotone disjunctions, online learning, empirical risk min-
imization, uniform convergence

1. Introduction

We consider the problem of learning non-negative, low-`1-norm linear classifiers with a fixed
(or bounded) threshold. That is, we consider hypothesis classes over instances x ∈ [0, 1]d of
the following form:

Hk,θ =
{
x 7→ 〈w, x〉 − θ

∣∣∣ w ∈ Rd+, ‖w‖1 ≤ k
}
, (1)
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where we associate each (real valued) linear predictor in Hk,θ with a binary classifier:1

x 7→ sign(〈w, x〉 − θ) =

{
1 if 〈w, x〉 > θ

−1 if 〈w, x〉 < θ
. (2)

Note that the hypothesis class is specified by both the `1-norm constraint k and the
fixed threshold θ. In fact, the main challenge here is to understand how the complexity of
learning Hk,θ changes with θ.

The classesHk,θ can be seen as a generalization and extension of the class of k-monotone-
disjunctions and r-of-k-formulas. Considering binary instances x ∈ {0, 1}d, the class of
k-monotone-disjunctions corresponds to linear classifiers with binary weights, w ∈ {0, 1}d,
with ‖w‖1 ≤ k and a fixed threshold of θ = 1

2 . That is, a restriction of Hk, 1
2

to integer

weights and integer instances. More generally, the class of r-of-k formulas (i.e., formulas
which are true if at least r of a specified k variables are true) corresponds to a similar
restriction, but with a threshold of θ = r − 1

2 .

Studying k-disjunctions and r-of-k formulas, Littlestone (1988) presented the efficient
Winnow online learning rule, which admits an online mistake bound (in the separable case)
of O(k log d) for k-disjunctions and O(rk log d) for r-of-k-formulas. In fact, in this analysis,
Littlestone considered also the more general case of real-valued weights, corresponding to
the class Hk,θ over binary instances x ∈ {0, 1}d and for separable data, and showed that
Winnow enjoys a mistake bound of O(θk log d) in this case as well. By applying a standard
online-to-batch conversion (see, e.g., Shalev-Shwartz, 2012), one can also achieve a sample
complexity upper bound of O(θk log(d)/ε) for batch supervised learning of this class in the
separable case.

In this paper, we consider the more general case, where the instances x can also be
fractional, i.e., where x ∈ [0, 1]d and in the agnostic, non-separable, case. It should be
noted that Littlestone (1989) also studied a limited version of the non-separable setting.

In order to move on to the fractional and agnostic analysis, we must clarify the loss
function we will use, and the related issue of separation with a margin. When the instances
x and weight vectors w are integer-valued, we have that 〈w, x〉 is always integer. Therefore,
if positive and negative instances are at all separated by some predictor w (i.e., sign(〈w, x〉−
θ) = y where y ∈ {±1} denotes the target label), they are necessarily separated by a margin
of half. That is, setting θ = r − 1

2 for an integer r, we have y(〈w, x〉 − θ) ≥ 1
2 . Moving

to fractional instances and weight vectors, we need to require such a margin explicitly.
And if considering the agnostic case, we must account not only for misclassified points,
but also for margin violations. As is standard both in online learning (e.g., the agnostic
Perceptron guarantee of Gentile 2003) and in statistical learning using convex optimization
(e.g., support vector machines), we will rely on the hinge loss at margin half,2 which is
equal to: 2 ·

[
1
2 − yh(x)

]
+

. The hinge loss is a convex upper bound to the zero-one loss
(that is, the misclassification rate) and so obtaining learning guarantees for it translates to
guarantees on the misclassification error rate.

1. The value of the mapping when 〈w, x〉 = θ can be arbitrary, as our results and our analysis do not
depend on it.

2. Measuring the hinge loss at a margin of half rather than a margin of one is an arbitrary choice, which
corresponds to a scaling by a factor of two, which fits better with the integer case discussed above.
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Phrasing the problem as hinge-loss minimization over the hypothesis class Hk,θ, we can
use Online Exponentiated Gradient (EG) (Kivinen and Warmuth, 1994) or Online Mirror
Descent (MD) (e.g., Shalev-Shwartz, 2007; Srebro et al., 2011), which rely only on the `1-
bound and hold for any threshold. In the statistical setting, we can use Empirical Risk
Minimization (ERM), in this case minimizing the empirical hinge loss, and rely on uniform
concentration for bounded `1 predictors (Schapire et al., 1997; Zhang, 2002; Kakade et al.,
2009), again regardless of the threshold.

However, these approaches yield mistake bounds or sample complexities that scale
quadratically with the `1 norm, that is with k2 rather than with θk. Since the relevant
range of thresholds is 0 ≤ θ ≤ k, a scaling of θk is always better than k2. When θ is
large, that is, roughly k/2, the Winnow bound agrees with the EG and MD bounds. But
when we consider classification with a small threshold (for instance, θ = 1

2) in the case of
disjunctions, the Winnow analysis clarifies that this is a much simpler class, with a resulting
smaller mistake bound and sample complexity, scaling with k rather than with k2. This
distinction is lost in the EG and MD analyses, and in the ERM guarantee based on uniform
convergence arguments. For small thresholds, where θ = O(1), the difference between these
analyses and the Winnow guarantee is a factor of k.

Our starting point and our main motivation for this paper is to understand this gap
between the EG, MD and uniform concentration analyses and the Winnow analysis. Is this
gap an artifact of the integer domain or the separability assumption? Or can we obtain
guarantees that scale as θk rather then k2 also in the non-integer non-separable case? In
the statistical setting, must we use an online algorithm (such as Winnow) and an online-
to-batch conversion in order to ensure a sample complexity that scales with θk, or can we
obtain the same sample complexity also with ERM? This is an important question, since the
ERM algorithm is considered the canonical batch learning algorithm, and understanding its
scope and limitations is of theoretical and practical interest. A related question is whether
it is possible to establish uniform convergence guarantees with a dependence on θk rather
then k2, or do the learning guarantees here arise from a more delicate argument.

If an ERM algorithm obtains similar bounds to the ones of the online algorithm with
online-to-batch convergence, then any algorithm that can minimize the risk on the sample
can be used for learning in this setting. Moreover, this advances our theoretical understand-
ing of the limitations and scope of the canonical ERM algorithm.

The gap between the Winnow analysis and the more general `1-norm-based analyses is
particularly interesting since we know that, in a sense, online mirror descent always provides
the best possible rates in the online setting (Srebro et al., 2011). It is thus desirable to
understand whether mirror descent is required here to achieve the best rates, or can it be
replaced by a simple regularized loss minimization.

Answering the above questions, our main contributions are:

• We provide a variant of online Exponentiated Gradient, for which we establish a
regret bound of O(

√
θk log(d)T ) for Hk,θ, improving on the O(

√
k2 log(d)T ) regret

guarantee ensured by the standard EG analysis. We do so using a more refined
analysis based on local norms. Using a standard online-to-batch conversion, this
yields a sample complexity of O(θk log(d)/ε2) in the statistical setting. This result is
given in Corollary 5, Section 3.
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• In the statistical agnostic PAC setting, we show that the rate of uniform convergence
of the empirical hinge loss of predictors in Hk,θ is indeed Ω(

√
k2/m) where m is

the sample size, corresponding to a sample complexity of Ω(k2/ε2), even when θ is
small. We show this in Theorem 21 in Section 5. Nevertheless, we establish a learning
guarantee for empirical risk minimization which matches the online-to-batch guarantee
above (up to logarithmic factors), and ensures a sample complexity of Õ(θk log(d)/ε2)
also when using ERM. This is obtained by a more delicate local analysis, focusing on
predictors which might be chosen as empirical risk minimizers, rather than a uniform
analysis over the entire class Hk,θ. The result is given in Theorem 6, Section 4.

• We also establish a matching lower bound (up to logarithmic factors) of Ω(θk/ε2) on
the required sample complexity for learning Hk,θ in the statistical setting. This shows
that our ERM analysis is tight (up to logarithmic factors), and that, furthermore,
the regret guarantee we obtain in the online setting is likewise tight up to logarithmic
factors. This lower bound is provided in Theorem 17, Section 5.

1.1 Related Prior Work

We discussed Littlestone’s work on Winnow at length above. In our notation, Littlestone
(1988) established a mistake bound (that is, a regret guarantee in the separable case, where
there exists a predictor with zero hinge loss) of O(kθ log(d)) for Hk,θ, when the instances
are integer x ∈ {0, 1}d. Littlestone also established a lower bound of k log(d/k) on the
VC-dimension of k-monotone-disjunctions, corresponding to the case θ = 1

2 , thus implying
a Ω(k log(d/k)/ε2) lower bound on learning Hk, 1

2
. However, the question of obtaining a

lower bound for other values of the threshold θ was left open by Littlestone.

In the agnostic case, Auer and Warmuth (1998) studied the discrete problem of k-
monotone disjunctions, corresponding to Hk, 1

2
with integer instances x ∈ {0, 1}d and integer

weights w ∈ {0, 1}d, under the attribute loss, defined as the number of variables in the
assignment that need to be flipped in order to make the predicted label correct. They
provide an online algorithm with an expected mistake bound of A∗ + 2

√
A∗k ln(d/k) +

O(k ln(d/k)), where A∗ is the best possible attribute loss for the given online sequence. An
online-to-batch conversion thus achieves here a zero-one loss which converges to the optimal
attribute loss on this problem at the rate of O(k ln(d/k)/ε2). Since the attribute loss is upper
bounded by the hinge loss, a similar result, in which A∗ is replaced with the optimal hinge-
loss for the given sequence, also holds for the same algorithm. This establishes an agnostic
guarantee of the desired form, for a threshold of θ = 1

2 , and when both the instances and
weight vectors are integers.

2. Notations and Definitions

For a real number q, we denote its positive part by [q]+ := max{0, q}. We denote universal
positive constants by C. The value of C may be different between statements or even
between lines of the same expression. We denote by Rd+ the non-negative orthant in Rd.
The all-zero vector in Rd is denoted by 0. For an integer n, we denote [n] = {1, . . . , n}. For
a vector x ∈ Rd, and i ∈ [d], x[i] denotes the i’th coordinate of x.
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We will slightly overload notation and useHk,θ to denote both the set of linear predictors
x 7→ 〈w, x〉 − θ and the set of vectors w ∈ Rd+ such that ‖w‖1 ≤ k. We will use w to denote
both the vector and the linear predictor associated with it.

For convenience we will work with half the hinge loss at margin half, and denote this
loss, for a predictor w ∈ Hk,θ, for θ ∈ [0, k], by

`θ(x, y, w) :=
[1

2
− y(〈w, x〉 − θ)

]
+
.

The subscript θ will sometimes be omitted when it is clear from context. We term `θ the
Winnow loss.

Echoing the half-integer thresholds for k-monotone-disjunctions, r-of-k formulas, and
the discrete case more generally, we will denote r = θ+ 1

2 , so that θ = r− 1
2 . In the discrete

case r is integer, but in this paper 1
2 ≤ r ≤ k − 1

2 can also be fractional. We will also
sometimes refer to r′ = 1

2 − θ. Note that r′ can be negative.
In the statistical setting, we refer to some fixed and unknown distribution D over

instance-label pairs (X,Y ), where we assume access to a sample (training set) drawn
i.i.d. from D, and the objective is to minimize the expected loss:

`θ(w,D) = EX,Y∼D[`θ(X,Y,w)]. (3)

When the distribution D is clear from context, we simply write `θ(w), and we might also
omit the subscript θ. For fixed D and θ we let w∗ ∈ argminw∈Hk,θ E[`(X,Y,w)]. This is the
true minimizer of the loss on the distribution.

For a set of predictors (hypothesis class) H, we denote `∗θ(H,D) := minw∈H `θ(w,D).
For a sample S ∈ ([0, 1]d × {±1})∗, we use the notation

ÊS [f(X,Y )] =
1

|S|

|S|∑
i=1

f(xi, yi) (4)

and again sometimes drop the subscript S when it is clear from context. For a fixed
sample S, and fixed θ and D, the empirical loss of a predictor w on the sample is denoted
ˆ̀(w) = ÊS [`θ(X,Y,w)].

2.1 Rademacher Complexity

The empirical Rademacher complexity of the Winnow loss for a class W ⊆ Rd with respect
to a sample S = ((x1, y1), . . . , (xm, ym)) ∈ ([0, 1]d × {±1})m is

R(W,S) :=
2

m
E

[
sup
w∈W

∣∣∣∣ m∑
i=1

εi`(xi, yi, w)

∣∣∣∣
]

(5)

where the expectation is over the Rademacher random variables ε1, . . . , εm. These are de-
fined as independent random variables drawn uniformly from {±1}. The average Rademacher
complexity of the Winnow loss for a class W ⊆ Rd with respect to a distribution D over
[0, 1]d × {±1} is denoted by

Rm(W,D) := ES∼Dm [R(W,S)]. (6)
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We also define the average Rademacher complexity of W with respect to the linear loss by

RLm(W,D) :=
2

m
E

[
sup
w∈W

∣∣∣∣ m∑
i=1

εiYi〈w,Xi〉
∣∣∣∣
]

(7)

where the expectation is over ε1, . . . , εm as above and ((X1, Y1), . . . , (Xm, Ym)) ∼ Dm.

2.2 Probability Tools

We use the following variation on Bernstein’s inequality.

Proposition 1 Let B > 0. For a random variable X ∈ [0, B], δ ∈ (0, 1) and n an integer,
with probability at least 1− δ over n i.i.d. draws of X,∣∣∣Ê[X]− E[X]

∣∣∣ ≤ 2B

√
ln(1/δ)

n
·max

{
E[X]

B
,

ln(1/δ)

n

}
.

Proof By Bernstein’s inequality (Bernstein, 1946), if Z1, . . . , Zn are i.i.d. draws from a
random variable Z ∈ [−1, 1] such that E[Z] = 0, and Var[Z2] = σ2, then

P[Ê[Z] ≥ ε] ≤ exp

(
− nε2

2(σ2 + ε/3)

)
. (8)

Fix δ ∈ (0, 1) and an integer n. If ln(1/δ)/n ≤ σ2 then let ε = 2

√
ln(1/δ)
n · σ2 ≤ 2σ2. In this

case
nε2

2σ2 + 2ε/3
≥ nε2

10σ2/3
≥ ln(1/δ).

If ln(1/δ)/n > σ2 then let ε = 2 ln(1/δ)/n. Then σ2 ≤ ln(1/δ)/n = ε/2. In this case

nε2

2σ2 + 2ε/3
≥ nε2

5ε/3
≥ nε/4 = ln(1/δ).

In both cases, the RHS of Eq. (8) is at most δ. Therefore, with probability at least 1− δ,

Ê[Z] ≤ 2

√
ln(1/δ)

n
max

{
σ2,

ln(1/δ)

n

}
.

where the last inequality follows from the range of Z. Now, for a random variable X with
range in [0, B], let Z = (X − E[X])/B. We have σ2 = Var[Z] = Var[X]/B2 ≤ E[X2/B2] ≤
E[X/B], where the last inequality follows from the range of X. Therefore

Ê[X]− E[X]

B
≤ 2

√
ln(1/δ)

n
max

{
E[X]

B
,

ln(1/δ)

n

}
.

The same bound on E[X]−Ê[X] can be derived similarly by considering Z = (E[X]−X)/B.

We further use the following fact, which bounds the ratio between the empirical fraction
of positive or negative labels and their true probabilities. We will apply this fact to make
sure that enough negative and positive labels can be found in a random sample.
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Proposition 2 Let B be a binomial random variable, B ∼ Binomial(m, p). If p ≥ 8 ln(1/δ)/m
then with probability of at least 1− δ, B ≥ mp/2.

Proof This follows from a multiplicative Chernoff bound (Angluin and Valiant, 1979).

3. Online Algorithm

Consider the following algorithm:

Unnormalized Exponentiated Gradient (unnormalized-EG)

parameters: η, λ > 0
input: z1, . . . , zT ∈ Rd
initialize: w1 = (λ, . . . , λ) ∈ Rd
update rule: ∀i, wt+1[i] = wt[i]e

−ηzt[i]

The following theorem provides a regret bound with local-norms for the unnormalized
EG algorithm (for a proof, see Theorem 2.23 of Shalev-Shwartz, 2012).

Theorem 3 Assume that the unnormalized EG algorithm is run on a sequence of vectors
such that for all t, i we have ηzt[i] ≥ −1. Then, for all u ∈ Rd+,

T∑
t=1

〈wt − u, zt〉 ≤
dλ+

∑d
i=1 u[i] ln(u[i]/(e λ))

η
+ η

T∑
t=1

d∑
i=1

wt[i]zt[i]
2 .

Now, let us apply it to a case in which we have a sequence of convex functions f1, . . . , fT ,
and zt is the sub-gradient of ft at wt. Additionally, set λ = k/d and consider u s.t. ‖u‖1 ≤ k.
We obtain the following.

Theorem 4 Assume that the unnormalized EG algorithm is run with λ = k/d. Assume
that for all t, we have zt ∈ ∂ft(wt), for some convex function ft. Further assume that
for all t, i we have ηzt[i] ≥ −1, and that for some positive constants α, β, it holds that
η =

√
k ln(d)/(βT ), T ≥ 4α2k ln(d)/β, and

d∑
i=1

wt[i]zt[i]
2 ≤ αft(wt) + β . (9)

Then, for all u ∈ Rd+, with ‖u‖1 ≤ k we have

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) +

√
4α2k ln(d)

βT
·
T∑
t=1

ft(u) +
√

4βk ln(d)T + 4αk ln(d).

Proof Using the convexity of ft and the assumption that zt ∈ ∂ft(wt) we have that

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈wt − u, zt〉 .
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Combining with Theorem 3 we obtain

T∑
t=1

(ft(wt)− ft(u)) ≤
dλ+

∑d
i=1 u[i] ln(u[i]/(e λ))

η
+ η

T∑
t=1

d∑
i=1

wt[i]zt[i]
2 .

Using the assumption in Eq. (9), the definition of λ = k/d, and the assumptions on u, we
obtain

T∑
t=1

(ft(wt)− ft(u)) ≤ k ln(d)

η
+ ηβT + ηα

T∑
t=1

ft(wt) .

Rearranging the above we conclude that

T∑
t=1

ft(wt) ≤
1

1− αη

(
T∑
t=1

ft(u) +
k ln(d)

η
+ ηβT

)
.

Now, since 1/(1− x) ≤ 1 + 2x for x ∈ [0, 1/2] and αη ≤ 1
2 , we conclude, by substituting for

the definition of η, that

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) + 2
√
k ln(d)βT + 2α

√
k ln(d)

βT
·
T∑
t=1

ft(u) + 4αk ln(d).

We can now derive the desired regret bound for our algorithm. We also provide a bound
for the statistical setting, using online-to-batch conversion.

Corollary 5 Let ` ≡ `θ for some θ ∈ [0, k]. Fix any sequence (x1, y1), (x2, y2), . . . , (xT , yT ) ∈
[0, 1]d × {±1} and assume T ≥ 4k ln(d)/r. Suppose the unnormalized EG algorithm listed

in Section 3 is run using η :=

√
k ln(d)
rT , λ := k/d, and any zt ∈ ∂w`(xt, yt, wt) for all t.

Define LUEG :=
∑T

t=1 `(xt, yt, wt), let L(u) :=
∑T

t=1 `(xt, yt, u), and let u∗ ∈ argminL(u).
Then the following regret bound holds.

LUEG − L(u∗) ≤
√

16rk ln(d)T + 4k ln(d). (10)

Moreover, for m ≥ 1, assume that a random sample S = ((x1, y1), (x2, y2), . . . , (xm, ym))
is drawn i.i.d. from an unknown distribution D over [0, 1]d × {±1}. Then there exists an
online-to-batch conversion of the UEG algorithm that takes S as input and outputs w̄, such
that

E[`(w̄,D)] ≤ `(w∗, D) +

√
16rk ln(d)

m
+

4k ln(d)

m
, (11)

where the expectation is over the random draw of S.

Proof Every sub-gradient zt ∈ ∂w`(xt, yt, wt) is of the form zt = atxt for some at ∈
{−1, 0,+1}. Since 0 ≤ xt[i] ≤ 1 and wt[i] ≥ 0 for all i, it follows that

∑d
i=1wt[i]zt[i]

2 =

|at|
∑d

i=1w[i]xt[i]
2 ≤ |at|〈wt, xt〉. Now consider three disjoint cases.

• Case 1: 〈wt, xt〉 ≤ r. Then
∑d

i=1wt[i]zt[i]
2 ≤ 〈wt, xt〉 ≤ r.
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• Case 2: 〈wt, xt〉 > r and yt = 1. Then at = 0 and
∑d

i=1wt[i]zt[i]
2 = 0.

• Case 3: 〈wt, xt〉 > r and yt = −1. Then
∑d

i=1wt[i]zt[i]
2 ≤ 〈wt, xt〉 ≤ [r′+ 〈wt, xt〉]+−

r′ ≤ [r′ + 〈wt, xt〉]+ + r.

In all three cases, the final upper bound on
∑d

i=1wt[i]zt[i]
2 is at most `(xt, yt, wt) + r.

Therefore, Eq. (9) from Theorem 4 is satisfied with ft(w) := `(xt, yt, w), α := 1, and β := r.
From Theorem 4 with this choice of ft and the given settings of η, λ, and zt, we get that
for any u such that ‖u‖1 ≤ k,

LUEG ≤ L(u) + L(u)

√
4k ln(d)

rT
+
√

4rk ln(d)T + 4k ln(d). (12)

Observing that L(u∗) ≤ L(0) ≤ rT , we conclude the regret bound in Eq. (10).
For the statistical setting, a simple approach for online-to-batch conversion is to run

the UEG algorithm as detailed in Corollary 5, with T = m, and to return the average
predictor w̄ = 1

m

∑
i∈[m]wi. By standard analysis (e.g., Shalev-Shwartz, 2012, Theorem

5.1), E[`θ(w̄,D)] ≤ 1
mE[LUEG], where the expectation is over the random draw of S. Setting

u = w∗, Eq. (12) gives

E[`θ(w̄,D)] ≤ E

[
ˆ̀(w∗) +

√
ˆ̀(w∗)2 · 4k ln(d)

rm
+

√
4rk ln(d)

m
+

4k ln(d)

m

]
.

Since E[ˆ̀(w∗)] = `(w∗) and `(w∗) ≤ r, Eq. (11) follows.

In the online setting a simple version of the canonical mirror descent algorithm thus
achieves the postulated regret bound of O(

√
rk log(d)T ) ≡ O(

√
θk log(d)T ). For the sta-

tistical setting, an online-to-batch conversion provides the desired rate of O(rk log(d)/ε2) ≡
O(θk log(d)/ε2). Is this online-to-batch approach necessary, or is a similar rate for the statis-
tical setting achievable also using standard ERM? Moreover, this online-to-batch approach
leads to an improper algorithm, that is, the output w might not be in Hk,θ, since it might
not satisfy the norm bound. In the next section we show that standard, proper, ERM, leads
to the same learning rate.

4. ERM Upper Bound

We now proceed to analyze the performance of empirical risk minimization in the statistical
batch setting. As above, assume a random sample S = ((x1, y1), . . . , (xm, ym)) of pairs
drawn i.i.d. according to a distribution D over [0, 1]d × {±1}. An empirical risk minimizer
on the sample is denoted ŵ ∈ argminw∈Hk,θ

1
m

∑
i∈[m] `(xi, yi, w). We wish to show an upper

bound on `(ŵ)− `(w∗). We will prove the following theorem:

Theorem 6 For k ≥ r ≥ 0, and m ≥ k, with probability 1− δ over the random draw of S,

`(ŵ) ≤ `(w∗) +

√
O(rk(ln(d) ln3(3m) + ln(1/δ)))

m
+
O(r log(1/δ))

m
. (13)
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The proof strategy is based on considering the loss on negative examples and the loss on
positive examples separately. Denote

`−(w,D) = E(X,Y )∼D[`(X,Y,w) | Y = −1], and

`+(w,D) = E(X,Y )∼D[`(X,Y,w) | Y = +1].

For a given sample, denote ˆ̀
−(w) = Ê[`(X,Y,w) | Y = −1] and similarly for ˆ̀

+(w). Denote

p+ = E(X,Y )∼D[Y = +1] and p̂+ = Ê[Y = +1], and similarly for p− and p̂− .

As Theorem 21 in Section 5 below shows, the rate of uniform convergence of ˆ̀
−(w)

to `−(w) for all w ∈ Hk,θ is Ω̃(
√
k2/m), which is slower than the desired Õ(

√
θk/m).

Therefore, uniform convergence analysis for Hk,θ cannot provide a tight result. Instead,
we define a subset Ub ⊆ Hk,θ, such that with probability at least 1 − δ, the empirical
risk minimizer of a random sample is in Ub. We show that a uniform convergence rate of
Õ(
√
θk/m) does in fact hold for all w ∈ Ub. The analysis of uniform convergence of the

negative loss is carried out in Section 4.1.
For positive labels, uniform convergence rates over Hk,θ in fact suffice to provide the

desired guarantee. This analysis is provided in Section 4.2. The analysis uses the results
in Section 3 for the online algorithm to construct a small cover of the relevant function
class. This then bounds the Rademacher complexity of the class and leads to a uniform
convergence guarantee. In Section 4.3, the two convergence results are combined, while
taking into account the mixture of positive and negative labels in D.

4.1 Convergence on Negative Labels

We now commence the analysis for negative labels. Denote by D− the distribution of
(X,Y ) ∼ D conditioned on Y = −1, so that P(X,Y )∼D− [Y = −1] = 1, and P(X,Y )∼D− [X =

x] = P(X,Y )∼D[X = x | Y = −1]. For b ≥ 0 define

Ub(D) = {w ∈ Rd+ | ‖w‖1 ≤ k,ED[〈w,X〉 | Y = −1] ≤ b}.

Note that Ub(D) ⊆ Hk,θ.
We now bound the rate of convergence of ˆ̀

− to `− for all w ∈ Ub(D). We will then show
that b can be set so that with high probability ŵ ∈ Ub(D). Our technique is related to
local Rademacher analysis (Bartlett et al., 2005), in that the latter also proposes to bound
the Rademacher complexity of subsets of a function class, and uses these bounds to provide
tighter convergence rates. Our analysis is better tailored to the Winnow loss, by taking into
account the different effects of the negative and positive labels.

The convergence rate for Ub(D) is bounded by first bounding RLm(Ub(D), D−), the
Rademacher complexity of the linear loss for the distribution over the examples with nega-
tive labels, and then concluding a similar bound on Rm(Ub(D), D). We start with a more
general bound on RLm.

Lemma 7 For a fixed distribution over D over [0, 1]d × {±1}, let αj = E(X,Y )∼D[X[j]],

and let µ ∈ Rd+. Define Uµ = {w ∈ Rd+ | 〈w, µ〉 ≤ 1}. Then if dm ≥ 3,

RLm(Uµ, D) ≤ max
j:αj>0

1

µj

√
32 ln(d)

m
·max

{
αj ,

ln(dm)

m

}
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Proof Assume w.l.o.g that αj > 0 for all j (if this is not the case, dimensions with αj = 0
can be removed because this implies that X[j] = 0 with probability 1).

m

2
RLm(Uµ, S) = Eσ

[
sup

w:〈w,µ〉≤1

m∑
i=1

σi〈w, xi〉

]

= Eσ

[
sup

w:〈w,µ〉≤1
〈w,

m∑
i=1

σixi〉

]

= Eσ

[
max
j∈[d]

m∑
i=1

σi
xi[j]

µ[j]

]
.

Therefore, using Massart’s lemma (Massart, 2000, Lemma 5.2) and denoting α̂j = 1
m

∑m
i∈[m] xi[j],

we have:

RLm(Uµ, S) ≤
√

8 ln(d)

m
·max

j

√∑
i xi[j]

2

µ[j]

≤
√

8 ln(d)

m
·max

j

√∑
i xi[j]

µ[j]

=

√
8 ln(d)

m
·max

j

√
α̂j

µ[j]

=

√
8 ln(d)

m
·max

j

α̂j
µ[j]2

.

Taking expectation over S and using Jensen’s inequality we obtain

RLm(Uµ, D) = ES [RLm(Uµ, S)] ≤

√
8 ln(d)

m
· ES [max

j

α̂j
µ[j]2

]

By Bernstein’s inequality (Proposition 1), with probability 1− δ over the choice of {xi}, for
all j ∈ [d]

α̂j ≤ αj + 2

√
ln(d/δ)

m
·max

{
αj ,

ln(d/δ)

m

}
.

And, in any case, α̂j ≤ 1. Therefore,

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2

(
δ + αj + 2

√
ln(d/δ)

m
·max

{
αj ,

ln(d/δ)

m

})
Choose δ = 1/m and let j be a maximizer of the above. Consider two cases. If αj <
ln(dm)/m then

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2
· 4 ln(dm)

m
.

Otherwise,

ES
[
max
j

α̂j
µ[j]2

]
≤ max

j

1

µ[j]2
(δ + 3αj) ≤ max

j

4αj
µ[j]2

.
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All in all, we have shown

RLm(Uµ, D) ≤ max
j

1

µ[j]

√
32 ln(d)

m
·max

{
αj ,

ln(dm)
m

}
.

The lemma above can now be used to bound the Rademacher complexity of the linear loss
for D− .

Lemma 8 For any distribution D over (X,Y ) ∈ [0, 1]d × {±1}, if dm ≥ 3,

RLm(Ub(D), D−) ≤

√
128k ln(d)

m
max

{
b,
k ln(dm)

m

}
.

Proof Let αj = E(X,Y )∼D− [X[j]]. Let J = {j ∈ [d] | αj ≥ b
k}, and J̄ = {j ∈ [d] | αj < b

k}.
For a vector v ∈ Rd and a set I ⊆ [d], denote by v[I] the vector which is obtained from
v by setting the coordinates not in I to zero. Let ((X1, Y1), . . . , (Xm, Ym)) ∼ Dm

− . By the

definition of RLm, with Rademacher random variables ε1, . . . , εm (see Eq. 7), we have

RLm(Ub(D), D−)

=
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w,Xi〉
∣∣∣∣
]

=
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J ], Xi[J ]〉+
m∑
i=1

εiYi〈w[J̄ ], Xi[J̄ ]〉
∣∣∣∣
]

≤ 2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J ], Xi[J ]〉
∣∣∣∣
]

+
2

m
E

[
sup

w∈Ub(D)

∣∣∣∣ m∑
i=1

εiYi〈w[J̄ ], Xi[J̄ ]〉
∣∣∣∣
]

= RLm(Ub(D), D1) +RLm(Ub(D), D2), (14)

where D1 is the distribution of (X[J ], Y ), where (X,Y ) ∼ D− , and D2 is the distribution
of (X[J̄ ], Y ). We now bound the two Rademacher complexities of the right-hand side using
Lemma 7.

To bound RLm(Ub(D), D1), define Uµ as in Lemma 7 for µ ∈ Rd+, and define µ1 ∈
Rd+ by µ1[j] = αj/b. It is easy to see that Ub(D) ⊆ Uµ1 . Therefore RLm(Ub(D), D1) ≤
RLm(Uµ1 , D1). By Lemma 7 and the definition of µ1

RLm(Uµ1) ≤ max
j∈J

1

µ1[j]

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J

b

αj

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J

√
b

αj

32 ln(d)

m
max

{
b,
b

αj

ln(dm)

m

}
.
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By the definition of J , for all j ∈ J we have b
αj
≤ k. It follows that

RLm(Uµ1 , D1) ≤

√
32k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (15)

To bound RLm(Ub(D), D2), define µ2 ∈ Rd+ by µ2[j] = 1
k . Note that Uµ2 = Hk,θ and

Ub(D) ⊆ Hk,θ, hence RLm(Ub(D), D2) ≤ RLm(Uµ2 , D2). By Lemma 7 and the definition of
µ2

RLm(Uµ2 , D2) ≤ max
j∈J̄

1

µ2[j]

√
32 ln(d)

m
max

{
αj ,

ln(dm)

m

}

= max
j∈J̄

√
32k ln(d)

m
max

{
kαj ,

k ln(dm)

m

}
.

By the definition of J̄ , for all j ∈ J we have kαj ≤ b. Therefore

RLm(Uµ2 , D2) ≤

√
32k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (16)

Combining Eq. (14), Eq. (15) and Eq. (16) we get the statement of the theorem.

Finally, the bound on RLm(Ub(D), D) is used in the following theorem to obtain a uniform
convergence result of the negative loss for predictors in Ub(D).

Theorem 9 Let b ≥ 0. There exists a universal constant C such that for any distribution
D over [0, 1]d × {±1}, with probability 1− δ over samples of size m, for any w ∈ Ub(D),

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ) + |r′|

mp̂−
+
k ln(dmp̂−/δ)

mp̂−

)
. (17)

Proof Define φ : R → R by φ(z) = [r′ − z]+. Since P(X,Y )∼D[Y = −1] = 1, the Winnow
loss on pairs (X,Y ) drawn from D is exactly φ(Y 〈w,X〉). Note that φ is an application
of a 1-Lipschitz function to a translation of the linear loss. Thus, by the properties of
the Rademacher complexity (Bartlett and Mendelson, 2002) and by Lemma 8 we have, for
dm ≥ 3,

Rm(Ub(D), D−) ≤ RLm(Ub(D), D−)

≤

√
128k ln(d)

m
max

{
b,
k ln(dm)

m

}
. (18)

Assume that r′ ≤ 0. By Talagrand’s inequality (see, e.g., Boucheron et al., 2005, Theorem
5.4), with probability 1− δ over samples of size m drawn from D− , for all w ∈ Ub(D)

`(w) ≤ ˆ̀(w) + 2Rm(Ub(D), D−) +

√
2 supw∈Ub(D) VarD− [`(X,Y,w)] ln(1/δ)

m
+

4k ln(1/δ)

3m
.

(19)
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To bound VarD− [`(X,Y,w)], note that `(X,Y,w) ∈ [0, k]. In addition, PD− [Y = −1] = 1,

thus with probability 1, `(X,Y,w) = [r′ + 〈w,X〉]+ ≤ 〈w, x〉, where the last inequality
follows from the assumption r′ ≤ 0. Therefore, for any w ∈ Ub(D)

VarD− [`(X,Y,w)] ≤ E[`2(X,Y,w)] ≤ ED− [k`(X,Y,w)] ≤ k · ED− [〈w,X〉] ≤ kb. (20)

Combining Eq. (18), Eq. (19) and Eq. (20) we conclude that there exists a universal constant
C such that for any w ∈ Ub(D), if a sample of size m is drawn i.i.d. from D− , then

`(w) ≤ ˆ̀(w) + C

(√
kb ln(d/δ)

m
+
k ln(dm/δ)

m

)
.

If r′ > 0, ˆ̀
−(w)− `−(w) is identical to the case r′ = 0, thus the same result holds.

To get Eq. (17), consider a sample of size m drawn from D instead of D− . In this case,

`(w,D−) = `−(w,D), ˆ̀(w,D−) = ˆ̀
−(w,D), and the effective sample size for D− is mp̂− .

We now show that with an appropriate setting of b, ŵ ∈ Ub(D) with high probability over
the draw of a sample from D. First, the following lemma provides a sample-dependent
guarantee for ŵ.

Lemma 10 Let ŵ and p̂− be defined as above and let Ê := ÊS for the fixed sample S
defined above. Then

Ê[〈ŵ,X〉 | Y = −1] ≤ r

p̂−
.

Proof Let m+ = |{i | yi = +1}|, and m− = |{i | yi = −1}|. By the definition of the hinge
function and the fact that 〈xi, ŵ〉 ≥ 0 for all i we have that

m−r
′ +

∑
yi=−1

〈xi, ŵ〉 ≤
∑
yi=−1

(r′ + 〈xi, ŵ〉)

≤
∑
yi=+1

[r − 〈xi, ŵ〉]+ +
∑
yi=−1

[r′ + 〈xi, ŵ〉]+

=
∑
i∈[m]

`(xi, yi, ŵ).

By the optimality of ŵ,
∑

i∈[m] `(xi, yi, ŵ) ≤
∑

i∈[m] `(xi, yi,0) = m+r+m− [r′]+. Therefore∑
yi=−1

〈xi, ŵ〉 ≤ m+r +m−([r′]+ − r′) = m+r +m− [−r′]+ ≤ (m+ +m−)r = mr,

where we have used the definitions of r′ and r to conclude that [−r′]+ ≤ r. Dividing both
sides by m− we conclude our proof.

The following lemma allows converting the sample-dependent restriction on ŵ given in
Lemma 10 to one that holds with high probability over samples.

Lemma 11 For any distribution over [0, 1]d, with probability 1− δ over samples of size n,
for any w ∈ Hk,θ

E[〈w,X〉] ≤ 2Ê[〈w,X〉] +
16k ln(dδ )

n
.
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Proof For every j ∈ [d], denote αj = E[X[j]]. Denote α̂j = Ê[X[j]]. By Bernstein’s
inequality (Proposition 1), with probability 1− δ,

αj ≤ α̂j + 2

√
ln(1/δ)

n
·max

{
αj ,

ln(1/δ)

n

}
≤ α̂j + max

{
αj
2
,
8 ln(1/δ)

n

}
,

where the last inequality can be verified by considering the cases αj ≤ 16 ln(1/δ)
n and αj ≥

16 ln(1/δ)
n . Applying the union bound over j ∈ [d] we obtain that with probability of 1 − δ

over samples of size n, for any w ∈ Hk,θ

E[〈w,X〉] = 〈w,α〉 ≤
∑
j∈[d]

wj

(
α̂j +

αj
2

+
8 ln(d/δ)

n

)

≤ Ê[〈w,X〉] +
1

2
E[〈w,X〉] +

8 ln(d/δ)

n
· k.

Thus E[〈w,X〉] ≤ 2Ê〈w,X〉+ 16k ln(d/δ)
n .

Combining the two lemmas above, we conclude that with high probability, ŵ ∈ Ub for an
appropriate setting of b.

Lemma 12 If p− ≥
8 ln(1/δ)

m , then with probability 1−δ over samples of size m, ŵ ∈ Ub(D),
where

b =
4r

p−
+

32k ln(2d/δ)

mp−
. (21)

Proof Apply Lemma 11 to D− . With probability of 1 − δ over samples of size n drawn
from D− ,

ED− [〈w,X〉] ≤ 2ÊD− [〈w,X〉] +
16k ln(d/δ)

n
.

Now, consider a sample of size m drawn according to D. Then ED− [·] = ED[· | Y = −1],
and n = mp̂−. Therefore, with probability 1− 2δ,

E[〈w,X〉 | Y = −1] ≤ 2Ê[〈w,X〉 | Y = −1] +
16k ln(d/δ)

mp̂−

≤ 2r

p̂−
+

16k ln(d/δ)

mp̂−

≤ 4r

p−
+

32k ln(d/δ)

mp−
, (22)

where the second inequality follows from Lemma 10, and the last inequality follows from
the assumption on p− and Proposition 2.

This lemma shows that to bound the sample complexity of an ERM algorithm for the
Winnow loss, it suffices to bound the convergence rates of the empirical loss for w ∈ Ub(D),
with b defined as in Eq. (21). Thus, we will be able to use Theorem 9 to bound the
convergence of the loss on negative examples.
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4.2 Convergence on Positive Labels

For positive labels, we show a uniform convergence result that holds for the entire class
Hk,θ. The idea of the proof technique below is as follows. First, following a technique in
the spirit of the one given by Zhang (2002), we show that the regret bound for the online
learning algorithm presented in Section 3 can be used to construct a small cover of the
set of loss functions parameterized by Hk,θ. Second, we convert the bound on the size of
the cover to a bound on the Rademacher complexity, thus showing a uniform convergence
result. This argument is a refinement of Dudley’s entropy bound (Dudley, 1967), which is
stated in explicit terms by Srebro et al. (2010, Lemma A.3).

We first observe that by Theorem 4, if the conditions of the theorem hold and there is
u such that ft(u) = 0 for all t, then

1

T

T∑
t=1

ft(wt) ≤ 4

√
βk ln(d)

T
. (23)

Let k ≥ r ≥ 0 be two real numbers and let W ⊆ Rd+. Let φw denote the function
defined by φw(x, y) = `(x, y, w), and consider the class of functions ΦW = {φw | w ∈ W}.
Given S = ((x1, y1), . . . , (xm, ym)), where xi ∈ [0, 1]d and yi ∈ {±1}, we say that (ΦW , S)
is (∞, ε)-properly-covered by a set V ⊆ ΦW if for any f ∈ ΦW there is a g ∈ V such that

‖(f(x1, y1), . . . , f(xm, ym))− (g(x1, y1), . . . , g(xm, ym))‖∞ ≤ ε.

We denote by N∞(W,S, ε) the minimum value of an integer N such that exists a V ⊆ ΦW

of size N that (∞, ε)-properly-covers (ΦW , S).
The following lemma bounds the covering number for FW , for sets S with all-positive

labels yi.

Lemma 13 Let S = ((x1, 1), . . . , (xm, 1)), where xi ∈ [0, 1]d. Then,

lnN∞(Hk,θ, S, ε) ≤ 16 · rk ln(d) ln(3m)/ε2.

Proof We use a technique in the spirit of the one given by Zhang (2002). Fix some u,
with u ≥ 0 and ‖u‖1 ≤ k. For each i let

gui (w) =

{
|〈w, xi〉 − 〈u, xi〉| if 〈u, xi〉 ≤ r
[r − 〈w, xi〉]+ o.w.

and define the function
Gu(w) = max

i
gui (w) .

It is easy to verify that for any w,

‖(φw(x1, 1), . . . , φw(xm, 1))− (φu(x1, 1), . . . , φu(xm, 1))‖∞ ≤ Gu(w).

Now, clearly, Gu(u) = 0. In addition, for any w ≥ 0, a sub-gradient of Gu at w is
obtained by choosing i that maximizes gui (w) and then taking a sub-gradient of gui , which
is of the form z = αxi where α ∈ {−1, 0, 1}. If α ∈ {−1, 1}, it is easy to verify that∑

j

w[j]z[j]2 ≤ 〈w, xi〉 ≤ gui (w) + r = Gu(w) + r .
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If α = 0 then clearly
∑

j w[j]z[j]2 ≤ Gu(w) + r as well.

We can now use Eq. (23) by setting ft = Gu for all t, setting α = 1 and β = r in Eq. (9),
and noting that since xi ∈ [0, 1]d, we have zt ∈ [−1, 1]d for all t. If η ≤ 1 we have ηzt[i] ≥ −1

for all t, i as needed. Since η =

√
k ln(d)
rT , this holds for all T ≥ k ln(d)/r.

We conclude that if we run the unnormalized EG algorithm with T ≥ k ln(d)/r and η
and λ as required, we get

T∑
t=1

Gu(wt) ≤ 4
√
rk ln(d)T .

Dividing by T and using Jensen’s inequality we conclude

Gu

(
1
T

∑
t

wt

)
≤ 4

√
rk ln(d)

T
.

Denote wu = 1
T

∑
twt. Setting ε = 4

√
rk ln(d)
T , it follows that the following set is a (∞, ε)-

proper-cover for (FHk,θ , S):

V = {wu | u ∈ Hk,θ}.

Now, we only have left to bound the size of V . Consider again the unnormalized EG
algorithm. Since zt = αxi for some α ∈ {−1, 0,+1} and i ∈ {1, . . . ,m}, at each round
of the algorithm there are only two choices to be made: the value of i and the value of
α. Therefore, the number of different vectors produced by running unnormalized EG for
T iterations on Gu for different values of u is at most (3m)T . Thus |V | ≤ (3m)T . By our
definition of ε,

ln |V | ≤ T ln(3m) ≤ 16rk ln(d) ln(3m)/ε2.

This concludes our proof.

Using this result we can bound from above the covering number defined using the Eu-
clidean norm: We say that (ΦW , S) is (2, ε)-properly-covered by a set V ⊆ ΦW if for any
f ∈ ΦW there is a g ∈ V such that

1√
m
‖(f(x1, y1), . . . , f(xm, ym))− (g(x1, y1), . . . , g(xm, ym))‖2 ≤ ε.

We denote by N2(W,S, ε) the minimum value of an integer N such that exists a V ⊆ ΦW

of size N that (2, ε)-properly-covers (ΦW , S). It is easy to see that for any two vectors
u, v ∈ Rm, 1√

m
‖u−v‖2 ≤ ‖u−v‖∞. It follows that for any W and S, we have N2(W,S, ε) ≤

N∞(W,S, ε).

The N2 covering number can be used to bound the Rademacher complexity of (ΦW , S)
using a refinement of Dudley’s entropy bound (Dudley, 1967), which is stated explicitly
by Srebro et al. (2010, Lemma A.3). The lemma states that for any ε ≥ 0,

R(W,S) ≤ 4ε+
10√
m

∫ B

ε

√
lnN2(W,S, γ) dγ,
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where B is an upper bound on the possible values of f ∈ ΦW on members of S. For S with
all-positive labels we clearly have B ≤ r.

Combining this with Lemma 13, we get

R(Hk,θ, S) ≤ C·
(
ε+

1√
m

∫ r

ε

√
rk ln(d) ln(3m)/γ dγ

)
= C·

(
ε+

√
rk ln(d) ln(3m)

m
ln(r/ε)

)
.

Setting ε = rk/m we get

R(Hk,θ, S) ≤ C ·

√
rk ln(d) ln3(3m)

m
.

Thus, for any distribution D over [0, 1]d×{±1} that draws only positive labels, we have

Rm(Hk,θ, D) ≤ C

√rk ln(d) ln3(3m)

m

 .

By Rademacher sample complexity bounds (Bartlett and Mendelson, 2002), and since
` for positive labels is bounded by r, we can immediately conclude the following:

Theorem 14 Let k ≥ r ≥ 0. For any distribution D over [0, 1]d × {±1} that draws only
positive labels, with probability 1− δ over samples of size m, for any w ∈ Hk,θ,

`+(w) ≤ ˆ̀
+(w) + C ·

√rk ln(d) ln3(3m)

m
+

√
r2 ln(1/δ)

m


≤ ˆ̀

+(w) + C ·

√rk(ln(d) ln3(3m) + ln(1/δ))

m

 .

4.3 Combining Negative and Positive Losses

We have shown separate convergence rate results for the loss on positive labels and for
the loss on negative labels. We now combine these results to achieve a convergence rate
upper bound for the full Winnow loss. To do this, the convergence results given above
must be adapted to take into account the fraction of positive and negative labels in the
true distribution as well as in the sample. The following theorems accomplish this for the
negative and the positive cases. First, a bound is provided for the positive part of the loss.

Theorem 15 There exists a universal constant C such that for any distribution D over
[0, 1]d × {±1}, with probability 1− δ over samples of size m

p+`+(ŵ) ≤ p̂+
ˆ̀
+(ŵ) + C ·

√
rk(ln(kd) ln3(m) + ln(3/δ))

m
.
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Proof First, if p+ ≤ 8 ln(1/δ)
m then the theorem trivially holds. Therefore we assume that

p+ ≥ 8 ln(1/δ)
m . We have

p+`+(ŵ) = p̂+
ˆ̀
+(ŵ) + (p+ − p̂+)ˆ̀

+(ŵ) + p+(`+(ŵ)− ˆ̀
+(ŵ)). (24)

To prove the theorem, we will bound the two rightmost terms. First, to bound (p+ −
p̂+)ˆ̀

+(ŵ), note that by definition of the loss function for positive labels we have that ˆ̀
+(ŵ) ∈

[0, r]. Therefore, Bernstein’s inequality (Proposition 1) implies that with probability 1−δ/3

(p+ − p̂+)ˆ̀
+(ŵ) ≤ 2r

√
ln(3/δ)

m
max

{
p+,

ln(3/δ)

m

}
≤
√

4r ln(3/δ)

m
. (25)

Second, to bound p+(`+(ŵ)− ˆ̀
+(ŵ)), we apply Theorem 14 to the conditional distribu-

tion induced by D on X given Y = 1, to get that with probability 1− δ/3

p+(`+(ŵ)− ˆ̀
+(ŵ)) ≤ p+ · C ·

√
rk(ln(d) ln3(3m) + ln(3/δ))

mp̂+
.

Using our assumption on p+ we obtain from Proposition 2 that with probability 1 − δ/3,
p+/p̂+ ≤ 2. Therefore, p+/

√
p̂+ ≤

√
2p+ ≤

√
2. Thus, with probability 1− 2δ/3,

p+(`+(ŵ)− ˆ̀
+(ŵ)) ≤ C ·

√
rk(ln(d) ln3(3m) + ln(3/δ))

m
. (26)

Combining Eq. (24), Eq. (25) and Eq. (26) and applying the union bound, we get the
theorem.

Second, a bound is provided for the negative part of the loss.

Theorem 16 There exists a universal constant C such that for any distribution D over
[0, 1]d × {±1}, with probability 1− δ over samples of size m

p−`−(ŵ) ≤ p̂− ˆ̀
−(ŵ) + C

(√
rk ln(d/δ)

m
+
k ln(dm/δ)

m

)
. (27)

Proof First, if p− ≤
8 ln(1/δ)

m then the theorem trivially holds (since `−(ŵ) ∈ [0, r + k]).

Therefore we assume that p− ≥
8 ln(1/δ)

m . Thus, by Proposition 2, p̂− ≥ p−/2. We have

p−`−(ŵ) = p̂−
ˆ̀
−(ŵ) + (p− − p̂−)ˆ̀

−(ŵ) + p−(`−(ŵ)− ˆ̀
−(ŵ)). (28)

To prove the theorem, we will bound the two rightmost terms. First, to bound (p− −
p̂−)ˆ̀

−(ŵ), note that by Bernstein’s inequality (Proposition 1) and our assumption on p− ,
with probability 1− δ

p− − p̂− ≤ 2

√
ln(1/δ)

m
max

{
p− ,

ln(1/δ)

m

}
= 2

√
p− ln(1/δ)

m
.
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By Lemma 10 and Proposition 2, ˆ̀
−(ŵ) ≤ 2r

p̂−
≤ 4r

p−
. In addition, by definition ˆ̀

−(ŵ) ≤
r + k ≤ 2k. Therefore

(p− − p̂−)ˆ̀
−(ŵ) ≤ 4 min

{
2r

p−
, k

}√
p− ln(1/δ)

m
. (29)

Now, if k > 2r/p− , then the right-hand of the above becomes

8
r

p−

√
p− ln(1/δ)

m
= 8

√
(r/p−) · r ln(1/δ)

m
≤ 8

√
k · r ln(1/δ)

m
.

Otherwise, k ≤ 2r/p− and the right-hand of Eq. (29) becomes

4k

√
p− ln(1/δ)

m
≤ 4k

√
(2r/k) ln(1/δ)

m
≤ 8

√
k · r ln(1/δ)

m
.

All in all, we have shown that

(p− − p̂−)ˆ̀
−(ŵ) ≤ 8

√
rk ln(1/δ)

m
. (30)

Second, to bound p−(`−(ŵ) − ˆ̀
−(ŵ)), recall that by Lemma 12, we have ŵ ∈ Ub(D),

where

b =
4r

p−
+

32k ln(d/δ)

mp−
≤ C

p−

(
2r +

k ln(d/δ)

m

)
.

Thus, by Theorem 9, with probability 1− δ

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ)

mp̂−
+
k ln(dm/δ)

mp̂−

)
.

Since p̂− ≥ p−/2,

`−(w) ≤ ˆ̀
−(w) + C

(√
kb ln(d/δ)

mp−
+
k ln(dm/δ)

mp−

)
.

for some other constant C. Therefore, substituting b for its upper bound we get

p−(`−(w)− ˆ̀
−(w)) ≤ C

(√
kr ln(d/δ)

m
+
k ln(dm/δ)

m

)
. (31)

Combining Eq. (28), Eq. (30) and Eq. (31) we get the statement of the theorem.

Finally, we prove our main result for the sample complexity of ERM algorithms for
Winnow.
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Proof (Proof of Theorem 6) From Theorem 15 and Theorem 16 we conclude that with
probability 1− δ,

`(ŵ) = p−`−(ŵ) + p+`+(ŵ)

≤ p̂− ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) +

√
O(rk(ln(d) ln3(3m) + ln(1/δ)))

m
. (32)

Now,
p̂−

ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) = ˆ̀(ŵ) ≤ ˆ̀(w∗). (33)

We have E[`(X,Y,w∗)] = `(w∗) ≤ `(0) ≤ r. By Bernstein’s inequality (Proposition 1), with
probability 1− δ

ˆ̀(w∗) = Ê[`(X,Y,w∗)] ≤ E[`(X,Y,w∗)] + 2r

√
ln(1/δ)

m
max

{
E[`(X,Y,w∗)]

r
,
ln(1/δ)

m

}
≤ `(w∗) + 2

√
r2 ln(1/δ)

m
+ 2

r ln(1/δ)

m
.

Combining this with Eq. (33), we get that with probability 1− δ

p̂−
ˆ̀
−(ŵ) + p̂+

ˆ̀
+(ŵ) ≤ `(w∗) + 2

√
r2 ln(1/δ)

m
+ 2

r ln(1/δ)

m
.

In light of Eq. (32), we conclude Eq. (13)

Theorem 6 shows that using empirical risk minimization, the loss of the obtained pre-
dictor converges to the loss of the optimal predictor at a rate of the order

Õ

(√
rk log(d)

m

)
≡ Õ

(√
θk log(d)

m

)
.

Up to logarithmic factors, this is the best possible rate for learning in the generalized
Winnow setting. This is shown in the next section, in Theorem 17. We also show, in
Theorem 21, that this rate cannot be obtain via standard uniform convergence analysis.

5. Lower Bounds

In this section we provide lower bounds for the learning rate and for the uniform convergence
rate of the Winnow loss `θ.

5.1 Learning Rate Lower Bound

Fix a threshold θ. The best Winnow loss for a distribution D over [0, 1]d × {±1} using a
hyperplane from a set W ⊆ Rd+ is denoted by `∗θ(W ) = minw∈W `θ(w). The following result
shows that even if the data domain is restricted to the discrete domain {0, 1}d, the number
of samples required for learning with the Winnow loss grows at least linearly in θk. This
resolves an open question posed by Littlestone (1988).
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Theorem 17 Let k ≥ 1 and let θ ∈ [1, k/2]. The sample complexity of learning Hk,θ with
respect to the loss `θ is Ω(θk/ε2). That is, for all ε ∈ (0, 1/2) if the training set size is
m = o(θk/ε2), then for any learning algorithm, there exists a distribution such that the
classifier, h : {0, 1}d → R+, that the algorithm outputs upon receiving m i.i.d. examples
satisfies `θ(h)− `∗θ(Hk,θ) > ε with a probability of at least 1/4.

The construction which shows the lower bound proceeds in several stages: First, we
prove that there exists a set of size k2 in {±1}k2 which is shattered on the linear loss
with respect to predictors with a norm bounded by k. Then, apply a transformation on
this construction to show a set in {0, 1}2k2+1 which is shattered on the linear loss with a
threshold of k/2. In the next step, we adapt the construction to hold for any value of the
threshold. Finally, we use the resulting construction to prove Theorem 17.

The construction uses the notion of a Hadamard matrix. A Hadamard matrix of order
n is an n× n matrix Hn with entries in {±1} such that HnH

T
n = nIn. In other words, all

rows in the matrix are orthogonal to each other. Hadamard matrices exist at least for each
n which is a power of 2 (Sylvester, 1867). The first lemma constructs a shattered set for
the linear loss on {±1}k2 .

Lemma 18 Assume k is a power of 2, and let d = k2. Let x1, . . . , xd ⊆ {±1}d be the rows
of the Hadamard matrix of order d. For every y ∈ {±1}d, there exists a w ∈ W ′ = {w ∈
[−1, 1]d | ‖w‖ ≤ k} such that for all i ∈ [d], y[i]〈w, xi〉 = 1.

Proof By the definition of a Hadamard matrix, for all i 6= j, 〈xi, xj〉 = 0. Given y ∈ {±1}d,
set w = 1

d

∑
j∈[d] yjxj . Then for each i,

yi〈w, xi〉 = yi
1

d

∑
j∈[d]

yj〈xi, xj〉 =
1

d
y2
i 〈xi, xi〉 =

1

d
‖xi‖22 = 1.

It is left to show that w ∈W ′. First, for all i ∈ [d], we have

|w[i]| = |1
d

∑
j∈[d]

yjxj [i]| ≤
1

d

∑
j∈[d]

|xj [i]| = 1,

which yields w ∈ [−1, 1]d. Second, using ‖w‖1 ≤
√
d‖w‖2 and

‖w‖22 = 〈w,w〉 =
1

d2

∑
i,j∈[d]

〈yixi, yjxj〉 =
1

d2

∑
i∈[d]

y2
i 〈xi, xi〉 =

1

d2

∑
i∈[d]

d = 1,

we obtain that ‖w‖1 ≤
√
d = k.

The next lemma transforms the construction from Lemma 18 to a linear loss with a threshold
of k/2.

Lemma 19 Let k be a power of 2 and let d = 2k2 + 1. There is a set {x1, . . . , xk2} ⊆
{0, 1}d such that for every y ∈ {±1}k2, there exists w ∈ Hk,θ such that for all i ∈ [k2],
y[i](〈w, xi〉 − k/2) = 1

2 .
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Proof From Lemma 18 we have that there is a set X = {x1, . . . , xk2} ⊆ {±1}k2 such that
for each labeling y ∈ {±1}k2 , there exists a wy ∈ [−1, 1]d with ‖wy‖1 ≤ k such that for all
i ∈ [k2], y[i]〈wy, xi〉 = 1. We now define a new set X̃ = {x̃1, . . . , x̃k2} ⊆ {0, 1}d based on X
that satisfies the requirements of the lemma.

For each i ∈ [k2] let x̃i = [
~1+xi

2 ,
~1−xi

2 , 1], where [·, ·, ·] denotes a concatenation of vectors

and ~1 is the all-ones vector. In words, each of the first k2 coordinates in x̃i is 1 if the
corresponding coordinate in xi is 1, and zero otherwise. Each of the next k2 coordinates in
x̃i is 1 if the corresponding coordinate in xi is −1, and zero otherwise. The last coordinate
in x̃i is always 1.

Now, let y ∈ {±1}k2 be a desired labeling. We defined w̃y based on wy as follows:

w̃y = [[wy]+, [−wy]+, k−‖wy‖12 ], where by z = [v]+ we mean that z[j] = max{v[j], 0}. In
words, the first k2 coordinates of w̃y are copies of the positive coordinates of wy, with zero
in the negative coordinates, and the next k2 coordinates of w̃y are the absolute values of
the negative coordinates of wy, with zero in the positive coordinates. The last coordinate
is a scaling term.

We now show that w̃y has the desired property on X̃. For each i ∈ [k2],

〈w̃y, x̃i〉 =

〈
~1 + xi

2
, [wy]+

〉
+

〈
~1− xi

2
, [−wy]+

〉
+
k − |wy|1

2

=
|wy|1

2
+
〈xi, wy〉

2
+
k − |wy|1

2
=
〈xi, wy〉

2
+
k

2
=
yi
2

+
k

2
.

It follows that yi(〈w̃y, x̃i〉 − k/2) = y2
i /2 = 1/2.

Now, clearly w̃y ∈ Rd+. In addition,

‖w̃y‖1 = ‖wy‖1 +
k − ‖wy‖1

2
=
‖wy‖1

2
+
k

2
≤ k.

Hence w̃y ∈ Hk,θ as desired.

The last lemma adapts the previous construction to hold for any threshold.

Lemma 20 Let z be a power of 2 and let k such that z divides k. Let d = 2kz+k/z. There
is a set {x1, . . . , xzk} ⊆ {0, 1}d such that for every y ∈ {±1}zk, there exists a w ∈ Hk,θ such
that for all i ∈ [zk], y[i](〈w, xi〉 − z/2) = 1

2 .

Proof By Lemma 19 there is a set X = {x1, . . . , xz2} ⊆ {0, 1}2z
2+1 such that for all

y ∈ {±1}z2 , there exists a wy ∈ R2z2+1
+ such that ‖wy‖1 ≤ z and for all i ∈ [z2], y[i](〈wy, xi〉−

z/2) = 1
2 .

We now construct a new set X̃ = {x̃1, . . . , x̃zk} ⊆ {0, 1}2kz+k/z as follows: For i ∈ [zk],
let n = bi/z2c and m = i mod z2, so that i = nz2 +m.The vector x̃i is the concatenation of
kz
z2

= k
z vectors, each of which is of dimension 2z2 + 1, where all the vectors are the all-zeros

vector, except the (n+ 1)’th vector which equals to xm+1. That is:

x̃i = [

∈R2z2+1︷︸︸︷
0 , . . . ,

∈R2z2+1︷︸︸︷
0 ,

block n+1︷ ︸︸ ︷
xm+1 ,

∈R2z2+1︷︸︸︷
0 , . . . ,

∈R2z2+1︷︸︸︷
0 ] ∈ R

k
z (2z2+1) .
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Given ỹ ∈ {±1}kz, let us rewrite it as a concatenation of k/z vectors, each of which in
{±1}z2 , namely,

ỹ = [

∈{±1}z2︷︸︸︷
ỹ(1) , . . . ,

∈{±1}z2︷ ︸︸ ︷
ỹ(k/z)] ∈ {±1}kz .

Define w̃ỹ as the concatenation of k/z vectors in {±1}z2 , using wy defined above for each

y ∈ {±1}z2 , as follows:

w̃ỹ = [

∈R2z2+1
+︷ ︸︸ ︷
wỹ(1) , . . . ,

∈R2z2+1
+︷ ︸︸ ︷

wỹ(k/z)] ∈ R
k
z (2z2+1) .

For each i such that n = bi/z2c and m = i mod z2, we have

〈w̃ỹ, x̃i〉 − z/2 = 〈wỹ(n+1), xm+1〉 − z/2 =
1

2
ỹ(n+ 1)[m+ 1].

Now ỹ(n + 1)[m + 1] = ỹ[i], thus we get ỹ[i](〈w̃ỹ, x̃i〉 − z/2) = 1
2 as desired. Finally, we

observe that ‖w̃ỹ‖1 =
∑

n∈[k/z] ‖wỹ(n)‖1 ≤ k/z · z = k, hence w̃ỹ ∈ Hk,θ.

Finally, the construction above is used to prove the convergence rate lower bound.
Proof (Proof of Theorem 17) Let k ≥ 1, θ ∈ [1

2 ,
k
2 ]. Define z = 2θ. Let n = max{n |

2n ≤ z}, and let m = max{m | m2n ≤ k}. Define z̃ = 2n and k̃ = m2n. We have that
z̃ is a power of 2 and z̃ divides k̃. Let d̃ = 2k̃z̃ + k̃/z̃. By Lemma 20, there is a set

X = {x1, . . . , xz̃k̃} ⊆ {0, 1}
d̃ such that for every y ∈ {±1}|X|, there exists a wy ∈ Hk,θ such

that for all i ∈ [z̃k̃], y[i](〈wy, xi〉 − z̃/2) = 1
2 .

Now, let d = d̃+ 1, and define w̃y = [wy,
z−z̃

2 ] and x̃i = [xi, 1]. It follows that

y[i](〈w̃y, x̃i〉 − θ) = y[i](〈w̃y, x̃i〉 − z/2)

= y[i](〈wy, xi〉+ z/2− z̃/2− z/2)

= y[i](〈wy, xi〉 − z̃/2) =
1

2
.

We conclude that for all i ∈ [z̃k̃], `θ(x̃i, y[i], w̃y) = 0 and `θ(x̃i, 1− y[i], w̃y) = 1. Moreover,
sign(〈w̃y, x̃i〉 − θ) = y[i].

Now, for a given w define hw(x) = sign(〈w, xi〉 − θ), and consider the binary hypothesis
class H = {hw | w ∈ Hk,θ} over the domain X. Our construction of w̃y shows that the
set X is shattered by this hypothesis class, thus its VC dimension is at least |X|. By VC-
dimension lower bounds (e.g., Anthony and Bartlett, 1999, Theorem 5.2), it follows that
for any learning algorithm for H, if the training set size is o(|X|/ε2), then there exists a
distribution over X so that with probability greater than 1/64, the output ĥ of the algorithm
satisfies

E[ĥ(x) 6= y] > min
w∈Hk,θ

E[hw(x) 6= y] + ε . (34)

Next, we show that the existence of a learning algorithm for Hk,θ with respect to `θ
whose sample complexity is o(|X|/ε2) would contradict the above statement. Indeed, let
w∗ be a minimizer of the right-hand side of Eq. (34), and let y∗ be the vector of predictions
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of w∗ on X. As our construction of w̃y∗ shows, we have `θ(w̃y∗) = E[hw∗(x) 6= y]. Now,
suppose that some algorithm learns ŵ ∈ Hk,θ so that `θ(ŵ) ≤ `∗θ(Hk,θ) + ε. This implies
that

`θ(ŵ) ≤ `θ(w̃y∗) + ε = E[hw∗(x) 6= y] + ε .

In addition, define a (probabilistic) classifier, ĥ, that outputs the label +1 with probability
p(ŵ, x) where p(ŵ, x) = min{1,max{0, 1/2 + (〈ŵ, x〉 − θ)}}. Then, it is easy to verify that

P[ĥ(x) 6= y] ≤ `θ(x, y, ŵ) .

Therefore, E[ĥ(x) 6= y] ≤ `θ(ŵ), and we obtain that

E[ĥ(x) 6= y] ≤ E[hw∗(x) 6= y] + ε ,

which leads to the desired contradiction.

We next show that the uniform convergence rate for our problem is in fact slower than the
achievable learning rate.

5.2 Uniform Convergence Lower Bound

The next theorem shows that the rate of uniform convergence for our problem is asymptoti-
cally slower than the rate of convergence of the empirical loss minimizer given in Theorem 6,
even if the drawn label in a random pair is negative with probability 1. This indicates that
indeed, a more subtle argument than uniform convergence is needed to show that ERM
learns at a rate of Õ(

√
θk/m), as done in Section 4.

Theorem 21 Let k ≥ 1, and assume θ ≤ k/2. There exists a distribution D over {0, 1}k2+1×
Y such that ∀x ∈ {0, 1}d,P[Y = −1 | X = x] = 1, and `∗(Hk,θ, D) = [r′]+, and such that
with probability at least 1/2 over samples S ∼ Dm,

∃w ∈ Hk,θ, |`(w, S)− `(w,D)| ≥ Ω(
√
k2/m). (35)

This claim may seem similar to well-known uniform convergence lower bounds for classes
with a bounded VC dimension (see, e.g., Anthony and Bartlett, 1999, Chapter 5). However,
these standard results rely on constructions with non-realizable distributions, while Theo-
rem 21 asserts the existence of a realizable distribution which exhibits this lower bound.

To prove this theorem we first show two useful lemmas. The first lemma shows that a
lower bound on the uniform convergence of a function class can be derived from a lower
bound on the Rademacher complexity of a related function class.

Lemma 22 Let Z be a set, and consider a function class F ⊆ [0, 1]Z . Let D be a distribu-
tion over Z. Let F̄ = {(x1, x2) → f(x1) − f(x2) | f ∈ F}. With probability at least 1 − δ
over samples S ∼ Dm,

∃f ∈ F, |EX∼S [f(X)]− EX∼D[f(X)]| ≥ 1

4
Rm(F̄ ,D ×D)−

√
ln(1/δ)

8m
. (36)
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Proof Denote E[f, S] = EX∼S [f(X)], and E[f,D] = EX∼D[f(X)]. Consider two inde-
pendent samples S = (X1, . . . , Xm), S′ = (X ′1, . . . , X

′
m) ∼ Dm. Let σ = (σ1, . . . , σm) be

Rademacher random variables, and let S ∼ (D ×D)m. We have

2 · ES

[
sup
f∈F
|E[f, S]− E[f,D]|

]
= ES,S′

[
sup
f∈F
|E[f, S]− E[f,D]|+ sup

f∈F
|E[f, S′]− E[f,D]|

]

≥ ES,S′
[

sup
f∈F
|E[f, S]− E[f,D]|+ |E[f, S′]− E[f,D]|

]

≥ ES,S′
[

sup
f∈F
|E[f, S]− E[f, S′]|

]

=
1

m
ES,S′

sup
f∈F

∣∣∣∣∑
i∈[m]

f(Xi)− f(X ′i)

∣∣∣∣


=
1

m
Eσ,S̄

sup
f̄∈F̄

∣∣∣∣∑
i∈[m]

σif̄(Xi)

∣∣∣∣
 = Rm(F̄ ,D ×D)/2.

We have left to show a lower bound with high probability. Define g(S) = supf∈F |E[f, S]−
E[f,D]|. Any change of one element in S can cause g(S) to change by at most 1/m, There-
fore, by McDiarmid’s inequality, P[g(S) ≤ E[g(S)] − t] ≤ exp(−2mt2). Eq. (36) thus holds
with probability 1− δ.

The next lemma provides a uniform convergence lower bound for a universal class of
binary functions.

Lemma 23 Let H = {0, 1}[n] be the set of all binary functions on [n]. Let D be the uniform
distribution over [n]. For any n ≥ 45 and m ≥ 32n, with probability of at least 1

2 over i.i.d.
samples of size m drawn from D,

∃h ∈ H, |EX∼S [h(X)]− EX∼D[h(X)]| ≥
√

n

512m
.

Proof Let n ≥ 45 and m ≥ 32n. By Lemma 22, it suffices to provide a lower bound for
Rm(H̄,D ×D). Fix a sample S = ((x1, x

′
1), . . . , (xm, x

′
m)) ∼ (D ×D)m. We have

m

2
R(H̄, S) = Eσ

[∣∣∣∣sup
h∈H

m∑
i=1

σi(h(xi)− h(x′i))

∣∣∣∣
]
,
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where σ = (σ1, . . . , σm) are Rademacher random variables. For a given σ ∈ {±1}m, define
hσ ∈ H such that hσ(j) = sign(

∑
i:xi=j

σi −
∑

i:x′i=j
σi). Then

m

2
R(H̄, S) ≥ Eσ

∣∣∣∣∑
i∈[m]

σi(hσ(xi)− hσ(x′i))

∣∣∣∣


= Eσ

∣∣∣∣∑
j∈[n]

 ∑
i:xi=j

σi −
∑
i:x′i=j

σi

hσ(j)

∣∣∣∣


=
∑
j∈[n]

Eσ

∣∣∣∣ ∑
i:xi=j

σi −
∑
i:x′i=j

σi

∣∣∣∣
 .

Let cj(S) be the number of indices i such that exactly one of xi = j and x′i = j holds. Then
Eσ[|

∑
i:xi=j

σi −
∑

i:x′i=j
σi|] is the expected distance of a random walk of length cj(S),

which can be bounded from below by
√
cj(S)/2 (Szarek, 1976). Therefore,

R(H̄, S) ≥
√

2

m

∑
j∈[n]

√
cj(S).

Taking expectation over samples, we get

R(H̄,D ×D) = ES∼(D×D)m [R(H̄, S)] ≥
√

2

m

∑
j∈[n]

ES
[√

cj(S)

]
. (37)

Our final step is to bound ES
[√

cj(S)
]
. We have

ES [cj(S)] = m

(
1

n
− 1

n2

)
≥ m

2n
,

and

VarS [cj(S)] = m

(
1

n
− 1

n2

)(
1− 1

n
+

1

n2

)
≤ m

n
.

Thus, by Chebyshev’s inequality,

P
[
cj(S) ≤ m

2n
− t
]
≤ m

nt2
.

Therefore

ES
[√

cj(S)

]
≥
(

1− m

nt2

)√m

2n
− t.

Setting t = m
4n , and since m/n ≥ 32, ES

[√
cj(S)

]
≥
√

m
16n . Plugging this into Eq. (37), we

get that R(H̄,D×D) ≥
√

n
8m . By Lemma 22, it follows that with probability at least 1− δ

over samples,

∃f ∈ F, |EX∼S [f(X)]− EX∼D[f(X)]| ≥
√

n

128m
−
√

ln(1/δ)

8m
.
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Fixing δ = 1/2, we get that since n ≥ 64 ln(2), the RHS is at least
√

n
512m .

Using the two lemmas above, we are now ready to prove our uniform convergence lower
bound. This is done by mapping a subset of Hk,θ to a universal class of binary functions
over Θ(k2) elements from our domain. Note that for this lower bound it suffices to consider
the more restricted domain of binary vectors.
Proof (Proof of Theorem 21) Let q be the largest power of 2 such that q ≤ k. By Lemma 19,
there exists a set of vectors Z = {z1, . . . , zq2} ⊆ {0, 1}q

2+1 such that for every t ∈ {±1}q2

there exists a wt ∈ Hk,θ such that for all i, t[i](〈w, zi〉 − q/2) = 1
2 . Denote U = {wt | t ∈

{±1}q2}. It suffices to prove a lower bound on the uniform convergence of U , since this
implies the same lower bound for Hk,θ. Define the distribution D over Z × {±1} such that
for (X,Y ) ∼ D, X is drawn uniformly from z1, . . . , zq2 and Y = −1 with probability 1.

Consider the set of functions H = {0, 1}Z , and for h ∈ H define th ∈ {±1}q2 such that
for all i ∈ [q2], th[i] = 2h(zi)− 1. For any i ∈ q2, we have

`(zi,−1, wth) = [r′+〈w, zi〉]+ = [r′+(t[i]+k)/2]+ = [r′+(k−1)/2+h(i)]+ = r′+(k−1)/2+h(zi).

The last equality follows since r′ ≥ 1−k
2 . It follows that for any h ∈ H and any sample S

drawn from D,

|`(wth , S)− `(wth , D)| = |EX∼S [h(X)]− EX∼D[h(X)]|.

By Lemma 23, with probability of at least 1
2 over the sample S ∼ Dm,

∃h ∈ H, |EX∼S [h(X)]− EX∼D[h(X)]| ≥ Ω(
√
q2/m) = Ω(

√
k2/m).

Thus, with probability at least 1/2,

∃w ∈ Hk,θ, |`(wth , S)− `(wth , D)| ≥ Ω(
√
k2/m).
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