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Abstract

We consider the query and computational complexity of learning multiplicity tree au-
tomata in Angluin’s exact learning model. In this model, there is an oracle, called the
Teacher, that can answer membership and equivalence queries posed by the Learner. Mo-
tivated by this feature, we first characterise the complexity of the equivalence problem for
multiplicity tree automata, showing that it is logspace equivalent to polynomial identity
testing.

We then move to query complexity, deriving lower bounds on the number of queries
needed to learn multiplicity tree automata over both fixed and arbitrary fields. In the
latter case, the bound is linear in the size of the target automaton. The best known upper
bound on the query complexity over arbitrary fields derives from an algorithm of Habrard
and Oncina (2006), in which the number of queries is proportional to the size of the target
automaton and the size of a largest counterexample, represented as a tree, that is returned
by the Teacher. However, a smallest counterexample tree may already be exponential in the
size of the target automaton. Thus the above algorithm has query complexity exponentially
larger than our lower bound, and does not run in time polynomial in the size of the target
automaton.

We give a new learning algorithm for multiplicity tree automata in which counterex-
amples to equivalence queries are represented as DAGs. The query complexity of this
algorithm is quadratic in the target automaton size and linear in the size of a largest coun-
terexample. In particular, if the Teacher always returns DAG counterexamples of minimal
size then the query complexity is quadratic in the target automaton size—almost matching
the lower bound, and improving the best previously-known algorithm by an exponential
factor.

Keywords: exact learning, query complexity, multiplicity tree automata, Hankel matri-
ces, DAG representations of trees, polynomial identity testing

1. Introduction

Trees are a basic object in computer science and a natural model of hierarchical data, such
as syntactic structures in natural language processing and XML data on the web. Trees
arise across a broad range of applications, including natural text and speech processing,
computer vision, bioinformatics, web information extraction, and social network analysis.
Many of these applications require representing probability distributions over trees and more
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general functions from trees into the real numbers. A broad class of such functions can be
defined by multiplicity tree automata, a powerful algebraic model which strictly generalises
probabilistic tree automata.

Multiplicity tree automata were introduced by Berstel and Reutenauer (1982) under
the terminology of linear representations of tree series. They augment classical finite tree
automata by assigning to each transition a value in a field. They also generalise multiplicity
word automata, introduced by Schiitzenberger (1961), since words are a special case of trees.
Multiplicity tree automata define many natural structural properties of trees and can be used
to model probabilistic processes running on trees. Multiplicity word and tree automata have
been applied to a wide variety of machine learning problems, including speech recognition,
image processing, character recognition, and grammatical inference; see the paper of Balle
and Mohri (2012) for references.

The task of learning automata from examples and queries has been extensively studied
since the 1960s. Two notable results in this domain show the impossibility of efficiently
learning deterministic finite automata from positive and negative examples alone. First,
Gold (1978) showed that the problem of exactly identifying the smallest deterministic finite
automaton consistent with a set of accepted and rejected words is NP-hard. Later, Kearns
and Valiant (1994) showed that the concept class of regular languages is not efficiently PAC
learnable using any polynomially-evaluable hypothesis class under standard cryptographic
assumptions.

A significant positive result on learning regular languages was achieved by Angluin
(1987), who considered a Learner that did not just passively receive data but that was
also able to ask queries. Specifically, Angluin considered membership queries, in which the
Learner asks an oracle whether a given word belongs to the target language, and equivalence
queries, in which the Learner asks an oracle whether a hypothesis is correct, obtaining a
counterexample if it is not. Subsequent research has sought to establish the learnability of
many other hypothesis classes in the same setting, including classes of Boolean formulae,
decision trees, context-free languages, and polynomials; see the book of Kearns and Vazirani
(1994, Chapter 8) for more details and references.

In this paper we study the problem of learning multiplicity tree automata in the exact
learning model of Angluin (1988), outlined above. Formally, in this model a Learner actively
collects information about the target function from a Teacher through membership queries,
which ask for the value of the function on a specific input, and equivalence queries, which
suggest a hypothesis to which the Teacher provides a counterexample if one exists. A class
of functions ¥ is exactly learnable if there exists an exact learning algorithm such that for
any function f € %, the Learner identifies f using polynomially many membership and
equivalence queries in the size of a shortest representation of f and the size of a largest
counterexample returned by the Teacher during the execution of the algorithm. The exact
learning model is an important theoretical model of the learning process. It is well known
that learnability in the exact learning model also implies learnability in the PAC model
with membership queries (Valiant, 1985).

We are interested in questions of succinctness and computational efficiency, both from
the point of view of the Teacher and the Learner. From the point of view of the Teacher,
one of the main questions is checking equivalence of multiplicity tree automata, i.e., whether
two multiplicity tree automata define the same function on trees. Seidl (1990) proved that
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equivalence of multiplicity tree automata is decidable in polynomial time assuming unit-cost
arithmetic, and in randomised polynomial time in the usual bit-cost model. No finer analysis
of the complexity of this problem exists to date. In contrast, the complexity of equivalence
for classical nondeterministic word and tree automata has been completely characterised:
PSPACE-complete over words (Aho et al., 1974) and EXPTIME-complete over trees (Seidl,
1990).

Our first contribution, in Section 3, is to show that the equivalence problem for multi-
plicity tree automata is logspace equivalent to polynomial identity testing, i.e., the problem
of deciding whether a polynomial given as an arithmetic circuit is zero. The latter problem is
known to be solvable in randomised polynomial time (DeMillo and Lipton, 1978; Schwartz,
1980; Zippel, 1979), whereas solving it in deterministic polynomial time is a well-studied
and longstanding open problem (see Arora and Barak, 2009).

Our second contribution, in Section 5, is to give lower bounds on the number of queries
needed to learn multiplicity tree automata in the exact learning model, both for the case
of an arbitrary and a fixed underlying field. The bound in the former case is linear in the
automaton size. In the latter case, the bound is linear in the automaton size for alphabets
of a fixed maximal rank. To the best of our knowledge, these are the first lower bounds on
the query complexity of exactly learning multiplicity tree automata.

Habrard and Oncina (2006) give an algorithm for learning multiplicity tree automata
in the exact learning model. Consider a target multiplicity tree automaton whose minimal
representation A has n states. The algorithm of Habrard and Oncina, op. cit., makes at
most 1 equivalence queries and number of membership queries proportional to |A|- s, where
|A| is the size of A and s is the size of a largest counterexample returned by the Teacher.
Since this algorithm assumes that the Teacher returns counterexamples represented explic-
itly as trees, s can be exponential in |A|, even for a Teacher that returns counterexamples
of minimal size (see Example 3). This observation reveals an exponential gap between the
query complexity of the algorithm of Habrard and Oncina (2006) and our above-mentioned
lower bound, which is only linear in |A|. Another consequence is that the worst-case time
complexity of this algorithm is exponential in the size of the target automaton.

Given two inequivalent multiplicity tree automata with n states in total, the algorithm
of Seidl (1990) produces a subtree-closed set of trees of cardinality at most n that contains
a tree on which the automata differ. It follows that the counterexample contained in this
set has at most n subtrees, and hence can be represented as a DAG with at most n vertices
(see Section 3.2). Thus in the context of exact learning it is natural to consider a Teacher
that can return succinctly-represented counterexamples, i.e., trees represented as DAGs.

DAGs have been used as succinct representations of trees in a number of domains,
including classification problems (Sperduti and Starita, 1997) and query evaluation for
XML (Buneman et al., 2003; Frick et al., 2003). Tree automata that run on DAG represen-
tations of finite trees were first introduced by Charatonik (1999) as extensions of ordinary
tree automata, and were further studied by Anantharaman et al. (2005). The automata
considered by Charatonik (1999) and Anantharaman et al. (2005) run on fully-compressed
DAGs. Fila and Anantharaman (2006) extend this definition by introducing tree automata
that run on DAGs that may be partially compressed. In this paper, we employ the latter
framework in the context of learning multiplicity automata.
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In Section 4, we present a new exact learning algorithm for multiplicity tree automata
that achieves the same bound on the number of equivalence queries as the algorithm of
Habrard and Oncina (2006), while using number of membership queries quadratic in the
target automaton size and linear in the largest counterexample size, even when counterex-
amples are given as DAGs. Assuming that the Teacher provides minimal DAG representa-
tions of counterexamples, our algorithm therefore makes quadratically many queries in the
target automaton size. This is exponentially fewer queries than the best previously-known
algorithm (Habrard and Oncina, 2006) and quadratic in the above-mentioned lower bound.
Furthermore, our algorithm performs a quadratic number of arithmetic operations in the
size of the target automaton, and can be implemented in randomised polynomial time in
the Turing model.

Like the algorithm of Habrard and Oncina (2006), our algorithm constructs a matricial
representation of the target automaton, called the Hankel matriz (Carlyle and Paz, 1971;
Fliess, 1974). However on receiving a counterexample tree z, the former algorithm adds a
new column to the Hankel matrix for every suffix of z, while our algorithm adds (at most)
one new row for each subtree of z. Crucially the number of suffixes may be exponential in
the size of a DAG representation of z, whereas the number of subtrees is only linear in the
size of a DAG representation.

An extended abstract (Marusi¢ and Worrell, 2014) of this work appeared in the proceed-
ings of MFCS 2014. The current paper contains full proofs of all results reported there, the
formal definition of multiplicity tree automata running on DAGs, and a refined complexity
analysis of the learning algorithm.

1.1 Related Work

One of the earliest results about the exact learning model was the proof of Angluin (1987)
that deterministic finite automata are learnable. This result was generalised by Drewes and
Hoégberg (2007) to show exact learnability of deterministic finite (bottom-up) tree automata,
generalising also a result of Sakakibara (1990) on the exact learnability of context-free
grammars from their structural descriptions®.

The learning algorithm of Drewes and Hogberg (2007) was generalised by Maletti (2007)
to show that deterministic weighted tree automata over a (commutative) semifield are ex-
actly learnable, generalising also an earlier result of Drewes and Vogler (2007) which was
restricted to the class of deterministic all-accepting (i.e., every final weight is non zero)
weighted tree automata. Recently, a unifying framework for exact learning of deterministic
weighted tree automata over a semifield has been proposed (Drewes et al., 2011). Specifi-
cally, Drewes et al., op. cit., introduce the notion of abstract observation tables, an abstract
data type for learning deterministic weighted tree automata in the exact learning model,
and show that every correct implementation of abstract observation tables yields a correct
learning algorithm.

Exact learnability of nondeterministic weighted automata over a field (here called mul-
tiplicity automata) has also been extensively studied. Beimel et al. (2000) show that mul-
tiplicity word automata can be learned efficiently, and apply this to learn various classes
of DNF formulae and polynomials. These results were generalised by Klivans and Shpilka

1. Structural descriptions of a context-free grammar are unlabelled derivation trees of the grammar.
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(2006) to show exact learnability of restricted algebraic branching programs and noncom-
mutative set-multilinear arithmetic formulae. Bisht et al. (2006) give an almost tight (up to
a log factor) lower bound on the number of queries made by any exact learning algorithm
for the class of multiplicity word automata.

An exact learning algorithm for a class of nondeterministic tree automata, namely resid-
ual finite tree automata, is given by Kasprzik (2013). The latter paper identifies the size
of counterexamples as a hidden exponential factor in the complexity of the learning algo-
rithm, observing in particular that a smallest counterexample can have exponential size
in the number of states of the target automaton. Such a phenomenon does not prevent
the class of tree automata from being exactly learnable since in the exact learning model
the complexity measure takes into account the size of a largest counterexample. However,
this does raise the question of developing a learning algorithm whose complexity would
be polynomial in the size of succinctly-represented counterexamples, which is one of the
motivations for the present work.

Denis and Habrard (2007) consider the problem of learning probability distributions
over trees that are recognised by a multiplicity tree automaton from samples drawn in-
dependently according to the target distribution. They give an inference algorithm that
exactly identifies such recognisable probability distributions in the limit with probability
one (with respect to the randomly-drawn examples). Most closely related to the topic of
the present paper is the work of Habrard and Oncina (2006), who give an algorithm for
learning multiplicity tree automata in the exact learning model, as discussed above.

A variety of spectral methods have been employed for learning multiplicity word and tree
automata (Bailly et al., 2009; Balle and Mohri, 2012; Denis et al., 2014; Gybels et al., 2014).
This line of research originates in earlier work of Hsu et al. (2012) that gives a spectral
learning algorithm (based on singular value decomposition) for hidden Markov models.
Particularly close to the present paper is the work of Bailly et al. (2010), which learns
probability distributions over trees that are recognised by some multiplicity tree automaton.
Their approach lies within a passive learning framework in which one is given a sample
of trees independently drawn according to a target distribution, and the aim is to infer a
multiplicity tree automaton that approximates the target. As in our approach, the notion of
a Hankel matrix plays a central role in the algorithm of Bailly et al. (2010). There the Hankel
matrix is called an observation matriz, and it encodes an empirical distribution on trees
obtained by sampling from the target distribution. Bailly et al., op. cit., apply principal
component analysis in order to identify a low-dimensional approximation of the vector space
spanned by the residuals of the target probability distribution. From this approximation
they build an automaton whose associated tree series approximates the target distribution.
They moreover obtain bounds on the estimation error of the output tree series with respect
to the target distribution in terms of the sample size and the desired confidence.

In contrast to the above-described approach of Bailly et al. (2010), in our work the target
dimension (i.e., number of states) is not part of the input since our aim is to learn a minimal
multiplicity tree automaton that exactly represents the target tree series. Moreover, in the
present paper the entries of the Hankel matrix are determined by active queries rather than
passive observations, and the learning process continues until we know a sufficient number
of entries to be able to exactly construct a representation of the target.
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2. Preliminaries

Let N and Ny denote the set of all positive and nonnegative integers, respectively. Let
n € N. We write [n] for the set {1,2,...,n} and I, for the identity matrix of order n.
For every i € [n], we write e; for the i'" n-dimensional coordinate row vector. For any
n-dimensional vector v, we write v; for its i entry.

For any matrix A, we write A; for its i'® row, A7 for its j*! column, and A, ; for its (i, j)"
entry. Given nonempty subsets I and J of the rows and columns of A, respectively, we write
Ay, for the submatrix (4; )ier jes of A. For singletons, we write simply A; j := Ay y and
Ar,j = Ap - We also consider matrices whose rows and columns are indexed by tuples of
natural numbers ordered lexicographically.

Given a set V, we denote by V* the set of all finite ordered tuples of elements from
V. For any subset S C V, the characteristic function of S (relative to V') is the function
Xxs : V — {0,1} such that xs(z) =1if z € S, and xs(z) = 0 otherwise.

2.1 Kronecker Product

Let A be a matrix of dimension m; X n; and B a matrix of dimension msy X ny. The
Kronecker product of A by B, written as A ® B, is a matrix of dimension mimeo X nins
where (A ® B)(i1,i2),(j1,j2) = Ail,jl . Bi2’j2 for every 1] € [ml], 19 € [mg], J1 € [nl], J2 € [TLQ]

The Kronecker product is bilinear, associative, and has the following mized-product
property: For any matrices A, B, C, D such that products A - C and B - D are defined, it
holds that (A® B) - (C® D)= (A-C)® (B-D).

Let k € Nand Ay, ..., Ax be matrices such that for every [ € [k], matrix A; has n; rows.
It can easily be shown using induction on k that for every (i1,...,ix) € [n1] X -+ X [ng], it
holds that

(A @+ ® Ag) = (A1), @+ @ (Ag)i,- (1)

(8150+s1k)

We write ®f:1 A=A ® Ag.

For every k € Ny we define the k-fold Kronecker power of a matrix A, written as A®¥,
inductively by A®0 = I; and A®% = A®(¢—1) @ A for k > 1.

Let k € Ny. For any square matrices A and B, we have

(A® B)* = AF @ B, (2)

For any matrices Ay, ..., Ay and By, ..., By, where product A;- B is defined for every [ € [k],
we have

(A1® @A) (B1®---® By) = (A1 - B1) ® --- ® (Ag - By). (3)

Equations (2) and (3) follow easily from the mixed-product property by induction on k.

2.2 Finite Trees

A ranked alphabet is a tuple (X, rk) where ¥ is a nonempty finite set of symbols and
rk : ¥ — No is a function. Ranked alphabet (3, rk) is often written ¥ for short. For every
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k € Ny, we define the set of all k-ary symbols ¥y, := 7k~ ({k}). If ¢ € ¥}, then we say that
o has rank (or arity) k. We say that ¥ has rank m if m = maz{rk(c) : 0 € X}.

The set of X-trees (trees for short), written as T, is the smallest set T satisfying the
following two conditions: (i) X9 C T; and (ii) if £ > 1, 0 € Xk, t1,...,tx € T then
o(t1,...,tg) € T. Given a X-tree t, a subtree of t is a Y-tree consisting of a node in ¢ and
all of its descendants in ¢. The set of all subtrees of ¢ is denoted by Sub(t).

Let X be a ranked alphabet and F be a field. A tree series over ¥ with coefficients in F
is a function f : Ty, — F. For every t € Ty, we call f(t) the coefficient of t in f. The set of
all tree series over X with coefficients in F is denoted by F((T%)).

We define the tree series height, size, #, € Q((Tx)) where o € X, as follows: (i) ift € g
then height(t) = 0, size(t) = 1, #5(t) = Xyt=0}; and (ii) if t = a(t1,...,tx) where k > 1,
a € X, t1,..., ti € Ty, then height(t) = 1+ maz;cppyheight(t;), size(t) =1+ 3,y size(ti),
#o(t) = X{a=o} T 2ic[r) #o(ti), respectively. For every n € Ny, we define the sets TS =
{t € Ts : height(t) < n}, T8 := {t € Tx : height(t) = n}, and T5" := T U T2,

Let O be a nullary symbol not contained in 3. The set Cs; of X-contexts (contexts for
short) is the set of all ({0} U X)-trees in which O occurs exactly once. The concatenation
of c € Cx and t € Ty UCY, written as c[t], is the tree obtained by substituting ¢ for O
in ¢. Intuitively, the O-labelled leaf of ¢ acts as a variable in that substituting a Y-tree
(respectively, X-context) ¢ for that variable yields a new Y-tree (X-context) c[t].

A suffiz of a X-tree t is a Y-context ¢ such that ¢ = ¢[t'] for some X-tree t'. The Hankel
matriz of a tree series f € F((T%)) is the matrix H : Ts, x Cx, — F such that H; . = f(c[t])
for every t € Ty, and ¢ € Cx..

2.3 Multiplicity Tree Automata

Let F be a field. An F-multiplicity tree automaton (F-MTA) is a quadruple A = (n, 3, u,7y)
which consists of the dimension n € Ny representing the number of states, a ranked alphabet
Y, a family of transition matrices p = {u(o) : o € L}, where p(o) € F™ > and the final
weight vector v € F™ 1. The size of the automaton A, written as |A[, is defined as

|A| == Z n™ O+ L,
oex

That is, the size of A is the total number of entries in all transition matrices and the final
weight vector.?

Example 1 Let ¥ = {0,1,+, X, —} be a ranked alphabet where 0,1 are nullary symbols and
+, X, — are binary symbols. We define an F-multiplicity tree automaton A = (2,%, u,7y) as
follows. Automaton A has two states, g1 and q2, and has final weight vector v = [0 1]

This means that states q1 and qo have final weights v1 = 0 and o = 1, respectively. Given
a symbol o € ¥ of rank k, the transition matriz p(c) has dimension 2F x 2 and stores the
weights of transitions from each k-tuple of origin states to each destination state. Let the

2. We measure size assuming explicit rather than sparse representations of the transition matrices and final
weight vector because minimal automata are only unique up to change of basis (see Theorem 4).
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transition matrices of A be u(0) = [1 0], p(1) =[1 1],

10 10 10
0 1 0 -1 0 0
pE) =1y (=1 ade()= g
0 0 0 0 0 1

Entry u(1)y = 1 means that there is a transition 1 EN q2 with weight 1 into state g on reading

symbol 1. Similarly, entry p(+)@21),2 = 1 means that there is a transition +(q2,q1) N g2
with weight 1 from pair of states (q2,q1) into state g2 on reading symbol +.

We extend p from ¥ to Ty, by defining

plote, .. te)) = (p(t1) ® -+ @ p(ty)) - u(o)

for every o € ¥j and t1,...,t; € Tx. The tree series |A|| € F((Tx)) recognised by A is
defined by ||A|[(t) = u(t) - v for every t € Tx.. Note that a 0-dimensional multiplicity tree
automaton necessarily recognises a zero tree series. Two automata A;, Ao are said to be
equivalent if ||A1]| = || A2]|.

We further extend p from 7% to Cy by treating O as a unary symbol and defining
w(0) := I,,. This allows to define u(c) € F*™*™ for every ¢ = o(t1,...,t;) € Cx inductively
by writing u(c) := (pu(t1) ® - -+ @ u(ty)) (o). It can easily be shown that p(c[t]) = p(t)-p(c)
for every t € Ty, and ¢ € Cx.

Example 2 Let us consider the computation of F-MTA A = (2,%, u,y) from Ezample 1

on the following Y -tree t:

The transition matrices define bottom-up runs of A on t. Intuitively, a run on t corresponds

to multiple copies of automaton A walking along t from leaves to the root. Every such run

has a weight in F which is defined as the product of the weights of all transitions taken.
On tree t, automaton A has one nonzero-weight run ending in state qq, as follows:

q1
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Moreover, automaton A has two nonzero-weight runs ending in state g2, as follows:

ﬁ\ q2

q2 QQ@ ql Q1 q1 Q1@ Q1@ q2

Each of the above three runs has weight 1. Therefore, the total weight of all runs of au-
tomaton A on tree t in which the root is labelled g1 is 1, and the total weight of all runs in
which the root is labelled qo is 2. Indeed, algebraically, by definition of p we have that

p(t) = (p(x(1,1)) ® p(+(0,1))) - u(+)
= (((e(1) @ (1)) - (%)) ® (((0) @ (1)) - u(+))) - ()
1 0 1 0 1 0
=@ gen D ol lel@ aen w5 e
0 1 0 O 0 O
1 0] 1 0 1 0
:[1111]88@[1100]-81 81
0 1 0 0 0 0
1 0] 1 0
=1 1ot 1]) 8 }:[1 11 1] 8 1:[1 2]
0 0] 0 0

Finally, the weight ||A||(t) of tree t is the sum of the weights of all runs on t, where the
weight of each run is multiplied by the final weight of its root label. Algebraically, we have

A = ut)-v=[1 2]-[0 1]"

= 2.

Let Ay = (n1,%, 11,71) and As = (ng, X, u2,v2) be two F-multiplicity tree automata.
The product of Aj by Ag, written as A X Ag, is the F-multiplicity tree automaton (n, X, u, v)
where:

e n=nj-Ny;

o If o € ¥ then u(o) = Py - (u1(0) ® pa(o)) where Py is a permutation matrix of order
(n1 - n2)* uniquely defined (see Remark 1 below) by

(U1 @ Qup) (@ @) = (U1 @v1) @+ @ (ur Dug)) - Py (4)

for all uy,...,up € F™ and vy,..., 0 € F"2;
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® V=77

Remark 1 We argue that for every k € Ny such that k is the rank of a symbol in 3,
matriz Py, is well-defined by Equation (4). In order to do this, it suffices to show that Py is
well- deﬁned on a set of basis vectors of F1*™ and FY"2 and then extend linearly. To that
end, let (e; )ze[nl} and (e )]e[ng} be bases of F1X™ and F'¥"2, respectively. Let us define sets
of vectors

LR ®el )R (] @ @€l ) ity ... i € [na] d1,- .-k € [na]}

and
FEy = {(62-11 ®€?1> (SRR (ellk ®632k) T, ..., 0 € [nﬂ,jl,...,jk S [TLQ]}

Then, E1 and Eo are two bases of the vector space FY*™"2  Therefore, Py, is well-defined
as an invertible matrix mapping basis E1 to basis Eo.

Essentially the same product construction as in the proof of the first part of the following
proposition is given by Berstel and Reutenauer (1982, Proposition 5.1) using the terminology
of linear representations of tree series rather than multiplicity tree automata.

Proposition 2 Let Ay and As be F-multiplicity tree automata over a ranked alphabet 3.
Then, for every t € Ty, it holds that || A1 x Asl|(t) = ||A1]|(t) - ||A2]|(t). Furthermore, in case
F =Q, automaton A1 X As can be computed from A1 and Az in logarithmic space.

Proof Let A; = (n1,%, u1,7m), A2 = (n2, 3, p2,72), and Ay x Ay = (n, 3, u,v). First we
show that for any t € Ty,

p(t) = pa(t) @ pa(t). (5)

We prove that Equation (5) holds for all ¢ € T% using induction on height(t). The base
case t = o € Y holds immediately by definition since Py = I. For the induction step, let
h € Ny and assume that Equation (5) holds for every ¢t € TESh. Take any ¢t € Tg“. Then
t =o(t1,...,tx) for some k > 1, 0 € X, and tq,...,t; € ngh. By induction hypothesis,
Equation (4), and the mixed-product property of Kronecker product we now have

u(t) = (p(t) ® -+ @ p(te)) - plo)
= (11 (t1) ®M2(t1)) ® (1 (te) ® p2(tr))) - P - (1 (o) @ pa(0))
=((mt)e-o m(tk)) (H2(t1) @ -+ - @ pa(ty))) - (H1(0) @ pa(0))
= () @ - @ p(ty)) - p1(0)) @ ((p2(t) @ -+ @ pa(ty)) - pa2(o))
= p1(t) ® pa(t)

This completes the proof of Equation (5) by induction. For every ¢ € T%;, we now have

AL X Af|(t) = p(t) - v = (a1 () © pa(t)) - (11 ©72)
= (1) - 1) @ (p2(t) - 72) = [ A [[() @ [[A2[l(2) = [|Ax[[(2) - [ A2]|(2)-
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Automaton A; X As can be computed by a Turing machine which scans the transition
matrices and the final weight vectors of A; and As, and then writes down the entries of the
transition matrices and the final weight vector of their product A; x As onto the output
tape. This computation requires maintaining only a constant number of counters to store
the indices of transition matrices, which takes logarithmic space in the representation of
automata A; and As. Hence, the Turing machine computing A; X As uses logarithmic space
in the work tape. n

A tree series f is called recognisable if it is recognised by some multiplicity tree automa-
ton; such an automaton is called an MTA-representation of f. An MTA-representation of
f that has the smallest dimension is called minimal. The set of all recognisable tree series
in F((Tx)) is denoted by Rec(Z, F).

The following result was first shown by Bozapalidis and Louscou-Bozapalidou (1983);
an essentially equivalent result was later shown by Habrard and Oncina (2006).

Theorem 3 (Bozapalidis and Louscou-Bozapalidou, 1983) Let X be a ranked alpha-
bet and F be a field. Let f € F((Tx)) and let H be the Hankel matriz of f. It holds that
f € Rec(X,F) if and only if H has finite rank over F. In case f € Rec(3,T), the dimension
of a minimal MTA-representation of f equals the rank of H.

The following result by Bozapalidis and Alexandrakis (1989, Proposition 4) states that
for any recognisable tree series, its minimal MTA-representation is unique up to change of
basis.

Theorem 4 (Bozapalidis and Alexandrakis, 1989) Let X be a ranked alphabet and F
be a field. Let f € Rec(X,F) and let r be the rank (over F) of the Hankel matriz of f. Let
Ay = (r, 2, p1,7m) be an MTA-representation of f. Given an F-multiplicity tree automaton
Ay = (r, %, u2,v2), it holds that As recognises f if and only if there exists an invertible
matriz U € F™" such that vo = U - y1 and po(c) = US™) . 4y (0) - U~ for every o € .

2.4 DAG Representations of Finite Trees

A directed multigraph consists of a set of nodes V' and a multiset of directed edges E C V x V.
We say that a directed multigraph is acyclic if the underlying directed graph has no cycles;
we say it is ordered if a linear order on the successors of each node is assumed. A directed
multigraph is rooted if there is a distinguished root node v such that all other nodes are
reachable from v.

Let ¥ be a ranked alphabet. A DAG representation of a ¥-tree (X-DAG or DAG for
short) is a rooted acyclic ordered directed multigraph whose nodes are labelled with symbols
from ¥ such that the outdegree of each node is equal to the rank of the symbol it is labelled
with. Formally a ¥-DAG consists of a set of nodes V', for each node v € V a list of successors
succ(v) € V*, and a node labelling A : V' — ¥ where for each node v € V it holds that
A(v) € Bjsuce(v)- Note that Y-trees are a subclass of X-DAGs.

Let G be a ¥-DAG. The size of G, denoted by size(G), is the number of nodes in G.
The height of G, denoted by height(G), is the length of a longest directed path in G. For
any node v in G, the sub-DAG of G rooted at v, denoted by G|,, is the X-DAG consisting
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of the node v and all of its descendants in G. Clearly, if v is the root of G then G|, = G.
The set {G], : v is a node in G} of all the sub-DAGs of G is denoted by Sub(G).

For any 3-DAG G, we define its unfolding into a X-tree, denoted by unfold(G), induc-
tively as follows: If the root of G is labelled with a symbol ¢ and has the list of successors
v1,...,V, then

unfold(G) = o(unfold(Gl,,), ..., unfold(Gl,, ).
The next proposition follows easily from the definition.
Proposition 5 If G is a X-DAG, then Sub(unfold(G)) = unfold[Sub(G)].

Because a context has exactly one occurrence of symbol O, any DAG representation
of a X-context is a ({0} U X)-DAG that has a unique path from the root to the (unique)
O-labelled node. The concatenation of a DAG K, representing a Y-context, and a X-DAG
G is the X-DAG, denoted by K[G], obtained by substituting the root of G for O in K.

Proposition 6 Let K be a DAG representation of a Y-context, and let G be a X-DAG.
Then, unfold(K[G]) = unfold(K)[unfold(G)].

Proof The proof is by induction on height(K). For the base case, let height(K) = 0. Then,
we have that K = O and therefore unfold(O[G]) = unfold(G) = unfold(O)[unfold(G)] for
any X-DAG G.

For the induction step, let h € Ny and assume that the result holds if height(K) < h.
Let K be a DAG representation of a Y-context such that height(K) = h + 1. Let the
root of K have label ¢ and list of successors v1,...,vr. By definition, there is a unique
path in K going from the root to the O-labelled node. Without loss of generality, we can
assume that the O-labelled node is a successor of v;. Take an arbitrary 3-DAG G. Since
height(K|, ) < h, we have by the induction hypothesis that

unfold(K|[G]) = o(unfold(K|,, [G]), unfold(K]|,,), ..., unfold(K]|, ))
= o(unfold(K|,, )[unfold(G)], unfold(K]|,,), ..., unfold(K], ))
= o(unfold(K]|,, ), unfold(K|,,), ..., unfold(K|,, ))[unfold(G)]
= unfold(K)[unfold(G)].

This completes the proof by induction. |

2.5 Multiplicity Tree Automata on DAGs

In this section, we introduce the notion of a multiplicity tree automaton running on DAGs.
To the best of our knowledge, this notion has not been studied before.

Let F be a field, and A = (n, %, i, y) be an F-multiplicity tree automaton. The compu-
tation of automaton A on a X-DAG G = (V, E) is defined as follows: A run of A on G is a
mapping p : Sub(G) — F" such that for every node v € V, if v is labelled with o and has
the list of successors succ(v) = vy,..., v then

p(Gl,) = (p(Gl,) @ -~ @ p(Gl,,)) - plo).
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Automaton A assigns to G a weight ||A||(G) € F where [|A]|(G) = p(G) - 7.
In the following proposition, we show that the weight assigned by a multiplicity tree
automaton to a DAG is equal to the weight assigned to its tree unfolding.

Proposition 7 Let F be a field, and A = (n, %, u,y) be an F-multiplicity tree automaton.
For any X-DAG G, it holds that p(G) = u(unfold(G)) and | Al[(G) = ||A||(unfold(G)).

Proof Let V be the set of nodes of G. First we show that for every v € V,

p(Gl,) = p(unfold(G|,)). (6)

The proof is by induction on height(G|,). For the base case, let height(G|,) = 0. This
implies that G|, = 0 € ¥y. Therefore, by definition we have that

p(Gl,) = 1) = p(unfold(c)) = p(unfold(Gl,)).

For the induction step, let h € Ny and assume that Equation (6) holds for every v € V
such that height(G|,) < h. Take any v € V such that height(G|,) = h + 1. Let the root of
G|, be labelled with a symbol o and have list of successors succ(v) = vi,...,v;. Then for
every j € [k], we have that height(G|Uj) < h and thus p(G\U]_) = u(unfold(GL}j)) holds by
the induction hypothesis. This implies that

p(Gl,) = (p(Gl,,) ®--- @ p(Gl,,)) - u(o)
= (u(unfold(G|,)) ® - - - @ p(unfold(Gl,,))) - n(o)
= p(o(unfold(Gl,,), - - -, unfold(G]vk)))
= p(unfold(G|,)),

which completes the proof of Equation (6) for all v € V' by induction.
Taking v to be the root of G, we get from Equation (6) that p(G) = p(unfold(Q)).
Therefore, [|A][(G) = p(G) - 7 = p(unfold(G)) -7 = || All (unfold(G)). .

Example 3 Let ¥ = {0¢,02} be a ranked alphabet such that vk(co) = 0 and rk(o2) = 2.
Take any n € N. Let t,, depicted in Figure 1, be the perfect binary X-tree of height n — 1.
Note that size(t,) = O(2"). Define an F-MTA A = (n, %, i, e1) such that p(og) = e, € F1Xn
and p(og) € F"* X" where 1(02) (i41,i4+1),; = 1 for every i € [n — 1], and all other entries of
w(oa) are zero. It is easy to see that | Al|(tn) =1 and ||A||(t) =0 for every t € Tx \ {t,}.

Let B be the 0-dimensional F-MTA over ¥ (so that |B|| = 0). Suppose we were to
check whether automata A and B are equivalent. Then the only counterexample to their
equivalence, namely the tree t,, has size O(2"). Note, however, that t,, has an exponentially
more succinct DAG representation G, given in Figure 2.

2.6 Arithmetic Circuits

An arithmetic circuit is a finite acyclic vertex-labelled directed multigraph whose vertices,
called gates, have indegree 0 or 2. Vertices of indegree 0 are called input gates and are
labelled with a constant 0 or 1, or a variable from the set {z; : i € N}. Vertices of indegree
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2 are called internal gates and are labelled with an arithmetic operation +, x, or —. We
assume that there is a unique gate with outdegree 0 called the output gate. An arithmetic
circuit is called variable-free if all input gates are labelled with 0 or 1.

Given two gates u and v of an arithmetic circuit C, we call u a child of v if (u,v) is a
directed edge in C. The size of C is the number of gates in C'. The height of a gate v in C,
written as height(v), is the length of a longest directed path from an input gate to v. The
height of C' is the maximal height of a gate in C.

An arithmetic circuit C' computes a polynomial over the integers as follows: An input
gate of C labelled with a € {0,1} U {z; : i € N} computes the polynomial o. An internal
gate of C' labelled with * € {+, X, —} computes the polynomial p; x ps where p; and p
are the polynomials computed by its children. For any gate v in C, we write f, for the
polynomial computed by v. The output of C', written as f¢, is the polynomial computed by
the output gate of C. The arithmetic circuit identity testing (ACIT) problem asks whether
the output of a given arithmetic circuit is equal to the zero polynomial.

Remark 8 Any variable-free arithmetic circuit C' can be seen as a X-DAG with the ranked
alphabet ¥ = {0,1,+, x, —} where 0,1 are nullary symbols and +, X, — are binary symbols.
Let A = (2,%, u,y) be the multiplicity tree automaton from Example 1. Then, for any gate
v in C it holds that u(C|,) = [1  fu], where C|, is the sub-DAG of C rooted at v and
fv is the number computed at gate v. (This result can be easily proved using induction on
height(C|,).) In particular, when v is the output gate of C' we get that

T
JAI(C) = w(C)-v=[1 fe]-[0 1] = fe.
Hence, automaton A evaluates the circuit C'.
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2.7 The Learning Model

In this paper we work with the ezact learning model of Angluin (1988): Let f be a target
function. A Learner (learning algorithm) may, in each step, propose a hypothesis function
h by making an equivalence query to a Teacher. If h is equivalent to f, then the Teacher
returns YES and the Learner succeeds and halts. Otherwise, the Teacher returns NO with
a counterexample, which is an assignment x such that h(z) # f(x). Moreover, the Learner
may query the Teacher for the value of the function f on a particular assignment z by
making a membership query on z. The Teacher returns the value f(x) to such a query.

We say that a class of functions % is exactly learnable if there is a Learner that for
any target function f € %, outputs a hypothesis h € & such that h(xz) = f(x) for all
assignments x, and does so in time polynomial in the size of a shortest representation of f
and the size of a largest counterexample returned by the Teacher. We moreover say that
the class € is exactly learnable in (randomised) polynomial time if the learning algorithm
can be implemented to run in (randomised) polynomial time in the Turing model.

3. Equivalence Queries

In the exact learning model, one of the principal algorithmic questions from the point of
view of the Teacher is the computational complexity of equivalence testing. In this section
we characterise the computational complexity of equivalence testing for multiplicity tree
automata, showing that this problem is logspace equivalent to polynomial identity testing.
The latter is a well-studied problem for which there are numerous randomised polynomial-
time algorithms, with the existence of a deterministic polynomial-time algorithm being a
longstanding open problem. Moreover in this section, we explain why it is natural to expect
the Teacher to return succinct DAG counterexamples in the case of inequivalence.

3.1 Computational Complexity of MTA Equivalence

A key algorithmic component of the exact learning framework is checking the equivalence
of the hypothesis and the target function: a task for the Teacher rather than the Learner.
The existence of efficient algorithms to perform such equivalence checks is important for
several applications of the exact learning framework (see, e.g., Feng et al., 2011). With this
in mind, in this subsection we characterise the computational complexity of the equivalence
problem for Q-multiplicity tree automata. Here we specialise the weight field to be Q since
we want to work within the classical Turing model of computation. Parts of this section
also exploit the fact that QQ is an ordered field.

Our main result is:

Theorem 9 The equivalence problem for Q-multiplicity tree automata is logspace interre-

ducible with ACIT.

A related result, characterising equivalence of probabilistic visibly pushdown automata on
words in terms of polynomial identity testing, was shown by Kiefer et al. (2013). On several
occasions in this section, we will implicitly make use of the fact that a composition of two
logspace reductions is again a logspace reduction (Arora and Barak, 2009, Lemma 4.17).
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3.1.1 From MTA EQuUIVALENCE TO ACIT

First, we present a logspace reduction from the equivalence problem for Q-MTAs to ACIT.
We start with the following lemma.

Lemma 10 Given an integer n € N and a Q-multiplicity tree automaton A over a ranked
alphabet X, one can compute, in logarithmic space in |A| and n, a variable-free arithmetic
circuit that has output ZteT§” | Al ().

Proof Let A= (r,%,u,), and let m be the rank of ¥. By definition, it holds that

Do llAl@® = | > u ] (7)

teTs" teTs™

We have ZteTgl w(t) = > yex, #(0). Furthermore for every i € N, it holds that

TS ={o(tr,...,tr) 1k €{0,....,m},0 € g, ta,... .t €T’}

and thus by bilinearity of Kronecker product,

Y= > Y W) @@ pu(ty) - ulo)

teTSiH k=0 0€EDy ¢, TS €Ty’

m

:Z Z Z p(t) | ®---® Z pu(tr) (o)
k=0oc€eXy t1 €T2<i tkeTgi

Rk

m

S wo) Swe )
k=0 \teTy? TEX,

In the following we define a variable-free arithmetic circuit ® that has output ZteTE@ | Al (2).
First, let us denote G(i) := ZteTgi u(t) for every i € N. Then by Equation (8) we have

G(i+1) = Y1, G(H)®* - S(k) where S(k) = > oex, W(o) for every k € {0,...,m}. In
coordinate notation, for every j € [r] we have by Equation (1) that

m k
Gli+1); =) [ G0 - SE)a,..005- 9)

k=0 (11,....l)€[r]* a=1
We present ® as a straight-line program, with built-in constants
{M((Tll,...,lk),j77j cke{0,....m}, o€y, (Ih,....l) € [r]* e[}

representing the entries of the transition matrices and the final weight vector of A, internal
variables {5](‘3117”.7%)7]. ke {0,...,m},(lh,..., 1) € [r]*,5 €[]} and {gi; : i € [n],7 € [r]}
evaluating the entries of matrices S(k) and vectors G(i) respectively, and the final internal
variable f computing the value of ®.
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1. For j € [r] do g1 « Z 1w
gEY

2. For k€ {0,...,m}, (In,....,Ix) € [, G € [r] do sfy, i D ul .
ocEY

3. Fori=1ton—1 do

3.1. For k€ {0,...,m}, (I1,...,lx) € [r]F, j € [r] do

zk:
11, k) < H Gila 117 lk)sd

3.2. For j € [r] do
m
ik
9i+1,5 < Z Z Myt
k=0 (iy,....1x)€[r]*

4. For j € [r] do fj < gnj 7

JE[r]

Table 1: Straight-line program ®

Formally, the straight-line program @ is given in Table 1. Here the statements are given
in indexed-sum and indexed-product notation, which can easily be expanded in terms of
the corresponding binary operations. It follows from Equations (7) and (9) that the output
of @ is G(n) -y = Xyeren [14](1).

The input gates of ® are labelled with rational numbers. By separately encoding nu-
merators and denominators, we can in logarithmic space reduce ® to an arithmetic circuit
where all input gates are labelled with integers. Moreover, without loss of generality we can
assume that every input gate of @ is labelled with 0 or 1. Any other integer label given in
binary can be encoded as an arithmetic circuit.

Recalling that a composition of two logspace reductions is again a logspace reduction,
we conclude that the entire computation takes logarithmic space in |A| and n. [ |

Before presenting the reduction in Proposition 12, we recall the following characterisa-
tion (Seidl, 1990, Theorem 4.2) of equivalence of two multiplicity tree automata over an
arbitrary field.
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Proposition 11 (Seidl, 1990) Suppose A and B are multiplicity tree automata of dimen-
sion n1 and no, respectively, and over a ranked alphabet X. Then, A and B are equivalent
if and only if || A||(t) = || B||(t) for every t € Tys™ ™",

We now turn to the reduction:

Proposition 12 The equivalence problem for Q-multiplicity tree automata is logspace re-
ducible to ACIT.

Proof Let A and B be Q-multiplicity tree automata over a ranked alphabet X, and let n
be the sum of their dimensions. Proposition 2 implies that

Y UAl® —1BI@)* = > (116> + 1BI®? =20 Al B](¢)

teTs" teTs"

= > (IAxAJ®) + B x Bll(t) — 2| A x B|(¢)).

teTs"

Thus by Proposition 11, automata A and B are equivalent if and only if

Do lAx AN+ Y IBxBl1) ~2 Y lAx B|(t) =0. (10)

< < <
teTs™ teTs™ teTs™

We know from Proposition 2 that automata Ax A, Bx B, and A x B can be computed in
logarithmic space. Thus by Lemma 10 one can compute, in logarithmic space in |A| and |B],
variable-free arithmetic circuits that have outputs ZteTgn I|A x Al|(t), ZteTg" | B x B||(t),
and ZteTgn I|A x BJ||(t) respectively. Using Equation (10), we can now easily construct a
variable-free arithmetic circuit that has output 0 if and only if A and B are equivalent. W

3.1.2 FroMm ACIT 1O MTA EQUIVALENCE

We now present a converse reduction: from ACIT to the equivalence problem for Q-MTAs.
Allender et al. (2009, Proposition 2.2) give a logspace reduction of the general ACIT
problem to the special case of ACIT for variable-free circuits. The latter can, by repre-
senting arbitrary integers as differences of two nonnegative integers, be reformulated as the
problem of deciding whether two variable-free arithmetic circuits with only 4+ and x-internal
gates compute the same number. With this result at hand, we turn to the reduction:

Proposition 13 ACIT is logspace reducible to the equivalence problem for Q-multiplicity
tree automata.

Proof Let C; and Cy be two variable-free arithmetic circuits whose internal gates are
labelled with + or x. By padding with extra gates, without loss of generality we can
assume that in each circuit the children of a height-i gate both have height ¢ — 1, +-gates
have even height, x-gates have odd height, and the output gate has an even height h.

In the following we define two Q-MTAs, A; and As, that are equivalent if and only if
circuits C; and Cy have the same output. Automata A; and A, are both defined over a
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ranked alphabet ¥ = {0¢, 01,02} where ¢ is a nullary, o1 is a unary, and o9 is a binary
symbol. Intuitively, automata A; and Ay both recognise the common ‘tree unfolding’ of
circuits Cq and Cs.

We now derive A; from Cy; Aj is analogously derived from Cy. Let {vy,...,v,} be the
set of gates of Cy where v, is the output gate. Automaton A; has a state ¢; for every gate
v; of Cy. Formally, Ay = (r,%, i1, e, ) where for every i € [r]:

e If v; is an input gate with label 1 then u(op); = 1, otherwise u(og); = 0.

o If v; is a +-gate with children v;, and vj;, then p(o1);,,; = p(o1)j.,: = 1if j1 # Jo,
p(o1)j, s = 2 1if j1 = j2, and p(o1);,; = 0 for every I & {j1,j2}. If v; is an input gate or
a x-gate then p(oq)’ = Opx1.

e If v; is a x-gate with children v;, and vj, then p(02)j, j,) = 1, and p(o2)(, 1), = 0
for every (I1,12) # (j1,2). If v; is an input gate or a +-gate then u(o2)’ = 0,2, .

We define a sequence of trees (t,)nen, C Ix by to = 00, tnt1 = o1(ty) for n odd, and
tnt1 = 02(tn, tn) for n even. In the following we show that ||A1]/(tn) = fo,. For every gate
v of C1, by assumption it holds that all paths from v to the output gate have equal length.
We now prove that for every i € [r],

1(th; )i = fo, (11)
where h; := height(v;). The proof uses induction on h; € {0,...,h}. For the base case, let
h; = 0. Then, v; is an input gate and thus by definition of automaton A; we have

p(tn)i = p(to)i = 1(00)i = fo,-

For the induction step, let n € [h] and assume that Equation (11) holds for every gate v;
of height less than n. Take an arbitrary gate v; of C'1 such that h; = n. Let gates v;, and
vj, be the children of v;. Then hj, = hj, = h; —1 = n — 1 by assumption. The induction
hypothesis now implies that u(tp,—1)j, = fo;, and p(tp,—1)j, = fv,,- Depending on the label
of v;, there are two possible cases as follows:

(i) If v; is a +-gate, then h; is even and thus by definition of A; we have

(i(tn,)i = pu(or(th,—1))i = p(tn,—1) - plon)’
= Iu’(thi_l)jl + :u(thi—l)jz = fvjl + f'Uj2 = f'Uz"

(ii) If v; is a x-gate, then h; is odd and thus by definition of A; and Equation (1) we have
(i(th,)i = (o2 (th,—1, thi—1))i = p(tn,—1)%% - p(o2)’

= :u’(thifl)jl ' /’L(thifl)jz = f?)jl : f’l}j2 = f’Ui'

This completes the proof of Equation (11) by induction. Now for the output gate v, of Cy,
we get from Equation (11) that p(ts), = fu, since h, = h. Therefore,

[A1[|(th) = p(tn) - e = p(tn)r = fo, = feu.
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Analogously, it holds that ||A2||(t;,) = fc,. It is moreover clear by construction that
|A1||(t) = 0 and [|A2]|(t) = O for every t € Tx, \ {t5}. Therefore, automata A; and As are
equivalent if and only if arithmetic circuits C; and Cs have the same output. |

Propositions 12 and 13 together imply Theorem 9. On a positive note, it should be
remarked that there are numerous efficient randomised algorithms for ACIT. Indeed, it
was already known that there is a randomised polynomial-time algorithm for equivalence of
multiplicity tree automata (Seidl, 1990). On the other hand, we have shown that obtaining a
deterministic polynomial-time algorithm for multiplicity tree automaton equivalence would
imply also a deterministic polynomial-time algorithm for ACIT.

3.2 DAG Counterexamples

In the exact learning model, when answering an equivalence query the Teacher not only
checks equivalence but also provides a counterexample in case of inequivalence. As men-
tioned before, there is a randomised polynomial-time algorithm for checking MTA equiva-
lence (Seidl, 1990). In this subsection, we explain why a Teacher using this algorithm would
naturally give succinct DAG counterexamples.

Although the paper of Seidl (1990) does not mention counterexamples, they can be
easily extracted from the algorithm presented therein. Indeed the correctness proof of
the algorithm shows, inter alia, that for any two inequivalent MTAs A; = (n1, %, p1,7)
and Az = (ng, X, u2,72), there exists a tree ¢t such that [|A1]|(t) # ||A2||(t) and ¢ can be
represented by a DAG with at most ny + ne vertices. To see this, we now briefly describe
the main idea behind the procedure: Given MTAs A; and As as above, a prefix-closed set
of trees S C Ty, is maintained such that {[u1(t) pa(t)] : t € S} is a linearly independent
set of vectors. Note that since this set of vectors lies in F™1*"2 it necessarily holds that
|S| < ny + n2. The algorithm terminates when

span { [p1(t) p2(t)] 1t € S} = span {[pi(t) p2(t)] : ¢t € T}

and reports that A; and As are inequivalent just in case a tree t € S is found such that

() (0] | ] 20,

ie., ||A1]|(t) # ||Az2]|(t). Such a tree ¢, if one exists, has at most ny + ny subtrees and thus
has a DAG representation of size at most n1 + ne. As we have seen in Example 3, the
number of vertices of tree ¢ may be exponential in n; + no, thus it is very natural that a
Teacher that resolves equivalence queries using the algorithm of Seidl (1990) would return
counterexamples represented succinctly as DAGs.

4. The Learning Algorithm

In this section, we give an exact learning algorithm for multiplicity tree automata. Our
algorithm is polynomial in the size of a minimal automaton equivalent to the target and the
size of a largest counterexample given as a DAG. As seen in Example 3, DAG counterexam-
ples can be exponentially more succinct than tree counterexamples. Therefore, achieving a
polynomial bound in the context of DAG representations is a more exacting criterion.
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Over an arbitrary field F, the algorithm can be seen as running on a Blum-Shub-Smale
machine that can write and read field elements to and from its memory at unit cost and
that can also perform arithmetic operations and equality tests on field elements at unit
cost (see Arora and Barak, 2009). Over Q, the algorithm can be implemented in randomised
polynomial time by representing rationals as arithmetic circuits and using a coRP algorithm
for equality testing of such circuits (see Allender et al., 2009).

This section is organised as follows: In Section 4.1 we present the learning algorithm. In
Section 4.2 we prove correctness on trees, and then argue in Section 4.3 that the algorithm
can be faithfully implemented using a DAG representation of trees. Finally, in Section 4.4
we give a complexity analysis of the algorithm assuming the DAG representation.

4.1 The Algorithm

Let f € Rec(X,F) be the target function. The algorithm learns an MTA-representation of
f using its Hankel matrix H, which has finite rank over F by Theorem 3.

The algorithm iteratively constructs a full row-rank submatrix of the Hankel matrix H.
At each stage, the algorithm maintains the following data:

e An integer n € N.

e A set of n ‘rows’ X = {t1,...,t,} C Tx.

e A finite set of ‘columns’ Y C Cy, such that O €Y.
e A submatrix Hxy of H that has full row rank.

These data determine a hypothesis automaton A of dimension n, whose states correspond to
the rows of Hx y, with the i*" row corresponding to the state reached after reading tree t;.
The Learner makes an equivalence query on the hypothesis A. In case the Teacher answers
NO, the Learner receives a counterexample z. The Learner then parses z bottom-up to find
a minimal subtree of z that is also a counterexample, and uses this subtree to augment the
row set X and the column set Y in a way that increases the rank of the submatrix Hy y.

Formally, the algorithm LMTA is given in Table 2. Here for any k-ary symbol o € 3 we
define o(X, ..., X) := {o(ti,. ., ti,) : (i1,...,ix) € [n]¥}.

Algorithm LMTA follows a classical scheme: it generalises the procedure of Beimel et al.
(2000) by working with a more general notion of a Hankel matrix that is appropriate for
tree series. Moreover, LMTA differs from the procedure of Habrard and Oncina (2006) in
the way counterexamples are treated and the hypothesis automaton updated; we provide
more details on this point at the end of this section.

4.2 Correctness Proof

In this subsection, we prove the correctness of the exact learning algorithm LMTA. Specif-
ically, we show that, given a target f € Rec(X,F), algorithm LMTA outputs a minimal
MTA-representation of f after at most rank(H) iterations of the main loop.

The correctness proof naturally breaks down into several lemmas. First, we show that
matrix Hx y has full row rank.
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Algorithm LMTA

Target: f € Rec(X,F), where ¥ has rank m and F is a field

1. Make an equivalence query on the 0-dimensional F-MTA over X..
If the answer is YES then output the O-dimensional F-MTA over ¥ and halt.
Otherwise the answer is NO and z is a counterexample. Initialise:
n< 1, t, 2z, X < {t,}, Y < {O}.

2. 2.1. For every k € {0,...,m}, ¢ € X, and (iy,...,ix) € [n]*:
If Ha(til,.--,tik),Y is not a linear combination of Hy, y,..., Hy, y then
n<n+1,t, < o(tiy,... . ty), X < X U{ty}.
2.2. Define an F-MTA A = (n, X, u,y) as follows:
e v=Hxp.
e For every k € {0,...,m} and 0 € Xj:
Define matrix p(o) € F*" " by the equation

(o) - Hxy = Hyx,. x)y- (12)

3. 3.1. Make an equivalence query on A.
If the answer is YES then output A and halt.
Otherwise the answer is NO and z is a counterexample. Searching bottom-up,
find a subtree o(7y,...,7;) of z that satisfies the following two conditions:
(i) For every j € [k], Hy,y = p(7j) - Hxy.
(ii) For some c € Y, Hy(r,, . 1) 7 H(O(T1, - Tk)) - Hx e
3.2. For every j € [k] and (iy,...,4j-1) € [n}J/~1:
Y <« Y U{clo(ti,--. i 1 O Tty s i)}
3.3. For every j € [k]:

If HTJ.,y is not a linear combination of Hy, y,..., Hy, y then
n<n+1t, 71, X« XU{t,}.

3.4. Go to 2.

Table 2: Exact learning algorithm LMTA for the class of multiplicity tree automata

Lemma 14 Linear independence of the set of vectors {Hy, y,...,Hy, v} is an invariant of
the loop consisting of Step 2 and Step 3.

Proof We argue inductively on the number of iterations of the loop. The base case n =1
clearly holds since f(z) # 0.

For the induction step, suppose that the set {Hy, vy, ..., Hy, y} is linearly independent at
the start of an iteration of the loop. If a tree t € T%; is added to X during Step 2.1, then H; y
is not a linear combination of Hy, y,..., Hy, y, and therefore {Hy, y,...,Hy, v, Hyy} is a
linearly independent set of vectors. Hence, the set {Hy, v, ..., H, y} is linearly independent
at the start of Step 3.
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Unless the algorithm halts in Step 3.1, it proceeds to Step 3.2 where the set of columns
Y is increased, which clearly preserves linear independence of vectors Hy, y,..., Hy, y. If a
tree 7; is added to X in Step 3.3, then H;, y is not a linear combination of Hy, vy, ..., Hy, vy
which implies that the vectors Hy, )y, ..., Hy, v, Hy; y are linearly independent. Hence, the
set {Hy,y,...,H, v} is linearly independent at the start of the next iteration of the loop.

This completes the induction step. |

Secondly, we show that Step 2.2 of LMTA can always be performed.
Lemma 15 Whenever Step 2.2 starts, for every k € {0,...,m} and o € ¥y, there exists a
unique matriz p(o) € Fn*xn satisfying Equation (12).

Proof Take any (iy,...,i;) € [n]*. Step 2.1 ensures that Hy(t;, ,...t,,),y can be represented
as a linear combination of vectors Hy, y,...,H;, y. This representation is unique since
Hyy,...,Hy, y are linearly independent vectors by Lemma 14. Row (o), ,...i,) € Flxn
is, therefore, uniquely defined by the equation u(o), . 4.)  Hxy = Hg(til’m’tik)’y. [ |

Thirdly, we show that Step 3.1 of LMTA can always be performed.

Lemma 16 Suppose that upon making an equivalence query on A in Step 3.1, the Learner
receives the answer NO and a counterezample z. Then, there exists a subtree o(71,...,Tk)
of z that satisfies the following two conditions:

(i) For every j € [k], Hr,y = pu(7j) - Hx y .
(M) For some c €Y, Ho(Tl,...,Tk),c # N’(U(Tlv s ’Tk)) ’ HX>C'

Proof Towards a contradiction, assume that there exists no subtree o (71, ..., 7x) of z that
satisfies conditions (i) and (ii). We claim that then for every subtree 7 of z, it holds that
Hyy = p(r) Hxy. (13)

In the following we prove this claim using induction on height(7). The base case 7 € X
follows immediately from Equation (12). For the induction step, let 0 < h < height(z) and
assume that Equation (13) holds for every subtree 7 € ngh of z. Take an arbitrary subtree
TE Tg“ of z. ThenT =o(7,...,7%) forsome k € [m], 0 € ¥, and 1q,..., 7 € Tgh, where
Ti,..., Tk are subtrees of z. The induction hypothesis implies that H; y = w(ry) - Hxy
holds for every j € [k]. Hence, subtree 7 satisfies condition (i). By assumption, no subtree
of z satisfies both conditions (i) and (ii). Thus 7 does not satisfy condition (ii), i.e., it holds
that H;y = p(7) - Hx,y. This completes the proof by induction.

Equation (13) for 7 = z gives H,y = u(z) - Hx)y. Since O € Y, this in particular
implies that

f(2) = Hzp = p(2) - Hx o = p(2) -y = [|All(2),

which yields a contradiction since z is a counterexample for the hypothesis A. |

Finally, we show that the row set X is augmented with at least one element in each
iteration of the main loop.
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Lemma 17 FEvery complete iteration of the Step 2 - 8 loop strictly increases the cardinality
of the row set X.

Proof It suffices to show that in Step 3.3 at least one of the trees 71, ..., 7 is added to X.
By Lemma 14, at the start of Step 3.2 vectors Hy, y,..., Hy, y are linearly independent.
Thus by condition (i) of Step 3.1, for every j € [k] it holds that

Hey = (7)) - Hxy (14)

and, moreover, Equation (14) is the unique representation of vector H;, y as a linear com-
bination of vectors Hy, )y, ..., Hy, y. Clearly, vectors Hy, y,..., H;, y remain linearly inde-
pendent when Step 3.2 ends.

Towards a contradiction, assume that in Step 3.3 none of the trees 7, ..., 7 is added to
X. This means that for every j € [k], vector H:, y can be represented as a linear combina-
tion of Hy, y, ..., Hy, y. The latter representation is unique, since vectors Hy, y,..., Hy, v
are linearly independent, and is given by Equation (14). By condition (ii) of Step 3.1 and
Equations (12) and (1), we now have that

HD’(Tl,...,Tk),C 7é :U’(O-(Th cee ’Tk)) . HX,c
= (u(m) @ @ pu(rk) - plo) - Hx e
= (M(Tl) ®...® :U’(Tk)) ' HO'(X,...,X)7C

k
= Z H w(75)i; | - Hg(til,”,,tik),c. (15)
(i1, i) ERE \J=1

By Step 3.2, it holds that c[o(t;,,...,t;;_,,0,Tj11,...,7)] € Y for every j € [k] and every
(i1,...,1j—1) € [n}?~L. Thus by Equation (14) for j = k, we have

k
Z HN(Tj)i]‘ : Ha(til,...,tik),c

(i1,...six)E[n]k \J=1

k—1
= Z H IU’(T])ZJ ' Z /’L(Tk)l ' Htiyc[o(ti1,~~-ytik71,D)]
(il,...,ik,l)e[n]k_l Jj=1 ZG[TL]
k—1

= > 1T #Gi, | - ) - HX e[o(tsy oty ,,0)]

(i1yeyip—1)€[n]F—1 \J=1

= H N(Tj)ij ) H‘f‘k,c[o(til7~--,tik,17'3)]' (16)

(il,...,ik,1 E[n]’“_l Jj=1

Proceeding inductively as above and applying Equation (14) for every j € {k —1,...,1},
we get that the expression of (16) is equal to H; c(o(0r,...7,)- However, this contradicts
Equation (15). The result follows. [ |

Putting together Lemmas 14 - 17, we conclude the following:
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Proposition 18 Let ¥ be a ranked alphabet and F be a field. Let f € Rec(X,F), let H be
the Hankel matriz of f, and let r be the rank (over F) of H. On target f, algorithm LMTA

outputs a minimal MTA-representation of f after at most r iterations of the loop consisting
of Step 2 and Step 3.

Proof Lemmas 15 and 16 show that every step of algorithm LMTA can be performed.
Theorem 3 implies that r is finite. From Lemma 14 we know that, whenever Step 2
starts, matrix Hx y has full row rank and thus n = |X| < r. Lemma 17 implies that n
increases by at least one in each iteration of the Step 2 - 3 loop. Therefore, the number of
iterations of the loop is at most r.
The proof follows by observing that LMTA halts only upon receiving the answer YES
to an equivalence query. |

4.3 Succinct Representations

In this subsection, we explain how algorithm LMTA can be correctly implemented using a
DAG representation of trees. In particular, we assume that membership queries are made
on X-DAGs, that the counterexamples are given as 3-DAGs, the elements of X are ¥-DAGs,
and the elements of Y are DAG representations of X-contexts, i.e., ({0} U X)-DAGs.

As shown in Section 2.5, multiplicity tree automata can run directly on DAGs and,
moreover, they assign equal weight to a DAG and to its tree unfolding. Crucially also, as
explained in the proof of Theorem 19, Step 3.1 can be run directly on a DAG representation
of the counterexample, without unfolding. Specifically, Step 3.1 involves multiple executions
of the hypothesis automaton on trees. By Proposition 7, we can faithfully carry out these
executions on DAG representations of trees. Step 3.1 also involves considering all the
subtrees of a given counterexample. However, by Proposition 5, this is equivalent to looking
at all the sub-DAGs of a DAG representation of the counterexample.

At various points in the algorithm, we take c € Y, t € X and compute their concatena-
tion c[t] in order to determine the corresponding entry Hy . of the Hankel matrix by making
a membership query. Proposition 6 implies that this can be done faithfully using DAG
representations of Y-trees and Y-contexts.

4.4 Complexity Analysis

In this subsection, we give a query and computational complexity analysis of our algorithm
and compare it to the best previously-known exact learning algorithm for multiplicity tree
automata (Habrard and Oncina, 2006) showing in particular an exponential improvement
on the query complexity and the running time in the worst case.

Theorem 19 Let f € Rec(3,F) where ¥ has rank m and F is a field. Let A be a minimal
MTA-representation of f, and let r be the dimension of A. Then, f is learnable by the
algorithm LMTA, making v + 1 equivalence queries, |A|> + |A| - s membership queries, and
O(|A]2+]|A]-r-s) arithmetic operations, where s denotes the size of a largest counterexample
z, represented as a DAG, that is obtained during the execution of the algorithm.
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Proof Let H be the Hankel matrix of f. Note that, by Theorem 3, the rank of H is
equal to r. Proposition 18 implies that on target f, algorithm LMTA outputs a minimal
MTA-representation of f after at most r iterations of the Step 2 - 3 loop, thereby making
at most r + 1 equivalence queries.

From Lemma 14 we know that matrix Hyxy has full row rank, which implies that
|X| <r. As for the cardinality of the column set Y, at the end of Step 1 we have |Y| = 1.
Furthermore, in each iteration of Step 3.2 the number of columns added to Y is at most

-1 rm-1
Jj—1 < J—1 _ rt <
Z” Z .
where k and n are as defined in Step 3.2. Since the number of iterations of Step 3.2 is at

most r — 1, we have |Y| <™
The number of membership queries made in Step 2 over the whole algorithm is

(Z\U |+|X|> Y]

ceEY

because the Learner needs to ask for the values of the entries of matrices Hxy and
Hy(x,.. x)y for every o € 3.

To analyse the number of membership queries made in Step 3, we now detail the pro-
cedure by which an appropriate sub-DAG of the counterexample z is found in Step 3.1.
By Lemma 16, there exists a sub-DAG 7 of z such that H;y # u(7) - Hxy. Thus given
a counterexample z in Step 3.1, the procedure for finding a required sub-DAG of z is as
follows: Check if H,y = pu(7) - Hx y for every sub-DAG 7 of z in a nondecreasing order of
height; stop when a sub-DAG 7 is found such that H;y # u(7) - Hxy.

In each iteration of Step 3, the Learner makes size(z) - |Y| < s-|Y| membership queries
because, for every sub-DAG 7 of z, the Learner needs to ask for the values of the entries of
vector H;y. All together, the number of membership queries made during the execution of
the algorithm is at most

(ZIU +|X>~|Y|+(T—1)'S'!Y|

oEY

< (erk(ou_r) M (r—1)-s5-rm < AP+ |A] - s

oeX

As for the arithmetic complexity, in Step 2.1 one can determine if a vector Ho'(ti17---7tik)7y
is a linear combination of Hy, y, ..., Hy, y via Gaussian elimination using O(n? - |Y]) arith-
metic operations (see Cohen, 1993, Section 2.3). Analogously, in Step 3.3 one can determine
if H.. y is a linear combination of Hy, y, ..., Hy, y via Gaussian elimination using O(n?-|Y|)
arithmetic operations. Since |X| < r and |Y| < ™, all together Step 2.1 and Step 3.3 re-
quire at most O(|A|?) arithmetic operations.

Lemma, 15 implies that in each iteration of Step 2.2, for every ¢ € X there exists a unique
matrix p(o) € X0 that satisfies Equation (12). To perform an iteration of Step 2.2,
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we first put matrix Hx y in echelon form and then, for each o € X, solve Equation (12) for
(o) by back substitution. It follows from standard complexity bounds on the conversion
of matrices to echelon form (Cohen, 1993, Section 2.3) that the total operation count for
Step 2.2 can be bounded above by O(]|AJ?).

Finally, let us consider the arithmetic complexity of Step 3.1. In every iteration, for each
sub-DAG 7 of the counterexample z the Learner needs to compute the vector p(7) and the
product p(7) - Hxy. Note that p(7) can be computed bottom-up from the sub-DAGs of 7.
Since z has at most s sub-DAGs, Step 3.1 requires at most O(|A| - r - s) arithmetic opera-
tions. All together, the algorithm requires at most O(]A|>+|A|-r-s) arithmetic operations. W

Algorithm LMTA can be used to show that over Q, multiplicity tree automata are exactly
learnable in randomised polynomial time. The key idea is to represent numbers as arithmetic
circuits. In executing LMTA, the Learner need only perform arithmetic operations on
circuits (addition, subtraction, multiplication, and division), which can be done in constant
time, and equality testing, which can be done in coRP (see Arora and Barak, 2009). These
suffice for all the operations detailed in the proof of Theorem 19; in particular they suffice
for Gaussian elimination, which can be used to implement the linear-independence checks
in LMTA.

The complexity of algorithm LMTA should be compared to the complexity of the algo-
rithm of Habrard and Oncina (2006), which learns multiplicity tree automata by making
r+ 1 equivalence queries, |A|-s membership queries, and a number of arithmetic operations
polynomial in |A| and s, where s is the size of a largest counterexample given as a tree.
Note that the algorithm of Habrard and Oncina (2006) cannot be straightforwardly adapted
to work directly with DAG representations of trees since when given a counterexample z,
every suffix of z is added to the set of columns. However, the tree unfolding of a DAG can
have exponentially many different suffixes in the size of the DAG. For example, the DAG in
Figure 2 has size n, and its tree unfolding, shown in Figure 1, has O(2") different suffixes.

5. Lower Bounds on Query Complexity of Learning MTA

In this section, we study lower bounds on the query complexity of learning multiplicity
tree automata in the exact learning model. Our results generalise the corresponding lower
bounds for learning multiplicity word automata by Bisht et al. (2006), and make no as-
sumption about the computational model of the learning algorithm.

First, we give a lower bound on the total number of queries required by an exact learning
algorithm that works over any field, which is the situation of our algorithm in Section 4.
Note that when we say that an algorithm works over any field, we mean that it just uses
field arithmetic, equality testing, and the ability to store and communicate field elements
to the Teacher, and its correctness depends only on these operations satisfying the field
axioms.

Theorem 20 Any exact learning algorithm that learns the class of multiplicity tree au-
tomata of dimension at most r, over a ranked alphabet (3, k) and any field, must make at
least 3 sy 7™ — 12 gueries.
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Proof Take an arbitrary exact learning algorithm L that learns the class of multiplicity
tree automata of dimension at most r, over a ranked alphabet (X, 7k) and over any field.

Let F be any field. Let K :=F({z7; : 0 € ¥,i € [r™(@)],j € [r]}) be an extension field
of F, where the set {27, : 0 € ¥,i € [r™%(2)], j € [r]} is algebraically independent over F. We
define a ‘generic’ K-multiplicity tree automaton A := (r,%, u, ) where v = e{ € F"™*! and
o) = [27;)ij € K™% for every o € 3. We define a tree series f := ||A]|. Observe that
every r-dimensional F-MTA over ¥ can be obtained from A by substituting values from the
field F for the variables 27 ;. Thus if the Hankel matrix of f had rank less than r, then every
r-dimensional F-MTA over E would have Hankel matrix of rank less than r. Therefore, the
Hankel matrix of f has rank r.

We run algorithm L on the target function f. By assumption, the output of L is an
MTA A" = (r, X, i/,+") such that ||A’|| = f. Let n be the number of queries made by L on
target f. Let t1,...,t, € Tx be the trees on which L either made a membership query, or
which were received as the counterexample to an equivalence query. Then for every [ € [n],
there exists a multivariate polynomial p; € F[(zfj)mg] such that f(t;) = p;.

Note that both A and A’ are minimal MTA-representations of f. Thus by Theorem 4,
there exists an invertible matrix U € K"*" such that v = Uy’ and pu(c) = US™@). 1/ (¢)-U !
for every o € 3. This implies that the entries of matrices (o), o € 3, lie in an extension
of F generated by the entries of U and {p; : [ € [n]}, i.e., by at most 72 + n elements. But
since the entries of matrices p(o), o € X, form an algebraically independent set over F, the
total number > rT8(@)+1 of such entries is at most 72 + n. Therefore, the number of
queries n is at least ) s, prR@)+1 _ g2, |

One may wonder whether a learning algorithm could do better over a specific field F by
exploiting particular features of that field such as having zero characteristic, being ordered,
or being algebraically closed. In this setting, we have the following lower bound.

Theorem 21 Let F be a fized but arbitrary field. Any exact learning algorithm that learns
the class of F-multiplicity tree automata of dimension at most r, over a ranked alphabet
(X, 7k) that has rank m and contains at least one unary symbol, must make number of
queries at least

2m+1 (Z rrk(o- o ) :

ceEY

Proof Without loss of generality, we can assume that r is even and can, therefore, define a
natural number n := r/2. Let L be an exact learning algorithm for the class of F-multiplicity
tree automata of dimension at most r, over a ranked alphabet (X, 7k) of rank m such that
“L{1}) # 0. We will identify a class of functions C such that L has to make at least
ves n™ @)+ _ n2 _ p queries to distinguish between the members of C.
Let 0g,01 € ¥ be a nullary and a unary symbol, respectively. Let P € F"*™ be the
permutation matrix corresponding to the cycle (1,2,...,n). Define A to be the set of all

F-multiplicity tree automata (2n, X, u,y) where:

e u(og) =[1 0] ®ey and p(oy) =1, ® P;
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e For each k-ary symbol o € ¥\ {00, 01}, there exists B(c) € F"*" such that

plo)=[1 1]e ([_I;n] - B(U)) :

erv=[1 0" @e.

We define a set of recognisable tree series C := {||A|| : A € A}.

In Lemma 22 we state some properties of the functions in C. Specifically, we show that
the coefficient of a tree t € Ty in any series f € C fundamentally depends on whether ¢
has zero, one, or at least two nodes whose label is not og or o;. Here for every ¢ € Ny and
t € Ty, we use ot (t) to denote the tree oy (o1(...o1(t)...)).

| S —

Lemma 22 The following properties hold for every f € C and t € Tx:
(i) If t = ol (oq) where j € {0,1,...,n—1}, then f(o0) =1 and f(a{(ao)) =0 for j > 0.
(i) If t = ol(o(o™(00),...,0%(00))) where k € {0,1,...,m}, 0 € S \ {00,01}, and
Jyity..yig € {0,1,...,n— 1}, then f(t) = B(U)(1+i1,...,1+ik),(1+nfj) mod n-
(iti) If 3 peshfog,01} Fo () = 2, then f(t) = 0.

Proof Let A = (2n,%,pu,v) € A be such that ||A| = f. First, we prove property (7).
Using Equation (2) and the mixed-product property of Kronecker product, we get that

w(ol(00)) = p(og) (o) =([I 0] ®@er)  (L2@P))=[1 0]®eP? (17)
and therefore
F(01(00)) = p(of(00) -7 = (1 0] @erP))-([1 0] ®e])
([1 o]t 0] )®(erP?-ef) =ejs1-¢. (18)

If j = 0 then the expression of (18) is equal to 1, otherwise the expression of (18) is equal
to 0. This completes the proof of property ().

Next, we prove property (ii). By the mixed-product property of Kronecker product and
Equations (2), (3), and (17), we have

= <®N(Uf(00))> (o) - plon)!
=1
k 1 1%k .
= ([1] ®®u(0§’(ao))> : ([1 1] ® ([_;J B(a)>> (L ® Py
=1 / | o |
(@ e (@ueten-[4] " 5er) ) o
=1
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=[1 1] ®(B(0)1sir,..11i) - P?) (19)
and therefore, using the fact that P" = I,,, we get that
f(o1(o(a1(00), - -, 01 (00)))) = (] (o(0} (00), - -, 01" (90)))) - 7
(1 1] @ (BO)asin,ati P - (1 0] @el)
([

T .
1o1]-[1 0] )@ (B(0) (g, 14i) - PP - €l)
T

(0) (141,114 - (1 P"77)

B
B(U)(lJril,...,1+ik),(1+n7j) mod n+

Finally, we prove property (ii). If ZJGE\{UO,Ul} #4(t) > 2, then there exists a subtree
o'(t1,...,tg) of t where k > 1, ¢/ € ¥ \ {01}, and ZUEE\{oom} #o(t;) = 1 for some
i € [k]. It follows from Equation (19) that u(t;) = [I 1] ® a for some a € F*™. By the
mixed-product property of Kronecker product and Equation (3), we have

k I Rk
Wl (tr, 1) = Q@mw>-<h 1Ma(Lg] Jﬂaﬁ)
j=1

where the last equality holds because
1 1
p(t;) - |:_;n:| = [Oz Oz] ’ |:_;n:| = O1xn-
Since o’(t1,...,1t) is a subtree of ¢, we now have that u(t) = 01x2, and thus f(t) =0. W

Remark 23 As P" = I,,, we have u(o1)"” = Ia,. Thus for every f € C, k € {0,1,...,m},
o € X\ {o0,01}, and j,i1,...,ix € Ny, it holds that f(ol(o0)) = f(o] modn(50)) and

F(ol(@ (o (0), ..., 01 (00)))) = f(o] ™ (@ (P ™ ™ (00),. .., o} ™ " (00)))).
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Returning to the proof of Theorem 21, let us run the learning algorithm L on a target
f € C. Lemma 22 (i) and Remark 23 imply that when L makes a membership query on
t = oJ(0g) where j € Ny, the Teacher returns 1 if j mod n = 0 and returns 0 otherwise.
Furthermore, by Lemma 22 (iii), when L makes a membership query on ¢ € T, such that
ZJGZ\{%m} #,(t) > 2, the Teacher returns 0. In these cases, L does not gain any new
information about f since every function in C is consistent with the values returned by the
Teacher. ‘ '

When L makes a membership query on a tree t = o) (o (0% (09),...,0% (00))), where
ke€{0,1,...m}, o € ¥\ {00,01}, and j,i1,...,ir € Np, the Teacher returns an arbitrary
number from the field F if the value f(¢) is not already known from an earlier query. It
follows from Lemma 22 (ii) and Remark 23 that L thereby learns the entry

B(U)(lJr(il mod n),...,14(i, mod n)),(14+n—j) mod n-

When L makes an equivalence query on a hypothesis h € C, the Teacher finds some
entry B(0)(, .. i,),; that L does not already know from previous queries and returns the
tree o1 7" (o(09 " Hap), . .., 0k (o)) as the counterexample.

With each query, the Learner L learns at most one entry of B(o) where o € ¥\ {09, 01}.
The number of queries made by L on target f is, therefore, at least the total number of

entries of matrices B(co) for all o € ¥\ {00, 01}. The latter number is equal to

1
k(o)+1 k(o)+1
>, O L

ceX\{oo,01} oceX\{oo,01}
1
_ s . (Z Trk:(a)-l—l o T2 B T) )
)
This completes the proof. |

The lower bounds of Theorem 20 and Theorem 21 are both linear in the target automa-
ton size. Note that when the alphabet rank is fixed, the lower bound for learning over
a fixed field (Theorem 21) is the same, up to a constant factor, as for learning over an
arbitrary field (Theorem 20).

Assuming a Teacher that represents counterexamples as succinctly as possible (see Sec-
tion 3.2 for details), the upper bound of algorithm LMTA from Theorem 19 is quadratic in
the target automaton size and, therefore, also quadratic in the lower bound of Theorem 20.

6. Conclusions and Future Work

In this work, we have characterised the query and computational complexity of learning
multiplicity tree automata in the exact learning model. We gave the first-known lower
bound on the number of queries needed by any exact learning algorithm to learn a target
recognisable tree series. This bound is linear in the size of a smallest multiplicity tree
automaton recognising the series. We also gave a new learning algorithm whose query
complexity is quadratic in the size of a smallest automaton recognising the target tree
series and linear in the size of a largest DAG counterexample provided by the Teacher. With
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regard to computational complexity, we show that the problem of deciding equivalence of
multiplicity tree automata is logspace equivalent to polynomial identity testing.

The algebraic theory of recognisable word series, notably the connection to finite-rank
Hankel matrices, generalises naturally to recognisable tree series and underlies many of the
approaches to learning tree automata, including the present paper (see Section 1.1 for more
details). In the case of trees, however, the issue of succinctness of automaton and counterex-
ample representations comes to the fore. As we have noted, the smallest counterexample
to the equivalence of two tree automata may be exponential in their total size. Therefore,
in order to obtain even a polynomial query complexity, our learning algorithm works with
a succinct representation of trees in terms of DAGs. The assumption of a Teacher that
provides succinct DAG counterexamples is reasonable in light of the fact that the algorithm
of Seidl (1990) for deciding equivalence of multiplicity tree automata can easily be modified
to produce DAG counterexamples of minimal size in case of inequivalence.

The issue of succinctness of automaton representations seems to be more subtle and
has not been addressed in the present paper. Here we have used the standard definition
of automaton size, in which an automaton with n states and maximum alphabet rank m
necessarily has size at least n™!. Adopting a sparse encoding of the transition matrices
may result in an exponentially more succinct automaton representation. However, it seems
a difficult problem to efficiently learn an automaton of minimal size under a sparse repre-
sentation of transition matrices. In this regard, note that two different MTAs recognising
the same tree series, both with a minimal number of states, can have considerably different
sizes under a sparse representation since minimal MTAs are only unique up to change of
basis.

One route to obtaining succinct automaton representations in the case of alphabets of
unbounded rank is to use the encoding of unranked alphabets into binary alphabets pre-
sented by Comon et al. (2007) and Bailly et al. (2010). Such an encoding would potentially
allow to use our learning algorithm to learn recognisable tree series over an arbitrary alpha-
bet ¥ (including even unranked alphabets) while maintaining hypothesis automaton and
Hankel matrix over a binary alphabet. Note though that if the algorithm were required
to present its hypotheses to the Teacher as automata over the original alphabet ¥, then
it would need to translate automata over the binary encoding to corresponding automata
over Y—potentially leading to an exponential blow-up.

With regard to applications of tree-automaton learning algorithms to other problems,
we recall that Beimel et al. (2000) apply their exact learning algorithm for multiplicity word
automata to show exact learnability of certain classes of polynomials over both finite and
infinite fields. Beimel et al. (2000) also prove the learnability of disjoint DNF formulae (i.e.,
DNF formulae in which each assignment satisfies at most one term) and, more generally,
disjoint unions of geometric boxes over finite domains.

The learning framework considered in this paper concerns multiplicity tree automata,
which are strictly more expressive than multiplicity word automata. Moreover, our result on
the computational complexity of equivalence testing for multiplicity tree automata shows
that, through equivalence queries, the Learner essentially has an oracle for polynomial
identity testing. Thus a natural direction for future work is to seek to apply our algorithm to
derive new results on exact learning of other concept classes, such as propositional formulae
and polynomials (both in the commutative and noncommutative cases). In this direction, we
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plan to examine the relationship of our work with that of Klivans and Shpilka (2006) on exact
learning of algebraic branching programs and arithmetic circuits and formulae. The latter
paper relies on rank bounds for Hankel matrices of polynomials in noncommuting variables,
obtained by considering a generalised notion of partial derivative. Here we would like to
determine whether the extra expressiveness of tree series can be used to show learnability
of more general classes of formulae and circuits than have hitherto been handled using
learnability of word series.

Sakakibara (1990) showed that context-free grammars (CFGs) can be learned efficiently
from their structural descriptions in the exact learning model, using structural member-
ship queries and structural equivalence queries. Specifically, Sakakibara, op. cit., notes
that the set of structural descriptions of a context-free grammar constitutes a rational tree
language, and thereby reduces the problem of learning a context-free grammar from its
structural descriptions to the problem of learning a tree automaton. Given the important
role of weighted and probabilistic CFGs across a range of applications including linguistics,
a natural next step would be to apply our algorithm to learn weighted CFGs. The idea is
to reduce the problem of learning a weighted context-free grammar using structural mem-
bership queries and structural equivalence queries to the problem of learning a multiplicity
tree automaton in the exact learning model. The basis for applying our algorithm in this
setting is the fact that the tree series that maps unlabelled derivation trees to their total
weights under a given weighted context-free grammar is recognisable.
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