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Abstract

This paper addresses the problem of inferring a regular expression from a given set of strings

that resembles, as closely as possible, the regular expression that a human expert would
have written to identify the language. This is motivated by our goal of automating the task
of postmasters who use regular expressions to describe and blacklist email spam campaigns.
Training data contains batches of messages and corresponding regular expressions that an
expert postmaster feels confident to blacklist. We model this task as a two-stage learning
problem with structured output spaces and appropriate loss functions. We derive decoders
and the resulting optimization problems which can be solved using standard cutting plane
methods. We report on a case study conducted with an email service provider.

Keywords: applications of machine learning, learning with structured output spaces,
supervised learning, regular expressions, email campaigns

1. Introduction

The problem setting introduced in this paper is motivated by the intuition of automatically
reverse engineering email spam campaigns. Email-spam generation tools allow users to im-
plement mailing campaigns by specifying simple grammars that serve as message templates.
A grammar is disseminated to nodes of a bot net; the nodes create messages by instantiating
the grammar at random. Email service providers can easily sample elements of new mailing
campaigns by collecting messages in spam traps or by tapping into known bot nets. When
messages from multiple campaigns are collected in a joint spam trap, clustering tools can
separate the campaigns reliably (Haider and Scheffer, 2009). However, probabilistic cluster
descriptions that use a bag-of-words representation incur the risk of false positives, and it is
difficult for a human to decide whether they in fact characterize the correct set of messages.
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Typically, mailing campaigns are quite specific. A specific, comprehensible regular ex-
pression written by an expert postmaster can be used to blacklist the bulk of emails of that
campaign at virtually no risk of covering any other messages. This, however, requires the

continuous involvement of a human postmaster.

From: alice@google.com
Date: 16.08.2013

I'm a cute russian lady.
I'm 21 years old, weigh 55
kilograms and am 172
centimeters tall.

Yours sincerely,

Alice Wright

From: king@yahoo.com
Date: 16.08.2013

I'm a lonely russian lady.
I'm 23 years old, weigh 47
kilograms and am 165
centimeters tall.

Yours sincerely,

Brigitte King

From: claire@gmail.com
Date: 16.08.2013

I'm a sweet russian girl.
I'm 22 years old, weigh 58
kilograms and am 171
centimeters tall.

Yours sincerely,

Claire Doe

|
regular expression that describes entire messages

v
y = From: [a-z] " @[a-z]*.com Date: 16.08.2013 I'm a [a-z]" russian
(girl|lady). | am 2[123] years old, weigh \d™ kilograms and am
1\d{2} centimeters tall. Yours sincerely, [A-Z|[a-z]T [A-Z][a-z]*
|
concise substring

v
y = I'm a [a-z]* russian (girl/lady). | am 2[123] years old, weigh
\d* kilograms and am 1\d{2} centimeters tall.

Figure 1: Elements of a message spam campaign, a regular expression that describes the
entirety of the messages, and a concise regular expression that describes a char-
acteristic substring of the messages.

Regular expressions are a standard tool for specifying simple grammars. Widely avail-
able tools match strings against regular expressions efficiently and can be used conveniently
from scripting languages. A regular expression can be translated into a deterministic finite
automaton that accepts the language and has an execution time linear in the length of the
input string.

Language identification has a rich history in the algorithmic learning theory community,
see Section 6 for a brief review. Our problem setting reflects the process that we seek to
automate; it differs from the classical problem of language identification in the learner’s
exact goal, and in the available training data. Batches of strings and corresponding reg-
ular expressions are observable in the training data. These regular expressions have been
written by postmasters to blacklist mailing campaigns. The learner’s goal is to produce
a predictive model that maps batches of strings to regular expressions that resemble, as
closely as possible, the regular expressions which the postmaster would have written and
feels confident to blacklist. As an illustration of this problem, Figure 1 shows three messages
of a mailing campaign, a regular expression that describes the entirety of the messages, and
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a more concise regular expression that characterizes a characteristic substring, and that a
postmaster has selected to blacklist the corresponding email campaign.

This paper extends a conference publication (Prasse et al., 2012) that addresses this
problem setting with linear models and structured output spaces. In the decoding step,
a set of strings is given and the space of all regular expressions has to be searched for an
element that maximizes the decision function. Since this space is very large and difficult
to search, the approach of Prasse et al. (2012) is constrained to finding specializations of
an approximate maximal alignment of all strings. The maximal alignment is a regular
expression that contains all character sequences which occur in each of the strings, and uses
wildcards wherever there are differences between the strings.

The maximal alignment is extremely specific. By constraining the output to special-
izations of the alignment, the method keeps the risk that any message which is not part
of the same campaign is accidentally matched at a minimum. However, since all special-
izations of this alignment describe the entire length of the strings, the method produces
regular expressions that tend to be much longer than the more concise expressions that
postmasters prefer. Also, as a consequence of their greater length, the finite state automata
which correspond to these expressions tend to have more states, which limits the number of
regular expressions that can be matched in parallel against incoming new messages. This
paper therefore extends the method by including a mechanism which learns to select ex-
pressions that describe only the most characteristic part of the mailing campaign, using
regular expressions written by an expert postmaster as training data.

The rest of this paper is structured as follows. Section 2 reviews regular expressions
before Section 3 states the problem setting. Section 4 introduces the feature representations
and derives the decoders and the optimization problems. In Section 5, we discuss our
findings from a case study with an email service. Section 6 discusses related work and
Section 7 concludes.

2. Regular Expressions

Before we formulate the problem setting, let us briefly revisit the syntax and semantics
of regular expressions. Regular expressions are a popular syntactic convention for the
definition of regular languages. Syntactically, a regular expression y € Yy is either a
character from an alphabet X, or it is an expression in which an operator is applied to
one or several argument expressions. Basic operators are the concatenation (e.g., “abc”),
disjunction (e.g., “a|b”), and the Kleene star (“*”), written in postfix notation (“(abc)*”),
that accepts any number of repetitions of its preceding argument expression. Parentheses
define the syntactic structure of the expression. For better readability, several shorthands
are used, which can be defined in terms of the basic operators. For instance, the any
character symbol (“.”) abbreviates the disjunction of all characters in ¥, square brackets
accept the disjunction of all characters (e.g., “[abc]”) or ranges (e.g., “[a-z0-9]”) that are
included. For instance, the regular expression [a-z0-9] accepts all lower-case letters and
digits. The postfix operator “*” accepts an arbitrary, positive number of reiterations of the
preceding expression, while “{l,u}” accepts between [ and u reiterations, where [ < u. We
include a set of popular macros—for instance “\d” for any digit or the macro “\e” for all
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characters, which can occur in a URL. A formal definition of the set of regular expressions
can be found in Definition 3 in the appendix.

The set of all regular expressions can be described by a context-free language. The
syntactic structure of a regular expression y is typically represented by its syntaz tree Toy, =
(Vayns Edyn, T3yn, <¥yn). Definition 4 in the appendix assigns one such tree to each regular
expression. Each node v € V3, of this syntax tree is tagged by a labeling function 'Y, :
Vm — Vs with a subexpression 'Y, (v) = yj. The edges (v,v') € E3,, indicate that node
v’ represents an argument expression of v. Relation <3,,,C V3, x V3, defines an ordering
on the nodes and identifies the root node. Note that the root node is labeled with the entire
regular expression y.

A regular expression y defines a regular language L(y). Given the regular expression,
a deterministic finite state machine can decide whether a string « is in L(y) in time linear
in |z| (Dubé and Feeley, 2000). The trace of verification is typically represented as a parse
tree Tpar = (Vpar » Exar Dyary <par), describing how the string = can be derived from the
regular expression y. At least one parse tree exists if and only if the string is an element
of the language L(y); in this case, y is said to generate x. Multiple parse trees can exist
for one regular expression y and a string . Nodes v € V3, of the syntax tree generate
the nodes of the parse tree v/ € V', where nodes of the syntax tree may spawn none
(alternatives which are not used to generate a string), one, or several (“loopy” syntactic
elements such as “*” or “*”) nodes in the parse tree. In analogy to the syntax trees, the
labeling function F;};’&? : V};}&f — Yy, assigns a subexpression to each node, and the relation
<DarC Voo x Vipar defines the ordering of sibling nodes. The set of all parse trees for a
regular expression y and a string z is denoted by T . When multiple parse trees exist for
a regular expression and a string, a canonical parse tree can be selected by choosing the
left-most parse. Standard tools for regular expressions typically follow this convention and
generate the left-most parse tree. Definition 5 in the appendix gives a formal definition.

D% (0h) = [0-9){2)c(aalb)”

Y, (v0) = [b0-9]{2}c(aalb)* par
DY) = BOOH2} T, () =c  T%(0) = (aalb)* Dar(d) 20012 TR 0) = Dpin(eg) = (@alo)”
IY,,(v2) = [b0-9] IY,,(vr) = aalb Y55 (vy) = [b0-9] F%;ﬁi(véi = [b0-9] Iy (vg) =€
Y, (vs) =b  TY,(vs) =09 1Y, (vs) =aa  T¥,(on)=b TPi(vs) =09 Y (vs) = b
MYyn(vg) =a  T¥,(vio) =2 Yy =1
(a) Syntax tree T3, (b) Parse tree T35y

Figure 2: Syntax tree (a) and a parse tree (b) for the regular expression y =
[b0-9]{2}c(aalb)* and the string x = 1bc.

Leaf nodes of a parse tree Tpqy are labeled with elements of ¥ U {e}, where € denotes the
empty symbol; reading them from left to right gives the generated string . Non-terminal
nodes correspond to subexpressions y; of y which generate substrings of . To compare
different regular expressions with respect to a given string z, we define the set Tpar i of
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labels of nodes which are visited on the path from the root to the the i-th character of x in
the parse tree Tpar -

Figure 2 (left) shows an example of a syntax tree T3, for the regular expression y =
[b0-9]{2}c(aalb)*. One corresponding parse tree Ty for the string z = 1bc is illustrated in
Figure 2 (right). The set 73y, contains nodes vj, v}, v5, and vg.

Finally, we introduce the concept of a matching list. When a regular expression y
generates a set x of strings, and v € V3, is an arbitrary node of the syntax tree of y, then
the matching list MY*(v) characterizes which substrings of the strings in x are generated
by the node v of the syntax tree, and thus generated by the subexpression I}y, (v). A node
v of the syntax tree generates a substring x’ of x € x, if v generates a node v’ in the parse
tree Tpar of z, and there is a path from o in that parse tree to every character in the
substring z’. In the above example, for the set of strings x = {12c, b4ca}, the matching
list for node v; that represents subexpression I}y, (v1) = [b0-9]{2} is MY*(vqy) = {12, b4}.
Definition 5 in the appendix introduces matching lists more formally.

3. Problem Setting

Having established the syntax and semantics of regular expressions, we now define our
problem setting. An unknown distribution p(x,y) generates regular expressions y € Vs
from the alphabet ¥ and batches x of strings « € x that are elements of the language L(y).
In our motivating application, the strings = are messages that belong to one particular
mailing campaign and have been sampled from a bot net, and the y are regular expressions
which an expert postmaster believes to identify the campaign template, and feels highly
confident to blacklist.

A w-parameterized predictive model fw : X X y — R maps a batch of strings and a
regular expression y to a value of the decision function. We refer to the process of inferring
the y that attains the highest score fw(x,¥) for a given batch of strings x as decoding; in
this step, a decision function is maximized over ¥ which generally involves a search over the
space of all regular expressions.

A loss function A(y,y,x) quantifies the difference between the true and predicted ex-
pressions. While it would, in principle, be possible to use the zero-one loss Ag/;(y, ¥, %) =
[y = y], this loss function would treat nearly-identical expressions and very dissimilar ex-
pressions alike. We will later engineer a loss function whose gradient will guide the learner
towards expressions y that are more similar to the correct expression y.

In the learning step, the ultimate goal is to identify parameters that minimize the risk—
the expected loss—under the unknown distribution p(x,y):

A4SNY>

R[fw] = //A (y,arg max fw(x,y),X> p(x,y)dxdy.

The underlying distribution p(x,y) is not known, and therefore this goal is unattain-
able. We resort to training data D = {(x;,y;)}/, that consists of pairs of batches x;
and corresponding regular expressions y;, drawn according to p(x,y). In order to obtain
a convex optimization problem that can be evaluated using the training data, we approx-
imate the risk by the hinged upper bound of its maximum-likelihood estimate, following
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the margin-rescaling approach (Tsochantaridis et al., 2005), with added regularization term
Q(w):

R[fw} = %Zmyax {fw(XmS’) - fw(Xia}’i) + A(yayaxi)a 0} + Q(W) (1)
=1

This problem setting differs fundamentally from traditional language identification settings.
In our setting, the actual identification of a language from example strings takes place in
the decoding step. In this step, the decoder searches the space of regular expressions. But
instead of retrieving an expression that generates all strings in x, it searches for an ex-
pression that maximizes the value of a w-parameterized decision function that receives the
strings and the candidate expression as arguments. In a separate learning step, the param-
eters w are optimized using batches of strings and corresponding regular expressions. The
training process has to optimize the model parameters w such that the expected deviation
between the decoder’s output and a regular expression written by a human postmaster is
minimized. Training data of this form, and an optimization criterion that measures the
expected discrepancy between the conjectured regular expressions and regular expressions
written by a human labeler, are not part of traditional language identification settings.

4. Identifying Regular Expressions

This section details our approach to identifying regular expressions based on generalized
linear models and structured output spaces.

4.1 Problem Decomposition

Without any approximations, the decoding problem—the problem of identifying the regular
expression y that maximizes the parametric decision function—is insurmountable. For any
string, an exponential number of matching regular expressions of up to the same length
can be constructed by substituting constant symbols for wildcards. In addition, constant
symbols can be replaced by disjunctions and “loopy” syntactic elements can be added to
create infinitely many longer regular expressions that also match the original string. Because
the space of regular expressions is discrete, it also does not lend itself well to approaches
based on gradient descent.

We decompose the problem into two more strongly constrained learning problems. We
decompose the parameters w = (u v)T and the loss function A = Ay, + A, into parts
that are minimized sequentially. In the first step, u-parameterized model f,, produces a
regular expression y that is constrained to being a specialization of the maximal alignment
of the strings in x. Specializations of maximal alignments of the strings in x tend to be
long regular expressions that characterize the entirety of the strings in x. In a second step,
v-parameterized model fy, therefore produces a concise substring y of y.

Definition 1 (Alignment, Maximal Alignment) The set of alignments Ax of a batch
of strings x contains all concatenations in which strings from ¥ and the wildcard sym-
bol “(.*)” alternate, and that generates all elements of x.The set of maximal alignments
Af C Ax contains all alignments of the strings in x which share the property that no other
alignment in Ax has more constant symbols.
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A specialization of an alignment is a string that has been derived from an alignment by
replacing one or several wildcard symbols by another regular expression. Figure 3 illustrates
the process of generating a maximal alignment, and the subsequent step of specializing it.

I'm a cute russian lady. I'm 21 years old.

I'm a lonely russian lady. I’'m 23 years old.
. elements of message campaign

I'm a sweet russian girl. I'm 22 years old.

l

I'm a (.*) russian (.*). I'm 2(.*) years old. maximal alignment

l

I'm a [a-z]{4,6} russian (girl|lady). I'm 2[123] years old.
I'm a [a-z] T russian [a-z]*. I'm 2[0-9] years old.
. specializations of maximal alignment

I'm a [a-z]* russian [adgilry]T. I'm 2[0-9]7 years old.

Figure 3: Examples of regular expressions, which are specializations of a maximal alignment
of strings.

The loss function for this step should measure the semantic and syntactic deviation
between the conjecture y and the manually written y for batch x. We define a loss function
Ay(y,¥y,x) that compares the set of parse trees in Ty, , for each string x € x to the most
similar tree in ’7;,(" ; if no such parse tree exists, the summand is defined as ﬁ (Equation
2). Similarly to a loss function for hierarchical classification (Cesa-Bianchi et al., 2006),
the difference of two parse trees for a given string x is quantified by a comparison of the
paths that lead to the characters of the string. Two paths are compared by means of the
intersection of their nodes (Equation 3). This loss is bounded between zero and one; it is
zero if and only if the two regular expressions y and y are equal:

(2)

otherwise

Au(y,§,%) = |Z

rTEX

{ Atree Y y7 ) lfx € L(S’)

u ’t|J N tl]

1
ith Agree(y,¥,2) =1~ ’
wi tree(Y> ¥, T) Z |x| Zmax{\tw ‘t|g’} )

‘ ar|

Figure 4 illustrates how the tree loss is calculated for a single string: for each symbol,
the corresponding paths of the syntax trees spawned by y and y are compared. Each pair
of corresponding paths incurs a loss according to the proportion of nodes that are labeled
with differing subexpressions.

Because the regular expression created in this step is a specialization of a mazimal align-
ment, it is not generally concise. In the second step, v-parameterized model fy produces

3693



PRASSE, SAWADE, LANDWEHR AND SCHEFFER

y =ab(1]2)(13[4)*cd(e|f|g)* § —ab(1]3[4)*cd(c|flg)* 2 =abl3cdef
y =ab(1[2)(1[34)"cd(elflg)"

l? 1[2 (1[3[4) ¢ (_1 (elflg) €T
o1 134 oellg olfls

o A o ;

Loss: 5 3 3 : 5 3 3 T Auee(y ¥o2) = 1 (35 5) = 56

: 1 3 : e f

: 1|3\4 1314 ofie  elflg

: / \ / eTye

: b\\lw* / (elfle)* :
b(1]3]4)*cd(e|f|g) ™

Figure 4: Calculation of the tree loss Ayee(y,¥,x) for a given string x and two regular
expressions y and y.

a regular expression y € ) that is a subexpression of y; that is, ¥ = yprey¥suf With
Ypre; Ysuf € Vs. Loss function Ay (y,y) is based on the length of the longest common sub-
string les(y,y) of y and y. The loss—defined in Equation 4—is zero, if the longest common
substring of y and y is equal to both y and y. In this case, y = y. Otherwise, it increases
as the longest common substring of y and y decreases:

o Lyl = [les(y, ¥)| ¥] —[les(y, ¥)
Av<y,y>—2[( - )+( > )] (@

In the following subsections, we derive decoders and optimization problems for these
two subproblems.

4.2 Learning to Generate Regular Expressions
We model f, as a linear discriminant function u' ¥y (x,y) for a joint feature representation

of the input x and output y (Tsochantaridis et al., 2005):

¥ = arg max fu(x,y) = arg max u' Uy(x,y).
yeVs yeVs
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4.2.1 JOINT FEATURE REPRESENTATION FOR GENERATING REGULAR EXPRESSIONS

The joint feature representation Wy (x,y) captures structural properties of an expression y
and joint properties of input batch x and regular expression y.

It captures structural properties of a regular expression y by features that indicate
a specific nesting of regular expression operators—for instance, whether a concatenation
occurs within a disjunction. More formally, we first define a binary vector

Iy =y1-.-y&]
[y =yil---1vx]
Iy =[y1-- -yl
[y = vil
[y =y17]
i
Ay = y=¥y1 5
SER I ®)
[y =]

[y =]
[y € X]
[y =l

that encodes the top-level operator used in the regular expression y, where [-] is the
indicator function of its Boolean argument. In Equation 5, yi,...,yr € Vs are regular
expressions, [,u € N, and {ry,...,r} is a set of ranges and popular macros. For our ap-
plication, we use the set {0-9, a-f, a-z, A-F, A-Z,\S, \e, \d, “.”} (see Table 6 in the appendix)
because these are frequently used by postmasters.

For any two nodes v’ and v” in the syntax tree of y that are connected by an edge—
indicating that y” = '}, (v”) is an argument subexpression of y’ = T'},,(v')—the tensor
product Ay (y')®Au(y”) defines a binary vector that encodes the specific nesting of operators
at node v'. Feature vector Wy(x,y) will aggregate these vectors over all pairs of adjacent
nodes in the syntax tree of y.

Joint properties of an input batch x and a regular expression y are encoded in a similar
way as follows. Recall that for any node v’ in the syntax tree, MY *(v') denotes the set
of substrings in x that are generated by the subexpression y’ = I'},,(v') that v’ is labeled
with. We define a vector @ (MY*(v')) of attributes of this set. Any property may be
accounted for; for our application, we include the average string length, the inclusion of
the empty string, the proportion of capital letters, and many other attributes. The list of
attributes used in our experiments is included in the appendix in Table 3. A joint encoding
of properties of the subexpression y’ and the set of substrings generated by y’ is given by
the tensor product @4 (MY *(v")) @ Au(y’).

The joint feature vector ¥y (x,y) is obtained by aggregating operator-nesting informa-
tion over all edges in the syntax tree, and joint properties of subexpressions y’ and the set
of substrings which they generate over all nodes in the syntax tree:

Bt y) — [ Dt MTn) @ AT (") “
’ Dvevy, Lu(MY* (V') @ Au(TEyn (V"))
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4.2.2 DECODING SPECIALIZATIONS OF THE MAXIMAL ALIGNMENT

At application time, the highest-scoring regular expression y according to model f,, has to
be decoded. Model fy is constrained to producing specializations of the maximal alignment;
however, searching the space of all possible specializations of the maximal alignment is still
not feasible. The following observation illustrates that f;, may not even have a maximum,
because there may always be a longer expression that attains a higher score.

Observation 1 Given a string a that contains at least one wildcard symbol “(.*)”, let Va
be the set of all specializations that replace wildcards in a by any reqular expression in ).
Then, there are parameters u such that for each'y there is a'y’' € Va with fu(y') > fu(y)-

Proof Joint feature vector ¥ from Equation 6 contains two parts. The first part contains
operator-nesting information over all edges in the syntax tree and the second part contains
joint properties of subexpressions and the set of substrings which they generate over all
nodes in the syntax tree. We construct u as follows: Let all weights in u be zero, except for
the entry which weights the count of alternatives within an alternative; this entry receives
any positive weight. For any string a that contains a wildcard symbol, by substituting the
wildcard for an alternative of a wildcard and arbitrarily many other subexpressions, one
can create a string a’ that contains a wildcard within an additional alternative. Repeated
application of this substitution creates arbitrarily many alternatives within alternatives
and the inner product of u and ¥, can therefore become arbitrarily large. |

Observation 1 implies that exact decoding of arbitrary decision functions f,; is not
possible. However, we can follow the under-generating principle (Finley and Joachims, 2008)
and employ a decoder that maximizes f, over a constrained subspace that has a maximum.
Observation 1 implies that the decision-function value of that maximum over the constrained
space may be arbitrarily much lower than the decision-function value of some elements of
the unconstrained space. But when it comes to formulating the optimization problem
in Subsection 4.2.3, we will require that, for each training example, the training regular
expression shall have a higher decision function value (by some margin) than the highest-
scoring incorrect regular expression that is actually found by the decoder. Hence, despite
Observation 1, the learning problem may produce parameters which let the constrained
decoder produce the desired output.

The search space is first constrained to specializations of a maximal alignment of the
input set of strings x; see Definition 1. A maximal alignment of two strings can be deter-
mined efficiently using Hirschberg’s algorithm (Hirschberg, 1975) which is an instance of
dynamic programming. By contrast, finding the maximal alignment of a set of strings is
NP-hard (Wang and Jiang, 1994); known algorithms are exponential in the number |x| of
strings in x. However, progressive alignment heuristics find an alignment of a set of strings
by incrementally aligning pairs of strings. Note that the set of specializations of a maximal
alignment is still generally infinitely large: each wildcard symbol can be replaced by every
possible regular expression Vs. Therefore, our decoding algorithm starts by finding an ap-
proximately maximal alignment using the Hirschberg algorithm, and proceeds to construct
a more constrained search space in which each wildcard symbol can be replaced only by
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regular expressions over constant symbols that occur in the strings in x at the corresponding
positions.

The definition of the constrained search space is guided by an analysis of the syntactic
variants and maximum nesting depth observed in expressions written by postmasters—a
detailed record can be found in the appendix; see Tables 6, 7, and 8. The space contains
all specializations of the maximal alignment in which the j-th wildcard is replaced by any
element from :)A/]]:\)/[j , which is constructed as follows. Firstly, :)A){\)/[j contains any subexpression
that occurs within any training regular expression, and that matches the substrings of
input x which the alignment procedure has substituted for the j-th wildcard. In addition,
the alternative of all substring aligned at the j-th wildcard symbol is added. For each
character-alternative expression in that set—e.g., [abc]—all possible iterators and range
generalizations used by postmasters are added.

Given an alignment ax = ag(.*)ay ... (.*)a, of all strings in x, the constrained search
space

Ve = {aoy1a1 ... ynanlfor all j :y; € Yo} (7)

contains all specializations of ayx in which the j-th wildcard symbol is replaced by any
element of a set yé/[j, where M; is the matching list of the j-th node in T&x, that is labeled

syn
with the wildcard symbol “(.*)”. The sets jigjj are constructed using Algorithm 1. Each
of the lines 7, 9, 10, 11, and 12 of Algorithm 1 adds at most one element to yé/[j and
thus Algorithm 1 generates a finite set of possible regular expressions—hence, the search
space of possible substitutions for each of the n wildcard symbols is linear in the number of
subexpressions that occur in the training sample.
We now turn towards the problem of determining the highest-scoring regular expres-
sion fw(x). Maximization over all regular expressions is approximated by maximization
over the space defined by Equation 7:

arg max u' ¥y (x,y) ~arg maxu' ¥yu(x,y).
yeyz yEJ}x,D

Due to the simple syntactic structure of the alignment and the definition of ¥, we can
state the following theorem:

Theorem 2 The mazimization problem of finding the highest-scoring reqular expres-
sion fu(x) can be decomposed into independent mazimization problems for each of the y;

that replaces the j-th wildcard in the alignment ax, given the alignment and the definition
of Wy:

* *
arg max fu(X,aoy1a1 - .. Yntn) = aoyiai ... y,an

Yi,-¥n
with y; = arg max u'’ (\Ilu(yj, M;) + cyj) .
Yjej}Dj
Proof By its definition, fu(X,a0y101...ynan) = u'Wy(X,a0y101 . ..yYna,). Decision

function Feature vector Wy (x,y) decomposes linearly into a sum over the nodes and a
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Algorithm 1 Constructing the decoding space

1: Input: Subexpressions Vp and alignment ayx = ag(.*)ay ... (.*)a, of the strings in x.

2: let Tgx, be the syntax tree of the alignment and vi,...,v, be the nodes labeled
I (v) = “()7

3: for j=1...ndo

4 let Mj = Max’x(l}j).

5. Initialize Y1’ to {y € Yp|M; C L(y)}

6: let zq,..., 2, be the elements of Mj; add (x1]...|zm) to JA)]];@.

7 let u be the length of the longest string and [ be the length of the shortest string in
Mj.

8 if [By1...yx] € :)A/gj, where $ € ¥* and y; ...y are ranges or special macros (e.g.,

a-z, \e), then add [y ...yx] to )A)i\)/[j, where o € £* is the longest string that satisfies
M; C L([oy1-..yk)), if such an « exists.

9: for all [y] € 5}2\)4]' do

10: add [y]* and [y]{l,u} to Vp".
11: if | = u, then add [y}{I} to V",
12: if u <1, then add [y]? to 37]]54”'-
13 if 1> 0, then add [y]* to Y.
14:  end for

15: end for

16: Output 3}?)41’ . ,)>D".
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< Ynln,1...-Qn a,|

Figure 5: Structure of a syntax tree for an element of JA)X, D-

sum over pairs of adjacent nodes (see Equation 6). The syntax tree of an instantia-
tiony = agyi1ai . . . ynan, of the alignment ay consists of a root node labeled as an alternating
concatenation of constant strings a; and subexpressions y; (see Figure 5). This root node
is connected to a layer on which constant strings a; = a;,1 ... a; s, and subtrees Tg’y]n alter-
nate (blue area in Figure 5). However, the terms in Equation 8 that correspond to the root
node y and the a; are constant for all values of the y; (red area in Figure 5). Since no edges
connect multiple wildcards, the feature representation of these subtrees can be decomposed
into n independent summands as in Equation 9.

\Ilu(X, apyiasg - - . Ynan) (8)

5 M) ® Aalys) + 30 3 Auly) @ Aulag)

=1
S Y Su(MYM () @ Ag(THn ()

= (oo o A )*Ziz< e )

=0 g=1
+Z( (v M;) + (Au(Y) %Au(Yj)>) (9)

Since the top-level operator of an alignment is a concatenation for any y € 5))(7 D, We
can write Ay(y) as a constant A,, defined as the output feature vector (Equation 5) of a
concatenation.

Thus, the maximization over all y = agyia; ...yna, can be decomposed into n maxi-
mization problems over

yj = arg maxu’ <\1!u(yj, M;) + <A° ®© gu(yj)>>

(M
Yi€Vp

which can be solved in O(n x |Ypl|). [ |
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4.2.3 OPTIMIZATION PROBLEM FOR SPECIALIZATIONS OF A MAXIMAL ALIGNMENT

We will now address the process of minimizing the portion of the regularized empirical
risk R[fvw], defined in Equation 1, that depends on u for the ¢ regularizer Q¢(u) = 35 |[al%.
The decision function fy decomposes into fy and fy; loss function Ay, decomposes into Ay
and Ay. While loss function Ay defined in Equation 2 is not convex itself, the hinged upper
bound used in Equation 1 is. Approximating a loss function by its hinged upper bound in
such a way is referred to as margin-rescaling (Tsochantaridis et al., 2005). We define slack
term &; as this hinged loss for instance i:

& = max {;r;g,x{uT(\Ifu(Xi,y) — Vu(xi,yi) + Au(yi, ¥, %)} 0} : (10)
The maximum in Equation 10 is over all y € Vs \ {yi}. When the risk is rephrased as a
constrained optimization problem, the maximum produces one constraint per element of
y € Yu \ {yi}. However, since the decoder searches only the set JAJXZ., D, it is sufficient to
enforce the constraints on this subset which leads to a finite search space.

When the loss is replaced by its upper bound—the slack variable {&—and for Qy(u) =
ﬁHuHQ, the minimization of the regularized empirical risk (Equation 1) is reduced to
Optimization Problem 1.

Optimization Problem 1 Owver parameters u, find

1 m
u* = argnlriign iHuH2 + % ;&, such that (11)
VZ,VS’ € j)Xi,D\{yi} : uT(\Pu(Xi7Yi) - \Ilu(xivy)) (12)

> Au(yi’yvx) - giv

This optimization problem is convex, since the objective (Equation 11) is convex and
the constraints (Equation 12) are affine in u. Hence, the solution is unique and can be
found efficiently by cutting plane methods as Pegasos (Shalev-Shwartz et al., 2011) or
SVMstruet (Tsochantaridis et al., 2005).

These algorithms require to identify the constraint with highest slack variable &; for a
given x;,

y = arg max uT\Ilu(Xi,y) + Au(yiy, %),
yeyxi,D\{yi}

in the optimization procedure, repeatedly.

Algorithm 1 constructs the constrained search space JA/xh p such that x € L(y) for each
rex;andy € JAJXZ,, p. Hence, the “otherwise”-case in Equation 2 never applies within our
search space. Without this case, Equations 2 and 3 decompose linearly over the nodes of
the parse tree, and therefore the wildcards. Hence, ¥y can be identified by maximizing over
the variables y; independently in Step 5 of Algorithm 2. Algorithm 2 finds the constraint
that is violated most strongly within the constrained search space in O(n x |Yp|). This
ensures a polynomial execution time of the optimization algorithm. We refer to this learning
procedure as REx-SVM.
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Algorithm 2 Most strongly violated constraint
1: Inout: batch x, model fy, correct output y.
2: Infer alignment ax = ag(.*)ay ... (.*)a, for x.
3: Let T2%, be the syntax tree of ayx and let vy,...,v, be the nodes labeled I'%x, (v;) =

syn syn
“(.*)7’.
4: for all j=1...ndo
Let M; = M®*(v;) and calculate the j)g]j using Algorithm 1.

!
y; = arg maxu ' <\I’u(Y;7Mj) + <A. © gu(yj)>> +

~ M
y;€Vp?

Au(y,ao(")ar ... (Majayja;(Fajir ... ()an, x)
7: end for
8: Let ¥ abbreviate agyiai ... ¥nan
9: if y =y then
10:  Assign a value of y;. € 3}11:\)@ to one of the variables y; such that the smallest decrease
of fu(X,¥) + Atree(y,y) is obtained but the constraint y # y is enforced.
11: end if
12: OQutput: y

4.3 Learning to Extract Concise Substrings

Model fy generates regular expressions that tend to be very specific because they are spe-
cializations of a maximal alignment of all strings in the input set x. Human postmasters,
by contrast, prefer to focus on only a characteristic part of the message for which they write
a specific regular expression. In order to allow the overall model fy to produce expressions
that characterize only a part of the strings, this section focuses on a second model, f, that
selects a substring from its input string y. We model f, as a linear discriminant function
with a joint feature representation W, of the input regular expression y and the output
regular expression y; decision function f, is maximized over the set II(y) of all substrings
of y that are themselves regular expressions:

y =arg max fy(¥,y) = arg max v' Uy (3,y), (13)
yeIl(y) ye(y)

with H(y) = {Yin S y2|5’ = YpreYinYsuf and Ypre; Ysuf € yE}

4.3.1 JOINT FEATURE REPRESENTATION FOR CONCISE SUBSTRINGS

The joint feature representation Wy (y,y) captures structural and semantic features
Pinput(¥) of the input regular expression y, features ®ouput(y) of the output regular ex-
pression y and all combinations of properties of the input and output expression.

Vector ®iput(y) of features of the input regular expression y includes features that
indicates whether y special mail specific content like a a subject line, a “From” line, or a
“Reply-To” line. A range of features test whether particular special characters are included
in y; other features refer to the number of subexpressions that are entailed in y. The list
of used features in our experiments is shown in Table 4 in the appendix.
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Feature vector @Output(y) of the output regular expression y stacks up features which
indicate how many subexpressions and how many words are included in the regular expres-
sion. In addition it contains features that test for special phrases that frequently occur in
email batches and features that test whether words with a high spam score are included
in the subject line. We identify this list of suspicious words by training a linear classifier
that separates spam from non-spam emails; the list contains the 150 words which have the
highest weights for the spam class. The list of features that we used in the experiments can
be found in Table 5 in the appendix.

The final joint feature representation Wy (y,y) is defined as vector that includes the
input features ®input(y) , the output features @ouput(y), and all products of an input and
an output feature:

(I)input (y)
Uy(y,y) = Poutput (¥) : (14)
(I)input (S’) & (I)output (Y)

4.3.2 DECODING A CONCISE REGULAR EXPRESSION

At application time, the highest-scoring regular expression y according to Equation 13 has
to be identified. The search space II(y) contains all substrings of y; since y is typically a very
long string and calculating all features is an expensive operation, evaluating the decision
function for all substrings is infeasible. Again, we follow the under-generating principle
(Finley and Joachims, 2008) and constrain the search to the space IIs(y) contains regular
expressions whose string length is at most s. Within this set, the decoder conducts an
exhaustive search. One can easily observe that when the highest-scoring regular expression’s
string length exceeds s, then the highest-scoring regular expression of size at most s can
have an arbitrarily much lower decision function value.

Observation 2 Let § = argmaxyen(y) fv(¥,y) and ys = argmaxyery) |y|<s fv(¥,¥)-
If |y| > s, then for each number d, there is a parameter vector v such that fy(y,y) >

(Y, ys) +d.

Proof The output features of vector ¥y (Equation 14) include the number of constant
symbols and the number of non-constant subexpressions in output expression y. Let
v be all zero except for these two weights which we set to d + 1. Then f,(y,y) is
maximized by output y = y. If |ys| < |y|, then ys is missing at least one initial or
trailing constant or non-constant symbol. By the definition of v, decision function
N, y) = VT\I}V(S’;Y) > VT\I}V(yvyS) +d=fu(y,¥s) +d. u

Choosing too small a constant s can therefore lead to poor decoding results. In our
experiments, we choose s to be greater than the longest regular expressions seen in the
training data.

4.3.3 OPTIMIZATION PROBLEM FOR CONCISE EXPRESSIONS

Training data D = {((x;,y:)}/~, for the overall learning problem consist of pairs of sets x;
of strings and corresponding regular expressions y;. Model f,—discussed in Section 4.2—
produces intermediate expressions y; that are specializations of a maximal alignment, before
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model fy(¥;) gives the final predictions y;. Hence, training data for model f, naturally
consists of the pairs {(¥;,yi)}i".

We will now derive an optimization problem from the portions of Equation 1 that depend
on v. Decision function fy decomposes into fy + fv; loss function Ay into A, and A,.
The regularizer decomposes, and we use the ¢, regularizer for v as well, Qg(v) = 55 ||v|%.
This leads to Optimization Problem 2.

Optimization Problem 2 Owver parameters v, find

1 v —
v = argrg’i{n §||VH2 + % ;Q, such that
Vi, Vy € (y:)\{yi} : vV (Uy(Fi,¥i) — Ys(¥i,¥))
Z Av(yaYZ) - ‘£i7
Vi:& > 0.

Optimization Problem 2 minimizes the regularized empirical risk under the assumption
that the decoder uses the restricted search space II5(y) for some fixed value of the maximal
string length s. We refer to the complete model

y =arg max v' Uy (¥,y),
ye(y)

with ¥ = apyjai...yran

and yj = arg maxu' (Tu(y;, M;) + (Ae @ Au(y))))
y]-ej}Dj

for predicting concise regular expressions as REx-SVMskort,

5. Case Study

We investigate whether postmasters accept the output of REx-SVM and REx-SVMstort for
blacklisting mailing campaigns during regular operations of a commercial email service. We
also evaluate how accurately REx-SVM and REx-SVM®2°Tt and their reference methods
identify the extensions of mailing campaigns.

In order to obtain training data for the model f, that generates a regular expression
from an input batch of strings, we apply the Bayesian clustering technique of Haider and
Scheffer (2009) to the stream of messages that arrive at an email service during its regular
operations; the method identifies 158 mailing campaigns with a total of 12,763 messages.
Postmasters of the email service write regular expressions for each batch in order to blacklist
the mailing campaign; these expressions serve as labels. We will refer to this data collection
as the ESP data set.

In order to obtain additional training data for the model f, that selects a concise
substring of a regular expression that is a specialization of the maximal alignment, we
observe another 478 pairs of regular expressions with their concise subexpressions that
postmasters write in order to blacklist mailing campaigns. We collected this data by using
the predicted regular expression ¥ = fy,(x) for each batch of emails x as training observation

3703



PRASSE, SAWADE, LANDWEHR AND SCHEFFER

and the postmaster-written expression y as the label. We train a first-stage model f,; on the
158 labeled batches after tuning regularization parameter Cy with 10-fold cross validation.
We tune the regularization parameter C\ using leave-one-out cross validation and train a
global model f, that is used in the following experiments.

5.1 Evaluation by Postmasters

) Campaign 1 Campaign 2 Campaign 3
£ | Please send the request to my email Email:wester_(payin|pay)@yahoo.com (Reply-To|From):(mosk@aven|sevid@donald).com
g (simon|george)@(gmaillyahoo).com Yours sincerely, Subject: GET YOUR MONEY
2 Mr [A-Z][a-z]* [A-Z][a-Z]"
o
... This work takes [0-9-]* hours per [| ... agreed that the sum of US$[0-9,]T .(-F-ieply—To|From):(mosk@aven\sevid@donald).com
week and requires absolutelyl no in- should be transferred to you out of the Subject: GET YOUR MONEY
vestment. The essence of this work funds that Federal Government of Nigeria
= | for incoming.client requests in your cir— has set aside as a compensation to eve- I am Mr. Sopha Chum, An Auditing and accoun-
2 | ty. The starting salary is about [0-9] ryone who have by one way or th_e other ting section staff in National Bank of Cambodia.
% | EUR per month + bonuses. sent money to fraudsters in Nigeria.
=
= I
Please send the request to my email Email:wester_(payin|pay)@yahoo.com
[a-z] T @(gmaillyahoo).com and | will [| Yours sincerely,
answer you personally as soon as pos- || Mr [A-Za-z]* [A-Za-Z]* ...
. | sible ...
3
"2 Please send the request to my email Email:wester_(payin|pay)@yahoo.com (Reply-To|From):(mosk®@aven|sevid@donald).com
= | [a-z]*@(gmaillyahoo).com and I will || Yours sincerely, Mr [A-Za-z]* [A-Za-2z]* Subject: GET YOUR MONEY
. | answer you personally as soon as pos-
2| sibl
o~ sible

Figure 6: Regular expressions created by a postmaster and corresponding output of REx-
SVM and REx-SVMshort,

The trained model f, is deployed; the user interface presents newly detected batches
together with the regular expressions fy,(x) generated by REx-SVM and expressions fyw(x)
generated by REx-SVM®2°Tt to the postmasters during regular operations of the email
service. The postmasters are charged with blacklisting the campaigns with a suitable regular
expression. We measure how frequently the postmasters copy the output of REx-SVMs2ort,
copy a substring from the output of REx-SVM, copy but edit an output, and how frequently
they choose to write an expression from scratch.

Over the course of this study, the postmasters write 153 regular expressions. They copy
the exact regular expressions generated by REx-SVM5Tt in 64.7% of the cases. Another
14.4% of the time, they copy a substring from the output of REx-SVM and use it without
changes. In 7.8% of the cases, the postmasters copy and edit a substring from REx-SVM,
and in 13.1% of the cases they write an expression from scratch. Hence, tasked with
producing a regular expression that will block the mailing campaign during live operations,
the postmasters prefer working with the automatically generated output to writing an
expression from scratch 86.9% of the time.

To illustrate different cases, Figure 6 compares regular expressions selected by a post-
master to excerpts of regular expressions generated by REx-SVM, and regular expressions
generated by REx-SVM?3Tt | respectively. In the first example, REx-SVM over-generalizes
the contact email address, and REx-SVM52°T* predicts a slightly longer expression than
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the postmaster prefers to select. Nevertheless, all three regular expressions characterize
the extension of the mailing campaign accurately. In the second example, REx-SVM finds
a slightly shorter but slightly more general expression for the closing signature (the term
“[A-Za-z]™” would allow for capital letters within the name while the term “[A-Z][a-z]™”
does not). The second-stage model f, has selected the same substring that the postmaster
prefers. In the third example, postmaster and REx-SVM®E°Tt agree perfectly.

The fact that postmasters are content to accept generated regular expression does not
imply that they would have written the exact same rules. We now want to explore how
frequently REx-SVM?3Tt is able to produce the same regular expression that postmasters
would have written. We execute leave-one-out cross validation over the regular expressions
in the ESP data set. In each iteration, a new model fy is trained on all but one regular
expressions (model fy is only trained once on different data).

We compare the output of REx-SVM32°%t to the held-out expression. We find that in
59.49% (94) of the cases, REx-SVM?®2°T* generates the exact regular expression written by
the postmaster; in 11.39% (18) of the cases the held-out expression is a substring of the
regular expression created by REx-SVM but distinct to the extracted expression found by
REx-SVM#2°rt n 8.86% (14) of the cases the held-out regular expression can be obtained
by modifying a substring of the string created by REx-SVM. In 20.25% (32) of the cases,
generated and manually-written regular expression are distinct. These rates are consistent
with the acceptance rates of the postmasters. When manually written and automatically
generated regular expressions differ from each other, both expressions may still serve their
purpose of filtering a particular batch of emails. We will explore to which extent this is the
case in the next subsection.

5.2 Spam Filtering Performance

We evaluate the ability of REx-SVM, REx-SVM®2°Tt " and reference methods to identify the
exact extension of email spam campaigns. We use the approximately maximal alignment of
the strings determined by sequential alignment in a batch x as a reference method. Here,
the ReLIE method (Li et al., 2008) serves as an additional reference. ReLIE takes the
alignment as starting point of its search for a regular expression that matches the emails in
the input batch and does not match any of the additional negative examples by applying a
set of transformation rules. ReLIE receives an additional 10,000 emails that are not part
of any batch as negative data, which gives it a small data advantage over REx-SVM and
REx-SVMstert REx, /1-SVM is a variant of the REx-SVM that uses the zero-one loss
instead of the loss function A, defined in Equation 2. An additional content-based filter
employed by the provider has been trained on several million spam and non-spam emails.

Our experiments are based on two evaluation data sets. The ESP data set consists of
the 158 batches of 12,763 emails and postmaster-written regular expressions; it is described
in Section 5. In addition, we collect another 42 large spam batches with a total of 17,197
emails for which we do not have postmaster-written regular expressions. In order to be able
to measure false-positive rates (the rate at which emails that are not part of a campaign
are erroneously included), we use an additional 135,000 non-spam emails, also from the
provider.
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Additionally, we use a public data set that consists of 100 batches of emails extracted
from the Bruce Guenther archive', containing a total of 63,512 emails. To measure false-
positive rates on this public data set, we use 17,419 non-spam emails from the Enron corpus?
and 76,466 non-spam emails of the TREC' corpus®. The public data set is available to other
researchers.

Experiments on the ESP data set are conducted as follows. We employ a constant model
of fy, trained on 478 pairs of predicted expressions y and postmaster-written expressions
y. We first carry out a “leave-one-batch-out” cross-validation loop over the 158 labeled
batches of the ESP data set. In each iteration, 157 batches are reserved for training of
fu. On this training portion of the data, regularization parameter Cy, is tuned in a nested
10-fold cross validation loop, then a model is trained on all 157 training batches. An inner
loop then iterates over the size of the input batch. For each size |x|, messages from the
held-out batch are drawn into x at random and a regular expression y = fy (x) is generated.
The remaining elements of the held-out batch are used to to measure the true-positive rate
of y, and the 135,000 non-spam emails are used to determine its false-positive rate. After
that, a model is trained on all 158 labeled batches, and the evaluation iterates over the
remaining 42 batches that are not labeled with a postmaster-written regular expression.
For each value of |x|, an input x is drawn, a prediction y is generated, its true-positive rate
is measured on the remaining elements of the current batch and its false-positive rate on the
135,000 non-spam messages. Standard errors are computed based on all 200 observations.

For evaluation on the public data set, parameter Cy, is tuned with 10-fold cross validation
and then a model is trained on all 158 labeled batches of the ESP data set. The evaluation
iterates over all 100 batches of the public data set and, in an inner loop, over values of
|x|. An input set x is drawn at random from the current batch, the true-positive rate of
¥ = fw(x) is measured on the remaining elements of the current batch and the false-positive
rate of ¥ is measured on the Enron and TREC emails.

Figure 7 shows the true- and false-positive rates for all methods on both data sets. The
horizontal axis displays the number of emails in the input batch x. Error bars indicate the
standard error. The true-positive rate measures the proportion of a batch that is recognized
while the false-positive rate counts emails that match a regular expression although they are
not an element of the corresponding campaign. The alignment has the highest true-positive
rate and a high false-positive rate because it is the most general bound of the decoder’s
search space. ReLIFE only has to carry out very few transformation steps until no negative
examples are covered—in some cases none at all. Consequently, it has similarly high true-
and false-positive rates. REx-SVM and REx-SVM?3E°T? attain a slightly lower true-positive
rate, and a substantially lower false-positive rate. The false-positive rates of REx-SVM,
RExq/,-SVM, and REx-SVM?®°Tt Jie more than an order of magnitude below the rate of
the commercial content-based spam filter employed by the email service provider. The
zero-one loss leads to comparable false-positive but lower true-positive rates, rendering the
loss function A, preferable to the zero-one loss. The true-positive rate of REx-SVMshort
is significantly higher than the true-positive rate of REx-SVM for small sizes of the input
batch; it requires only very few input strings in order to generate regular expressions which

1. http://untroubled.org/spam/
2. http://www.cs.cmu.edu/~enron/
3. http://trec.nist.gov/data/spam.html
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(a) True—positive rate, public data set (b) False—positive rate, public data set
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Figure 7: True-positive and false-positive rates over the number of used emails in the input
batch x for the public and ESP data sets.

can be used to describe nearly the entire extension of a batch at a very low false-positive
rate.

Finally, we determine the risk of the studied methods producing a regular expression
that causes at least one false-positive match of an email which does not belong to the
batch. REx-SVM'’s risk of producing a regular expression that incurs at least one false-
positive match is 2.5%; for REx-SVM®2°Tt | this risk is 3.7%); for alignment, the risk is 6.3%,
and for ReLIE, it is 5.1%.

5.3 Learning Curves, Execution Time

We study learning curves of the loss functions of REx-SVM and REx-SVM5Tt| Figure 8
(a) shows the average loss A, based on cross validation with one batch held out, as a
function of the number of training batches. The “minimum loss” baseline shows the smallest
possible loss within the constrained search space; it visualizes how much constraining the
search space contributes to the overall loss. This value is obtained by an altered search
procedure that minimizes the loss function between prediction and the postmaster-written
regular expression instead of the decision function. This loss-minimizing expression has a
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lower decision function value than the predicted regular expression; the difference between
minimum loss and the loss of REx-SVM and REx,,1-SVM, respectively, can be attributed
to imperfections of the model. Figure 8 (a) also shows the loss of the alignment. This loss
serves as an upper bound and visualizes how much the parameterized models contribute
to minimizing the error. For completeness, Figure 10 in the appendix shows the learning
curves on the training data.

Figure 8 (b) shows the average loss A, based on 10 fold cross validation and the average
loss on the training data. The impact of the regularization parameters Cy and CY is shown
in Figure 11 in the appendix.

(a) Loss on test data (b) Loss on test and training data

0.93 - ; ; ; ; ; ; ; ; ; 0.7 — ; ; : . ; . .

REx—SVMf}hc’t'T (loss on test data) -~
0.92 | | 0.6 I REx-SVM*™" (loss on train data) 1
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u, e e et ] o 04 } 1
g 09y | 2 os J[ ________ % ]
0.89 f REX-SVM === 1 02t } """""""" R _'_',',:::.::%f
Alignment ,|]

REXO/J_—SVM e, 01 ,% % i
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number of batches used to train number of regular expressions used to train

Figure 8: (a) Loss Ay of model f,; on the test data (left Figure). (b) Loss Ay of model f
on the training and test data. Error bars indicate standard errors.

Table 5.3 measures how much REx-SVMs2°Tt reduces the length of the expressions
produced by REx-SVM. We can conclude that REx-SVM®2°*t reduces the length of the
output of REx-SVM by an average of 92%.

’ Method ‘ mean ‘ standard error
REx-SVM 2141 2063
REx-SVM\short 95 92

Table 1: Number of characters in automatically-generated regular expressions.

The execution time for learning is consistent with prior findings of between linear and
quadratic for the SVM optimization process—see Figure 9(a). Figure 9 (b) shows the
execution time of the decoder that generates a regular expression for input batch x at
application time. ReLIE does not require training.

In order to use regular expressions to blacklist email spam, the email service provider’s
infrastructure has to continuously match all active regular expressions against the stream
of incoming emails. This acceptor is implemented as a deterministic finite-state automaton.
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(a) Execution time for training (b) Execution time for decoding
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Figure 9: Execution time for training a model (a) and decoding a regular expression at
application time (b).

The automaton has to be kept in main memory, and therefore the number of states deter-
mines the number of regular expressions that can be searched for in parallel. Table 2 shows
the average number of states of an acceptor, generated by the method of Dubé and Feeley
(2000) from the regular expressions of REx-SVM and REx-SVM?s2°Tt, The average number
of states of regular expressions by REx-SVM?52°Tt is close to the average number of states
of expressions written by a human postmaster, while alignment, ReLIE, and REx-SVM
require impractically large accepting automata.

’ Method ‘ mean ‘ median | standard error ‘
alignment 5709 4059 389.1
REx-SVM 5473 2995 520.8
ReLIE 5632 3587 465.9
REx-SVMstort 72 69 1.8
postmaster 68 48 4.6

Table 2: Number of states of an accepting finite-state automaton.

6. Related Work

Gold (1967) shows that it is impossible to exactly identify any regular language from finitely
many positive examples. In his framework, a learner makes a conjecture after each new
positive example; only finitely many initial conjectures may be incorrect. Our notion of
minimizing an expected difference between conjecture and target language over a distribu-
tion of input strings reflects a more statistically-inspired notion of learning. Also, in our
problem setting the learner has access to pairs of sets of strings and corresponding regular
expressions.

Most work of identification of regular languages focuses on learning automata (Denis,
2001; Parekh and Honavar, 2001; Clark and Thollard, 2004). Since regular languages are
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accepted by finite automata, the problems of learning regular languages and learning finite
automata are tightly coupled. However, a compact regular language may have an accepting
automaton with a large number of states and, analogously, transforming compact automata
into regular expressions can lead to lengthy terms that do not lend themselves to human
comprehension (Fernau, 2009).

Positive learnability results can be obtained for restricted classes of deterministic finite
automata with positive examples (Angluin, 1978; Abe and Warmuth, 1990); for instance
expressions in which each symbol occurs at most k times (Bex et al., 2008), disjunction-free
expressions (Brazma, 1993), and disjunctions of left-aligned disjunction-free expressions
(Fernau, 2009) have been studied. These approaches aim only at the identification of a
target language. By contrast, here the structural resemblance of the conjecture to a target
regular expression is integral part of the problem setting. This also makes it necessary to
account for the broader syntactic spectrum of regular expressions.

Xie et al. (2008) use regular expressions to detect URLs in spam batches and develop
a spam filter with low false-positive rate. The ReLIE-algorithm (Li et al., 2008) (used
as a reference method in our experiments) learns regular expressions from positive and
negative examples given an initial expression by applying a set of transformation rules
as long as this improves the separation of positive and negative examples. Brauer et al.
(2011) develop an algorithm that builds a data structure of commonalities of several aligned
strings and transforms these strings into a specific regular expression. Because of a high
data overhead, their algorithm works best for short strings, such as telephone numbers and
names of software products.

Structured output spaces are a flexible tool for a wide array of problem settings, includ-
ing sequence labeling, sequence alignment, and natural language parsing (Tsochantaridis
et al., 2005). In our problem setting we are interested in predicting a structured object, i.e. a
regular expression. To solve problems with structured output spaces an extension of the sup-
port vector machines (SVMs, Vapnik, 1998) can be used. Such structural SVMs were used
to solve a several number of prediction tasks ranging from classification with taxonomies,
label sequence learning, sequence alignment to natural language parsing (Tsochantaridis
et al., 2005). The problem of detecting message campaigns in the stream of emails has
been addressed with structured output spaces based on manually grouped training mes-
sages (Haider et al., 2007), and with graphical models without the need for labeled training
data (Haider and Scheffer, 2009).

Our problem setting and method differ from all prior work on learning regular expres-
sions in their objective criterion and training data. Unlike in prior work, the learner in our
setting has access to additional labeled data in the form of pairs of a set of strings and a
corresponding regular expressions. At the same time, the learner’s goal is not just to find
an expression that identifies an extension of strings, but to find the expression which the
process that has labeled the training data would most likely generate. This implies that
the learner has to model the labeler’s preference of using specific syntactic constructs in a
specific syntactic context and for specific matching substrings.
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7. Conclusions

Complementing the language-identification paradigm, we address the problem of learning
to map a set of strings to a concise regular expression that resembles an expression which
a human would have written. Training data consists of batches of strings and correspond-
ing regular expressions. We phrase this problem as a two-staged learning problem with
structured output spaces and engineer appropriate loss functions. We devise a first-stage
decoder that searches a space of specializations of a maximal alignment of the input strings.
We devise a second-stage decoder that searches for a substring of the first-stage result. We
derive optimization problems for both stages.

From our case study, we conclude that REx-SVM®S2Tt frequently predicts the exact
regular expression that a postmaster would have written. In other cases, it generates an
expression that postmasters accept without or with small modifications. Regarding their
accuracy for the problem of filtering email spam, we conclude that REx-SVM and REx-
SVM®EoTt give a high true-positive rate at a false-positive rate that is an order of magni-
tude lower than that of a commercial content-based filter. REx-SVM3ETt attains a higher
true-positive rate, in particular for small input batches. REx-SVM®2°Tt generates regular
expressions that can be accepted by a finite-state automaton that has just slightly more
states than an accepting automaton for regular expressions written by a human postmaster.
REx-SVM and all reference methods, by contrast, can only be accepted by impractically
large finite-state automata. REx-SVMsETt is being used by a commercial email service
provider and complements content-based and IP-address based filtering.
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Appendix A
A.1 Syntax and Semantics of Regular Expressions

Definition 3 (Regular Expressions) The set )5, of regular expressions over an ordered
alphabet ¥ is recursively defined as follows.

e Every yj € Xy {67 ) \S, \e, \Wv \d}v every range y; = lmin—lmaz, Where lyin, lmaz € 2
and lmin < lmaz, and their disjunction [y; ...yx] are regular expressions.

o If yi,...,yx € Vy are regular expressions, so are the concatenation y = yi...yx,
the disjunction y = y1|...|yx ¥ = y17, ¥y = (y1), and the repetitions y = yj, y =
v,y =y1{l}, and y = y1{l,u}, where [,u € N and [ < u.

We now define the syntax tree, the parse tree, and the matching lists for a regular
expression y and a string « € ¥*. The shorthand (y — T1,...,T}) denotes the tree T =
(V,E,T', <) with root node vy € V labeled with I'(vg) = y and subtrees T7,...,T;. The
order < maintains the subtree orderings <; and defines the root node as the minimum over
the set V and v/ <" for all v’ € V; and v" € V}, where i < j.

Definition 4 (Syntax Tree) The abstract syntax tree T3, for a regular expression y is
recursively defined as follows. Let Tsyyjn = (V'S}?;Jn, Eg’yjn, F‘gjn, §Z§n) be the syntax tree of the
subexpression y.

o Ify e XU{e, ., \S,\e, \w, \d}, or if
y = lminflmaxa
where Lnin, lmaz € 2, we define
TS};JTL = (y — @)

o Ify=(y1),
where y; € Vs, we define
Ton =T,

o Ify =y}, y=vy7,
y = yl{l’ ’LL}, or if y = yl{l}7
where y1 € Vs, ,u € N, and there exist no y’,y” € Vs such that y; = y'|y” or
1<

y1 = Yy’ we define
Ton = (y = T3h).

e lfy=y1...¥k
where y; € Vs, and there exist noy’,y” € Y such that y; = y'|y” ory; =y'y”,
we define
T =y = Tn, ..., TH).

o Ify =yil...|yx,
where y; € Vs, and there exist no y’,y” € Y5, such that y; = y'|y”, or if
y = [y1...yx) and there exist no y’,y” € Vs, such  that y; = y'y”, we define
T =(y = T, -, T).
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Definition 5 (Parse Tree and Matching List) Given a syntax tree T3, =
(Vayns EYyns Tdyn, <Jyn) of a regular expression y with nodes v € V3, and a string = € L(y),
a parse tree T,?Zl’f and the matching lists MY*(v) for each v € Vs%;n are recursively de-
fined as follows. Let Tpar = (Vo' Endn Toar  <vir') be the parse tree and Taj, =
(V:%;%L, Eglyjn, T zjn, §¥§n) the syntax tree of the subexpression y;.

e If y =2 and z € X U {e}, we define
MY (vg) = {x} and
Tiar = (y = 0).

e Ify=.and x €,
Y = lmin—lmaz and lyin <@ < lpgg, or if
y € {\S,\w, \e, \d} and z is either a non-whitespace character (everything but spaces,
tabs, and line breaks), a word character (letters, digits, and underscores), a character
in {.,—, #,+} or a word character, or a digit, respectively, we define
MY*(v) = {z} for all v € V), and
Tiar = (y = Tpar)-

o If y = (y1) and x € ¥*, we define
MY®(v) = MY%(v) for all v € Vg, and
TiE = T

e lfy=yj,z=21...25, and k > 0, or if
y:yf, and k > 0, or if
y =yi{l,u}, and | <k < u, or if
y=yi{l}, and k =,
where z; € X1, and there exist noy’,y” € Yy such that y; = y'ly” or y1 = y'y”,
we define
MY,:E(U) _ {xk} | ) va = Yo . a
Ui, MY1oi(v) | ifv e Vi,
Toar = (y = Tpar™ ..., Tpan™ ).

nd

e lfy=yi1...ye, x=21... %k,
where z; € ¥*, and there exist no y’,y” € Y5, such that y; = y'|ly” ory; = y'y”,

we define
x ,ifv =y
MY*(v) = { } _ ) Oy. , and
MYi®i(v) |, if v e Vin
Toar = (y = Tpar™, ..., Tpa™™).

e fy=yi|...lyk, z € X"
and there exist no y’,y” € Vs; such  thaty; = y' |y”, orif

y=[yi...yx], v €XF
and there exist no y’,y” € Vs; such  that y; = y’ y”, we define

{[I;} s lf V=1
MY (p) = MYi=(v) Lifv e ‘/;}:;Jrl,a and
0 , otherwise

Toar = (y = Tpar').
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If x ¢ L(y), that is, no parse tree can be derived by the specification above, the empty
sets MY*(v) = for all v € Vs%'m and T}%’f = () are returned. Otherwise, we denote the set
of all parse trees and the unions of all matching lists for each v € V3, satisfying Definition 5
by T and MY-*(v), respectively. Finally, the matching list MY*(v) for a set of strings x
for node v € V3, is defined as MY *(v) = J, e MY*(v).

A.2 Joint Feature Representations

The list of binary and continuous features ¥, used to train model f, is shown in Table 3.
The input and output features Wy, for model fy are shown in Table 4 and 5, respectively. The
set Sspam is defined as follows: We train a linear classifier that separates spam emails from
non-spam emails on the ESP data set, using a bag of words representation. We construct
the set Sspam as the 150 words that have the highest weights for the class spam.

’ Feature ‘ Description
[e € M] Matching list contains the empty string?
[Vx € M : |x| =1] All elements of the matching list have the length one?
[Fie N,Vx e M : |x| =1] All elements of the matching list have the same length?
Eun{A,. . . Z]]

Portion of characters A—Z in the matching list

26
Eunia...2}] Portion of characters a—z in the matching list

26
[Eani0....9H] Portion of characters 0-9 in the matching list

10
Eu0id, 1 Portion of characters A—F in the matching list

Portion of characters a—f in the matching list

|EJVIQ{G7"-7ZH

20 Portion of characters G—Z in the matching list
W Portion of characters g—z in the matching list

VeeXy:xzé¢{A, . ...,Z}] No characters of A-Z in the matching list?

Ve e Xz é¢{a,...,z}] No characters of a-z in the matching list?
[Vx € Xpr 2z ¢ {0,...,9} ] No characters of 0-9 in the matching list?
[VxeXp:xd{a,...,f}] No characters of a—f in the matching list?

[VxeXp:x g {A,...,F}] No characters of A-F in the matching list?

IZmn{-,/,7,=,.,@Q,:}| > 0] | Matching list contains URL/Email characters?

[Vx e M :|x| > 1A x| <5] Length of strings in the matching list is between 1 and 57

[Vx € M :|x| > 6 A |x| <10] | Length of strings in the matching list is between 5 and 107

[Vx € M :|x| > 11 A |x| <20] | Length of strings in the matching list is between 10 and 207

[Vx € M : |x| > 20] Length of strings in the matching list is higher than 207

[|M] = 0] Matching list is empty?

Table 3: Features for model fy.

A.3 Additional Experimental Results

Figure 10 shows the average loss Ay on the training data as a function of the sample size.
The corresponding loss on the test data can be seen in Figure 8 (a).
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’ Feature

Description ‘

[0 < constant symbols in y < 568]

Number of constant symbols that are arguments
of the top-most concatenation is less than 568

568 < constant symbols in y < 1032]

... between 568 and 1031

1032 < constant symbols in y < 1724]

...between 1032 and 1723

1724 < constant symbols in y < 2748]

...between 1724 and 2747

2748 < constant symbols in y]

...2748 or higher

[0 < non-constant arguments in y < 48]

Number of non-constant arguments of the
top-level concatenation is less than 48

[48 < non-constant arguments in y < 77]

.. between 48 and 76

[77 < non-constant arguments in y < 133]

.. between 77 and 132

[133 < non-constant arguments in y < 246]

.. between 133 and 245

[246 < non-constant arguments in y]

.. 246 or higher

[y contains Latin characters]

[y contains Greek characters]

y contains Russian characters]

y contains Asian characters]

¥ contains “subject:”] Expression refers to a subject line
y contains “from:”] Refers to a sender address

¥ contains “to:”] Refers to recipient address

y contains “reply-to:”] Refers to a reply-to address

[y contains attachment]

Expression refers to an attachment

Table 4: Input features that refer to properties of y for model f,.

Loss on training data

0.95 [

loss

08 |

0.75 b L L

REX-SVM -
Alignment
REXq;;—~SVM -

10 20 30 40 50 60 70 80 90 100
number of batches used to train

Figure 10: Average loss Ay on training data for a varying number of training batches. Error

bars indicate standard errors.

Figure 11 shows how the loss on the test data set changes when we varying the regular-

ization parameters C, and Cy.
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Feature

Description

Constant symbols in y

Number of constant symbols in the
top-most concatenation

Non-constant subexpressions in y

Number of non-constant arguments of
the top-most concatenation

[y contains Latin characters]

[y contains Greek characters]

[y contains Russian characters]

[y contains Asian characters]

¥ contains “subject:”]

Expression refers to subject line

¥ contains “from:”]

Expression contains a sender address

¥ contains “to:”]

Contains a recipient address

¥ contains “reply-to:”]

Contains a reply-to address

y contains attachment]

Expression refers to attachment

¥ starts with “subject:” and ends with \n]

Expression only refers to subject line

[y starts with “from:” and ends with \n]

Expression only refers to sender address

[y starts with “to:” and ends with \n]

Expression only refers to recipient address

[y starts with “reply-to:” and ends with \n]

Only refers to reply-to address

[ starts with “attachment:” and ends with \n]

Contains only refers to attachment

[y starts with “subject:”]

Expression starts with a subject line

[ starts with “from:”]

Starts with a sender address

[y starts with “to:”]

Starts with a recipient address

[y starts with “reply-to:”]

Starts with a reply-to address

[y starts with “attachment:”]

Starts with a subject line

[y ends with “subject:”]

Ends with a subject line

[y ends with “from:”]

Ends with a sender address

[y ends with “to:”]

Ends with a recipient address

[y ends with “reply-to:”]

Ends with a reply-to address

[y ends with “attachment:”]

Ends with reference to attachment

number of newlines in y

Number of line breaks in the expression

y contains a URL]

¥ is only a URL]

¥ contains an email address]

¥ is only an email address]

[y contains a phone number]

[¥ is only a phone number]

[y contains an IP address]

[y contains an attachment of type .exe]

[y contains an attachment of type .jpg]

[y contains an attachment of type .zip]

[y contains an attachment of type .html]

[¥ contains an attachment of type .doc]

[y contains substring € Sspam]

Contains terms from the highest-scoring
bag-of-words features for spam

Table 5: Output features that refer to properties of y for model f,,.
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(a) Loss on test data
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Figure 11: Average loss on test data for a varying regularization parameters Cy and C5 to
train a model f, (a) and a model fy, respectively. Error bars indicate standard
erTors.

A.4 Syntax of Postmasters’ Regular Expressions

This section summarizes the syntactic constructs used by postmasters and their frequency.
These observations provide the rationale behind the definition of the constrained search
space of Algorithm 1. Table 6 shows the frequency at which macros occur in the ESP data
set. Table 7 shows which iterators (*, *, ?, {z}, {x,y} for z,y € N) postmasters use as a
suffix of the disjunction of characters (e.g., [abc]* or [0-9]T). Table 8 counts the frequency
of iterators in conjunction with an alternative of regular expressions (e.g., (girljwoman)?).

’ Macro ‘ Frequency ‘

\d 97
\S 71
\e 16
A-Z 25
a-z 86
A-F 28
a-f 17
0-9 65

Table 6: Macros used in the postmasters’ expressions.

We measure the maximum nesting depth of alternatives of regular expression in the ESP
data set: We find that 95.6% have a nesting depth of at most one—that is, they contain
no layer of alternatives within the top-most alternative, such as a[a-z]*. Only 4.4% have
a greater nesting depth (e.g. a([a-z]T|01), having a nesting depth of two). Algorithm 1
constructs the set of possible specializations of the j-th wildcard, starting with all subex-
pressions of all expressions in the training data. Hence, the nesting depth of alternatives
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’ Tterator ‘ Frequency
[...] 21
S 2
ST 73

) 49
Nz y} 39

[
[
E 0
[
[

Table 7: Iterators used in conjunction with a character disjunction—e.g., [abc0-9]*.

’Iterator ‘Frequency
(con].v) 166
(...]...)" 0
(con]..0)? 2
(o] oy} 0

Table 8: Iterators used in conjunction with alternatives—e.g., (viagralcialis)™.

in the constrained search space is at least the nesting depth of the training data. In line 6,
the alternative of constant strings aligned at the j-th wildcard symbol is added; hence, the
constrained search space has a nesting depth of at least one, even if the training data have
a nesting depth of zero. For all character alternatives in the set of possible specializations,
all macros from Table 6 and all iterators shown in Tables 7 and 8 are added.
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