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Abstract

In Bayesian nonparametric models, Gaussian processes provide a popular prior choice for
regression function estimation. Existing literature on the theoretical investigation of the
resulting posterior distribution almost exclusively assume a fixed design for covariates. The
only random design result we are aware of (van der Vaart and van Zanten, 2011) assumes
the assigned Gaussian process to be supported on the smoothness class specified by the
true function with probability one. This is a fairly restrictive assumption as it essentially
rules out the Gaussian process prior with a squared exponential kernel when modeling
rougher functions. In this article, we show that an appropriate rescaling of the above
Gaussian process leads to a rate-optimal posterior distribution even when the covariates
are independently realized from a known density on a compact set. The proofs are based
on deriving sharp concentration inequalities for frequentist kernel estimators; the results
might be of independent interest.

Keywords: Bayesian, convergence rate, Gaussian process, nonparametric regression,
random design, rate-optimal

1. Introduction

Gaussian processes (Rasmussen, 2004; Seeger, 2004; Rasmussen and Williams, 2006) are
widely used in the machine learning community as a principled probabilistic approach to
function estimation. A mean-zero Gaussian process is completely specified by its covari-
ance kernel; popular choices include the squared-exponential and Matérn families. Recently,
there has been significant interest in frequentist convergence properties of Bayesian posteri-
ors in Gaussian process models. Ghosal and Roy (2006); Choi and Schervish (2007); Tokdar
and Ghosh (2007) established posterior consistency in a variety of settings including non-
parametric regression, classification and density estimation. Seeger et al. (2008) used an
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information criterion to evaluate closeness of the posterior distribution to the truth; see also
van der Vaart and van Zanten (2011). A major focus in the recent literature (van der Vaart
and van Zanten, 2007, 2008a, 2009, 2011; Bhattacharya et al., 2014; Shang and Cheng,
2014) has been on deriving the posterior convergence rate (Ghosal et al., 2000), which is
defined as the minimum possible sequence εn → 0 such that for some constant M > 0,

Eθ0Π(‖θ − θ0‖ < Mεn | Dn)→ 1, (1)

where Dn denotes the data, θ is the parameter of interest with some known transforma-
tion Ψ(θ) assigned a Gaussian process prior, θ0 is the true data generating parameter and
‖·‖ is a distance measure relevant to the statistical problem. In the context of nonpara-
metric regression, classification and density estimation, it has been established that the
posterior convergence rate based on appropriate Gaussian process priors coincides with the
minimax optimal rate n−α/(2α+d) for d-variate α-smooth functions up to a logarithmic fac-
tor (van der Vaart and van Zanten, 2007, 2008a), with rate-adaptivity to the unknown
smoothness achieved in van der Vaart and van Zanten (2009); Bhattacharya et al. (2014).

In this paper, we focus on a non-parametric regression problem,

Yi = f(Xi) + εi, εi ∼ N(0, 1), (2)

with f assigned a mean-zero Gaussian process prior. The above-mentioned literature on
posterior convergence rates under (2) typically assume that the covariates Xi’s are fixed
by design, in which the empirical L2 norm ‖f − f0‖2,n = (1/n

∑n
i=1 |f(xi)− f0(xi)|2)1/2 is

used as a discrepancy measure in (1). The empirical L2 norm evaluates the discrepancy of
the estimated function from the true function only at the observed data-points and is not
suitable to assess out-of-sample predictive performance. In this paper, we consider a random
design setup where the covariates Xi’s are drawn independently from a known distribution
q, and derive the posterior convergence rates under an integrated L1(q) metric:

‖f − f0‖1,q =

∫
|f(x)− f0(x)|q(x)dx.

The above integrated L1(q) metric is more relevant for studying statistical efficiency in a
random design setting. From a technical standpoint, dealing with the integrated metric
is challenging since one cannot directly leverage on properties of multivariate Gaussian
distributions as in the case of the empirical L2 norm to construct “test functions”; a key
ingredient in Bayesian asymptotics.

In the frequentist literature, existing results (Baraud, 2002; Brown et al., 2002; Birgé,
2004) on the convergence rates (with respect to an integrated metric) in random design
regression require an appropriate lower bound on the smoothness of the underlying true
function. For example, Brown et al. (2002); Birgé (2004) assumed that the univariate
function f0 belongs to a Lipschitz class with smoothness index α > 1/2. Moreover, Birgé
(2004) demonstrated the necessity of the α > 1/2 condition by establishing a lower bound
for the asymptotic risk for α ≤ 1/2. Similar lower bound condition will be assumed in our
main Bayesian Theorem as well.

As far as we are aware, the only Bayesian literature considering the random design
setting in (2) is van der Vaart and van Zanten (2011) who assigned Gaussian processes
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with Matérn or squared exponential kernels. Specifically, they obtained an optimal rate
n−α/(2α+d) (up to a logarithmic factor, with respect to L2(q) norm) under a particularly
strong assumption that the Gaussian process prior assigns probability one to the smooth-
ness class containing the true function. Since the squared-exponential kernel has infinitely
smooth sample paths, their result only delivers the optimal rate for analytic functions, but
provides a highly suboptimal (log n)−t rate for α-smooth functions. This significantly limits
the applicability of their result in the sense that it rules out the use of a squared-exponential
kernel for less smooth (but more commonly used) functions. An influential idea developed
in van der Vaart and van Zanten (2007, 2009) is to scale the sample paths of a Gaussian
process with a squared-exponential kernel to enable better approximation of α-smooth func-
tions. The scaling is typically dependent on the smoothness of the true function and the
sample size. However, Theorem 2 of van der Vaart and van Zanten (2011) is applicable
only to priors without scaling. This is not evident from the statement of their theorem,
but a closer inspection of their proof (ref. Page 2113) reveals that they have assumed
τ2 :=

∫
‖f‖2α|∞ dΠ(f) to be a global constant for every f in the support of the prior. This

may not hold for a rescaled Gaussian process.

In this article, we show that an appropriately rescaled Gaussian process prior with a
squared-exponential covariance kernel leads to a rate-optimal posterior distribution (with
respect to L1(q) norm) for any α-smooth function d-variate f0 in a random design setting
if α > d/2. While van der Vaart and van Zanten (2011) conjectured (see pp. 2103 after
Theorem 2) that their smoothness assumption on the prior is unavoidable for the L2(q)
norm, our result shows that this situation turns out to be different under the L1(q) norm.
Specifically, we develop exponentially consistent test functions under the L1(q) norm using
concentration inequalities for the Nadaraya–Watson kernel estimator. Existence of such
test functions plays a key role in Bayesian asymptotic theory (Ghosal et al., 2000). For
example, the classical Birgé – Le Cam testing theory (Birgé, 1984; Le Cam, 1986) for the
Hellinger metric provides appropriate tests in a wide variety of settings. Giné and Nickl
(2011) proposed an alternative framework for constructing tests based on concentration
inequalities of frequentist estimators which is particularly useful for stronger norms; see
also Ray (2013); Pati et al. (2014); Shang and Cheng (2014) for similar ideas in different
contexts.

2. Posterior Convergence in Random Design Regression

2.1 Notations

Let C[0, 1]d and Cα[0, 1]d denote the space of continuous functions and the Hölder space of
α-smooth functions f : [0, 1]d → R, respectively, endowed with the supremum norm ‖f‖∞ =
supt∈[0,1]d |f(t)|. For α > 0, the Hölder space Cα[0, 1]d consists of functions f ∈ C[0, 1]d

that have bounded mixed partial derivatives up to order bαc, with the partial derivatives
of order bαc being Lipschitz continuous of order α − bαc. Let ‖·‖1 and ‖·‖2 respectively
denote the L1 and L2 norm on [0, 1]d with respect to the Lebesgue measure (i.e., the uniform
distribution). To distinguish the L2 norm with respect to the Lebesgue measure on Rd, we
use the notation ‖·‖2,d.
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We write “-” for inequality up to a constant multiple. Let φ(t) = (2π)−1/2 exp(−t2/2)
denote the standard normal density, and let φn(x) =

∏n
i=1 φ(xi) for x ∈ Rn. Let a star

denote a convolution, i.e., f1 ? f2(y) =
∫
f1(y − t)f2(t)dt. We denote the Fourier transform

of f , whenever defined, by f̂ , with f̂(λ) = (2π)−d
∫

exp(i 〈λ, t〉)f(t)dt, where 〈λ, t〉 denotes
the complex inner product. Under this convention, the inverse Fourier transform f(t) =∫

exp(−i 〈λ, t〉)f̂(λ)dλ and ĥ = (2π)df̂ ĝ when h = f ? g.
Throughout C,C ′, C1, C2, . . . are generically used to denote positive constants whose

values might change from one line to another, but are independent from everything else.
Z1:n is used as a shorthand for Z1, . . . , Zn.

In the sequel, we consider a Gaussian process prior Π on the regression function f
with Ef(x) = 0 and covariance kernel c(x, x′) = cov(f(x), f(x′)). In particular, we focus
on the squared-exponential kernel ca(x, x

′) = exp(−a2 ‖x− x′‖2) indexed by an “inverse-
bandwidth” parameter a. We next recall some important facts relevant to our setting
from van der Vaart and van Zanten (2009) regarding the spectral measure and reproducing
kernel Hilbert space of Gaussian process priors. For the squared-exponential kernel ca,
the spectral measure µa admits a density ωa with respect to Lebesgue measure, where
ωa(λ) = a−dω(λ/a), with ω(λ) = exp(−‖λ‖2/4)/(2dπd/2). The reproducing kernel Hilbert
space Ha associated with a Gaussian process prior Π consists of (real parts of) functions
h(t) =

∫
exp(i 〈λ, t〉)ξ(λ)dµa(λ), where µa is the spectral measure of Π and ξ ∈ L2(µa). The

squared Hilbert space norm of h above is given by ‖h‖2Ha =
∥∥∥ξω1/2

a

∥∥∥2
2,d

=
∫
ξ2(λ)ωa(λ)dλ;

let Ha
1 denote the unit ball of the reproducing kernel Hilbert space {h ∈ Ha : ‖h‖Ha ≤

1}. Finally, let B1 denote the unit ball of C[0, 1]d with respect to the supremum norm.
For a detailed review of reproducing kernel Hilbert space of Gaussian process priors and
connections with posterior contraction rates, kindly refer to van der Vaart and van Zanten
(2008b).

2.2 Main Result

Consider the nonparametric regression model (2). We assume a random design setup,
where given the regression function f : [0, 1]d → R, the data (X1, Y1), . . . , (Xn, Yn) are
independently generated, with Xi having a density q on [0, 1]d that is bounded away from
zero and infinity. Let q(y, x) = q(y | x)q(x) denote the joint density of (Y,X) given f ,
where q(y | x) = φ{y − f(x)}. The joint data likelihood given f is therefore

q(n)(Y1:n, X1:n | f) =
n∏
i=1

q(Yi, Xi) =
n∏
i=1

φ{Yi − f(Xi)}q(Xi).

Similarly, we define q(n)(Y1:n | X1:n, f) and q(n)(X1:n) as the density of (Y1:n | X1:n, f)

and X1:n respectively. Let EfY,X(PfY,X) denote an expectation (probability) with respect to

q(n)(Y1:n, X1:n | f). Similarly define EfY |X(PfY |X) and EfX(PfX). When f is clear from the
context, we shall drop it from the superscript.

We assume a mean zero Gaussian process prior Π on f with a squared exponential kernel
exp(−a2n ‖x− x′‖

2) and denote the corresponding posterior measure by Π(· | Y1:n, X1:n), so
that

Π(f | Y1:n, X1:n) ∝ q(n)(Y1:n | X1:n, f) Π(f).
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Assuming the true regression function is f0, we study concentration of the posterior Π(· |
Y1:n, X1:n) in an L1(q) neighborhood of f0.

Theorem 1 Assume that f0 ∈ Cα[0, 1]d with α > d/2 and Π is a mean-zero Gaussian
process prior with a squared exponential covariance kernel c(x, x′) = exp(−a2n ‖x− x′‖

2).
Set an = n1/(2α+d). Then with εn = n−α/(2α+d) log3t1/2 n for t1 ≥ (d+ 1)/2, and some fixed
sufficiently large constant M > 0,

Ef0Y,XΠ
(
‖f − f0‖1,q > Mεn | Y1:n, X1:n

)
→ 0. (3)

As stated previously, the condition α > d/2 is necessary to obtain the optimal rate. van der
Vaart and van Zanten (2009) showed that the squared-exponential covariance kernel without
rescaling leads to a very slow (log n)−l contraction rate for α-smooth functions both in the
fixed and random design settings. This is not surprising as the sample paths of such a GP
are analytic. The effect of scaling the prior using the “inverse bandwidth” a to yield the
optimal posterior concentration was first noted by van der Vaart and van Zanten (2007) in
a fixed design context, who showed (for d = 1) that a deterministic scaling an = n1/(2α+1)

produces priors that are suitable for modeling α-smooth functions. Theorem 1 assures that
the same rescaling idea continues to work in the random design setting for an integrated L1

norm.
The optimal rescaling in Theorem 1 requires knowledge of the true smoothness α. If

there is a mismatch between the prior regularity and the function smoothness, one would
typically expect a sub-optimal rate. Corollary 2 quantifies this fact; while we only derive
an upper bound to the posterior convergence rate, such bounds are usually tight (van der
Vaart and van Zanten, 2009). In absence of any prior knowledge regarding the smoothness,
one may resort to an empirical or fully Bayes approach as in van der Vaart and van Zanten
(2009); Szabó et al. (2013). The related theoretical investigation will be considerably harder
in such cases.

Corollary 2 Under the conditions of Theorem 1, if an = n1/(2β+d) for β > d/2, β 6= α, the
conclusion of Theorem 1 holds with εn = n−α∧β/(2β+d) log3t1/2 n for t1 ≥ d/(4− 2κ) for any
0 < κ < 2.

Observe that the optimal rate n−α/(2α+d) is attained (upto logarithmic terms) if and only
if α = β. A scaling n1/(2β+d) for β < α makes the prior rougher compared to the true
function while β > α renders smoother prior realizations. In both cases, sub-optimal rates
are obtained. This is in accordance with the findings for GP priors with Matérn covariance
kernel; refer to Theorem 5 in van der Vaart and van Zanten (2011).

Note that by taking κ very close to 0, we can improve on the power of the log n term
in Corollary 2 from that in Theorem 1. The difference in the power of log n stems from the
fact that the corollary only targets sub-optimal rates as opposed to Theorem 1. Hence a
portion of the power of log n can be eliminated in Corollary 2.

2.3 Contributions Beyond Literature

The proof of Theorem 1 follows from a general set of sufficient conditions for posterior
concentration in model (2); kindly refer to Theorem 3 stated in the next Section. In
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particular, we exploit concentration inequalities for suitable kernel estimators to construct
the aforementioned exponentially consistent sequence of test functions. Such techniques
have been used previously to show convergence rates in density estimation (Giné and Nickl,
2011) and in linear inverse problems (Ray, 2013). Their techniques do not directly apply to
our case partly due to the lack of concentration bounds for kernel based estimators. Giné and
Nickl (2011); Ray (2013) construct estimators based on truncated spectral representations
which are well suited to sieve priors. However, to deal with a Gaussian process prior with
a squared-exponential covariance kernel, we need to construct test functions based on the
Nadaraya–Watson kernel estimator and derive sharp concentration bounds for this class of
estimators in Lemma 4 and 5.

The choice of the norm dictating the neighborhood around the true parameter plays
a critical role in Bayesian asymptotics. A fundamental tool for relating the likelihood
ratio with the neighborhood in consideration is a sequence of exponentially consistent test
functions (Ghosal et al., 2000). In a regression setting, such test functions are guaranteed to
exist for the empirical L2 norm by exploiting a direct relation between the empirical L2 norm
and the likelihood ratio of the multivariate Gaussian densities involved; refer to Section 4
of van der Vaart and van Zanten (2011). However, the integrated norm involves covariate
points different from the observations, which makes the problem more challenging. van der
Vaart and van Zanten (2011) applied Bernstein’s inequality to extrapolate to the L2(q)
norm from the empirical L2 norm. However, as stated in the Introduction, their approach
only works for priors that are supported on the true smoothness class with probability one.

Among other related work, Section 4 of Kleijn and van der Vaart (2006) considers
random design regression, where a correspondence between the Kullback–Leibler and L2(q)
neighborhood is established to derive the test function, assuming the prior support consists
of uniformly bounded functions. However, this assumption does not hold for the rescaled
Gaussian process prior in Theorem 1. In particular, the sieves constructed in van der Vaart
and van Zanten (2007) of the form MnHan

1 + εnB1 with Mn → ∞ do not correspond to
sup-norm bounded subsets of C[0, 1]d.

We comment here that convergence in the integrated metric has been settled in the bi-
nary regression setting. Using a logistic link function, a direct agreement can be established
between the integrated L1 metric on the function space and the Hellinger distance between
the resulting densities arising from the Bernoulli likelihood; see for example, Section 3.2 of
van der Vaart and van Zanten (2008a). Second, in this paper we implicitly refer to Gaussian
processes which are specified by a kernel function; specifically, kernel functions which do
not admit a finite series representation, such as the squared-exponential kernel. If a Gaus-
sian process is specified via a truncated orthogonal series representation with independent
Gaussian priors on the coefficients, the integrated metric can be related to the L2 norm of
the coefficient vector (Bontemps, 2011).

3. Auxiliary Results

We now state a general theorem which presents a set of sufficient conditions for proving
Theorem 1. From now onwards, we shall assume the covariate distribution q to be a uniform
distribution on [0, 1]d for notational simplicity; modifying our construction to a general q,
which is bounded from above and below, is straightforward. The L1(q) norm ‖·‖1,q with q

2842



Random Design Regression

the uniform distribution on [0, 1]d shall be simply denoted by ‖·‖1 following our convention
in Section 2.1. A proof of Theorem 3 can be found in the Appendix.

Theorem 3 Let ε′n, δn be sequences such that ε′n, δn → 0 and nε′2n , nδ
2
n →∞. Let Un = {f :

‖f −f0‖1 > Mε′n} for some fixed M > 0. Suppose that there exists a sequence of estimators
f̃n for f based on (Y1:n, X1:n) and a sequence of subsets/sieves Pn of C[0, 1]d such that

Π(Pcn) ≤ exp{−(C + 4)nδ2n}, (PCS)∥∥∥Ef0Y,X f̃n − f0∥∥∥
1
< ε′n, (BT)

Pf0Y,X

(∥∥∥f̃n − Ef0Y,X f̃n
∥∥∥
1
> ε′n

)
≤ exp{−(C + 4)nδ2n}, (DT)

sup
f∈Pn∩Un

∥∥∥EfY,X f̃n − f∥∥∥
1
< ε′n, (BS)

sup
f∈Pn∩Un

PfY,X

(∥∥∥f̃n − EfY,X f̃n
∥∥∥
1
> ε′n

)
≤ exp{−(C + 4)nδ2n}, (DS)

Π

(
‖f − f0‖∞ ≤ δn

)
≥ exp{−nδ2n}. (PCN)

Then, Ef0Y,XΠ
(
Un | Y1:n, X1:n

)
→ 0.

Condition (PCS) implies that the prior probability of the complement of the sieve Pn is
exponentially small. Condition (BT) assumes a sufficiently accurate estimator f̃n with bias
smaller than εn at f0 while (DT) assumes an exponential concentration bound of f̃n from
its expectation under q(n)(· | f0). (BS) and (DS) assume similar conditions as (BT) and
(DT) under q(n)(· | f) for any f ∈ Pn ∩ Un. The conditions (BT), (DT); (BS), (DS)
jointly guarantee the existence of exponentially consistent test functions; see Lemma 9 in
the Appendix. Condition (PCN) assumes that the prior Π places “enough” mass in an
εn-neighborhood of the truth f0 in terms of the sup-norm.

3.1 Verifying the Conditions of Theorem 3 to Prove Theorem 1

Letting δn = ε′n = εn with ε′n and εn as in the statement of Theorem 3 and Theorem 1
respectively, we now proceed to construct Pn and f̃n that satisfy the conditions of Theorem
3. While we choose the same sieve as in van der Vaart and van Zanten (2007), part of the
technical challenge lies in the fact that the concentration bounds need to be derived not just
for the truth, but rather for every function in the sieve. This requires precise control on the
size of the functions in the sieve Pn. We show in Proposition 7 below that the functions in
the chosen sieve are uniformly bounded in L2 norm, although they are unbounded in the
supremum norm.

Let ψ : Rd → C be a function such that
∫
ψ(t)dt = 1,

∫
tkψ(t)dt = 0 for any non-

zero multi-index k = (k1, . . . , kd) of non-zero integers,
∫
|t|max{α,2}|ψ(t)|dt < ∞, and the

functions |ψ̂|/ω and |ψ̂|2/ω are uniformly bounded; see proof of Lemma 4.3 in van der Vaart
and van Zanten (2009). Define,

f̃n(x) =
1

n

n∑
i=1

ψσn(x−Xi)Yi, (4)
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where ψσ(t) = σ−dψ(t/σ) for σ > 0 and set σn = n−1/(2α+d) log−t2 n, t2 = 1/(2 − κ) for

some 0 < κ < 1 . Next, with Mn = a
d/2
n , set

Pn = MnHan
1 + εnB1. (5)

Assume f0 ∈ Cα[0, 1]d. Let f̃n and Pn be as in (4) and (5) respectively. We show
below that the conditions of Theorem 3 are satisfied with εn = n−α/(2α+d) logt1 n for
t1 ≥ max{t2d/2, (d+ 1)/2} = (d+ 1)/2, provided α > d/2. (PCS) follow from the proof of
Theorem 3.1 in van der Vaart and van Zanten (2009). To verify (PCN), observe from the
proof of Theorem 3.1 in van der Vaart and van Zanten (2009) that with an = n1/(2α+d),

Π(‖f − f0‖∞ ≤ δn) ≥ exp{−nd/(2α+d)(log n)d+1}

for δn ≥ n−α/(2α+d). Hence (PCN) is satisfied with δn = εn.

We verify (BS) and (DS); the verifications of (BT) and (DT) follow along similar lines.

We first show that (DS) holds. Fix f ∈ Pn ∩ Un. We drop the superscript f from Ef
in the sequel. Let fn(x) = ψσn ? f(x) =

∫
ψσn(x− t)f(t)dt and fXn (x) = n−1

∑n
i=1 ψσn(x−

Xi)f(Xi). Observe that EY,X f̃n = fn and EY |X f̃n = fXn . Then,

PY,X
(∥∥∥f̃n − EY,X f̃n

∥∥∥
1
> εn

)
= PY,X

(∥∥∥f̃n − fn∥∥∥
1
> εn

)
≤ PY,X

(∥∥∥f̃n − fn∥∥∥
1
> εn,

∥∥fXn − fn∥∥1 ≤ εn/2)+ PX
(∥∥fXn − fn∥∥1 ≥ εn/2)

≤ EXPY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
+ PX

(∥∥fXn − fn∥∥1 ≥ εn/2). (6)

Lemmata 4 and 5 below deliver the desired bounds for the two terms appearing in (6).

Lemma 4 Under conditions of Theorem 1,

PY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
≤ exp(−Cnε2n) a.s.

for some constant C > 0.

Proof For simplicity of notation, we suppress the term “a.s.” in the displays that follow.
Let T (x) = n(f̃n−fXn )(x) =

∑n
i=1 ψσn(x−Xi)Zi, where Zi = Yi−f(Xi) with Z1:n | X1:n, f ∼

Nn(0, I). Given X1:n, T is a random element of L1[0, 1]d and ‖T‖1 is a non-negative random
variable. By the Hahn–Banach theorem, there exists a bounded linear functional G on
L∞[0, 1]d such that G(h) =

∫
T (x)h(x)dx for all h ∈ L∞[0, 1]d and ‖T‖1 = ‖G‖F , where

‖G‖F = suph∈F |G(h)| and F is a countable dense subset of {h ∈ L∞[0, 1]d : ‖h‖∞ ≤ 1}.
By definition, G(h) =

∑n
i=1 aiZi, where ai =

∫
ψσn(x − Xi)h(x)dx. Thus, given X1:n,

{G(h) : h ∈ F} is a Gaussian process and

PY |X
(∥∥∥f̃n − fXn ∥∥∥

1
≥ εn/2 | X1:n

)
= PY |X

(
‖G‖F ≥ nεn/2 | X1:n

)
. (7)
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By Borell’s inequality (Adler, 1990),

PY |X
(
‖G‖F − EY |X ‖G‖F ≥ t | X1:n

)
≤ 2 exp{−t2/(2σ2F )}, (8)

where σ2F = suph∈F EY |XG(h)2. We now proceed to estimate σ2F and EY |X ‖G‖F . For any
h ∈ F ,

EY |XG(h)2 =
n∑
i=1

{∫
[0,1]d

ψσn(x−Xi)h(x)dx

}2

≤ ‖h‖2∞
n∑
i=1

{∫
[0,1]d

|ψσn(x−Xi)| dx
}2

≤ C1n, (9)

where C1 =
∫
|ψ(t)|dt. Hence, σ2F ≤ C1n.

We next bound EY |X ‖G‖F = EY |X ‖T‖1. By Jensen’s inequality, EY |X ‖T‖1 ≤ (EY |X ‖T‖21)1/2.
Further,

(EY |X ‖T‖21)
1/2 =

[ ∫ {∫
|T (x)|dx

}2

φn(z)dz

]1/2
≤
∫ {∫

T (x)2φn(z)dz

}1/2

dx,

where the above inequality follows from an integral version of Minkowski’s inequality. Re-
calling T (x) =

∑n
i=1 ψσn(x−Xi)Zi,

∫
T (x)2φn(z)dz = E[T (x)2 | X1:n] =

∑n
i=1 ψσn(x−Xi)

2.
Substituting this in the above display and using Jensen’s inequality one more time, we get

EY |X ‖T‖1 ≤
∫ { n∑

i=1

ψσn(x−Xi)
2

}1/2

dx

≤
{ n∑
i=1

∫
ψσn(x−Xi)

2dx

}1/2

≤ C2(n/σ
d
n)1/2, (10)

where C2 = {
∫
ψ(t)2dt}1/2. In (8), set t = nεn/4. From the above calculations, EY |X ‖G‖F ≤

C2(n/σ
d
n)1/2 ≤ nεn/4 since t1 ≥ t2d/2. Using σ2F ≤ C1n, we finally obtain PY |X

(
‖G‖F ≥

nεn/2 | X1:n

)
≤ 2 exp(−Cnε2n).

Lemma 5 Under conditions of Theorem 1,

PX
(∥∥fXn − fn∥∥1 ≥ εn/2) ≤ exp(−nε2n).

Proof As in Lemma 4, we express the desired probability in terms of a tail bound for the
supremum of a stochastic process. However, the stochastic process in this case is no longer
a Gaussian process and we cannot use Borell’s inequality here. We instead use Bosquet’s
version of Talagrand’s inequality for the supremum of a centered empirical process. The
following Proposition 6 is adapted from Bousquet (2003) which also appears in Section 3.1
of Giné and Nickl (2011).
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Proposition 6 Assume X1, . . . , Xn are independent and identically distributed as P . Let G
be a countable set of real valued functions and assume all functions g ∈ G are P -measurable,
square integrable and satisfy EP [g] = 0. Assume K1 = supg∈G ‖g‖∞ < ∞ and let W =
supg∈G |

∑n
i=1 g(Xi)|. Further, let σ2G = supg∈G EP [g(X1)

2] and K2 = nσ2G + K1EP [W ].
Then, for any t > 0,

P
{
W ≥ EPW + (2K2t)

1/2 +
K1t

3

}
≤ exp(−t).

Let Lx(t) = ψσn(x − t)f(t) − ψσn ? f(x) for x, t ∈ [0, 1]d and W =
∫
[0,1]d |

∑n
i=1 Lx(Xi)|dx.

Clearly, PX(
∥∥fXn − fn∥∥1 > εn/2) = PX(W > nεn/2). By an application of Hahn–Banach

theorem as in the proof of Lemma 4, W = ‖G‖F , where F is a countable dense subset
of the unit ball of L∞[0, 1]d, G(h) =

∑n
i=1 g(Xi), and g(t) =

∫
[0,1]d Lx(t)h(x)dx. Let-

ting G denote the class of functions {g(t) =
∫
[0,1]d Lx(t)h(x)dx, h ∈ F}, one has ‖G‖F =

supg∈G |
∑n

i=1 g(Xi)|. Putting together, W = supg∈G |
∑n

i=1 g(Xi)| and EXg(X1) = 0 by
Tonelli’s theorem. We now aim to apply Proposition 6 to bound PX(W > nεn/2). In order
to apply Proposition 6, we need to estimate K1, σ

2
G ,K2 and EP (W ) which is carried out

below.

Fix g ∈ G. Then, there exists h ∈ F such that g(t) =
∫
[0,1]d Lx(t)h(x)dx = f(t)

∫
[0,1]d ψσn(t−

x)h(x)dx−
∫
ψσn ? f(x)h(x)dx. Using the triangle inequality,

|g(t)| ≤ |f(t)|
∫
[0,1]d

|ψσn(t− x)h(x)|dx+

∫
[0,1]d

|ψσn ? f(x)| |h(x)|dx.

Using ‖h‖∞ ≤ 1, the first term in the above display can be bounded above by C1‖f‖∞
where C1 =

∫
|ψ(t)|dt. Similarly, the second term can be bounded above by ‖ψσn ? f‖1 ≤

‖ψσn ? f‖∞ ≤ ‖f‖∞ + εn, where the final inequality follows from (BS). Noting that for any
f ∈ Pn, ‖f‖∞ ≤ 2Mn (since the Hilbert space norm is stronger than the ‖ · ‖∞ norm), we
have K1 ≤ CMn.

Next we bound σ2G = supg∈G
∫
[0,1]d g(t)2dt. Fix g ∈ G. Using the expression for g(t) in

the previous paragraph, |g(t)| ≤ |f(t)|
∫
|ψσn(x− t)|dx+

∫
|ψσn ?f(x)|dx. As before, we can

bound
∫
|ψσn(x − t)|dx from above by C1 and also

∫
|ψσn ? f(x)|dx ≤ C1

∫
s∈[0,1]d |f(s)|ds.

Using (|a| + |b|)2 ≤ 2(|a|2 + |b|2) and the Cauchy–Schwarz inequality, |g(t)|2 ≤ C|f(t)|2 +
C{
∫
s∈[0,1]d |f(s)|ds}2 ≤ C

{
|f(t)|2 + ‖f‖22

}
. Thus, we have σ2G ≤ C‖f‖22 for some absolute

constant C. Using the bound for supf∈Pn ‖f‖
2
2 in the following Proposition 7, we conclude

that σ2G ≤ C for some absolute constant C > 0.

Proposition 7 Recall Pn from (5). Then, supf∈Pn ‖f‖
2
2 ≤ C for some absolute constant

C > 0.

Proof Let f ∈ Pn. Then, there exists h ∈ Han with ‖h‖Han ≤Mn such that ‖f−h‖∞ ≤ εn.
Hence, ‖f‖22 ≤ 2(‖h‖22 + ε2n) and it is enough to bound ‖h‖22. Recalling that ‖ · ‖2,d denotes
the L2 norm of Rd, we have ‖h‖22 ≤ ‖h‖22,d. We provide a bound for ‖h‖22,d below.

There exists ψ ∈ L2(µan) such that h(t) =
∫

exp(i 〈λ, t〉)ξ(λ)ωan(λ)dλ. Letting ĥ de-

note the Fourier transform of h, one has from the Fourier inversion theorem that ĥ(λ) =
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ξ(−λ)ωan(λ). By Parseval’s theorem, ‖h‖22,d = ‖ĥ‖22,d =
∫
ξ2(λ)ω2

an(λ)dλ1. Observe that

ω2
an(λ) = a−2dn exp{−‖λ‖2/(2a2n)}/C2, where C = 2dπd/2. Hence,

‖h‖22,d =
a−2dn

C2

∫
ξ2(λ) exp{−‖λ‖2/(2a2n)}dλ ≤ a−2dn

C2

∫
ξ2(λ) exp{−‖λ‖2/(4a2n)}dλ

=
a−dn
C

∫
ξ2(λ)ωan(λ)dλ =

‖h‖2Han
Cadn

≤ M2
n

Cadn
=

1

C
,

since ‖h‖2Han =
∥∥∥ξω1/2

an

∥∥∥2
2,d

and Mn = a
d/2
n .

Finally, we proceed to bound EXW , where W =
∫
[0,1]d |

∑n
i=1 Lx(Xi)|dx. Using Jensen’s

inequality and the integral version of Minkowski’s inequality, one has

EXW ≤ (EXW 2)1/2 =

[ ∫
∏n
i=1[0,1]

d

{∫
[0,1]d

|
n∑
i=1

Lx(ti)dx|
}2

dt1 . . . dtn

]1/2
≤
∫
[0,1]d

{∫
∏n
i=1[0,1]

d

|
n∑
i=1

Lx(ti)|2dt1 . . . dtn
}1/2

dx.

Clearly,
∫∏n

i=1[0,1]
d |
∑n

i=1 Lx(ti)|2dt1 . . . dtn = VarX{
∑n

i=1 Lx(Xi)} = nVarX{Lx(X1)}, since

EXLx(X1) = 0. Further, VarX{Lx(X1)} ≤ EX
{
ψσn(x − X1)f(X1)

}2
=
∫
[0,1]d ψσn(x −

t)2f(t)2dt ≤ 1
σdn
ψσn ? f

2. Substituting this in the above display

EXW ≤
(
n

σdn

)1/2 ∫
[0,1]d

{
ψσn ? f

2(x)
}1/2

dx

≤
(
n

σdn

)1/2{∫
[0,1]d

|ψσn | ? f2(x)dx

}1/2

≤
(
n

σdn

)1/2{∫
[0,1]d

∫
[0,1]d

|ψσn(x− t)| f2(t)dtdx
}1/2

≤
(
n

σdn

)1/2[ ∫
[0,1]d

f2(t)

{∫
Rd
|ψσn(x− t)| dx

}
dt

]1/2
≤ C

(
n

σdn

)1/2

= Cn
α+d
2α+d logt2d/2 n ≤ Cnεn.

From the penultimate line to the last line of the above display, we invoked Proposition 7 to
bound ‖f‖2 by a constant. We have thus obtained K1 ≤ CMn and K2 ≤ Cn. In Propo-
sition 6, set t = nε2n. We have K1t ≤ C(nεnMn)εn ≤ nεn for sufficiently large n provided

α > d/2. Further, K2t ≤ n2ε2n + K1EP (W )t = n
2α+2d
2α+d log3t1 n + n

α+2d+d/2
2α+d log2t1+t2d/2 n ≤

2n
2α+2d
2α+d log3t1 n for sufficiently large n if α > d/2. Therefore, (K2t)

1/2 ≤ nεn.

1. ωan is symmetric about zero.
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We next show that (BS) holds. Fix f ∈ Pn ∩ Un. Since f ∈ Pn, there exists h ∈ Han

with ‖h‖Han ≤ Mn such that ‖f − h‖∞ ≤ εn. By the triangle inequality, ‖ψσn ? f − f‖1 ≤
‖ψσn ? f − ψσn ? h‖1 + ‖ψσn ? h − h‖1 + ‖h − f‖1. Using ‖ψσn ? g‖1 ≤ ‖g‖1 for any L1

function g, we can further bound ‖ψσn ? f − f‖1 from above by 2εn + ‖ψσn ? h − h‖∞. It
thus remains to show that ‖ψσn ? h− h‖∞ ≤ εn.

There exists ξ ∈ L2(µan) such that h(t) =
∫

exp(i 〈λ, t〉)ξ(λ)ωan(λ)dλ. Clearly, ĥ(λ) =

ξ(−λ)ωa(λ). Since the Fourier transform of (ψσn ? h) is (2π)dψ̂σn ĥ and ψ̂σn(λ) = ψ̂(σnλ),
we have ψσn ? h(t) = (2π)d

∫
exp(−i 〈λ, t〉)ψ̂(σnλ)ĥ(λ)dλ. We can choose ψ in a manner

such that ψ̂ is compactly supported, equals (2π)−d on [−1, 1]d and is bounded above by
this constant everywhere; see proof of Lemma 4.3 in van der Vaart and van Zanten (2009).
Putting together,

|ψσn ? h(t)− h(t)|2 ≤
{∫
‖λ‖>σ−1

n

|ĥ(λ)|
}2

≤
{∫

ξ(λ)2ωan(λ)dλ

} ∫
‖λ‖>σ−1

n

ωan(λ)dλ

≤ C ‖h‖2Han exp{−σ−2n /(4a2n)} ≤ CM2
n exp{−σ−2n /(4a2n)} = Cadn exp{−(log2t2 n/4)},

where C is an absolute constant. The proof follows by noting that Cadn exp{− log2t2 n/4} ≤
ε2n whenever t2 > 1/2 (holds for t2 = 1/(2− κ), for 0 < κ < 1).

3.2 Proof of Corollary 2

Case β < α: Setting σn = n−1/(2β+d) log−t2 n for some constant t2 ≥ 1/(2 − κ), for 0 <

κ < 2, Mn = a
d/2
n , f̃n same as in (4), Pn = MnHan

1 + εnB1 with εn = n−β/(2β+d) log3t1/2 n,
t1 ≥ t2d/2, and δn = εn = ε′n, one can verify (PCS), (BT), (DT), (BS), (DS) exactly as in
the proof of Theorem 1. (PCN) follows from Lemma 4.3 of van der Vaart and van Zanten
(2009).
Case β > α: Same as before with εn = n−α/(2β+d) log3t1/2 n for t1 ≥ t2d/2.

4. Discussion

The article extends upon previous results on random design regression using Gaussian
process priors. A limitation of the current exposition is the requirement of the knowledge
of the smoothness parameter to construct the rescaling sequence. A natural question is
whether one can find a suitable prior on the bandwidth parameter which adapts to the
unknown smoothness level as in the fixed design case in van der Vaart and van Zanten
(2009). We propose to resolve this issue as a part of future research. Also, our current
proof technique would lead to a sub-optimal rate of posterior convergence for Lp norms
with p 6= 1. We believe this is due to the use of Talagrand’s inequality to construct the test
function. A key requirement to obtain optimal convergence rate is that the variance term
σ2F in the application of Talagrand’s inequality should be at most O(n). This assertion is
true only when p = 1. Obtaining convergence rates for integrated Lp norms with p 6= 1 is
a topic of future research.
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Appendix A. Proof of Theorem 3

Let ‖f‖2,n denote the empirical L2 norm of f , so that ‖f‖22,n = n−1
∑n

i=1 f
2(Xi). Also,

define

Ln(f, f0) =
q(n)(Y1:n, X1:n | f)

q(n)(Y1:n, X1:n | f0)
.

Lemma 8 Let An denote the following event in the sigma-field generated by (Y1:n, X1:n):

An =

{
(Y1:n, X1:n) :

∫
Ln(f, f0)Π(df) ≥ e−nδ2nΠ(‖f − f0‖∞ ≤ δn)

}
. (11)

Then, Pf0Y,X(An) ≥ 1− e−Cnδ2n.

Proof Clearly, Pf0Y,X(An) = Ef0X [Pf0Y |X(An)]. By Lemma 14 of van der Vaart and van Zanten

(2011), Pf0Y |X{
∫
Ln(f, f0)Π(df) ≥ e−nδ2nΠ(‖f − f0‖2,n ≤ δn)} ≥ 1− e−nδ2n/8. The conclusion

follows by noting that Π(‖f − f0‖∞ < δn) ≤ Π(‖f − f0‖2,n < δn).

Lemma 9 There exists a test function Φn for H0 : f = f0 vs H1 : f ∈ Un ∩ Pn such that

Ef0Y,XΦn ≤ e−Cnδ
2
n , (12)

sup
f∈Un∩Pn

EfY,X(1− Φn) ≤ e−Cnδ2n . (13)

for some absolute constant C.

Proof Let Φn = 1(‖f̃n − f0‖1 > Mεn/2). The error bounds follow from (BT), (DT) and
(BS), (DS).

Using a standard line of argument for establishing convergence rates in Bayesian non-
parametric models (Ghosal et al., 2000), we have Ef0Y,XΠ(Un | Y1:n, X1:n) ≤

∑4
i=1 bin,

where b1n = Ef0Y,XΦn, b2n = enδ
2
n supf∈Un∩Pn E

f
Y,X(1 − Φn)/Π(‖f − f0‖∞ < δn), b3n =

enδ
2
nΠ(Pcn)/Π(‖f − f0‖∞ < δn) and b4n = Pf0Y,X(Acn). The Theorem then follows from

Lemmas 8, 9 and Conditions (PCS) and (PCN).
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