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Abstract

In this paper we formulate in general terms an approach to prove strong consistency of the
Empirical Risk Minimisation inductive principle applied to the prototype or distance based
clustering. This approach was motivated by the Divisive Information-Theoretic Feature
Clustering model in probabilistic space with Kullback-Leibler divergence, which may be
regarded as a special case within the Clustering Minimisation framework.

Keywords: clustering, probabilistic space, consistency

1. Introduction

Clustering algorithms group objects into subsets (clusters) of similar items according to the
given criteria. For example, it may be Spectral Clustering (Ng et al., 2001) or Prototype
Based model (Hinneburg and Keim, 2003). Clustering has application in various areas
of computer science such as machine learning, data compression, data mining or patterns
recognition. Depending on the area of application, there are many different formulations of
the clustering problem (Ackerman et al., 2008). For example, we can consider text document
as an object with words as features, and the task is to cluster text documents into subsets,
corresponding to a few given topics. This problem maybe effectively approximated by the
clustering model in probabilistic space with Kullback Leibler (KL) divergence (Dhillon et al.,
2003) which arises as a natural measure of the dissimilarity between two distributions in
numerical way. Further related results are presented by Chaudhuri and McGregor (2008),
where authors provide algorithms for clustering using the KL-divergence measure with an
objective to achieve guaranteed approximation in the worst case.

In this paper we consider a prototype based approach which may be described as fol-
lows. Initially, we have to choose k prototypes. The corresponding empirical clusters will
be defined in accordance to the criteria of the nearest prototype measured by the distance
®. Respectively, we will generate initial k£ clusters. As a second Minimisation step, we shall
recompute cluster centers or ®-means (Cuesta-Albertos et al., 1997), using data strictly
from the corresponding clusters. Then, we can repeat Clustering step, using new proto-
types, obtained from the previous step as cluster centers. Above algorithm has descending
property. Respectively, it will reach local minimum in a finite number of steps.

Stability is a common tool to verify the validity of sample based algorithms. Clustering is
one of the most widely used techniques for exploratory data analysis. Across all disciplines,
from social sciences over biology to computer science, people try to get a first intuition about
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their data by identifying meaningful groups among the data points. Despite this popularity
of clustering, distressingly little is known about theoretical properties of clustering (Ben-
David et al., 2006).

1.1 Related Work

One formulation of stability is: if parameters are learned over two different samples from
the same distribution, how close they are? The statistical stability for clustering have been
extensively studied (Rakhlin and Caponnetto, 2006; Shamir and Tishby, 2008).

Pollard (1981) demonstrated that the classical K-means algorithm in R™ with squared
loss function satisfies the Key Theorem of Learning Theory (Vapnik, 1995), p.36, “the
manimal empirical risk must converge to the minimal actual risk”. Note, also study (Biau
et al., 2008), where the number of theorems that establish the universal consistency of
averaging rules are given.

Telgarsky and Dasgupta (2013) constructed an explicit moment-based uniform deviation
bounds for the convergence of the soft clustering processes in Euclidean space. The results
of Telgarsky and Dasgupta (2013) are general and significant: assuming that some proba-
bility moments are limited, an explicit convergence bounds are constructed. Compared to
the model of Pollard (1981), the framework presented by Telgarsky and Dasgupta (2013)
represents a novel direction, and we are considering to extend it to the probabilistic space
in our future work.

Note that both functions 1) squared loss and 2) KL divergence are covered by the general
structural definition of Bregman divergence. Bregman divergences give us a lot of freedom
in fitting the performance measure of our algorithm to the nature of the data, and, as a
consequence, this will lead to qualitatively better clustering (Banerjee et al., 2005), (Nock
et al., 2008). Bregman divergences have found many applications in the fields of machine
learning and computational geometry.

A new clustering algorithm in probabilistic space P™ was proposed by Dhillon et al.
(2003). It provides an attractive approach based on the Kullback-Leibler divergence. The
above methodology requires a general formulation and framework which we present in the
following Section 2.

There are many useful and popular models and algorithms in the field of machine learn-
ing in addition to clustering. Consistency of those models represents a very essential prop-
erty which should be investigated. For example, the subject of the papers (Glasmachers,
2010), (McAllester and Keshet, 2011) is consistency of support vector classifiers. Also, it
is very interesting to identify those models, which are not consistent (Long and Servedio,
2013), and explain the reasons for not consistency. Particularly interesting is to find general
conditions under which the common approaches, with various algorithmic variations, are
consistent (Kpotufe et al., 2014).

1.2 Structure of the Paper

The paper is organised as follows. Section 3 extends the methodology of Pollard (1981) in
order to cover the case of P with Kullback-Leibler divergence. With the aim to highlight
the most essential properties, we formulate the model in general terms, where the prob-
abilistic space is considered as an important example. We do believe that the structural
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approach, which is formulated in Section 3, maybe useful for the consideration of other
cases (different space or the same space with different loss function). In this sense our work
is similar to Kpotufe et al. (2014). Using the results and definitions of the Section 3, we
investigate relevant properties of P in the final Section 4 and prove a strong consistency
of the Empirical Risk Minimisation inductive principle.

2. Prototype Based Approach

In this paper we consider a sample of i.i.d. observations X := {z1,...,2,} drawn from
probability space (X, A, P) where probability measure P is assumed to be unknown.

Key in this scenario is an encoding problem. Assuming that we have a codebook Q € x*
with prototypes q(c) indexed by the code ¢ = 1,..., k, the aim is to encode any x € X by
some ¢(c(z)) such that the distortion between = and ¢(c(z)) is minimized:

c(x) == argininﬁ(x,q(c)), (1)

where L(-,) is a loss function.

Using criterion (1) we split empirical data into k clusters. As a next step we compute the
cluster center specifically for any particular cluster in order to minimise overall distortion
error.

We estimate actual distortion error

RPQ]:=E L(z,9Q) (2)
by the empirical error
1 n
RGQ] =~ ; L(zs, Q), (3)

where L(z, Q) := L(z,q(c(x))).

The following Theorem, which may be proved similarly to the Theorems 4 and 5 (Dhillon
et al., 2003), formulates the most important descending and convergence properties within
the Clustering Minimisation (CM) framework:

Theorem 1 The C'M -algorithm includes 2 steps:

Clustering Step: recompute c¢(x) according to (1) for a fized prototypes from the given
codebook Q, which will be updated as a cluster centers from the next step,

Minimisation Step: recompute cluster centers for a fized mapping c(x) or minimize
the objective function (3) over Q, and

1) monotonically decreases the value of the objective function (3);

2) converges to a local minimum in a finite number of steps if Minimisation Step has
ezact solution.

We define an optimal actual codebook Q by the following condition:

RK)(Q) := inf R¥(Q). (4)
QcXxk
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The following relations are valid

k k) A1 k k
REL1On] < RELIQ) RE)L[Q) = RP(Q] as., (5)
where Q,, is an optimal empirical codebook:

REL(Qn) = inf {RE)(Q)}. (6)
Qexk

The main target is to demonstrate asymptotic (almost sure) convergence

RE () = RW[Q] as. (n— o0). (7)

In order to prove (7) we define in Section 3 general model which has direct relation to the
model in probabilistic space P with with KL divergence (Dhillon et al., 2003).

2.1 Plan of the Proof

The general strategy is to split consideration into outer deviations, and local deviations
(Telgarsky and Dasgupta, 2013). Note that the significance of outer deviations is declining
as we extend local deviation. The local deviations maybe be controlled by the technique as
described below.

The proof of the main result which is formulated in the Theorem 18 includes two steps:

(1) by Lemma 10 we prove existence of ny such that Q,, C I for all n > ng, where subset
I' € X (local deviation) satisfies condition: £(z,q) < oo for all z € X, q € T'; and

(2) by Lemma 11 we prove (under some additional constraints of general nature)

sup mg’;gp[g] —R®Q]| =0 a.s. (8)
Qcrk

3. General Theory and Definitions

In this section we employ some ideas and methods proposed by Pollard (1981) which cover
the case of R™ with loss function £(z,q) := ¢(||x — ¢||), where ¢ is a strictly increasing
function.

Let us assume that the following structural representation with P-integrable vector-
functions ¢ and 7 is valid

m

L(x,q) =) &(x) - mi(a) = (€(x),n(q)) =0 Va,q € X. (9)

=0

Remark 2 Above definition (9) was motivated by the structure of KL-divergence, see (29a)
and (29b).

Let us define subsets of X' as extensions of the empirical clusters:

X(Q) ={x e X: c¢=argmin; L(z,q(3))},
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X = UL X.(Q), 4(Q) N X(Q) = 0, # e

Then, we re-write (2) as follows

ROQ] =D (&(X), mla(e)), (10)

where {(A) := [, (x)P(dx), A € A.

Definition 3 We define a ball with radius r and a corresponding remainder in X

B(r)={qe X : L(x,q) <r, Vre X}, (11a)
T(r)=X\B(r), r>ro, (11b)
ro = inf{r > 0: B(r) # 0}. (11c)

Remark 4 By the following Lemma 10 we prove that all components of the codebook will
be within ball B(Z),0 < Z < oo, if sample size is large enough. Further, we shall assume
that n-transformation of the ball B(Z) represents a compact set (26), and, consequently, we
shall be able to prove strong consistency (8) by Lemma 11.

The following properties are valid

(£(A1) = &(A2),n(q)) >0 (12)
for all g € X and any Ay, Ay € A: Ay C Ay;

(€(X),n(q)) <r Vg€ B(r). (13)
Suppose, that
P(T(U)) U::O 0. (14)

Remark 5 Condition (14) is the only one requirement which is necessary to prove the main
result of this paper: Theorem 18, see, also, Remark 19.

Definition 6 The following distances will be used below:

p(A1, A2) == inf inf L(a1,a2),A1,A2 € A; (15a)
a1€A1a2€A2

(A1, Az) := inf sup L(a1,az2), A1, A2 € A. (15b)
a1€A1a2€As

Remark 7 Above distances p and u have very simple interpretation: p - absolutely minimal
distance between elements of the subsets Ay and Ay (it is symmetrical); u - uniformly
minimal distance between elements of the subset Ay (approximator) and elements of another
subset Ag (it is not symmetrical).

779



NIKULIN

Suppose, that
for any fixed ro <r < oo.

Remark 8 Above condition (16) is always valid for KL-divergence, see Corollary 17.

Remark 9 We assume that

TWU)#0 (17)

for any fixred U : vg < U < o0, alternatively, the following below Lemma 10 becomes trivial.

Lemma 10 Suppose, that the structure of the loss function L is defined in (9) under con-
dition (16). Probability distribution P satisfies condition (14) and the number of clusters
k > 1 is fived. Then, we can select large enough radius Z :0 < Z < 0o and ng > 1 such
that all components of the optimal empirical codebook Q, defined in (6) will be within the
ball B(Z): Qpn C B(Z) if sample size is large enough: ¥n > ng.

Proof. Existence of the element a € X such that
Dy = RM({a}) = (¢(¥X),n(a)) < oo (18)

follows from (13) and (14).
Suppose that
P(B(r)) =Py, >0, r >ry. (19)

We construct B(V) in accordance with conditions (16) and (17):

D, +e¢

V =inf{v>r:p(B(r),T(v)) > P,

}, e>0. (20)

Suppose, there are no empirical prototypes within B(V'). Then, in accordance with defini-
tion (19)

RE) [Qn] = Da+ € > Dy ¥n > 0.

Above contradicts to (18) and (5). Therefore, at least one prototype from Q,, must be
within B(V) if n is large enough (this fact is valid for Q as well). Without loss of generality
we assume that

q(1) € B(V). (21)

The proof of the Lemma has been completed in the case if k = 1.
Assumption. Following the method of mathematical induction, suppose, that k > 2
and

RED(Q) - RF(Q) > ¢ > 0. (22)
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Then, we define a ball B(U) by the following conditions

U=inf{u>V: sup ({(T(u)),n(q)) <e}. (23)
qeB(V)

Existence of the U : V < U < oo in (23) follows from (13) and (14).
By definition of the distance p and the ball B(V)

0<DU,V)=u(TU),B(V)) <V < oc. (24)
Now, we define reminder 7'(Z) # () in accordance with condition (16):
Z=inf{z>U:p(B(U),T(z)) > DU, V). (25)

Suppose, that there is at least one prototype within 7'(Z), for example, ¢(2) € T(Z). On the
other hand, we know about (21). Let us consider what will happen if we remove ¢(2) from
the optimal empirical codebook Q,, (the case of optimal actual risk @ may be considered
similarly), and replace it by ¢(1):

(1) as a consequence of (24) and (25) all empirical data within B(U) are closer to g(1)
anyway, means the data from B(U) will not increase empirical (or actual) risk (3);

(2) by definition, X = B(U)UT(U), B(U)NT(U) = 0 and in accordance with the condition
(23) an empirical risk increases because of the data within 7'(U) must be strictly less
compared with ¢ for all large enough n > ng (actual risk increase will be strictly less
compared with ¢ for all n > 1).

Above contradicts to the condition (22) and (5). Therefore, all prototypes from Q must be
within I' = B(Z) for all n > 1, and Q,, C I if n is large enough. [ |

3.1 Uniform Strong Law of Large Numbers (SLLN)

Let F denote the family of P-integrable functions on X.

A sufficient condition for uniform SLLN (8) is: for each ¢ > 0 there exists a finite class
Fs € F such that for each £ € F there are functions £ and £ € Fs with the following 2
properties:

L(z) < L(z) < L(z) forall z € X; [, (L(z) — L(z)) P(dz) < 6.
We assume here existence of the function ¢ such that
(@)l < ¢(Z) < o0 (26)

for all ¢ € B(Z), where rp < Z < c0.

Lemma 11 Suppose that the number of clusters k is fixzed, and the loss function L is defined
by (9) under condition (26) and

l€(@)]| <R <00 VzeX. (27)

Then, the asymptotic relation (8) is valid for any I' = B(Z),ro < Z < 0.
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Proof. Let us consider the definition of Hausdorff metric H in R™t1:

H(A1, A2) = sup inf ||a1 — azl|,
a1€A1a2€A2
and denote by G a subset in R™*1 which was obtained from I as a result of n-transformation.
According to the condition (26), G represents a compact set. It means, existence of a finite
subset Gg for any 6 > 0 such that H(G,Gs) < %, where R is defined in (27). We denote by
I's C I" subset which corresponds to G5 C G according to the n-transformation. Respectively,
we can define transformation (according to the principle of the nearest point) fs from I’
to I's, and Qs = f5(Q), where closeness may be tested independently for any particular
component of @, that means absolute closeness.
In accordance with the Cauchy-Schwartz inequality, the following relations take place

ézﬁ(m,Q(s)—g§£(x,Q)§£(x,Q5)+g=ZV:E6X.

Finally, [, (L(z, Qs) — L(z, Qs5)) P(dz) < &, where Qs € I'} is the absolutely closest code-
book for the arbitrary Q € I'*. |

4. A Probabilistic Framework

Following Dhillon et al. (2003), we assume that the probabilities pyy = P(€|xt), > pey Por =
1,t = 1,...,n, represent relations between observations z; and attributes or classes £ =
1,....,m,m > 2.

Accordingly, we define probabilistic space P of all m-dimensional probability vectors
with Kullback-Leibler (K L) divergence:

KL(v,u):= ng~log2—i = <v,log%>, v,u € P™.
¢

Remark 12 As it was demonstrated by Dhillon et al. (2003), cluster centers q. in the space
P with K L-divergence must be computed using K-means:

Ge =~ Dt, (28)

where c(xy) = ¢ if x4 € X and n. = #X. is the number of observations in the cluster
Xcvc = 1a ceey k; bt = {plta cee apmt}7QC = {Q1t7 ce ant}'

In difference to the model of Pollard (1981) in R™, the structure (9) covers an important
case of P™ with K L-divergence:

So(v) = welogug &(v) = vy (29a)
=1

no(u) =1; ne(u) = —logug, £ =1,...,m. (29b)
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Definition 13 We call element v € P™ as 1) uniform center if vy = %,E =1,...,m; as
2) absolute margin if ming v, = 0.

Proposition 14 The ball B(Z) C P™ contains only one element named as uniform center
in the case if Z =ro =log(m), and B(Z) =0 if Z < ry.

Proof. Suppose, that u is a uniform center. Then, KL(v,u) = Y ", v;logv; + logm <
logm for all v € P™. In any other case, one of the components of u must be less than

%. Respectively, we can select the corresponding component of probability vector v as 1.
Therefore, K L(v,u) > log (m) and ro = log (m). [ |

Lemma 15 The KL divergence in probabilistic space P™ always satisfies condition (27),
where vector-function & is expressed by (29a)with the following upper bounds:

|€o(v)] <log(m); [&(v)| <1,4=1,....,m, YveP™
Lemma 16 The following relations are valid in P™
(1) ming{ue} < e™" for allu e T(r) Yr >rgp;
(2) ug>e " foralll=1,...,m, and any u € B(r) Yr > ry.

Proof. As far as P™ = B(r)UT(r), B(r) N T(r) = 0, the first statement may be regarded
as a consequence of the second statement. Suppose, that u € B(r) and u3 = e "%, > 0.
Then, we can select v; = 1, and KL(v,u) = r + & > r - contradiction. [ |

Corollary 17 The KL divergence in P™ always satisfies conditions (16), and

1—e™"

—log(m)+Z-e " <p(B(r),T(Z)<e " (Z-r)+ (1 — e_r) log 1oz
forall ro <r < Z, where the distance p is defined in (15a).

Proof. Suppose, that v € B(r) and u € T(Z). Then, —> ", v;log (u;) > Z - e~" for all
r:rg <r < Z. On the other hand, the entropy H(v) = —> ", v;log (v;) may not be
smaller compared to log (m). The low bound is proved. In order to prove the upper bound
we suppose without loss of generality that v; = e, u; = e~ Z, and all the other components
are proportional. |

Theorem 18 Suppose that probability measure P satisfies condition (14) in probabilistic
space P™ with KL divergence and the number of clusters k is fixed. Then, the minimal
empirical error (6) converges to the minimal actual error (4) with probability 1 or a.s.

Proof. Follows directly from the Lemmas 10, 11, 15 and 16.

Remark 19 Condition (14) is not valid if and only if the probability of the subset of all
absolute margins is strictly positive. Note that in order to avoid any problems with con-
sistency we can generalise definition of K L-divergence using special smoothing parameter
0<0<1:

K Lp(v,u) = KL(vg, ug),

where vg = 0v + (1 — O)vg, and ug = Ou + (1 — )vg, vo is uniform center.
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5. Concluding Remarks

Consistency is a key property of all statistical procedures analyzing randomly sampled data.
Surprisingly, despite decades of work, little is known about consistency of most clustering
algorithms (von Luxburg et al., 2008). In this paper we developed a general framework
to investigate and to prove consistency of the popular family of prototype based clustering
algorithms. As an illustration, we considered probabilistic space with Kullback-Leibler
divergence.
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