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Abstract

Classification is an important topic in statistics and machine learning with great potential in
many real applications. In this paper, we investigate two popular large-margin classification
methods, Support Vector Machine (SVM) and Distance Weighted Discrimination (DWD),
under two contexts: the high-dimensional, low-sample size data and the imbalanced data.
A unified family of classification machines, the FLexible Assortment MachinE (FLAME)
is proposed, within which DWD and SVM are special cases. The FLAME family helps to
identify the similarities and differences between SVM and DWD. It is well known that many
classifiers overfit the data in the high-dimensional setting; and others are sensitive to the
imbalanced data, that is, the class with a larger sample size overly influences the classifier
and pushes the decision boundary towards the minority class. SVM is resistant to the
imbalanced data issue, but it overfits high-dimensional data sets by showing the undesired
data-piling phenomenon. The DWD method was proposed to improve SVM in the high-
dimensional setting, but its decision boundary is sensitive to the imbalanced ratio of sample
sizes. Our FLAME family helps to understand an intrinsic connection between SVM and
DWD, and provides a trade-off between sensitivity to the imbalanced data and overfitting
the high-dimensional data. Several asymptotic properties of the FLAME classifiers are
studied. Simulations and real data applications are investigated to illustrate theoretical
findings.

Keywords: classification, Fisher consistency, high-dimensional low-sample size asymp-
totics, imbalanced data, support vector machine

1. Introduction

Classification refers to predicting the class label, y ∈ C, of a data object based on its
covariates, x ∈ X . Here C is the space of class labels, and X is the space of the covariates.
Usually we consider X ≡ Rd, where d is the number of variables or the dimension. See Duda
et al. (2001) and Hastie et al. (2009) for a comprehensive introduction to many popular
classification methods. When C = {+1,−1}, this is an important class of classification
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problems, called binary classification. The classification rule for a binary classifier usually
has the form φ(x) = sign {f(x)}, where f(x) is called the discriminant function. Linear
classifiers are the most important and the most commonly used classifiers, as they are often
easy to interpret in addition to reasonable classification performance. We focus on linear
classifier in this article. In the above formula, linear classifiers correspond to f(x;ω, β) =
xTω+β. The sample space is divided into halves by the separating hyperplane, also known as
the classification boundary, defined by

{
x : f(x) ≡ xTω + β = 0

}
. Note that the coefficient

vector ω ∈ Rd defines the normal vector, and hence the orientation, of the classification
boundary; and the intercept term β ∈ R defines the location of the classification boundary.

In this paper, two popular classification methods, Support Vector Machine (SVM; Cortes
and Vapnik, 1995; Vapnik, 1998; Cristianini and Shawe-Taylor, 2000) and Distance Weighted
Discrimination (DWD; Marron et al., 2007) are investigated under two important contexts:
the High-Dimensional, Low-Sample Size (HDLSS) data and the imbalanced data. Both
methods are large-margin classifiers (Smola et al., 2000), that seek separating hyperplanes
which maximize certain notions of gap (that is, distances) between the two classes. The
investigation of the performance of SVM and DWD motivates the notion of a unified fam-
ily of classifiers, the FLexible Assortment MachinE (FLAME), which connects the two
classifiers, and helps to understand their connections and differences.

There is a large literature in statistics and machine learning on large-margin classifiers.
For example, Wahba (1999) studied kernel SVM in Reproducing Kernel Hilbert Spaces. Lin
(2004) introduced and proved Fisher consistency for SVM. Bartlett et al. (2006) quantified
the excess risk of a loss function in a learning problem including the case of large-margin
classification. On the methodology level, Shen et al. (2003) invented ψ-learning; Wu and
Liu (2007) introduced robust SVM. Recently, Liu, Zhang, and Wu (2011) studies a unified
class of classifiers which connected hard classification and soft classification (probability
estimation).

It is worth mentioning that the FLAME family is not proposed as a better classification
method to replace SVM or DWD. Instead, it is proposed as a unified machine, which is very
helpful to investigate the trade-off between generalization errors and overfitting. A single
parameter will be used to control the trade-off, of which DWD and SVM sit on the two
ends.

1.1 Motivation: Pros and Cons of SVM and DWD

SVM is a very popular classifier in statistics and machine learning. It has been shown to
have Fisher consistency, that is, when sample size goes to infinity, its decision rule converges
to the Bayes rule (Lin, 2004). SVM has several nice properties: 1) Its dual formulation is
relatively easy to implement (through Quadratic Programming). 2) SVM is robust to the
model specification, which makes it very popular in various real applications. However,
when being applied to HDLSS data, it has been observed that a large portion of the data
(usually the support vectors, to be properly defined later) lie on two hyperplanes parallel
to the SVM classification boundary. This is known as the data-piling phenomenon (Marron
et al., 2007; Ahn and Marron, 2010). Data-piling of SVM indicates a type of overfitting.
Other overfitting phenomenon of SVM under the HDLSS context include:

1. The angle between the SVM direction and the Bayes rule direction is usually large.
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2. The variability of the sampling distribution of the SVM direction ω is very large
(Zhang and Lin, 2013). Moreover, because the separating hyperplane is decided only
by the support vectors, the SVM direction tends to be unstable, in the sense that small
turbulence or measurement error to the support vectors can lead to a big change of
the estimated direction.

3. In some cases, the out-of-sample classification performance may not be optimal due
to the suboptimal direction of the estimated SVM discrimination direction.

DWD is a recently developed classifier to improve SVM in the HDLSS setting. It uses a
different notion of gap from SVM. While SVM is to maximize the smallest distance between
classes, DWD is to maximize a special average distance (harmonic mean) between classes.
It has been shown in many earlier simulations that DWD largely overcomes the overfitting
(data-piling) issue and it usually gives a better discrimination direction.

On the other hand, the intercept term β of the DWD method is sensitive to the sample
size ratio between the two classes, that is, to the imbalanced data (Qiao et al., 2010).
Note that, even though a good discriminant direction ω is more important in revealing
the structure of the data, the classification/prediction performance heavily depends on the
intercept β, more than on the direction ω. As shown in Qiao et al. (2010), usually the β
term of the SVM classifier is not sensitive to the sample size ratio, while the β term of the
DWD method will become too large (or too small) if the sample size of the positive class
(or negative class) is very large.

In summary, both methods have pros and cons. SVM has a greater stochastic variability
and usually overfits the data by showing data-piling phenomena, but is less sensitive to the
imbalanced data issue. DWD usually overcomes the overfitting/data-piling issue, and has
a smaller sampling variability, but is very sensitive to the imbalanced data. Driven by
their similarity, we propose a unified class of classifiers, FLAME, in which the above two
classifiers are special cases. FLAME provides a framework to study the connections and
differences between SVM and DWD. Each FLAME classifier has a parameter θ which is used
to control the performance balance between overfitting the HDLSS data and the sensitivity
to the imbalanced data. It turns out that the DWD method is FLAME with θ = 0; and
that the SVM method corresponds to FLAME with θ = 1. The optimal θ depends on the
trade-off among several factors: stochastic variability, overfitting and resistance against the
imbalanced data. In this paper, we also propose an approach to select θ, where the resulting
FLAME have the potential to achieve a balanced performance between the SVM and DWD
methods.

1.2 Outline

The rest of the paper is organized as follows. Section 2 provides toy examples and highlights
the strengths and drawbacks of SVM and DWD on classifying the HDLSS and imbalanced
data. We develop the FLAME method in Section 3, which is motivated by the investigation
of the loss functions of SVM and DWD. Section 4 provides suggestions on choosing the
parameters. Three types of asymptotic results for the FLAME classifier are studied in
Section 5. Section 6 demonstrates its properties using simulation experiments. A real
application study is conducted in Section 7. Some concluding remarks and discussions are
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made in Section 8. Technical proofs of theorems and propositions are included in Online
Appendix 1.

2. Comparison of SVM and DWD

In this section, we use several toy examples to illustrate the strengths and drawbacks of
SVM and DWD under two contexts: HDLSS data and imbalanced data.

2.1 Overfitting HDLSS Data

We use several simulated examples to compare SVM and DWD. The results show that the
stochastic variability of the SVM direction is usually larger than that of the DWD method,
and SVM directions are deviated farther away from Bayes rule directions. In addition, the
new proposed FLAME machine (see details in Section 3) is also included in the comparison,
and it turns out that FLAME with a mediocre θ is between the above two methods.

Figure 1 shows the comparison results between SVM, DWD and FLAME (with tuning
parameter θ = 1/2). We simulate 10 samples with the same underlying distribution. Each
simulated data set contains 12 variables and two classes, with 120 observations in each class.
The two classes have mean difference on only the first three dimensions and the within-class
covariances are diagonal, that is, the variables are independent. For each simulated data
set, we plot the first three components of the resulting discriminant directions from SVM,
DWD and FLAME (after normalizing the 3D vectors to have unit L2 norms), as shown
in Figure 1. It clearly shows that the DWD directions (the blue down-pointing triangles)
are the closest ones to the true Bayes rule direction (the cyan diamond marker) among the
three approaches. In addition, the DWD directions have the smallest variation (that is,
more stable) over different samples. The SVM directions (the red up-pointing triangles)
are farthest from the true Bayes rule direction and have a larger variation than the other
two methods. To highlight the direction variabilities of the three methods, we introduce
a novel measure for the variation (instability) of the discriminant directions: the trace of
the sample covariance of the resulting direction vectors over the 10 replications, which we
name as dispersion. The dispersion for the DWD method (0.0031) is much smaller than
that of the SVM method (0.0453), as highlighted in the figure as well. The new FLAME
classifiers usually have a performance between DWD and SVM. Figure 1 shows the results
of a specific FLAME (θ = 0.5, the magenta squares), which are better than SVM but worse
than DWD.

Besides the advantage in terms of the stochastic variability and the deviation from the
true direction, DWD outperforms SVM in terms of stability in the presence of small pertur-
bations. In Figure 2, we use a two-dimensional example to illustrate this phenomenon. We
simulate a perfectly separable 2-dimensional data set. The theoretical Bayes rule decision
boundary is shown as the thick black line. The dashed red line and the dashed dotted blue
line are the SVM and the DWD classification boundaries respectively before the perturba-
tion. We then move one observation in the positive group slightly (from the solid triangle
to the solid diamond as shown in the figure). This perturbation leads to a visible change of
the SVM direction (shown as the dotted red line), but a smaller change for DWD (shown
as the solid blue line). Note that all four hyperplanes are capable of classifying this training
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Figure 1: The true population mean difference direction vector (the cyan dashed line and
diamond marker; equivalent to the Bayes rule direction), the DWD directions
(blue down-pointing triangles), the FLAME directions with θ = 0.5 (magenta
squares), and the SVM directions (red up-pointing triangles) for 10 realizations
of simulated data. Each direction vector has norm 1 and thus is depicted as a point
on the 3D unit sphere. On average, all machines have their discriminant direction
vectors scattering around the true direction. The DWD directions are the closest
to the true direction and have the smallest variation. The SVM directions have
the largest variation and are farthest from the true direction. The variation of
the intermediate FLAME direction vectors is between the two machines above.
The variation (dispersion) of a machine is also measured by the trace of the
sample covariance calculated from the 10 resulting direction vectors for the 10
simulations.

data set perfectly. But it may not be true for an out-of-sample test set. This example shows
the unstableness of SVM.

2.2 Sensitivity to Imbalanced Data

In the last subsection, we have shown that DWD outperforms SVM in estimating the
discrimination direction, that is, DWD directions are closer to the Bayes rule discrimination
directions and usually have a smaller variability. However, it was found that the location
of DWD classification boundary, which is characterized by the intercept β, is sensitive to
the sample size ratio between the two classes (Qiao et al., 2010).
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Figure 2: A 2D example shows that the unstable SVM boundary has changed due to a
small turbulence of a support vector (the solid red triangle and diamond) while
the DWD boundary remains almost still.

Usually, a good discriminant direction ω helps to reveal the profiling difference between
two classes of populations. But the classification/prediction performance heavily depends
on the location coefficient β. We define the imbalance factor m ≥ 1 as the sample size ratio
between the majority class and the minority class. It turns out that β in the SVM classifier
is not sensitive to m. However, the β term for the DWD method is very sensitive to m. We
also notice that, as a consequence, the DWD separating hyperplane will be pushed toward
the minority class, when the ratio m is close to infinity, that is, DWD classifiers intend to
ignore the minority class. In this section, we use another toy example to better illustrate the
impact of the imbalanced data on both the estimated β and the classification performance.

Figure 3 uses a one-dimensional example, so that estimating ω is not needed. This also
corresponds to a multivariate data set, where ω is estimated correctly first, after which the
data set is projected to ω to form the one-dimensional data. In this plot, the x-coordinates
of the red dots and the blue dots are the values of the data while the y-coordinates are
random jitters for better visualization. The red and blue curves are the kernel density
estimations for both classes. In the top subplot of Figure 3, where m = 1 (that is, the
balanced data), both the DWD (blue lines) and SVM (red lines) boundaries are close to the
Bayes rule boundary (black solid line), which sits at 0. In the bottom subplot, the sample
size of the red class is tripled, which corresponds to m = 3. Note that the SVM boundary
moves a little towards the minority (blue) class, but still fairly close to the true boundary.
The DWD boundary, however, is pushed towards the minority. Although this does not
impose immediate problems for the training data set, the DWD classifier will suffer from a
great loss of classification performance when it is applied to an out-of-sample data set. It
can be shown that when m goes to infinity, the DWD classification boundary will tends to
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Figure 3: A 1D example shows that the DWD boundary is pushed towards the minority
class (blue) when the majority class (red) has tripled its sample size.

negative infinity, which totally ignores the minority group (see our Theorem 4). However,
SVM will not suffer from the imbalanced data issue. One reason is that SVM only needs
a small fraction of data (called support vectors) to estimate both ω and β, which mitigate
the imbalanced data issue naturally.

Imbalanced data issues have been investigated in both statistics and machine learning.
See an extensive survey in Chawla et al. (2004). Recently, Owen (2007) studied the asymp-
totic behavior of infinitely imbalanced binary logistic regression. In addition, Qiao and Liu
(2009) and Qiao et al. (2010) proposed to use adaptive weighting approaches to overcome
the imbalanced data issue.

In summary, the performance of DWD and SVM is different in the following ways: 1)
The SVM direction usually has a larger variation and deviates farther from the Bayes rule
direction than the DWD direction, which are indicators of overfitting HDLSS data. 2) The
SVM intercept is not sensitive to the imbalanced data, but the DWD intercept is. These
observations have motivated us to investigate their similarity and differences. In the next
section, a new family of classifier will be proposed, which unifies the above two classifiers.

3. FLAME Family

In this section, we introduce FLAME, a family of classifiers, through a thorough inves-
tigation of the loss functions of SVM and DWD in Section 3.1. The formulation and
implementation of the FLAME classifiers are given in Section 3.2.
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3.1 SVM and DWD Loss Functions

The key factors that drive the very distinct performances of the SVM and the DWD methods
are their associated loss functions (see Figure 4.)
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Figure 4: FLAME loss functions for three θ values: θ = 0 (equivalent to SVM/Hinge loss),
θ = 0.5, θ = 1 (equivalent to DWD). The parameter C is set to be 1.

Figure 4 displays the loss functions of SVM, DWD and FLAME with some specific
tuning parameters. SVM uses the Hinge loss function, H(u) = (1 − u)+ (the red dashed
curve in Figure 4), where u corresponds to the functional margin u ≡ yf(x). Note that
the functional margin u can be viewed as the distance of vector x from the separating
hyperplane (defined by {x : f(x) = 0}). When u > 0 and is large, the data vector is
correctly classified and is far from the separating hyperplane; when u < 0, the data vector
is wrongly classified. Note that when u > 1, the corresponding Hinge loss equals zero.
Thus, only those observations with u ≤ 1 contribute to the estimation of ω and β. These
observations are called support vectors. Hence, SVM is insensitive to the observations that
are far away from the decision boundary, which is the reason that it is less sensitive to the
imbalanced data issue. However, the influence by only the support vectors makes the SVM
solution subject to overfitting (data-piling). This can be explained by the following: in the
optimization process of SVM, the functional margins for the vectors are pushed towards
a region with small loss, that is, functional margins u are encouraged to be large. But
once a vector is pushed to the point where u = 1, the optimization mechanism lacks further
incentive to continue pushing it towards a larger function margin as the Hinge loss cannot be
further reduced for this vector. Therefore many data vectors are piling along the hyperplane
corresponding to u = 1. Data-piling is bad for generalization because a small turbulence
to the support vectors could lead to a big difference of the estimated discriminant direction
vector (recall the examples in Section 2.1).
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The DWD method corresponds to a different DWD loss function,

V (u) =

{
2
√
C − Cu if u ≤ 1√

C
,

1/u otherwise.
(1)

Here C is a pre-defined constant. Figure 4 shows the DWD loss function with C = 1. It is
clear that the DWD loss function is very similar to the SVM loss function when u is small
(both are linearly decreasing with respect to u). The major difference is that the DWD loss
is always positive. This property will make the DWD method behave in a very different
way than SVM. As there is always an incentive to make the function margin to be larger
(and the loss to be smaller), the DWD loss function kills data-piling, and mitigates the
overfitting issue for HDLSS data.

On the other hand, the DWD loss function makes the DWD method very sensitive to the
imbalanced data issue. This is because now that each observation will have some influence,
the larger class will have a larger influence. The decision boundary of the DWD method
tends to ignore the smaller class, because sacrificing the smaller class (boundary being closer
to the smaller class and farther from the larger class) can lead to a dramatic reduction of
the loss from the larger class, which ultimately lead to a minimized overall loss.

3.2 FLAME

We propose to borrow strengths from both methods to simultaneously deal with both the
imbalanced data and the overfitting (data-piling) issues. We first highlight the connections
between the DWD loss and an modified version of the Hinge loss (of SVM). Then we modify
the DWD loss so that samples far from the classification boundary will have zero loss.

Let f(x) = xTω+β. The formulation of SVM can be rewritten (see details in Appendix
A) in the form of argmin

ω,β

∑
iH
∗(yif(xi)), s.t. ‖ω‖2 ≤ 1 where the modified Hinge loss

function H∗ is defined as

H∗(u) =

{ √
C − Cu if u ≤ 1√

C
,

0 otherwise.
(2)

Comparing the DWD loss (1) and this modified Hinge loss (2), one can easily see their
connections: for u ≤ 1√

C
, the DWD loss is greater than the Hinge loss of SVM by an exact

constant
√
C, and for u > 1√

C
, the DWD loss is 1/u while the SVM Hinge loss equals

0. Clearly the modified Hinge loss (2) is the result of soft-thresholding the DWD loss at√
C. In other words, SVM can be seen as a special case of DWD where the losses of those

vectors with u = yif(xi) > 1/
√
C are shrunken to zero. To allow different levels of soft-

thresholding, we propose to use a new loss function which (soft-)thresholds the DWD loss
function by constant θ

√
C where 0 ≤ θ ≤ 1, that is, a fraction of

√
C. The new loss function

is

L(u) =
[
V (u)− θ

√
C
]
+

=


(2− θ)

√
C − Cu if u ≤ 1√

C
,

1/u− θ
√
C if 1√

C
≤ u < 1

θ
√
C
,

0 if u ≥ 1
θ
√
C
,

(3)
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that is, to reduce the DWD loss by a constant, and truncate it at 0. The magenta solid
curve in Figure 4 is the FLAME loss when C = 1 and θ = 0.5. This simple but useful
modification unifies the DWD and SVM methods. When θ = 1, the new loss function
(when C = 1) reduces to the SVM Hinge loss function; while when θ = 0, it remains as the
DWD loss.

Note that L(u) = 0 for u > 1/(θ
√
C). Thus, those data vectors with very large func-

tional margins will still have zero loss. For DWD loss (corresponding to θ = 0), note that
1/(θ
√
C) = ∞. Thus no data vector can have zero loss. For SVM loss, all the data vector

with u > 1/(θ
√
C) = 1/

√
C will have zero loss. Training a FLAME classifier with 0 < θ < 1

can be interpreted as sampling a portion of data which are farther from the boundary than
1/θ
√
C and assign zero loss to them. Alternatively, it can be viewed as sampling data that

are closer to the boundary than 1/θ
√
C and assign positive loss to them. Note that the

larger θ is, the fewer data are sampled to have positive loss. As one can flexibly choose θ,
the new classification method with this new loss function is called the FLexible Assortment
MachinE (FLAME).

FLAME can be implemented by a Second-Order Cone Programming algorithm (Toh
et al., 1999; Tütüncü et al., 2003). Let θ ∈ [0, 1] be the FLAME parameter. The proposed

method minimizes min
ω,b,ξ

n∑
i=1

(
1

ri
+ Cξi − θ

√
C

)
+

. A slack variable ϕi ≥ 0 can be introduced

to absorb the (·)+ function. The optimization of the FLAME can be written as

min
ω,b,ξ

∑
i

ϕi,

s.t.
( 1

ri
+ Cξi − θ

√
C
)
− ϕi ≤ 0, ϕi ≥ 0,

ri = yi(x
T
i ω + β) + ξi, ri ≥ 0 and ξi ≥ 0,

‖ω‖2 ≤ 1.

A MATLAB routine has been implemented and is available at the authors’ personal web-
sites. See Online Appendix 1 for more details on the implementation.

4. Choice of Parameters

There are two tuning parameters in the FLAME model: one is the C, inherited from the
DWD loss, which controls the amount of allowance for misclassification; the other is the
FLAME parameter θ, which controls the level of soft-thresholding. Similar to the discussion
in DWD (Marron et al., 2007), the classification performance of FLAME is insensitive to
different values of C. In addition, it can be shown for any C, FLAME is Fisher consistent,
by applying the general results in Lin (2004). Thus, the default value for C as proposed
in Marron et al. (2007) will be used in FLAME. As the property and the performance of
FLAME depends on the choice of the θ parameter, it is important to select the right amount
of thresholding. In this section, we introduce a way of choosing the second parameter θ,
which is motivated by a theoretical consideration and is heuristically meaningful as well.

Having observed that the DWD discrimination direction is usually closer to the Bayes
rule direction, but its location term β is sensitive to the imbalanced data issue, we propose
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the following data-driven approach to select an appropriate θ. Without loss of generality,
we assume that the negative class is the majority class with sample size n− and the positive
class is the minority class with sample size n+. We point out that the main reason that DWD
is sensitive to the imbalanced data issue is that it uses all vectors in the majority class to
build up a classifier. A heuristic strategy to correct this would be to force the optimization
to use the same number of vectors from both classes (so as to mimic a balanced data set) to
build up a classifier: we first apply DWD to the data set, and calculate the distances of all
data in the majority (negative) class to the current DWD classification boundary; we then
train FLAME with a carefully chosen parameter θ which assigns positive loss to the closet
n+(< n−) data vectors in the majority (negative) class to the classification boundary. As
a consequence, each class will have exactly n+ vectors which have positive loss. In other
words, while keeping the least imbalance (because we have the same numbers of vectors
from both classes that have influence over the optimization), we obtain a model with the
least possible overfitting (because 2n+ vectors have influence, instead of only the limited
support vectors as in SVM.)

In practice, since the new FLAME classification boundary using the θ value chosen
above may be different from the initial DWD classification boundary, the n+ closest points
to the FLAME classification boundary may not be the same n+ closest points to the DWD
boundary. This means that it is not guaranteed that exactly n+ points from the majority
class will have positive loss. However, one can expect that reasonable approximation can
be achieved. Moreover, an iterative scheme for finding θ is introduced as follows in order
to minimize such discrepancy.

For simplicity, we let (xi, yi) with index i be an observation from the positive/minority
class and (xj , yj) with index j be an observation from the negative/majority class.

Algorithm 1 (Adaptive parameter)

1. Initiate θ0 = 0.
2. For k = 0, 1, · · · ,

(a) Solve FLAME solutions ω(θk) and β(θk) given parameter θk.

(b) Let θk+1 = max

(
θk,

{
g(n+)(θk)

√
C
}−1)

, where gj(θk) is the functional margin

uj ≡ yj(x
T
j ω(θk) + β(θk)) of the jth vector in the negative/majority class and

g(l)(θk) is the lth order statistic of these functional margins.
3. When θk = θk−1, the iteration stops.

The goal of this algorithm is to make g(n+)(θk) to be the greatest functional margin among
all the data vectors that have positive loss in the negative/majority class. To achieve this,
we calibrate θ by aligning g(n+)(θk) to the turning point u = 1/(θ

√
C) in the definition of

the FLAME loss (3), that is g(n+)(θk) = 1/(θ
√
C)⇒ θ =

(
g(n+)(θk)

√
C
)−1

.

We define the equivalent sample objective function of FLAME for the iterative algorithm

above, s(ω, β, θ) =
1

n+ + n−

 n+∑
i=1

L((xTi ω + β), θ) +

n−∑
j=1

L(−(x′jω + β), θ)

+
λ

2
‖ω‖2. Then

the convergence of this algorithm is shown in Theorem 1. The proofs of all the theorems
and propositions in this article are included in Online Appendix 1.
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Theorem 1 In Algorithm 1, s(ωk, βk, θk) is non-increasing in k. As a consequence, Algo-
rithm 1 converges to a stationary point s(ω∞, β∞, θ∞) where s(ωk, βk, θk) ≥ s(ω∞, β∞, θ∞).
Moreover, Algorithm 1 terminates finitely.

Ideally, one would hope to get an optimal parameter θ∗ which satisfies θ∗ =
(
g(n+)(θ

∗)
√
C
)−1

.

In practice, θ∞ will approximate θ∗ very well. In addition, we notice that one-step iteration
usually gives decent results for simulation examples and some real examples.

5. Theoretical Properties

In this section, several important theoretical properties of the FLAME classifier are inves-
tigated. We first prove the Fisher consistency (Lin, 2004) of the FLAME in Section 5.1.
As one focus of this paper is imbalanced data classification, the asymptotic properties for
FLAME under extremely imbalanced data setting is studied in Section 5.2. Lastly, a novel
HDLSS asymptotics where n is fixed and d→∞, the other focus of this article, is studied
in Section 5.3.

5.1 Fisher Consistency and Large Sample Asymptotics

Fisher consistency is a very basic property for a classifier. A classifier is Fisher consistent
implies that the minimizer of the conditional risk of the classifier given observation x has the
same sign as the Bayes rule, argmax

k∈{+1,−1}
P(Y = k|X = x). It has been shown that both SVM

and DWD are Fisher consistent (Lin, 2004; Qiao et al., 2010). The following proposition
states that the FLAME classifier is Fisher consistent too.

Proposition 2 Let f∗ be the global minimizer of the expected loss E[L(Y f(X), θ)], where
L(·) is the loss function for the FLAME classifier, given parameters C and θ. Then
sign (f∗(x)) = sign (P(Y = +1|X = x)− 1/2).

Fisher consistency is also known as classification-calibrated, notably by Bartlett et al.
(2006). With this weakest possible condition on the loss function, they extended the re-
sults of Zhang (2004) and showed that there was a nontrivial upper bound on the excess
risk. Moreover, they were able to derive faster rates of convergence in some low noise
settings. In particular, for a classification-calibrated loss function L(·), there exists a
function ψ : [−1, 1] 7→ [0,∞) so that ψ(R0−1(f) − R∗0−1) ≤ RL(f) − R∗L or c(R0−1(f) −
R∗0−1)

αψ
(
(R0−1(f)−R∗0−1)

α

2c

)
≤ RL(f) − R∗L for some constant c > 0 with certain low noise

parameter α, where R0−1(f) and RL(f) are the risk of the prediction function f with respect
to the 0-1 loss and the loss function L respectively, and R∗0−1 and R∗L are the corresponding
Bayes risk and “optimal L-risk” respectively. The techniques in Zhang (2004) and Bartlett
et al. (2006) can be directly applied to the FLAME classifier. The form of the ψ transform
above which establishes the relations between the two excess risks, being applied to the
current article, is given by Proposition 3.

Proposition 3 The ψ-transform of the FLAME loss function with parameters C and θ is

ψ(γ) = (2− θ)
√
C −H((1 + γ)/2),
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where

H(η) =

{√
C min(η, 1− η)(2 + 1

θ − θ), if η < θ2

1+θ2
or η > 1

1+θ2
,√

C[2 min(η, 1− η)− θ + 2
√
η(1− η)], otherwise.

(4)

These results provide bounds for the excess risk R0−1(f)−R∗0−1 in terms of the excess
L-risk RL(f)−R∗L. Combined with a bound on the excess L-risk, they can give us a bound
on the excess risk. Recent works for SVM have focused on fast rates of convergence. Vito
et al. (2005) studied classification problems as inverse problems; Steinwart and Scovel (2007)
studied the convergence properties of the standard SVM with Gaussian kernels; Blanchard
et al. (2008) used a method called “localization”. See also Chen et al. (2004) for another
relevant work for the q-soft margin SVM.

5.2 Asymptotics under Imbalanced Setting

In this subsection, we investigate the asymptotic performance of SVM, DWD and FLAME.
The asymptotic setting we focus on is when the minority sample size n+ is fixed and the
majority sample size n− → ∞, which is similar to the setting in Owen (2007). We will
show that DWD is sensitive to the imbalanced data, while FLAME with proper choices of
parameter θ and SVM are not.

Let x+ be the sample mean of the positive/minority class. Theorem 4 shows that in the
imbalanced data setting, when the size of the negative/majority class grows while that of
the positive/minority class is fixed, the intercept term for DWD tends to negative infinity, in
the order of

√
m. Therefore, DWD will classify all the observations to the negative/majority

class, that is, the minority class will be 100% misclassified.

Theorem 4 Let n+ be fixed. Assume that the conditional distribution of the negative ma-
jority class F−(x) surrounds x+ by the definition given in Owen (2007), and that γ is a

constant satisfying inf
‖ω‖=1

∫
(x−x+)′ω>0

dF−(x) > γ ≥ 0, then the DWD intercept β̂ satisfies

β̂ < −
√
γ

C
m− xT+ω = −

√
n−γ

n+C
− xT+ω.

In Section 4, we have introduced an iterative approach to select the parameter θ. The-
orem 5 shows that with the optimal parameter θ∗ found by Algorithm 1, the discriminant
direction of FLAME is in the same direction of the vector that joins the sample mean of the
positive class and the tilted population mean of the negative class. Moreover, in contrast
to DWD, the intercept term of FLAME in this case is finite.

Theorem 5 Suppose that n− � n+ and ω∗ and β∗ are the FLAME solutions trained with

the parameter θ∗ that satisfies θ∗ =
(
g(n+)(θ

∗)
√
C
)−1

. Then ω∗ and β∗ satisfy that

ω∗ =
C

(1 +m)λ

[
x+ −

∫
(xTω∗ + β∗)−2xdF−(x | E)∫
(xTω∗ + β∗)−2dF−(x | E)

]
, (5)
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where E is the event that [Y (XTω∗ + β∗)]−1 ≥ θ∗
√
C where (X, Y ) is a random sample

from the negative/majority class, and that∫
(xTω∗ + β∗)−2dF−(x | E) =

n+
no
C,where 0 < no ≤ n+.

Note that event E is [Y (XTω∗ + β∗)]−1 ≥ θ∗
√
C, which implies that the second term

in (5) focuses on data vectors in the negative class with positive loss since their functional
margins are less than 1/(θ

√
C). Recall that this is precisely the interpretation of FLAME

(see Section 3.2), namely, to sample a subset of the majority class to have positive loss, so
as to make the problem less imbalanced.

Remark: As a consequence of Theorem 5, when m = n−/n+ →∞, we have ‖ω∗‖ → 0.
Since the right-hand-side of the last equation above is positive and finite, β∗ does not
diverge. In addition, since P(E)→ 1 with probability converging to 1, β∗ < −1/(θ

√
C).

The following theorem shows the performance of SVM under the imbalanced data con-
text, which completes our comparisons between SVM, DWD and FLAME.

Theorem 6 Suppose that n− � n+. The solutions ω̂ and β̂ to SVM satisfy that

ω̂ =
1

(1 +m)λ

{
x+ −

∫
xdF−(x | G)

}
,

where G is the event that 1− Y (XT ω̂+ β̂) > 0 where (X, Y ) is a random sample from the
negative/majority class, and that

P(G) = P(1 +XT ω̂ + β̂ ≤ 0) = 1− 1/m.

Remark: The last statement in Theorem 6 means that with probability converging to 1,
β̂ ≤ −1. However, note this is the only restriction that SVM solution has for the intercept

term (recall that the counterpart in DWD is β̂ < −
√

γ
Cm− x

T
+ω).

5.3 High-Dimensional, Low-Sample Size Asymptotics

HDLSS data are emerging in many areas of scientific research. The HDLSS asymptotics is a
recently developed theoretical framework. Hall et al. (2005) gave a geometric representation
for the HDLSS data, which can be used to study these new “n fixed, d → ∞” asymptotic
properties of binary classifiers such as SVM and DWD. Ahn et al. (2007) weakened the
conditions under which the representation holds. Qiao et al. (2010) improved the condi-
tions and applied this representation to investigate the performance of the weighted DWD
classifier. Bolivar-Cime and Marron (2013) compared several binary classification methods
in the HDLSS setting under the same theoretical framework. The same geometric repre-
sentation can be used to analyze FLAME. See summary of some previous HDLSS results in
Online Appendix 1. We develop the HDLSS asymptotic properties of the FLAME family
by providing conditions in Theorem 7 under which the FLAME classifiers always correctly
classify HDLSS data.

We first introduce the notations and give some regularity assumptions, then state the
main theorem. Let k ∈ {+1,−1} be the class index. For the kth class and given a fixed nk,
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consider a sequence of random data matrices Xk
1,X

k
2, · · ·Xk

d, · · · , indexed by the number
of rows d, where each column of Xk

d is a random observation vector from Rd and each
row represents a variable. Assume that each column of Xk

d comes from a multivariate
distribution with dimension d and with covariance matrix Σk

d independently. Let λk1,d ≥
· · · ≥ λkd,d be the eigenvalues of the covariance, and

(
σkd
)2

= d−1
∑d

i=1 λ
k
i,d the average

eigenvalue. The eigenvalue decomposition of Σk
d is Σk

d = V k
dΛ

k
d

(
V k
d

)T
. We may define

the square root of Σk
d as

(
Σk
d

)1/2
= V k

d

(
Λk
d

)1/2
, and the inverse square root

(
Σk
d

)−1/2
=(

Λk
d

)−1/2 (
V k
d

)T
. With minimal abuse of notation, let E(Xk

d) denote the expectation of

columns of Xk
d. Lastly, the nk × nk dual sample covariance matrix is denoted by SkD,d =

d−1
{
Xk

d − E(Xk
d)
}T {

Xk
d − E(Xk

d)
}

.

Assumption 1 There are five components:
(i) Each column of Xk

d has mean E(Xk
d) and the covariance matrix Σk

d of its distribution
is positive definite.

(ii) The entries of Zk
d ≡

(
Σk
d

)− 1
2
{
Xk

d − E(Xk
d)
}

=
(
Λk
d

)− 1
2
(
V k
d

)T {
Xk

d − E(Xk
d)
}

are
independent.

(iii) The fourth moment of each entry of each column is uniformly bounded by M > 0
and the Wishart representation holds for each dual sample covariance matrix SkD,d
associated with Xk

d, that is,

dSkD,d =

{(
Zk
d

)T(
Λk
d

)1/2(
V k
d

)T}{
V k
d

(
Λk
d

)1/2
Zk
d

}
=

d∑
i=1

λki,dW
k
i,d,

where W k
i,d ≡

(
Zki,d

)T
Zki,d and Zi,d is the ith row of Zk

d defined above. It is called

Wishart representation because if Xk
d is Gaussian, then each W k

i,d follows the Wishart
distribution Wnk(1, Ink) independently.

(iv) The eigenvalues of Σk
d are sufficiently diffused, in the sense that

εkd =

∑d
i=1(λ

k
i,d)

2

(
∑d

i=1 λ
k
i,d)

2
→ 0 as d→∞. (6)

(v) The sum of the eigenvalues of Σk
d is the same order as d, in the sense that

(
σkd
)2

=

O(1) and 1/
(
σkd
)2

= O(1).

Assumption 2 The distance between the two population expectations satisfies,

d−1
∥∥E(X

(+1)
d )− E(X

(−1)
d )

∥∥2 → µ2, as d→∞.

Moreover, there exist constants σ2 and τ2, such that(
σ
(+1)
d

)2
→ σ2, and

(
σ
(−1)
d

)2
→ τ2.

Let ν2 ≡ µ2 + σ2/n+ + τ2/n−. The following theorem gives the sure classification
condition for FLAME, which includes SVM and DWD as special cases.
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Theorem 7 Without loss of generality, assume that n+ ≤ n−. The situation of n+ > n−
is similar and omitted.

• If either one of the following three conditions is satisfied,

1. for θ ∈
[
0, (1 +

√
m−1)/(ν

√
dC)

)
, µ2 > (n−/n+)

1
2σ2/n+ − τ2/n− > 0;

2. for θ ∈
[
(1 +

√
m−1)/(ν

√
dC), 2/(ν

√
dC)

)
, µ2 > T − τ2/n− > 0 where T :=(

1/(2θ
√
dC) +

√
1/(4θ2dC) + σ2/n+

)2
− σ2/n+;

3. for θ ∈
[
2/(ν
√
dC), 1

]
, µ2 > σ2/n+ − τ2/n− > 0,

then for a new data point x+
0 from the positive class (+1),

P(x+
0 is correctly classified by FLAME)→ 1, as d→∞.

Otherwise, the probability above → 0.
• If either one of the following three conditions is satisfied,

1. for θ ∈
[
0, (1 +

√
m−1)/(ν

√
dC)

)
, (n−/n+)

1
2σ2/n+ − τ2/n− > 0;

2. for θ ∈
[
(1 +

√
m−1)/(ν

√
dC), 2/(ν

√
dC)

)
, T − τ2/n− > 0;

3. for θ ∈
[
2/(ν
√
dC), 1

]
, σ2/n+ − τ2/n− > 0,

then for any µ > 0, for a new data point x−0 from the negative class (−1),
P(x−0 is correctly classified by FLAME)→ 1, as d→∞.

Remark: Theorem 7 has two parts. The first part gives the conditions under which
FLAME correctly classifies a new data point from the positive class, and the second part
is for the negative class. Each part lists three conditions based on three disjoint intervals
of parameter θ. Note the first and third intervals of each part generalize results which were
shown to hold only for DWD and SVM before (c.f. Theorem 1 and Theorem 2 in Hall
et al., 2005). In particular, it shows that all the FLAME classifiers with θ falling into the
first interval behave like DWD asymptotically. Similarly, all the FLAME classifiers with θ
falling into the third interval behave like SVM asymptotically. This partially explains the
shape of the within-group error curve that we will show in Figure 6 (see also Figures A.2
and A.3 in Online Appendix 1), which we will discuss in the next section.

In the first part, the condition for other FLAMEs (with θ in the second interval) is
weaker than the DWD-like FLAMEs (in the first interval), but stronger than the SVM-like
FLAMEs (in the third interval). This means that it is easier to classify a new data point
from the positive/minority class by SVM, than by an intermediate FLAME, which is easier
than by DWD. Note that when n+ ≤ n−, the hyperplane for FLAME is in general closer
to the positive class.

In terms of classifying data points from the negative class, the order of the difficulties
among DWD, FLAME and SVM reverses.

6. Simulations

FLAME is not only a unified representation of DWD and SVM, but also introduces a new
family of classifiers which has the potential of avoiding the overfitting HDLSS data issue
and the sensitivity to imbalanced data issue. In this section, we use simulations to show
the performance of FLAME at various parameter levels.
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6.1 Measures of Performance

Before we introduce our simulation examples, we first introduce the performance measures in
this paper. Note that the Bayes rule classifier can be viewed as the “gold standard” classifier.
In our simulation settings, we assume that data are generated from two multivariate normal
distributions with different mean vectors µ+ and µ− and same covariance matrices Σ. This
setting leads to the following Bayes rule,

sign(xTωB + βB) where ωB = Σ−1(µ+ − µ−) and βB = −1

2
(µ+ + µ−)′ωB. (7)

Five performance measures are evaluated in this paper:

1. The mean within-class error (MWE) for an out-of-sample test set, which is defined
as

MWE =
1

2n+

n+∑
i=1

1(Ŷ +
i 6= Y +

i ) +
1

2n−

n−∑
j=1

1(Ŷ −j 6= Y −j )

2. The deviation of the estimated intercept β from the Bayes rule intercept βB: |β−βB|.
3. Dispersion: a measure of the stochastic variability of the estimated discrimination

direction vector ω. The dispersion measure was introduced in Section 1, as the trace
of the sample covariance of the resulting discriminant direction vectors: disperson =
Var([ωr]r=1:R) where R is the number of repeated runs.

4. Angle between the estimated discrimination direction ω and the Bayes rule direction
ωB: ∠(ω,ωB).

5. RankComp(ω,ωB): In general, for two direction vectors ω and ω∗, RankComp is
defined as the proportion of the pairs of variables, among all d(d− 1)/2 pairs, whose
relative importances (in terms of their absolute values) given by the two directions
are different, that is,

RankComp(ω,ω∗) ≡ 1

d(d− 1)/2

∑
1≤i<j≤d

1
{

(|ωi| − |ωj |)× (|ω∗i | − |ω∗j |) < 0
}
,

where ωi and ω∗i are the ith components of the vectors ω and ω∗ respectively. The
RankComp measure can be viewed as a discretized analog to the angle between two
vectors, and it provides more insights in the ranking of variables that a direction
vector may suggest. We report the RankComp between the estimated direction ω
and the Bayes rule direction ωB to measure their closeness.

We will investigate these measures based on different dimensions d and different imbalance
factors m.

6.2 Effects of Dimensions and Imbalanced Data

In Section 1, a specific FLAME (θ = 0.5) has been compared with SVM (θ = 1) and DWD
(θ = 0) in Figure 1, and on average, its discriminant directions are closer to the Bayes rule
direction ωB compared to the SVM directions, but are less close than the DWD directions.
In this subsection, we will further investigate the performance of FLAME with several
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Figure 5: The dispersions (top row) and the angles between the FLAME direction and the
Bayes direction (bottom row) for 50 runs of simulations, where the imbalance
factors m are 1, 4 and 9 (the left, center and right panels), in the increasing
dimension setting (d = 100, 400, 700, 1000; shown on the x-axes). The FLAME
machines have θ = 0, 0.25, 0.5, 0.75, 1 which are depicted using different curve
styles (the first and the last cases correspond to DWD and SVM, respectively.)
Note that with θ and the dimension d increase, both the dispersion and the
deviation from the Bayes direction increase. The emergence of the imbalanced
data (the increase of m) does not much deteriorate the FLAME directions except
for large d.

different values of θ, and compare them with DWD and SVM under various simulation
settings.

Figure 5 shows the comparison results under the same simulation setting with various
combinations of (d,m)’s. In this simulation setting, data are from multivariate normal distri-
butions with identity covariance matrix MVNd(µ±, Id), where d = 100, 400, 700 and 1000.
We let µ0 = c(d, d − 1, d − 2, · · · , 1)T where c > 0 is a constant which scales µ0 to have
norm 2.7. Then we let µ+ = µ0 and µ− = −µ0. The imbalance factor varies among 1, 4
and 9 while the total sample size is 240. For each experiment, we repeat the simulation 50
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times, and plot the average performance measure in Figure 5. The Bayes rule is calculated
according to (7). It is obvious that when the dimension increases, both the dispersion and
the angle increase. They are indicators of overfitting HDLSS data. When the imbalance
factor m increases, the two measures increase as well, although not as much as when the
dimension increases. More importantly, it shows that when θ decreases (from 1 to 0, or
equivalently FLAME changes from SVM to DWD), the dispersion and the angle both de-
crease, which is promising because it shows that FLAME improves SVM on the overfitting
issue.

6.3 Effects of Tuning Parameters with Covariance

We also investigate the effect of different covariance structures, since independence structure
among variables as in the last subsection is less common in real applications. We investigate
three covariance structures: independent, interchangeable and block-interchangeable covari-
ance. Data are generated from two multivariate normal distributions MVN300(µ±,Σ) with
d = 300. We fist let µ1 = (75, 74, 73, · · · , 1, 0, 0, · · · , 0)′, then scale it by multiply a constant
c such that the Mahalanobis distance between µ+ = cµ1 and µ− = −cµ1 equals 5.4, that
is, (µ+ − µ−)′Σ−1(µ+ − µ−) = 5.4. Note that this represents a reasonable signal-to-noise
ratio.

We consider the FLAME machines with different parameter θ from a grid of 11 values
(0, 0.1, 0.2, · · · , 1), and apply them to nine simulated examples (three different imbalance
factors (m = 2, 3, 4) × three covariance structures). For the independent structure example,
Σ = I300; For the interchangeable structure example, Σii = 1 and Σij = 0.8 for i 6= j; For
the block-interchangeable structure example, we let Σ be a block diagonal matrix with
five diagonal blocks, the sizes of which are 150, 100, 25, 15, 10, and each block is an
interchangeable covariance matrix with diagonal entries 1 and off-diagonal entries 0.8.

Figure 6 shows the results of the interchangeable structure example. Since the results
under different covariance structures are similar, those for the other two covariance struc-
tures are reported in Online Appendix 1 to save space (Figure A.2 for the independent
structure, and Figure A.3 for the block-interchangeable covariance).

In each plot, we include the within-group error (top-left), the absolute value of the
difference between the estimated intercept and the Bayes intercept |β − βB| (top-middle),
the angle between the estimated direction and the Bayes direction ∠(ω,ωB) (bottom-left),
the RankComp between the estimated direction and the Bayes direction (bottom-middle)
and the dispersion of the estimated directions (bottom-right).

We can see that in Figure 6 (and Figures A.2 and A.3 in Online Appendix 1), when we
increase θ from 0 to 1, that is, when the FLAME moves from the DWD end to the SVM
end, the within-group error decreases. This is mostly due to the fact that the intercept term
β comes closer to the Bayes rule intercept βB. On the other hand, the estimated direction
is deviating from the true direction (larger angle), is giving the wrong rank of the variables
(larger RankComp), and is more unstable (larger dispersion). Similar phenomena hold for
the other two covariance structures, with one exception in the block interchangeable setting
(Figure A.3 in Online Appendix 1) where the RankComp first decreases then increases.

In the entire FLAME family, DWD represents one extreme which provides better es-
timation of the direction, is closer to the Bayes direction, provides the right order for all
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Figure 6: Interchangeable example. It can be seen that with FLAME turns from DWD to
SVM (θ from 0 to 1), the within-class error decreases (top-left), thanks to the
more accurate estimate of the intercept term (top-middle). On the other hand,
this comes at the cost of larger deviation from the Bayes direction (bottom-left),
incorrect rank of the importance of the variables (bottom-middle) and larger
stochastic variability of the estimation directions (bottom-right).

variables, and is more stable. But it suffers from the inaccurate estimation of β in the
presence of imbalanced data; SVM represents the other extreme, which is not sensible to
imbalanced data and usually provides a good estimation of β, but is in general outperformed
by DWD in terms of closeness to the Bayes optimal direction. In most situations, within
the FLAME family, there is no single machine that is better than the both ends from the
two aspects at the same time.

7. Real Data Application

In this section we demonstrate the performance of FLAME on a real example: the Human
Lung Carcinomas Microarray Data set, which has been analyzed earlier in Bhattacharjee
et al. (2001).
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Figure 7: The dispersion and cross-validation error for the Human Lung Carcinomas Data
set over 100 random splittings for different choices of θ values. The mean and
standard error of the two measurements are depicted by ellipses as detour plots.
The red square shows the performance for the adaptive parameter recommenda-
tion after one step. This plot shows clear trade-off between generalization error
and stochastic variability.

The Human Lung Carcinomas Data set contains six classes: adenocarcinoma, squamous,
pulmonary carcinoid, colon, normal and small cell carcinoma, with sample sizes of 128, 21,
20, 13, 17 and 6 respectively. Liu et al. (2008) used this data as a test set to demonstrate
their proposed significance analysis of clustering approach. We combine the first two sub-
classes and the last four subclasses to form the positive and negative classes respectively.
The sample sizes are 149 and 56 with imbalance factor m = 2.66. The original data contain
12,625 genes. We first filter genes using the ratio of the sample standard deviation and
sample mean of each gene and keep 2,530 of them with large ratios (Dudoit et al., 2002;
Liu et al., 2008).
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We conduct five-fold cross-validations (CV) to evaluate the within-group error for the
two classes over 100 random splits. In each split, we apply FLAME with 21 different θ
values, ranging from 0, 0.05, 0.1, . . . to 1. Because the true Bayes rule is unknown, we
cannot evaluate the RankComp measure or the angle measure. Instead, we calculate the
dispersion of the resulting direction vectors when conducting five-fold cross-validation. The
adaptive value for θ (after one step) is calculated based on the DWD direction using all the
samples in the data set, and the performance of the resulting FLAME is evaluated as well.
We report the cross-validation error and the dispersion in a scatter plot.

Figure 7 shows the dispersion and cross-validation error. The mean and standard error
of both measurements are depicted by ellipses as detour plots. This plot clears illustrates
the existence of the trade-off between generalization error and stochastic variability.

This experiment shows that FLAME opens a new dimension to improve both the classi-
fication performance and the interpretative ability of the classifier. In particular, compared
to SVM (FLAME with θ = 1), we can probably choose θ = 0.7 or 0.75 so that the stabil-
ity of the classifier can be much improved at a very small cost of the generalization error.
Compared to DWD (FLAME with θ = 0), any increase in θ after 0.3 can lead to dramatic
improvement of the cross-validation error, again with very minimal compromise of the sta-
bility. The optimal choice of θ seem to be ad-hoc, and depends on the preference of the
user. Our adaptive parameter recommendation gives θ at around 0.44.

8. Conclusion and Discussion

In this paper, we thoroughly investigate SVM and DWD on their performance when applied
to the HDLSS and imbalanced data. A novel family of binary classifiers called FLAME is
proposed, where SVM and DWD are the two ends of the spectrum. On the DWD end, the
estimation of the intercept term is deteriorated while it provides better estimation of the
direction vector, and thus better handles the HDLSS data. On the hand, SVM is good at
estimating the intercept term but not the direction and is subject to overfitting, and thus
is more suitable for imbalanced data but not HDLSS data.

We conduct extensive study of the asymptotic properties of the FLAME family in three
different flavors, the “d fixed, n → ∞” asymptotics (Fisher consistency), the “d and n+
fixed, n− → ∞” asymptotics (extremely imbalanced data), and the “n fixed, d → ∞”
asymptotics (the HDLSS asymptotics). These results explain the performance we have
seen in the simulations and suggest that with a smart choice of θ, FLAME can properly
handle both the HDLSS data and the imbalanced data, by improving the estimations of the
direction and the intercept term.

The FLAME family can be immediately extended to multi-class classification, as was
done for SVM and DWD such as in Weston and Watkins (1999); Crammer and Singer
(2002); Lee et al. (2004) or Huang et al. (2013). Another natural extension is variable
selection for FLAME.

The FLAME machines generalize the concepts of support vectors. In SVM, support
vectors are referred to vectors that sit on or fall into the two hyperplanes corresponding to
u ≤ 1 (or u ≤ 1/

√
C for the modified version of Hinge loss (2)). In SVM, only support

vectors have impacts on the final solution. DWD is the other extreme case where all the data
vectors have some impacts. In the presence of imbalanced sample size, the fact that all the
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data vectors influence the solution cause the optimization to ignore the minority class. The
FLAME with 0 < θ < 1 is somewhere in the middle. For FLAME, part of the data vectors,
more than the support vectors, but fewer than all the vectors, have impacts. Smart choice
of θ means that one needs to include as many vectors, and as balanced influential samples,
as possible. More vectors usually lead to mitigated overfitting, and balanced sample size
of the influential vectors from two classes means that the sensitivity issue of the intercept
term can be alleviated.

The authors are aware that it is possible to implement a two-step procedure to conduct
binary linear classification. In the first step, a good direction is found, probably in the
fashion of DWD; in the second step, a fine intercept is chosen by borrowing idea of SVM.
This idea is elaborated in Qiao and Zhang (2015).

The choice of θ usually depends on the nature of the data and the scientific context. If
the users prefer better classification performance over reasonable discrimination direction
for interpretation of the data, θ may be chosen to be closer to 1. If the right direction
is the first priority, then θ should be chosen to be closer to 0. Note that, under some
circumstances, the primary goal is to obtain a direction vector which can provide a score
xTω for each observation for further use, and the intercept parameter β is of no use at
all. For example, some users may use a receiver operating characteristic (ROC) curve as a
graphical tool to evaluate classification performance over different β value instead of using
a single β value given by the classifier. In this case, a FLAME machine close to the DWD
method may be ideal.

Qiao et al. (2010) considered the sample weighted versions of DWD and SVM. One
could in theory extend the FLAME directly to the so-called weighted FLAME family. Such
extension is quite straightforward. It is easy to see that all the classifiers in such a family
are Fisher consistent with respect to the weighted 0-1 loss function. The intercept term
from weighted FLAME does not diverge. Similar HDLSS asymptotic results to what are
presented in the current article can be expected as well.
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Appendix A. Derivation of Modified Hinge Loss

Note that the original SVM formulation is argmin
ω̃,β̃

∑(
1− yif̃(xi)

)
+
, s.t. ‖ω̃‖2 ≤ C, where

f̃(x) = xT ω̃+ β̃. Here the coefficient vector ω̃ does not have unit norm. We let ω = ω̃/
√
C,
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β = β̃/
√
C and f = f̃/

√
C. Thus SVM solution is given by argmin

ω,β

∑(
1−
√
Cyif(xi)

)
+
,

s.t. ‖ω‖2 ≤ 1, or equivalently, argmin
ω,β

∑(√
C − Cyif(xi)

)
+
, s.t. ‖ω‖2 ≤ 1.
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