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Abstract

Conditional restricted Boltzmann machines are undirected stochastic neural networks with
a layer of input and output units connected bipartitely to a layer of hidden units. These
networks define models of conditional probability distributions on the states of the output
units given the states of the input units, parameterized by interaction weights and biases.
We address the representational power of these models, proving results on their ability to
represent conditional Markov random fields and conditional distributions with restricted
supports, the minimal size of universal approximators, the maximal model approximation
errors, and on the dimension of the set of representable conditional distributions. We
contribute new tools for investigating conditional probability models, which allow us to
improve the results that can be derived from existing work on restricted Boltzmann machine
probability models.

Keywords: conditional restricted Boltzmann machine, universal approximation, Kullback-
Leibler approximation error, expected dimension

1. Introduction

Restricted Boltzmann Machines (RBMs) (Smolensky, 1986; Freund and Haussler, 1994)
are generative probability models defined by undirected stochastic networks with bipartite
interactions between visible and hidden units. These models are well-known in machine
learning applications, where they are used to infer distributed representations of data and
to train the layers of deep neural networks (Hinton et al., 2006; Bengio, 2009). The restricted
connectivity of these networks allows to train them efficiently on the basis of cheap inference
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and finite Gibbs sampling (Hinton, 2002, 2012), even when they are defined with many
units and parameters. An RBM defines Gibbs-Boltzmann probability distributions over
the observable states of the network, depending on the interaction weights and biases. An
introduction is offered by Fischer and Igel (2012). The expressive power of these probability
models has attracted much attention and has been studied in numerous papers, treating,
in particular, their universal approximation properties (Younes, 1996; Le Roux and Bengio,
2008; Montúfar and Ay, 2011), approximation errors (Montúfar et al., 2011), efficiency of
representation (Martens et al., 2013; Montúfar and Morton, 2015), and dimension (Cueto
et al., 2010).

In certain applications, it is preferred to work with conditional probability distribu-
tions, instead of joint probability distributions. For example, in a classification task, the
conditional distribution may be used to indicate a belief about the class of an input, with-
out modeling the probability of observing that input; in sensorimotor control, it can de-
scribe a stochastic policy for choosing actions based on world observations; and in the con-
text of information communication, to describe a channel. RBMs naturally define models
of conditional probability distributions, called conditional restricted Boltzmann machines
(CRBMs). These models inherit many of the nice properties of RBM probability models,
such as the cheap inference and efficient training. Specifically, a CRBM is defined by clamp-
ing the states of an input subset of the visible units of an RBM. For each input state one
obtains a conditioned distribution over the states of the output visible units. See Figure 1
for an illustration of this architecture. This kind of conditional models and slight variants
thereof have seen success in many applications; for example, in classification (Larochelle and
Bengio, 2008), collaborative filtering (Salakhutdinov et al., 2007), motion modeling (Tay-
lor et al., 2007; Zeiler et al., 2009; Mnih et al., 2011; Sutskever and Hinton, 2007), and
reinforcement learning (Sallans and Hinton, 2004).

So far, however, there is not much theoretical work addressing the expressive power
of CRBMs. We note that it is relatively straightforward to obtain some results on the
expressive power of CRBMs from the existing theoretical work on RBM probability models.
Nevertheless, an accurate analysis requires to take into account the specificities of the
conditional case. Formally, a CRBM is a collection of RBMs, with one RBM for each
possible input value. These RBMs differ in the biases of the hidden units, as these are
influenced by the input values. However, these hidden biases are not independent for all
different inputs, and, moreover, the same interaction weights and biases of the visible units
are shared for all different inputs. This sharing of parameters draws a substantial distinction
of CRBM models from independent tuples of RBM models.

In this paper we address the representational power of CRBMs, contributing theoretical
insights to the optimal number of hidden units. Our focus lies on the classes of conditional
distributions that can possibly be represented by a CRBM with a fixed number of inputs
and outputs, depending on the number of hidden units. Having said this, we do not dis-
cuss the problem of finding the optimal parameters that give rise to a desired conditional
distribution (although our derivations include an algorithm that does this), nor problems
related to incomplete knowledge of the target conditional distributions and generalization
errors. A number of training methods for CRBMs have been discussed in the references
listed above, depending on the concrete applications. The problems that we deal with here
are the following: 1) are distinct parameters of the model mapped to distinct conditional
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distributions; what is the smallest number of hidden units that suffices for obtaining a model
that can 2) approximate any target conditional distribution arbitrarily well (a universal ap-
proximator); 3) approximate any target conditional distribution without exceeding a given
error tolerance; 4) approximate selected classes of conditional distributions arbitrarily well?
We provide non-trivial solutions to all of these problems. We focus on the case of binary
units, but the main ideas extend to the case of discrete non-binary units.

This paper is organized as follows. Section 2 contains formal definitions and elemen-
tary properties of CRBMs. Section 3 investigates the geometry of CRBM models in three
subsections. In Section 3.1 we study the dimension of the sets of conditional distributions
represented by CRBMs and show that in most cases this is the dimension expected from
counting parameters (Theorem 4). In Section 3.2 we address the universal approximation
problem, deriving upper and lower bounds on the minimal number of hidden units that
suffices for this purpose (Theorem 7). In Section 3.3 we analyze the maximal approxima-
tion errors of CRBMs (assuming optimal parameters) and derive an upper bound for the
minimal number of hidden units that suffices to approximate every conditional distribution
within a given error tolerance (Theorem 11). Section 4 investigates the expressive power of
CRBMs in two subsections. In Section 4.1 we describe how CRBMs can represent natural
families of conditional distributions that arise in Markov random fields (Theorem 14). In
Section 4.2 we study the ability of CRBMs to approximate conditional distributions with
restricted supports. This section addresses, especially, the approximation of deterministic
conditional distributions (Theorem 21). In Section 5 we offer a discussion and an outlook.
In order to present the main results in a concise way, we have deferred all proofs to the
appendices. Nonetheless, we think that the proofs are interesting in their own right, and
we have prepared them with a fair amount of detail.

2. Definitions

We will denote the set of probability distributions on {0, 1}n by ∆n. A probability dis-
tribution p ∈ ∆n is a vector of 2n non-negative entries p(y), y ∈ {0, 1}n, adding to one,∑

y∈{0,1}n p(y) = 1. The set ∆n is a (2n − 1)-dimensional simplex in R2n .

We will denote the set of conditional distributions of a variable y ∈ {0, 1}n, given
another variable x ∈ {0, 1}k, by ∆k,n. A conditional distribution p(·|·) ∈ ∆k,n is a 2k × 2n

row-stochastic matrix with rows p(·|x) ∈ ∆n, x ∈ {0, 1}k. The set ∆k,n is a 2k(2n − 1)-

dimensional polytope in R2k×2n . It can be regarded as the 2k-fold Cartesian product ∆k,n =
∆n × · · · × ∆n, where there is one probability simplex ∆n for each possible input state
x ∈ {0, 1}k. We will use the abbreviation [N ] := {1, . . . , N}, where N is a natural number.

Definition 1 The conditional restricted Boltzmann machine (CRBM) with k input units, n
output units, and m hidden units, denoted RBMk

n,m, is the set of all conditional distributions
in ∆k,n that can be written as

p(y|x) =
1

Z(W, b, V x+ c)

∑
z∈{0,1}m

exp(z>V x+z>Wy+b>y+c>z), ∀y ∈ {0, 1}n, x ∈ {0, 1}k,

2407
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Figure 1: Architecture of a CRBM. An RBM is the special case with k = 0.

with normalization function

Z(W, b, V x+ c) =
∑

y∈{0,1}n

∑
z∈{0,1}m

exp(z>V x+ z>Wy + b>y + c>z), ∀x ∈ {0, 1}k.

Here, x, y, and z are column state vectors of the k input units, n output units, and m
hidden units, respectively, and > denotes transposition. The parameters of this model
are the matrices of interaction weights V ∈ Rm×k, W ∈ Rm×n and the vectors of biases
b ∈ Rn, c ∈ Rm. When there are no input units (k = 0), the model RBMk

n,m reduces to the
restricted Boltzmann machine probability model with n visible units and m hidden units,
denoted RBMn,m.

We can view RBMk
n,m as a collection of 2k restricted Boltzmann machine probability

models with shared parameters. For each input x ∈ {0, 1}k, the output distribution p(·|x) is
the probability distribution represented by RBMn,m for the parameters W, b, (V x+ c). All
p(·|x) have the same interaction weights W , the same biases b for the visible units, and differ
only in the biases (V x + c) for the hidden units. The joint behavior of these distributions
with shared parameters is not trivial.

The model RBMk
n,m can also be regarded as representing block-wise normalized versions

of the joint probability distributions represented by RBMn+k,m. Namely, a joint distribution
p ∈ RBMn+k,m ⊆ ∆k+n is an array with entries p(x, y), x ∈ {0, 1}k, y ∈ {0, 1}n. Condition-
ing p on x is equivalent to considering the normalized x-th row p(y|x) = p(x, y)/

∑
y′ p(x, y

′),
y ∈ {0, 1}n.

3. Geometry of Conditional Restricted Boltzmann Machines

In this section we investigate three basic questions about the geometry of CRBM models.
First, what is the dimension of a CRBM model? Second, how many hidden units does a
CRBM need in order to be able to approximate every conditional distribution arbitrarily
well? Third, how accurate are the approximations of a CRBM, depending on the number
of hidden units?

3.1 Dimension

The model RBMk
n,m is defined by marginalizing out the hidden units of a graphical model.

This implies that several choices of parameters may represent the same conditional distri-
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butions. In turn, the dimension of the set of representable conditional distributions may be
smaller than the number of model parameters, in principle.

When the dimension of RBMk
n,m is equal to min{(k + n)m+ n+m, 2k(2n − 1)}, which

is the minimum of the number of parameters and the dimension of the ambient polytope of
conditional distributions, the CRBM model is said to have the expected dimension. In this
section we show that RBMk

n,m has the expected dimension for most triplets (k, n,m). In
particular, we show that this holds in all practical cases, where the number of hidden units
m is smaller than exponential with respect to the number of visible units k + n.

The dimension of a parametric model is given by the maximum of the rank of the
Jacobian of its parameterization (assuming mild differentiability conditions). Computing
the rank of the Jacobian is not easy in general. A resort is to compute the rank only in the
limit of large parameters, which corresponds to considering a piece-wise linearized version
of the original model, called the tropical model. Cueto et al. (2010) used this approach to
study the dimension of RBM probability models. Here we apply their ideas to address the
dimension of CRBM conditional models.

The following functions from coding theory will be useful for phrasing the results:

Definition 2 Let A(n, d) denote the cardinality of a largest subset of {0, 1}n whose ele-
ments are at least Hamming distance d apart. Let K(n, d) denote the smallest cardinality of
a set such that every element of {0, 1}n is at most Hamming distance d apart from that set.

Cueto et al. (2010) showed that dim(RBMn,m) = nm+ n+m for m+ 1 ≤ A(n, 3), and
dim(RBMn,m) = 2n − 1 for m ≥ K(n, 1). It is known that A(n, 3) ≥ 2n−dlog2(n+1)e and
K(n, 1) ≤ 2n−blog2(n+1)c. In turn, for most pairs (n,m) the probability model RBMn,m has
the expected dimension (although for many values of n there is a range of values of m where
the results are inconclusive about this). Noting that dim(RBMk

n,m) ≥ dim(RBMk+n,m) −
(2k−1), these results on the dimension of RBM probability models directly imply following
bounds on the dimension of CRBM models:

Proposition 3 The conditional model RBMk
n,m satisfies the following:

• dim(RBMk
n,m) ≥ (n+ k)m+ n+m+ k − (2k − 1) for m+ 1 ≤ A(k + n, 3).

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ K(k + n, 1).

This result shows that, when m ≥ K(k + n, 1), the CRBM model has the maximum
possible dimension, equal to the dimension of ∆k,n. In all other cases, however, the dimen-
sion bounds are too loose and do not allow us to conclude whether or not the CRBM model
has the expected dimension. Hence we need to study the conditional model in more detail.
We obtain the following result:

Theorem 4 The conditional model RBMk
n,m satisfies the following:

• dim(RBMk
n,m) = (k + n)m+ n+m for m+ 1 ≤ A(k + n, 4).

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ K(k + n, 1).
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We note the following practical version of the theorem, which results from inserting
appropriate bounds on the functions A and K:

Corollary 5 The conditional model RBMk
n,m has the expected dimension in the following

cases:

• dim(RBMk
n,m) = (n+ k)m+ n+m for m ≤ 2(k+n)−blog2((k+n)2−(k+n)+2)c.

• dim(RBMk
n,m) = 2k(2n − 1) for m ≥ 2(k+n)−blog2(k+n+1)c.

These results show that, in all cases of practical interest, where m is less than exponential
in k + n, the dimension of the CRBM model is indeed equal to the number of model
parameters. In all these cases, almost every conditional distribution that can be represented
by the model is represented by at most finitely many different choices of parameters. We
should note that there is an interval of exponentially large values of m where the results
remain inconclusive, namely the interval A(k + n, 4) ≤ m < K(k + n, 1). This is similar
to the gap already mentioned above for RBM probability models and poses interesting
theoretical problems (see also Montúfar and Morton, 2015).

On the other hand, the dimension alone is not very informative about the ability of a
model to approximate target distributions. In particular, it may be that a high dimensional
model covers only a tiny fraction of the set of all conditional distributions, or also that a
low dimensional model can approximate any target conditional relatively well. We address
the minimal dimension and number of parameters of a universal approximator in the next
section. In the subsequent section we address the approximation errors depending on the
number of parameters.

3.2 Universal Approximation

In this section we ask for the smallest number of hidden units m for which the model
RBMk

n,m can approximate every conditional distribution from ∆k,n arbitrarily well.

Note that each conditional distribution p(y|x) can be identified with the set of joint
distributions of the form r(x, y) = q(x)p(y|x), with strictly positive marginals q(x). In
particular, by fixing a marginal distribution, we obtain an identification of ∆k,n with a subset
of ∆k+n. Figure 2 illustrates this identification in the case n = k = 1 and q(0) = q(1) = 1

2 .

This implies that universal approximators of joint probability distributions define uni-
versal approximators of conditional distributions. We know that RBMn+k,m is a universal
approximator whenever m ≥ 1

22k+n − 1 (see Montúfar and Ay, 2011), and therefore:

Proposition 6 The model RBMk
n,m can approximate every conditional distribution from

∆k,n arbitrarily well whenever m ≥ 1
22k+n − 1.

This improves previous results by Younes (1996) and van der Maaten (2011). On the
other hand, since conditional models do not need to model the input distributions, in
principle it is possible that RBMk

n,m is a universal approximator even if RBMn+k,m is not
a universal approximator. In fact, we obtain the following improvement of Proposition 6,
which does not follow from corresponding results for RBM probability models:
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Figure 2: The polytope of conditional distributions ∆1,1 embedded in the simplex of prob-
ability distributions ∆2.

Theorem 7 The model RBMk
n,m can approximate every conditional distribution from ∆k,n

arbitrarily well whenever

m ≥


1
22k(2n − 1), if k ≥ 1
3
82k(2n − 1) + 1, if k ≥ 3
1
42k(2n − 1 + 1/30), if k ≥ 21

.

In fact, the model RBMk
n,m can approximate every conditional distribution from ∆k,n ar-

bitrarily well whenever m ≥ 2kK(r)(2n − 1) + 2S(r)P (r), where r is any natural number
satisfying k ≥ 1 + · · · + r =: S(r), and K and P are functions (defined in Lemma 30 and
Proposition 32) which tend to approximately 0.2263 and 0.0269, respectively, as r tends to
infinity.

We note the following weaker but practical version of Theorem 7:

Corollary 8 Let k ≥ 1. The model RBMk
n,m can approximate every conditional distribution

from ∆k,n arbitrarily well whenever m ≥ 1
22k(2n − 1) = 1

22k+n − 1
22k.

These results are significant, because they reduce the bounds following from univer-
sal approximation results for probability models by an additive term of order 2k, which
corresponds precisely to the order of parameters needed to model the input distributions.

As expected, the asymptotic behavior of the theorem’s bound is exponential in the
number of input and output units. This lies in the nature of the universal approximation
property. A crude lower bound on the number of hidden units that suffices for universal
approximation can be obtained by comparing the number of parameters of the model and
the dimension of the conditional polytope:

Proposition 9 If the model RBMk
n,m can approximate every conditional distribution from

∆k,n arbitrarily well, then necessarily m ≥ 1
(n+k+1)(2k(2n − 1)− n).
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Figure 3: Schematic illustration of the maximal approximation error of a model of condi-
tional distributions Mk,n ⊆ ∆k,n.

The results presented above highlight the fact that CRBM universal approximation
may be possible with a drastically smaller number of hidden units than RBM universal
approximation, for the same number of visible units. However, even with these reductions
the universal approximation property requires an enormous number of hidden units. In order
to provide a more informative description of the approximation capabilities of CRBMs, in
the next section we investigate how the maximal approximation error decreases as hidden
units are added to the model.

3.3 Maximal Approximation Errors

From a practical perspective it is not necessary to approximate conditional distributions
arbitrarily well, but fair approximations suffice. This can be especially important if the
number of required hidden units grows disproportionately with the quality of the approxi-
mation. In this section we investigate the maximal approximation errors of CRBMs depend-
ing on the number of hidden units. Figure 3 gives a schematic illustration of the maximal
approximation error of a conditional model.

The Kullback-Leibler divergence of two probability distributions p and q in ∆k+n is
given by

D(p‖q) :=
∑
x

∑
y

p(x)p(y|x) log
p(x)p(y|x)

q(x)q(y|x)

=D(pX‖qX) +
∑
x

p(x)D(p(·|x)‖q(·‖x)),

where pX =
∑

y∈{0,1}n p(x, y) denotes the marginal distribution over x ∈ {0, 1}k. The
divergence of two conditional distributions p(·|·) and q(·|·) in ∆k,n is given by

D(p(·|·)‖q(·|·)) :=
∑
x

uX(x)D(p(·|x)‖q(·|x)),
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where uX denotes the uniform distribution over x. Even if the divergence between two joint
distributions does not vanish, the divergence between their conditional distributions may
vanish.

Consider a model Mk+n ⊆ ∆k+n of joint probability distributions and a correspond-
ing model Mk,n ⊆ ∆k,n of conditional distributions. More precisely, Mk,n consists of all
conditional distributions of the form q(y|x) = q(x, y)/

∑
y′∈{0,1}n q(x, y

′), for all y ∈ {0, 1}n
and x ∈ {0, 1}k, where q(·, ·) is any joint probability distribution from Mk+n satisfying∑

y′∈{0,1}n q(x, y
′) > 0, for all x ∈ {0, 1}k. The divergence from a conditional distribution

p(·|·) ∈ ∆k,n to the model Mk,n is given by

D(p(·|·)‖Mk,n) := inf
q∈Mk,n

D(p(·|·)‖q(·|·)) = inf
q∈Mk+n

D(uXp(·|·)‖q)−D(uX‖qX).

In turn, the maximum of the divergence from a conditional distribution to Mk,n satisfies

DMk,n
:= max

p(·|·)∈∆k,n

D(p(·|·)‖Mk,n) ≤ max
p∈∆k+n

D(p‖Mk+n) =: DMk+n
.

Hence we can bound the maximal divergence of a CRBM by the maximal divergence of an
RBM (studied by Montúfar et al., 2011) and obtain the following:

Proposition 10 If m ≤ 2(n+k)−1−1, then the divergence from any conditional distribution
p(·|·) ∈ ∆k,n to the model RBMk

n,m is bounded by

DRBMk
n,m
≤ DRBMk+n,m

≤ (n+ k)− blog2(m+ 1)c − m+ 1

2blog2(m+1)c .

This proposition implies the universal approximation result from Proposition 6 as the
special case with vanishing approximation error, but it does not imply Theorem 7 in the
same way. Taking more specific properties of the conditional model into account, we can
improve the proposition and obtain the following:

Theorem 11 Let l ∈ [n]. The divergence from any conditional distribution in ∆k,n to the
model RBMk

n,m is bounded from above by

DRBMk
n,m
≤ n− l, whenever m ≥


1
22k(2l − 1), if k ≥ 1
3
82k(2l − 1) + 1, if k ≥ 3
1
42k(2l − 1 + 1/30), if k ≥ 21

.

In fact, the divergence from any conditional distribution in ∆k,n to RBMk
n,m is bounded from

above by DRBMk
n,m
≤ n−l, where l is the largest integer with m ≥ 2k−S(r)F (r)(2l−1)+R(r).

In plain terms, this theorem shows that the worst case approximation errors of CRBMs
decrease at least with the logarithm of the number of hidden units. Given an error toler-
ance, we can use these bounds to find a sufficient number of hidden units that guarantees
approximations within this error tolerance. Furthermore, the result implies the universal
approximation result from Theorem 7 as the special case with vanishing approximation
error. We note the following weaker but practical version of Theorem 11 (analogue to
Corollary 8):
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Corollary 12 Let k ≥ 1 and l ∈ [n]. The divergence from any conditional distribution in
∆k,n to the model RBMk

n,m is bounded from above by DRBMk
n,m
≤ n − l, whenever m ≥

1
22k(2l − 1).

In this section we have discussed the worst case approximation errors of CRBMs. On
the other hand, in practice one is not interested in approximating all possible conditional
distributions, but only special classes. One can expect that CRBMs can approximate certain
classes of conditional distributions better than others. This is the subject of the next section.

4. Representation of Special Classes of Conditional Models

In this section we ask about the classes of conditional distributions that can be compactly
represented by CRBMs and whether CRBMs can approximate interesting conditional dis-
tributions using only a moderate number of hidden units.

The first part of the question is about familiar classes of conditional distributions that
can be expressed in terms of CRBMs, which in turn would allow us to compare CRBMs
with other models and to develop a more intuitive picture of Definition 1.

The second part of the question clearly depends on the specific problem at hand.
Nonetheless, some classes of conditional distributions may be considered generally inter-
esting, as they contain solutions to all instances of certain classes of problems. An example
is the class of deterministic conditional distributions, which suffices to solve any Markov
decision problem in an optimal way.

4.1 Representation of Conditional Markov Random Fields

In this section we discuss the ability of CRBMs to represent conditional Markov random
fields, depending on the number of hidden units that they have. The main idea is that each
hidden unit of an RBM can be used to model the pure interaction of a group of visible
units. This idea appeared in previous work by Younes (1996), in the context of universal
approximation.

Definition 13 Consider a simplicial complex I on [N ]; that is, a collection of subsets of
[N ] = {1, . . . , N} such that A ∈ I implies B ∈ I for all B ⊆ A (in particular ∅ ∈ I). The
random field EI ⊆ ∆N with interactions I is the set of probability distributions of the form

p(x) =
1

Z
exp

(∑
A∈I

θA
∏
i∈A

xi

)
, for all x = (x1, . . . , xN ) ∈ {0, 1}N ,

with normalization Z =
∑

x′∈{0,1}N exp(
∑

A∈I θA
∏
i∈A x

′
i) and parameters θA ∈ R, A ∈ I.

Given a set S, we will denote the set of all subsets of S by 2S . We obtain the following
result:

Theorem 14 Let I be a simplicial complex on [k+n] and let J = 2[k]∪{{k+1}, . . . , {k+n}}.
If m ≥ |I \ J |, then the model RBMk

n,m can represent every conditional distribution of
(xk+1, . . . , xk+n), given (x1, . . . , xk), that can be represented by EI ⊆ ∆k+n.
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Figure 4: Example of a Markov random field and a corresponding RBM architecture that
can represent it. Visible units are depicted in black and hidden units in white.

An interesting special case is when each output distribution can be chosen arbitrarily
from a given Markov random field:

Corollary 15 Let I be a simplicial complex on [n] and for each x ∈ {0, 1}n let px be some
probability distribution from EI ⊆ ∆n. If m ≥ 2k(|I| − 1) − |{A ∈ I : |A| = 1}|, then the
model RBMk

n,m can represent the conditional distribution defined by q(y|x) = px(y), for all

y ∈ {0, 1}n, for all x ∈ {0, 1}k.

We note the following direct implication for RBM probability models:

Corollary 16 Let I be a simplicial complex on [n]. If m ≥ |{A ∈ I : |A| > 1}|, then
RBMn,m can represent any probability distribution p from EI .

Figure 4 illustrates a Markov random field and an RBM that can represent it.

4.2 Approximation of Conditional Distributions with Restricted Supports

In this section we continue the discussion about the classes of conditional distributions that
can be represented by CRBMs, depending on the number of hidden units. Here we focus on
a hierarchy of conditional distributions defined by the total number of input-output pairs
with positive probability.

Definition 17 For any k, n, and 0 ≤ d ≤ 2k(2n − 1), let Ck,n(d) ⊆ ∆k,n denote the union
of all d-dimensional faces of ∆k,n; that is, the set of conditional distributions that have a
total of 2k + d or fewer non-zero entries, Ck,n(d) := {p(·|·) ∈ ∆k,n : |{(x, y) : p(y|x) > 0}| ≤
2k + d}.

Note that Ck,n(2k(2n − 1)) = ∆k,n. The vertices (zero-dimensional faces) of ∆k,n are the
conditional distributions which assign positive probability to only one output, given each
input, and are called deterministic. By Carathéodory’s theorem, every element of Ck,n(d)
is a convex combination of (d+ 1) or fewer deterministic conditional distributions.

The sets Ck,n(d) arise naturally in the context of reinforcement learning and partially
observable Markov decision processes (POMDPs). Namely, every finite POMDP has an
associated effective dimension d, which is the dimension of the set of all state processes
that can be generated by stationary stochastic policies. Montúfar et al. (2015) showed that
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the policies represented by conditional distributions from the set Ck,n(d) are sufficient to
generate all the processes that can be generated by ∆k,n. In general, the effective dimension
d is relative small, such that Ck,n(d) is a much smaller policy search space than ∆k,n.

We have the following result:

Proposition 18 If m ≥ 2k+d−1, then the model RBMk
n,m can approximate every element

from Ck,n(d) arbitrarily well.

This result shows the intuitive fact that each hidden unit can be used to model the
probability of an input-output pair. Since each conditional distribution has 2k input-output
probabilities that are completely determined by the other probabilities (due to normaliza-
tion), it is interesting to ask whether the amount of hidden units indicated in Proposition 18
is strictly necessary. Further below, Theorem 21 will show that, indeed, hidden units are
required for modeling the positions of the positive probability input-output pairs, even if
their specific values do not need to be modeled.

We note that certain structures of positive probability input-output pairs can be modeled
with fewer hidden units than stated in Proposition 18. An simple example is the following
direct generalization of Corollary 8:

Proposition 19 If d is divisible by 2k and m ≥ d/2, then the model RBMk
n,m can approxi-

mate every element from Ck,n(d) arbitrarily well, when the set of positive-probability outputs
is the same for all inputs.

In the following we will focus on deterministic conditional distributions. This is a partic-
ularly interesting and simple class of conditional distributions with restricted supports. It is
well known that any finite Markov decision processes (MDPs) has an optimal policy defined
by a stationary deterministic conditional distribution (see Bellman, 1957; Ross, 1983). Fur-
thermore, Ay et al. (2013) showed that it is always possible to define simple two-dimensional
manifolds that approximate all deterministic conditional distributions arbitrarily well.

Certain classes of conditional distributions (in particular deterministic conditionals)
coming from feedforward networks can be approximated arbitrarily well by CRBMs. We
use the following definitions. A linear threshold unit with inputs x ∈ {0, 1}k is a function
that outputs 1 when

∑
j Vijxj + ci > 0, and outputs 0 otherwise. A sigmoid belief unit with

inputs z ∈ {0, 1}m is a stochastic function that outputs 1 with probability p(yi = 1|z) =
σ(
∑

jWijzj + bi), where σ(s) = 1
1+exp(−s) , and outputs 0 with complementary probability.

Theorem 20 The model RBMk
n,m can approximate every conditional distribution arbitrar-

ily well, which can be represented by a feedforward network with k input units, a hidden layer
of m linear threshold units, and an output layer of n sigmoid belief units. In particular,
the model RBMk

n,m can approximate every deterministic conditional distribution from ∆k,n

arbitrarily well, which can be represented by a feedforward linear threshold network with k
input, m hidden, and n output units.

The representational power of feedforward linear threshold networks has been studied
intensively in the literature. For example, Wenzel et al. (2000) showed that a feedforward
linear threshold network with k ≥ 1 input, m hidden, and n = 1 output units, can represent
the following:
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• Any Boolean function f : {0, 1}k → {0, 1}, when m ≥ 3 · 2k−1−blog2(k+1)c; e.g., when
m ≥ 3

k+22k.

• The parity function fparity : {0, 1}k → {0, 1}; x 7→∑
i xi mod 2, when m ≥ k.

• The indicator function of any union of m linearly separable subsets of {0, 1}k.

Although CRBMs can approximate this rich class of deterministic conditional distribu-
tions arbitrarily well, the next result shows that the number of hidden units required for
universal approximation of deterministic conditional distributions is rather large:

Theorem 21 The model RBMk
n,m can approximate every deterministic conditional distri-

bution from ∆k,n arbitrarily well if m ≥ min
{

2k − 1, 3n
k+22k

}
and only if m ≥ 2k/2− (n+k)2

2n .

This theorem refines the statement of Proposition 18 in the special case d = 0. By this
theorem, in order to approximate all deterministic conditional distributions arbitrarily well,
a CRBM requires exponentially many hidden units, with respect to the number of input
units.

5. Conclusion

This paper gives a theoretical description of the representational capabilities of conditional
restricted Boltzmann machines (CRBMs) relating model complexity and model accuracy.
CRBMs are based on the well studied restricted Boltzmann machine (RBM) probability
models. We proved an extensive series of results that generalize recent theoretical work on
the representational power of RBMs in a non-trivial way.

We studied the problem of parameter identifiability. We showed that every CRBM with
up to exponentially many hidden units (in the number of input and output units) represent
a set of conditional distributions of dimension equal to the number of model parameters.
This implies that in all practical cases, CRBMs do not waste parameters, and, generically,
only finitely many choices of the interaction weights and biases produce the same conditional
distribution.

We addressed the classical problems of universal approximation and approximation qual-
ity. Our results show that a CRBM with m hidden units can approximate every conditional
distribution of n output units, given k input units, without surpassing a Kullback-Leibler ap-
proximation error of the form n− log2(m/2k−1 + 1) (assuming optimal parameters). Thus
this model is a universal approximator whenever m ≥ 1

22k(2n − 1). In fact we provided
tighter bounds depending on k. For instance, if k ≥ 21, then the universal approxima-
tion property is attained whenever m ≥ 1

42k(2n − 29/30). Our proof is based on an upper
bound for the complexity of an algorithm that packs Boolean cubes with sequences of non-
overlapping stars, for which improvements may be possible. It is worth mentioning that the
set of conditional distributions for which the approximation error is maximal may be very
small. This is a largely open and difficult problem. We note that our results can be plugged
into certain analytic integrals (see Montúfar and Rauh, 2014) to produce upper-bounds for
the expectation value of the approximation error when approximating conditional distribu-
tions drawn from a product Dirichlet density on the polytope of all conditional distributions.
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For future work it would be interesting to extend our (optimal-parameter) considerations
by an analysis of the CRBM training complexity and the errors resulting from non-optimal
parameter choices.

We also studied specific classes of conditional distributions that can be represented by
CRBMs, depending on the number of hidden units. We showed that CRBMs can represent
conditional Markov random fields by using each hidden unit to model the interaction of a
group of visible variables. Furthermore, we showed that CRBMs can approximate all binary
functions with k input bits and n output bits arbitrarily well if m ≥ 2k − 1 or m ≥ 3n

k+22k

and only if m ≥ 2k/2 − (n+ k)2/2n. In particular, this implies that there are exponentially
many deterministic conditional distributions which can only be approximated arbitrarily
well by a CRBM if the number of hidden units is exponential in the number of input units.
This aligns with well known examples of functions that cannot be compactly represented
by shallow feedforward networks, and reveals some of the intrinsic constraints of CRBM
models that may prevent them from grossly over-fitting.

We think that the developed techniques can be used for studying other conditional
probability models as well. In particular, for future work it would be interesting to compare
the representational power of CRBMs and of combinations of CRBMs with feedforward nets
(combined models of this kind include CRBMs with retroactive connections and recurrent
temporal RBMs). Also, it would be interesting to apply our techniques to study stacks of
CRBMs and other multilayer conditional models. Finally, although our analysis focuses on
the case of binary units, the main ideas can be extended to the case of discrete non-binary
units.
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Appendix A. Details on the Dimension

Proof of Proposition 3 Each joint distribution of x and y has the form p(x, y) =
p(x)p(y|x) and the set ∆k of all marginals p(x) has dimension 2k − 1. The items follow
directly from the corresponding statements for the probability model (Cueto et al., 2010).

We will need two standard definitions from coding theory:

Definition 22 Let r and k be two natural numbers with r ≤ k. A radius-r Hamming ball
in {0, 1}k is a set B consisting of a length-k binary vector, together with all other length-
k binary vectors that are at most Hamming distance r apart from that vector; that is,
B = {x ∈ {0, 1}k : dH(x, z) ≤ r} for some z ∈ {0, 1}k, where dH(x, z) := |{i ∈ [k] : xi 6= zi}|
denotes the Hamming distance between x and z. Here [k] := {1, . . . , k}.
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Definition 23 An r-dimensional cylinder set in {0, 1}k is a set C of length-k binary vectors
with arbitrary values in r coordinates and fixed values in the other coordinates; that is,
C = {x ∈ {0, 1}k : xi = zi for all i ∈ Λ} for some z ∈ {0, 1}k and some Λ ⊆ [k] with
k − |Λ| = r.

The geometric intuition is simple: a cylinder set corresponds to the vertices of a face of a
unit cube. A radius-1 Hamming ball corresponds to the vertices of a corner of a unit cube.
The vectors in a radius-1 Hamming ball are affinely independent. See Figure 5A for an
illustration.
Proof of Theorem 4 The proof is based on the ideas developed by Cueto et al. (2010) for
studying the RBM probability model. We prove a stronger (more technical) statement than
the one given in the theorem: The set {0, 1}k+n contains m disjoint radius-1 Hamming balls
whose union does not contain any set of the form [x] := {(x, y) ∈ {0, 1}k+n : y ∈ {0, 1}n}
for x ∈ {0, 1}k, and whose complement has full affine rank, as a subset of Rk+n.

We consider the Jacobian of RBMk
n,m for the parameterization given in Definition 1.

The dimension of RBMk
n,m is the maximum rank of the Jacobian over all possible choices

of θ = (W,V, b, c) ∈ RN , N = n+m+ (n+ k)m. Let hθ(v) := argmaxz∈{0,1}m p(z|v) denote
the most likely hidden state of RBMk+n,m given the visible state v = (x, y), depending on
the parameter θ. After a few direct algebraic manipulations, we find that the maximum
rank of the Jacobian is bounded from below by the maximum over θ of the dimension of
the column-span of the matrix Aθ with rows(

(1, x>, y>), (1, x>, y>)⊗ hθ(x, y)>
)
, for all (x, y) ∈ {0, 1}k+n,

modulo vectors whose (x, y)-th entries are independent of y given x. Here ⊗ is the Kronecker
product, which is defined by (aij)i,j⊗(bkl)k,l = (aijbkl)ik,jl. The modulo operation has the ef-
fect of disregarding the input distribution p(x) in the joint distribution p(x, y) = p(x)p(y|x)
represented by the RBM. For example, from the first block of Aθ we can remove the columns
that correspond to x, without affecting the mentioned column-span. Summarizing, the max-
imal column-rank of Aθ modulo the vectors whose (x, y)-th entries are independent of y
given x is a lower bound for the dimension of RBMk

n,m.

Note that Aθ depends on θ in a discrete way: the parameter space RN is partitioned in
finitely many regions where Aθ is constant. The piece-wise linear map thus emerging, with
linear pieces represented by the Aθ, is the tropical CRBM morphism, and its image is the
tropical CRBM model.

Each linear region of the tropical morphism corresponds to a function hθ : {0, 1}k+n →
{0, 1}m taking visible state vectors to the most likely hidden state vectors. Geometrically,
such an inference function corresponds to m slicings of the (k + n)-dimensional unit hy-
percube. Namely, every hidden unit divides the visible space {0, 1}k+n ⊂ Rk+n in two
halfspaces, according to its preferred state.

Each of these m slicings defines a column block of the matrix Aθ. More precisely,

Aθ = (A,AC1 , · · · , ACm) ,

where A is the matrix with rows (1, v1, . . . , vk+n) for all v ∈ {0, 1}k+n, and AC is the same
matrix, with rows multiplied by the indicator function of the set C of points v classified as
positive by a linear classifier (slicing).
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If we consider only linear classifiers that select rows of A corresponding to disjoint
Hamming balls of radius one (that is, such that the Ci are disjoint radius-one Hamming
balls), then the rank of Aθ is equal to the number of such classifiers times (n+k+1) (which
is the rank of each block ACi), plus the rank of A{0,1}k+n\∪i∈[m]Ci

(which is the remainder

rank of the first block A). The column-rank modulo functions of x is equal to the rank
minus k+ 1 (which is the dimension of the functions of x spanned by columns of A), minus
at most the number of cylinder sets [x] = {(x, y) : y ∈ {0, 1}n} for some x ∈ {0, 1}k that are
contained in ∪i∈[m]Ci. This completes the proof of the claim.

The bound given in the first item is a consequence of the following observations. Each
cylinder set [x] contains 2n points. If a given cylinder set [x] intersects a radius-1 Hamming
ball B but is not contained in it, then it also intersects the radius-2 Hamming sphere
around B. Choosing the radius-1 Hamming ball slicings C1, . . . , Cm to have centers at least
Hamming distance 4 apart, we can ensure that their union does not contain any cylinder
set [x].

The second item is by the second item of Proposition 3; when the probability model
RBMn+k,m is full dimensional, then RBMk

n,m is full dimensional.

Proof of Corollary 5 For the maximal cardinality of distance-4 binary codes of length l it
is known thatA(l, 4) ≥ 2r, where r is the largest integer with 2r < 2l

1+(l−1)+(l−1)(l−2)/2 (Gilbert,

1952; Varshamov, 1957), and so A2(l, 4) ≥ 2l−blog2(l2−l+2)c. Furthermore, for the minimal
size of radius-one covering codes of length l it is known that K(l, 1) ≤ 2l−blog2(l+1)c (Cueto
et al., 2010).

Appendix B. Details on Universal Approximation

In the following two subsections we address the minimal sufficient and the necessary number
of hidden units for universal approximation.

B.1 Sufficient Number of Hidden Units

This subsection contains the proof of Theorem 7 about the minimal size of CRBM universal
approximators. The proof is constructive: given any target conditional distribution, it
proceeds by adjusting the weights of the hidden units successively until obtaining the desired
approximation. The idea of the proof is that each hidden unit can be used to model the
probability of an output vector, for several different input vectors. The probability of a
given output vector can be adjusted at will by a single hidden unit, jointly for several
input vectors, when these input vectors are in general position. This comes at the cost of
generating dependent output probabilities for all other inputs in the same affine space. The
main difficulty of the proof lies in the construction of sequences of successively conflict-free
groups of affinely independent inputs, and in estimating the shortest possible length of such
sequences exhausting all possible inputs. The proof is composed of several lemmas and
propositions. We start with a few definitions:
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Definition 24 Given two probability distributions p and q on a finite set X , the Hadamard
product or renormalized entry-wise product p∗q is the probability distribution on X defined
by (p ∗ q)(x) = p(x)q(x)/

∑
x′ p(x

′)q(x′) for all x ∈ X . When building this product, we
assume that the supports of p and q are not disjoint, such that the normalization term does
not vanish.

The probability distributions that can be represented by RBMs can be described in terms
of Hadamard products. Namely, for every probability distribution p that can be represented
by RBMn,m, the model RBMn,m+1 with one additional hidden unit can represent precisely
the probability distribution of the form p′ = p ∗ q, where q = λ′r + (1 − λ′)s is a mixture,
with λ′ ∈ [0, 1], of two strictly positive product distributions r(x) =

∏
i∈[n] ri(xi) and

s(x) =
∏
i∈[n] si(xi). For clarity, the notations are x = (x1, . . . , xn) ∈ {0, 1}n, r, s ∈ ∆n,

and ri, si ∈ ∆1 for all i ∈ [n] = {1, . . . , n}. In other words, each additional hidden unit
amounts to Hadamard-multiplying the distributions representable by an RBM with the
distributions representable as mixtures of product distributions. The same result is obtained
by considering only the Hadamard products with mixtures where r is equal to the uniform
distribution. In this case, the distributions p′ = p ∗ q are of the form p′ = λp+ (1− λ)p ∗ s,
where s is any strictly positive product distribution and λ = λ′

λ′+2n(1−λ′)∑x p(x)s(x) is any

weight in [0, 1].

Definition 25 A probability sharing step is a transformation taking a probability distribu-
tion p to p′ = λp+ (1− λ)p ∗ s, for some strictly positive product distribution s and some
λ ∈ [0, 1].

In order to prove Theorem 7, for each k ∈ N and n ∈ N we want to find an mk,n ∈ N such
that: for any given strictly positive conditional distribution q(·|·), there exists p ∈ RBMn+k,0

and mk,n probability sharing steps taking p to a strictly positive joint distribution p′ with
p′(·|·) = q(·|·). The idea is that the starting distribution is represented by an RBM with
no hidden units, and each sharing step is realized by adding a hidden unit to the RBM. In
order to obtain these sequences of sharing steps, we will use the following technical lemma:

Lemma 26 Let B be a radius-1 Hamming ball in {0, 1}k and let C be a cylinder subset of
{0, 1}k containing the center of B. Let λx ∈ (0, 1) for all x ∈ B ∩ C, let ỹ ∈ {0, 1}n and
let δỹ denote the Dirac delta on {0, 1}n assigning probability one to ỹ. Let p ∈ ∆k+n be a
strictly positive probability distribution with conditionals p(·|x) and let

p′(·|x) :=

{
λxp(·|x) + (1− λx)δỹ, for all x ∈ B ∩ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Then, for any ε > 0, there is a probability sharing step taking p to a joint distribution p′′

with conditionals satisfying
∑

y |p′′(y|x)− p′(y|x)| ≤ ε for all x ∈ (B ∩ C) ∪ ({0, 1}k \ C).

Proof We define the sharing step p′ = λp + (1 − λ)p ∗ s with a product distribution s
supported on C × {ỹ} ⊆ {0, 1}k+n. Note that given any distribution q on C and a radius-1
Hamming ball B whose center is contained in C, there is a product distribution s on C such
that s|C∩B ∝ q|C∩B. In other words, the restriction of a product distribution s to a radius-1
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Hamming ball B can be made proportional to any non-negative vector of length |B|. To
see this, recall that a product distribution is a vector with entries s(x) =

∏
i∈[k] si(xi),

x = (x1, . . . , xk) ∈ {0, 1}k. Without loss of generality let B be centered at (0, . . . , 0); that
is, B = {x ∈ {0, 1}k :

∑
i∈[k] xi ≤ 1}. The restriction of s to B is given by

s|B =
( ∏
i∈[k]

si(0), s1(1)
∏

i∈[k]\{1}
si(0), s2(1)

∏
i∈[k]\{2}

si(0), . . . , sk(1)
∏

i∈[k]\{k}
si(0)

)
=

( ∏
i∈[k]

si(0),
s1(1)

s1(0)

∏
i∈[k]

si(0),
s2(1)

s2(0)

∏
i∈[k]

si(0), . . . ,
sk(1)

sk(0)

∏
i∈[k]

si(0)
)

∝
(

1,
s1(1)

s1(0)
,
s2(1)

s2(0)
, . . . ,

sk(1)

sk(0)

)
.

Now, by choosing the factor distributions si = (si(0), si(1)) ∈ ∆1 appropriately, the vector( s1(1)
s1(0) , . . . ,

sk(1)
sk(0)

)
can be made arbitrary in Rk+.

We have the following two implications of Lemma 26:

Corollary 27 For any ε > 0 and q(·|x) ∈ ∆n for all x ∈ B ∩ C, there is an ε′ > 0
such that, for any strictly positive joint distribution p ∈ ∆k+n with conditionals satisfying∑

y |p(y|x) − δ0(y)| ≤ ε′ for all x ∈ B ∩ C, there are 2n − 1 sharing steps taking p to
a joint distribution p′′ with conditionals satisfying

∑
y |p′′(y|x) − p′(y|x)| ≤ ε for all x ∈

(B ∩ C) ∪ ({0, 1}k \ C), where δ0 is the Dirac delta on {0, 1}n assigning probability one to
the vector of zeros and

p′(·|x) :=

{
q(·|x), for all x ∈ B ∩ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Proof Consider any x ∈ B∩C. We will show that the probability distribution q(·|x) ∈ ∆n

can be written as the transformation of a Dirac delta by 2n−1 sharing steps. Then the claim
follows from Lemma 26. Let σ : {0, 1}n → {0, . . . , 2n − 1} be an enumeration of {0, 1}n.
Let p(0)(y|x) = δσ−1(0)(y) be the starting distribution (the Dirac delta concentrated at the

state ỹ ∈ {0, 1}n with σ(ỹ) = 0) and let the t-th sharing step be defined by p(t)(y) =
λxσ−1(t)p

(t−1)(y|x) + (1 − λxσ−1(t))δσ−1(t)(y), for some weight λxσ−1(t) ∈ [0, 1]. After 2n − 1
sharing steps, we obtain the distribution

p(2n−1)(y|x) =
∑
ỹ

( ∏
ỹ′ : σ(ỹ′)>σ(ỹ)

λxỹ′
)

(1− λxỹ)δỹ(y), for all y ∈ {0, 1}n,

whereby λxỹ := 0 for σ(ỹ) = 0. This distribution is equal to q(·|x) for the following choice
of weights:

λxỹ := 1− q(ỹ|x)

1−∑ỹ′ : σ(ỹ′)>σ(ỹ) q(ỹ
′|x)

, for all ỹ ∈ {0, 1}n.

It is easy to verify that these weights satisfy the condition λxỹ ∈ [0, 1] for all ỹ ∈ {0, 1}n,
and λxỹ = 0 for that ỹ with σ(ỹ) = 0, independently of the specific choice of σ.
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Note that this corollary does not make any statement about the rows p′′(·|x) with
x ∈ C \B. When transforming the (B ∩C)-rows of p according to Lemma 26, the (C \B)-
rows get transformed as well, in a non-trivial dependent way. Fortunately, there is a sharing
step that allows us to “reset” exactly certain rows to a desired point measure, without
introducing new non-trivial dependencies:

Corollary 28 For any ε > 0, any cylinder set C ⊆ {0, 1}k, and any ỹ ∈ {0, 1}n, any
strictly positive joint distribution p can be transformed by a probability sharing step to a joint
distribution p′′ with conditionals satisfying

∑
y |p′′(y|x) − p′(y|x)| ≤ ε for all x ∈ {0, 1}k,

where

p′(·|x) :=

{
δỹ, for all x ∈ C
p(·|x), for all x ∈ {0, 1}k \ C

.

Proof The sharing step can be defined as p′′ = λp+(1−λ)p∗s with s close to the uniform
distribution on C × {ỹ} and λ close to 0 (close enough depending on ε).

We will refer to a sharing step as described in Corollary 28 as a reset of the C-rows
of p. Furthermore, we will denote by star the intersection of a radius-1 Hamming ball and
a cylinder set containing the center of the ball. See Figure 5A.

With all the observations made above, we can construct an algorithm that generates
an arbitrarily accurate approximation of any given conditional distribution by applying a
sequence of sharing steps to any given strictly positive joint distribution. The details are
given in Algorithm 1. The algorithm performs sequential sharing steps on a strictly positive
joint distribution p ∈ ∆k+n until the resulting distribution p′ has a conditional distribution
p′(·|·) satisfying

∑
y |p′(y|x)− q(y|x)| ≤ ε for all x.

In order to obtain a bound on the number m of hidden units for which RBMk
n,m can

approximate a given target conditional distribution arbitrarily well, we just need to evaluate
the number of sharing steps run by Algorithm 1. For this purpose, we investigate the
combinatorics of sharing step sequences and evaluate their worst case lengths. We can
choose as starting distribution some p ∈ RBMn+k,0 with conditionals satisfying

∑
y |p(y|x)−

δ0(y)| ≤ ε′ for all x ∈ {0, 1}k, for some ε′ > 0 small enough depending on the target
conditional q(·|·) and the targeted approximation accuracy ε.

Definition 29 A sequence of stars B1, . . . , Bl packing {0, 1}k with the property that the
smallest cylinder set containing any of the stars in the sequence does not intersect any
previous star in the sequence is called a star packing sequence for {0, 1}k.

The number of sharing steps run by Algorithm 1 is bounded from above by (2n−1) times
the length of a star packing sequence for the set of inputs {0, 1}k. Note that the choices of
stars and the lengths of the possible star packing sequences are not unique. Figure 5B gives
an example showing that starting a sequence with large stars is not necessarily the best
strategy to produce a short sequence. The next lemma states that there is a class of star
packing sequences of a certain length, depending on the size of the input space. Thereby,
this lemma upper-bounds the worst case complexity of Algorithm 1.
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Algorithm 1 Algorithmic illustration of the proof of Theorem 7.

Input: Strictly positive joint distribution p, target conditional distribution q(·|·), and ε > 0
Output: Transformation p′ of the input p with

∑
y |p′(y|x)− q(y|x)| ≤ ε for all x

Initialize B ← ∅ {Here B ⊆ {0, 1}k denotes the set of inputs x that have been readily
processed in the current iteration}
while B 6⊇ {0, 1}k do

Choose (disjoint) cylinder sets C1, . . . , CK packing {0, 1}k \ B
If needed, perform at most K sharing steps resetting the Ci rows of p for all i ∈ [K],
taking p(·|x) close to δ0 for all x ∈ Ci for all i ∈ [K] and leaving all other rows close to
their current values, according to Corollary 28
for each i ∈ [K] do

Perform at most 2n − 1 sharing steps taking p(·|x) close to q(·|x) for all x ∈ Bi,
where Bi is some star contained in Ci, and leaving the ({0, 1}k \ Ci)-rows close to
their current values, according to Corollary 27

end for
B ← B ∪ (∪i∈[K]B

i)
end while

Lemma 30 Let r ∈ N, S(r) := 1 + 2 + · · · + r, k ≥ S(r), fi(z) := 2S(i−1) + (2i − (i +
1))z, and F (r) := fr(fr−1(· · · f2(f1))). There is a star packing sequence for {0, 1}k of
length 2k−S(r)F (r). Furthermore, for this sequence, Algorithm 1 requires at most R(r) :=∏r
i=2(2i − (i+ 1)) resets.

Proof The star packing sequence is constructed by the following procedure. In each step,
we define a set of cylinder sets packing all sites of {0, 1}k that have not been covered by
stars so far, and include a sub-star of each of these cylinder sets in the sequence.

• As an initialization step, we split {0, 1}k into 2k−S(r) S(r)-dimensional cylinder sets,
denoted D(j1), j1 ∈ {1, . . . , 2k−S(r)}.

• In the first step, for each j1, the S(r)-dimensional cylinder set D(j1) is packed by
2S(r−1) r-dimensional cylinder sets C(j1),i, i ∈ {1, . . . , 2S(r−1)}. For each i, we define
the star B(j1),i as the radius-1 Hamming ball within C(j1),i centered at the smallest
element of C(j1),i (with respect to the lexicographic order of {0, 1}k), and include it
in the sequence.

• At this point, the sites in D(j1) that have not yet been covered by stars is D(j1) \
(∪iB(j1),i). This set is split into 2r− (r+ 1) S(r− 1)-dimensional cylinder sets, which
we denote by D(j1,j2), j2 ∈ {1, . . . , 2r − (r + 1)}.

• Note that ∪j1D(j1,j2) is a cylinder set, and hence, for each j2, the (∪j1D(j1,j2))-rows
of a conditional distribution being processed by Algorithm 1 can be jointly reset by
one single sharing step to achieve p′(·|x) ≈ δ0 for all x ∈ ∪j1D(j1,j2).

• In the second step, for each j2, the cylinder set D(j1,j2) is packed by 2S(r−2) (r − 1)-
dimensional cylinder sets C(j1,j2),i, i ∈ {1, . . . , 2S(r−2)}, and the corresponding stars
are included in the sequence.
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Figure 5: A) Examples of radius-1 Hamming balls in cylinder sets of dimension 3, 2, and 1.
The cylinder sets are shown as bold vertices connected by dashed edges, and the
nested Hamming balls (stars) as bold vertices connected by solid edges. B) Three
examples of star packing sequences for {0, 1}3. C) Illustration of the star packing
sequence constructed in Lemma 30 for {0, 1}6.

• The procedure is iterated until the r-th step. In this step, each D(j1,...,jr) is a 1-
dimensional cylinder set and is packed by a single 1-dimensional cylinder set C(j1,...,jr),1 =
B(j1,...,jr),1. Hence, at this point, all of {0, 1}k has been exhausted and the procedure
terminates.

Summarizing, the procedure is initialized by creating the branches D(j1), j1 ∈ [2k−S(r)]. In
the first step, each branch D(j1) produces 2S(r−1) stars and splits into the branches D(j1,j2),
j2 ∈ [2r − (r + 1)]. More generally, in the i-th step, each branch D(j1,...,ji) produces 2S(r−i)

stars, and splits into the branches D(j1,...,ji,ji+1), ji+1 ∈ [2r−(i−1) − (r + 1− (i− 1))].

The total number of stars D(j1,...,jr) is given precisely by 2k−S(r) times the value of
the iterative function F (r) = fr(fr−1(· · · f2(f1))), whereby f1 = 1. The total number of
resets is given by the number of branches created from the first step on, which is precisely
R(r) =

∏
i∈[r](2

i − (i+ 1)).

Figure 5C offers an illustration of these star packing sequences. It shows the case
k = S(3) = 6. In this case there is only one initial branch D(1) = {0, 1}6. The stars
B(1),i, i ∈ [2S(2)] = [8] are shown in solid blue, B(1,1),i, i ∈ [2S(1)] = [2] in dashed red, and
B(1,1,1),1 in dotted green. For clarity, only these stars are highlighted. The stars B(1,j2),i

and B(1,j2,1),1 resulting from split branches are similar to those highlighted.

With this, we obtain the general bound of the theorem:
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m
(r)
n,k =

r 2k 2−S(r) F (r) (2n − 1) + R(r)

1 2k 2−1 1 (2n − 1) + 0
2 2k 2−3 3 (2n − 1) + 1
3 2k 2−6 20 (2n − 1) + 4
4 2k 2−10 284 (2n − 1) + 44
5 2k 2−15 8408 (2n − 1) + 1144
...

...
...

...
...

...

> 17 2k 0.2263 (2n − 1) + 2S(r)0.0269

Table 1: Numerical evaluation of the bounds from Proposition 31. Each row evaluates the

universal approximation bound m
(r)
n,k for a value of r.

Proposition 31 (Theorem 7, general bound) Let k ≥ S(r). The model RBMk
n,m can

approximate every conditional distribution from ∆k,n arbitrarily well whenever m ≥ m
(r)
k,n,

where m
(r)
k,n := 2k−S(r)F (r)(2n − 1) +R(r).

Proof This is in view of the complexity of Algorithm 1 for the sequence described in
Lemma 30.

In order to make the universal approximation bound more comprehensible, in Table 1

we evaluated the sequence m
(r)
n,k for r = 1, 2, 3 . . . and k ≥ S(r). Furthermore, the next

proposition gives an explicit expression for the coefficients 2−S(r)F (r) and R(r) appearing

in the bound. This yields the second part of Theorem 7. In general, the bound m
(r)
n,k

decreases with increasing r, except possibly for a few values of k when n is small. For a

pair (k, n), any m
(r)
n,k with k ≥ S(r) is a sufficient number of hidden units for obtaining a

universal approximator.

Proposition 32 (Theorem 7, explicit bounds) The function K(r) := 2−S(r)F (r) is
bounded from below and above as K(6)

∏r
i=7

(
1− i−3

2i

)
≤ K(r) ≤ K(6)

∏r
i=7

(
1− i−4

2i

)
for all r ≥ 6. Furthermore, K(6) ≈ 0.2442 and K(∞) ≈ 0.2263. Moreover, R(r) :=∏r
i=2(2i − (i+ 1)) = 2S(r)P (r), where P (r) := 1

2

∏r
i=2(1− (i+1)

2i
), and P (∞) ≈ 0.0269.

Proof From the definition of S(r) and F (r), we obtain that

K(r) = 2−r +K(r − 1)(1− 2−r(r + 1)). (1)

Note that K(1) = 1
2 , and that K(r) decreases monotonically.

Now, note that if K(r−1) ≤ 1
c , then the left hand side of Equation (1) is bounded from

below as K(r) ≥ K(r − 1)(1− 2−r(r + 1− c)). For a given c, let rc be the first r for which
K(r − 1) ≤ 1

c , assuming that such an r exists. Then

K(r) ≥ K(rc − 1)

r∏
i=rc

(
1− i+ 1− c

2i

)
, for all r ≥ rc. (2)
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Similarly, if K(r) > 1
d for all r ≥ rb, then

K(r) ≤ K(rb − 1)
r∏

i=rb

(
1− i+ 1− b

2i

)
, for any r ≥ rb.

Direct computations show that K(6) ≈ 0.2445 ≤ 1
4 . On the other hand, using the compu-

tational engine Wolfram—Alpha(access June 01, 2014) we obtain
∏∞
i=0

(
1− i−3

2i

)
≈

7.7413. Plugging both terms into Equation (2) yields that K(r) is always bounded from
below by 0.2259.

SinceK(r) is never smaller than or equal to 1
5 , we obtainK(r) ≤ K(r′−1)

∏r
i=r′

(
1− i−4

2i

)
,

for any r′ and r ≥ r′. Using r′ = 7, the right hand side evaluates in the limit of large r to
approximately 0.2293.

Numerical evaluation of K(r) from Equation (1) for r up to one million (using Matlab
R2013b) indicates that, indeed, K(r) tends to approximately 0.2263 for large r.

We close this subsection with the remark that the proof strategy can be used not only
to study universal approximation, but also approximability of selected classes of conditional
distributions:

Remark 33 If we only want to model a restricted class of conditional distributions, then
adapting Algorithm 1 to these restrictions may yield tighter bounds for the number of
hidden units that suffices to represent these restricted conditionals. For example:

If we only want to model the target conditionals q(·|x) for the inputs x from a subset
S ⊆ {0, 1}k and do not care about q(·|x) for x 6∈ S, then in the algorithm we just need to
replace {0, 1}k by S. In this case, a cylinder set packing of S\B is understood as a collection
of disjoint cylinder sets C1, . . . , CK ⊆ {0, 1}k with ∪i∈[K]C

i ⊇ S \B and (∪i∈[K]C
i)∩B = ∅.

Furthermore, if for some cylinder set Ci and a corresponding star Bi ⊆ Ci the condi-
tionals q(·|x) with x ∈ Bi have a common support set T ⊆ {0, 1}n, then the Ci-rows of
p can be reset to a distribution δy with y ∈ T , and only |T | − 1 sharing steps are needed
to transform p to a distribution whose conditionals approximate q(·|x) for all x ∈ Bi to
any desired accuracy. In particular, for the class of target conditional distributions with
supp q(·|x) = T for all x, the term 2n−1 in the complexity bound of Algorithm 1 is replaced
by |T | − 1.

B.2 Necessary Number of Hidden Units

Proposition 9 follows from simple parameter counting arguments. In order to make this
rigorous, first we make the observation that universal approximation of (conditional) prob-
ability distributions by Boltzmann machines or any other models based on exponential
families, with or without hidden variables, requires the number of model parameters to be
as large as the dimension of the set being approximated. We denote by ∆X ,Y the set of
conditionals with inputs form a finite set X and outputs from a finite set Y. Accordingly,
we denote by ∆Y the set of probability distributions on Y.

Lemma 34 Let X , Y, and Z be some finite sets. Let M ⊆ ∆X ,Y be defined as the set
of conditionals of the marginal M′ ⊆ ∆X×Y of an exponential family E ⊆ ∆X×Y×Z . If
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M is a universal approximator of conditionals from ∆X ,Y , then dim(E) ≥ dim(∆X ,Y) =
|X |(|Y| − 1).

The intuition of this lemma is that, for models defined by marginals of exponential
families, the set of conditionals that can be approximated arbitrarily well is essentially
equal to the set of conditionals that can be represented exactly, implying that there are no
low-dimensional universal approximators of this type.

Proof of Lemma 34 We consider first the case of probability distributions; that is, the
case with |X | = 1 and X × Y ∼= Y. Let M be the image of the exponential family E by
a differentiable map f (for example, the marginal map). The closure E , which consists of
all distributions that can be approximated arbitrarily well by E , is a compact set. Since f
is continuous, the image of E is also compact, and M = f(E) = f(E). The model M is a
universal approximator if and only if M = ∆Y . The set E is a finite union of exponential
families; one exponential family EF for each possible support set F of distributions from E .
When dim(E) < dim(∆Y), each point of each EF is a critical point of f (the Jacobian is not
surjective at that point). By Sard’s theorem, each EF is mapped by f to a set of measure
zero in ∆Y . Hence the finite union ∪F f(EF ) = f(∪FEF ) = f(E) = M has measure zero
in ∆Y .

For the general case, with |X | ≥ 1, note that M⊆ ∆X ,Y is a universal approximator if
and only if the joint model ∆XM = {p(x)q(y|x) : p ∈ ∆X , q ∈ M} ⊆ ∆X×Y is a universal
approximator. The latter is the marginal of the exponential family ∆X ∗ E = {p ∗ q : p ∈
∆X , q ∈ E} ⊆ ∆X×Y×Z . Hence the claim follows from the first part.

Proof of Proposition 9 If RBMk
n,m is a universal approximator of conditionals from

∆k,n, then the model consisting of all probability distributions of the form p(x, y) =
1
Z

∑
z exp(z>Wy + z>V x + b>y + c>z + f(x)) is a universal approximator of probability

distributions from ∆k+n. The latter is the marginal of an exponential family of dimension

mn+mk + n+m+ 2k − 1. Thus, by Lemma 34, m ≥ 2k+n−2k−n
(n+k+1) .

Appendix C. Details on the Maximal Approximation Errors

Proof of Proposition 10 We have that DRBMk
n,m
≤ maxp∈∆k+n : pX=uX D(p‖RBMn+k,m).

The right hand side is bounded by n, since the RBM model contains the uniform distribu-
tion. It is also bounded by the maximal divergence DRBMn+k,m

≤ (n+ k)−blog2(m+ 1)c−
m+1

2blog2(m+1)c (Montúfar et al., 2013).

In order to prove Theorem 11, we will upper bound the approximation errors of CRBMs
by the approximation errors of submodels of CRBMs. First, we note the following:

Lemma 35 The maximal divergence of a conditional model that is a Cartesian product
of a probability model is bounded from above by the maximal divergence of that probability
model: if M = ×x∈{0,1}kN ⊆ ∆k,n for some N ⊆ ∆n, then DM ≤ DN .
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Proof For any p ∈ ∆k,n, we have

D(p‖M) = inf
q∈M

1

2k

∑
x

D(p(·|x)‖q(·|x))

=
1

2k

∑
x

inf
q(·|x)∈N

D(p(·|x)‖q(·|x))

≤ 1

2k

∑
x

DN = DN .

This proves the claim.

Definition 36 Given a partition Z = {Y1, . . . ,YL} of {0, 1}n, the partition model PZ ⊆
∆n is the set of all probability distributions on {0, 1}n with constant value on each partition
block.

The set {0, 1}l, l ≤ n naturally defines a partition of {0, 1}n into cylinder sets {y ∈
{0, 1}n : y[l] = z} for all z ∈ {0, 1}l. The divergence from PZ is bounded from above by

DPZ ≤ l − n. Now, the model RBMk
n,m can approximate certain products of partition

models arbitrarily well:

Proposition 37 Let Z = {0, 1}l with l ≤ n. Let r be any integer with k ≥ S(r). The
model RBMk

n,m can approximate any conditional distribution from the product of partition

models PkZ := PZ × · · · × PZ arbitrarily well whenever m ≥ 2k−S(r)F (r)(|Z| − 1) +R(r).

Proof This is analogous to the proof of Proposition 19, with a few differences. Each
element z of Z corresponds to a cylinder set {y ∈ {0, 1}n : y[l] = z} and the collection of
cylinder sets for all z ∈ Z is a partition of {0, 1}n. Now we can run Algorithm 1 in a slightly
different way, with sharing steps defined by p′ = λp + (1 − λ)uz, where uz is the uniform
distribution on the cylinder set corresponding to z.

Proof of Theorem 11 This follows directly from Lemma 35 and Proposition 37.

Appendix D. Details on the Representation of Conditional Distributions
from Markov Random Fields

The proof of Theorem 14 is based on ideas from Younes (1996), who discussed the universal
approximation property of Boltzmann machines. We will use the following:

Lemma 38 (Younes 1996, Lemma 1) Let % be a real number. Consider a fixed integer
N and binary variables x1, . . . , xN . There are real numbers w and b such that:

• If % ≥ 0, log (1 + exp(w(x1 + · · ·+ xN ) + b)) = %
∏
i xi +Q(x1, . . . , xN ).

• If % ≤ 0, log (1 + exp(w(x1 + · · ·+ xN−1 − xN ) + b)) = %
∏
i xi +Q(x1, . . . , xN ).
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Where Q is in each case a polynomial of degree less than N − 1 in x1, . . . , xN .

The following is a generalization of another result from the same work:

Lemma 39 Let I and J be two simplicial complexes on [n] with J ⊆ I. If p is any
distribution from EI and m ≥ |{A ∈ I \ J : |A| > 1}|, then there is a distribution p′ ∈ EJ ,
such that p ∗ p′ is contained in RBMn,m.

Proof The proof follows closely the arguments presented by Younes (1996, Lemma 2). Let
K = {A ∈ I \ J : |A| > 1}. Consider an RBM with n visible units and m = |K| hidden
units. Consider a joint distribution q(x, u) = 1

Z exp(H(x, u)) of the fully observable RBM,
defined as follows. We label the hidden units by subsets A ∈ K. For each A ∈ K, let s(A)
denote the largest element of A, and let

H(x, u) =
∑
A∈K

uA
(
wAS

εA
A (xA) + bA

)
+
∑
s∈[n]

bsxs,

where

SεAA (xA) =
( ∑
s∈A,s<s(A)

xs

)
+ εAxs(A),

for some εA ∈ {−1,+1}, wA, bA, bs ∈ R that we will specify further below.

Denote the log probabilities of p(x) and p′(x) by

E(x) =
∑
A∈I

θA
∏
i∈A

xi and E′(x) =
∑
A∈J

ϑA
∏
i∈A

xi.

We obtain the desired equality (p ∗ p′)(x) =
∑

u q(x, u) when

E(x) = log

(∑
u

exp(H(x, u))

)
−
∑
A∈J

ϑA
∏
i∈A

xi, (3)

for some choice of ϑA, for A ∈ J , some choice of εA, wA, bA, for A ∈ K, and some choice of
bs, for s ∈ [n]. We have

log

(∑
u

exp(H(x, u))

)
= log

∑
u

exp
(∑

A

uA(wAS
εA
A (xA) + bA) +

∑
s∈[n]

bsxs

)
= log

(∑
u

∏
A

exp(uA(wAS
εA
A (xA) + bA))

)
exp

( ∑
s∈[n]

bsxs

)
= log

(∏
A

∑
uA

exp(uA(wAS
εA
A (xA) + bA))

)
exp

( ∑
s∈[n]

bsxs

)
=

∑
A

log(1 + exp(wAS
εA
A (xA) + bA)) +

∑
s∈[n]

bsxs.
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The terms φεAA (xA) := log
(
1 + exp(wAS

εA
A (xA) + bA)

)
are of the same form as the func-

tions from Lemma 38. To solve Equation (3), we first apply Lemma 38 on φεAA to cancel the
terms θA

∏
i∈A xi of E(x) for which A is a maximal element of I \J of cardinality more than

one. This involves choosing appropriate εA ∈ {−1,+1}, wA and bA, for the corresponding
A. The remaining polynomial consists of terms with strictly smaller monomials. We apply
lemma 38 repeatedly on this polynomial, until only monomials with A ∈ J or |A| = 1
remain. These terms are canceled with ϑA

∏
i∈A xi, A ∈ J , or with bsxs, s ∈ [n].

Proof of Theorem 14 By Lemma 39, there is a p′ ∈ EJ , J = 2[k], such that p ∗ p′ is in
RBMk+n,m. Now, the conditionals distribution (p ∗ p′)(y|x) of the last n units, given the
first k units, are independent of p′, since this is independent of y.

Proof of Corollary 15 The statement follows from Theorem 14, considering the simplicial
complex I = 2[k] × J and a joint probability distribution p ∈ EI ⊆ ∆k+n with the desired
conditionals p(·|x) = px.

Appendix E. Details on the Approximation of Conditional Distributions
with Restricted Supports

Proof of Proposition 18 This follows from the fact that RBMn+k,m can approximate
any probability distribution with support of cardinality m + 1 arbitrarily well (Montúfar
and Ay, 2011).

Proof of Proposition 19 This is analogous to the proof of Proposition 31. The com-
plexity of Algorithm 1 as evaluated there does not depend on the specific structure of the
support sets, but only on their cardinality, as long as they are the same for all x.

The following lemma states that a CRBM can compute all deterministic conditionals
that can be computed by a feedforward linear threshold network with the same number of
hidden units. Recall that the Heaviside step function, here denoted hs, maps a real number
a to 0 if a < 0, to 1/2 if a = 0, and to 1 if a > 0. A linear threshold function with N input
bits and M output bits is just a function of the form {0, 1}N → {0, 1}M ; y 7→ hs(Wy + b)
with a generic choice of W ∈ RM×N and b ∈ RM .

Lemma 40 Consider a function f : {0, 1}k → {0, 1}n. The model RBMk
n,m can approxi-

mate the deterministic policy p(y|x) = δf(x)(y) arbitrarily well, whenever this can be repre-
sented by a feedforward linear threshold network with m hidden units; that is, when

f(x) = hs(W>(hs(V x+ c)) + b), for all x ∈ {0, 1}k,

for some generic choice of W,V, b, c.

Proof Consider the conditional distribution p(·|x). This is the visible marginal of p(y, z|x) =
1
Z exp((V x+c)>z+b>y+z>Wy). Consider weights α and β, with α large enough, such that
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argmaxz(αV x+αc)>z = argmaxz(αV x+αc)>z+ (βW>z+βb)>y for all y ∈ {0, 1}n. Note
that for generic choices of V and c, the set argmaxz(αV+αc)>z consists of a single point z∗ =
hs(V x+ c). We have argmax(y,z)(αV x+αc)>z+(βW>z+βb)>y = (z∗, argmaxy(βW

>z∗+

βb)>y). Here, again, for generic choices of V and b, the set argmaxy(βW
>z∗ + βb)>y con-

sists of a single point y∗ = hs(W>z∗ + b). The joint distribution p(y, z|x) with parameters
tβW, tαV, tβb, tαc tends to the point measure δ(y∗,z∗)(y, z) as t → ∞. In this case p(y|x)

tends to δy∗(y) as t → ∞, where y∗ = hs(W>z∗ + b) = hs(W> hs(V x + c) + b), for all
x ∈ {0, 1}k.

Proof of Theorem 20 The second statement is precisely Lemma 40. For the more
general statement the arguments are as follows. Note that the conditional distribution
p(y|z) of the output units, given the hidden units, is the same for a CRBM and for its
feedforward network version. Furthermore, for each input x, the CRBM output distribution
is p(y|x) =

∑
z(q(z|x) ∗ p(z))p(y|z), where

q(z|x) =
exp(z>V x+ c>z)∑
z′ exp(z′>V x+ c>z′)

is the conditional distribution represented by the first layer,

p(y, z) =
exp(z>Wy + b>y)∑

y′,z′ exp(z′>Wy′ + b>y′)

is the distribution represented by the RBM with parameters W, b, 0, and

q(z|x) ∗ p(z) =
q(z|x)p(z)∑
z′ q(z

′|x)p(z′)
, for all z,

is the renormalized entry-wise product of the conditioned distribution q(·|x) and the RBM
hidden marginal distribution

p(z) =
∑
y

p(y, z).

Now, if q is deterministic, then q(z|x)∗p(z) is the same as q(z|x), regardless of p(z) (strictly
positive).

The proof of Theorem 21 builds on the following lemma, which describes a combinatorial
property of the deterministic policies that can be approximated arbitrarily well by CRBMs.

Lemma 41 Consider a function f : {0, 1}k → {0, 1}n. The model RBMk
n,m can approxi-

mate the deterministic policy p(y|x) = δf(x)(y) arbitrarily well only if there is a choice of
the model parameters W,V, b, c for which

f(x) = hs(W> hs([W,V ]
[
f(x)
x

]
+ c) + b), for all x ∈ {0, 1}k,

where the Heaviside function hs is applied entry-wise to its argument.
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Proof Consider a choice of W,V, b, c. For each input state x, the conditional represented
by RBMk

n,m is equal to the mixture distribution p(y|x) =
∑

z p(z|x)p(y|x, z), with mix-

ture components p(y|x, z) = p(y|z) ∝ exp((z>W + b>)y) and mixture weights p(z|x) ∝∑
y′ exp((z>W +b>)y′+z>(V x+c)) for all z ∈ {0, 1}m. The support of a mixture distribu-

tion is equal to the union of the supports of the mixture components with non-zero mixture
weights. In the present case, if

∑
y |p(y|x)−δf(x)(y)| ≤ α, then

∑
y |p(y|x, z)−δf(x)(y)| ≤ α/ε

for all z with p(z|x) > ε, for any ε > 0. Choosing α small enough, α/ε can be made arbi-
trarily small for any fixed ε > 0. In this case, for every z with p(z|x) > ε, necessarily

(z>W + b>)f(x)� (z>W + b>)y, for all y 6= f(x), (4)

and hence
sgn(z>W + b>) = sgn(f(x)− 1

2).

Furthermore, the probability assigned by p(z|x) to all z that do not satisfy Equation (4)
has to be very close to zero (upper bounded by a function that decreases with α). The
probability of z given x is given by

p(z|x) =
1

Zz|x
exp(z>(V x+ c))

∑
y′

exp((z>W + b>)y′).

In view of Equation (4), for all z with p(z|x) > ε, if α is small enough, p(z|x) is arbitrarily
close to

1

Zz|x
exp(z>(V x+ c)) exp((z>W + b>)f(x)).

This holds, in particular, for every z that maximizes p(z|x). Therefore,

argmaxz p(z|x) = argmaxz z
>(Wf(x) + V x+ c).

Each of these z must satisfy Equation (4). This completes the proof.

Proof of Theorem 21 We start with the sufficient condition. The bound 2k − 1 follows
directly from Proposition 18. For the second bound, note that any function f : {0, 1}k →
{0, 1}n; x 7→ y can be computed by a parallel composition of the functions fi : x 7→ yi, for
all i ∈ [n]. Hence the bound follows from Lemma 40 and the fact that a feedforward linear
threshold network with 3

k+22k hidden units can compute any Boolean function.
We proceed with the necessary condition. Lemma 41 shows that each determinis-

tic policy that can be approximated by RBMk
n,m arbitrarily well corresponds to the y-

coordinate fixed points of a map defined as the composition of two linear threshold functions
{0, 1}k+n → {0, 1}m; (x, y) 7→ hs([W,V ] [ yx ] + c) and {0, 1}m → {0, 1}n; z 7→ hs(W>z + b).
In particular, we can upper bound the number of deterministic policies that can be ap-
proximated arbitrarily well by RBMk

n,m, by the total number of compositions of two linear
threshold functions; one with n+ k inputs and m outputs and the other with m inputs and
n outputs.

Let LTF(N,M) be the number of linear threshold functions with N inputs and M
outputs. It is known that (Ojha, 2000; Wenzel et al., 2000)

LTF(N,M) ≤ 2N
2M .
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The number of deterministic policies that can be approximated arbitrarily well by RBMk
n,m

is thus bounded above by LTF(n+ k,m) · LTF(m,n) ≤ 2m(n+k)2+nm2
. The actual number

may be smaller, in view of the fixed-point and shared parameter constraints. On the other
hand, the number of deterministic policies in ∆k,n is as large as (2n)2k = 2n2k . The claim
follows from comparing these two numbers.

References
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Guido Montúfar and Nihat Ay. Refinements of universal approximation results for deep
belief networks and restricted Boltzmann machines. Neural Computation, 23(5):1306–
1319, 2011.
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Guido Montúfar, Keyan Ghazi-Zahedi, and Nihat Ay. A theory of cheap control in embodied
systems. PLoS Comput Biol, 11(9):e1004427, 09 2015.

Piyush C. Ojha. Enumeration of linear threshold functions from the lattice of hyperplane
intersections. IEEE Transactions on Neural Networks, 11(4):839–850, Jul 2000.

Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, Inc.,
Orlando, FL, USA, 1983.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. Restricted Boltzmann ma-
chines for collaborative filtering. In Proceedings of the 24th International Conference on
Machine Learning, pages 791–798. ACM, 2007.

2435
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