
Journal of Machine Learning Research 16 (2015) 495-545 Submitted 9/12; Revised 1/14; Published 3/15

AD3: Alternating Directions Dual Decomposition
for MAP Inference in Graphical Models∗

André F. T. Martins atm@priberam.pt
Priberam Labs,
Alameda D. Afonso Henriques 41, 2.◦, 1000–123 Lisboa, Portugal
and
Instituto de Telecomunicações,
Av. Rovisco Pais 1, 1049–001 Lisboa, Portugal

Mário A. T. Figueiredo mtf@lx.it.pt
Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa
Av. Rovisco Pais 1, 1049–001 Lisboa, Portugal

Pedro M. Q. Aguiar aguiar@isr.ist.utl.pt
Instituto de Sistemas e Robótica, and Instituto Superior Técnico, Universidade de Lisboa
Av. Rovisco Pais 1, 1049–001 Lisboa, Portugal

Noah A. Smith nasmith@cs.cmu.edu

Eric P. Xing epxing@cs.cmu.edu

School of Computer Science, Carnegie Mellon University,

5000 Forbes Ave, Pittsburgh PA 15213–3891, USA

Editor: Tommi Jaakkola

Abstract

We present AD3, a new algorithm for approximate maximum a posteriori (MAP) inference
on factor graphs, based on the alternating directions method of multipliers. Like other dual
decomposition algorithms, AD3 has a modular architecture, where local subproblems are
solved independently, and their solutions are gathered to compute a global update. The
key characteristic of AD3 is that each local subproblem has a quadratic regularizer, leading
to faster convergence, both theoretically and in practice. We provide closed-form solutions
for these AD3 subproblems for binary pairwise factors and factors imposing first-order
logic constraints. For arbitrary factors (large or combinatorial), we introduce an active set
method which requires only an oracle for computing a local MAP configuration, making
AD3 applicable to a wide range of problems. Experiments on synthetic and real-world
problems show that AD3 compares favorably with the state-of-the-art.

Keywords: MAP inference, graphical models, dual decomposition, alternating directions
method of multipliers.

1. Introduction

Graphical models enable compact representations of probability distributions, being widely
used in natural language processing (NLP), computer vision, signal processing, and com-
putational biology (Pearl, 1988; Lauritzen, 1996; Koller and Friedman, 2009). When using

∗. An earlier version of this work appeared in Martins et al. (2011a).

c©2015 André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and Eric P. Xing.

Martins, Figueiredo, Aguiar, Smith, and Xing

these models, a central problem is that of inferring the most probable (a.k.a. maximum
a posteriori – MAP) configuration. Unfortunately, exact MAP inference is an intractable
problem for many graphical models of interest in applications, such as those involving non-
local features and/or structural constraints. This fact has motivated a significant research
effort on approximate techniques.

A class of methods that proved effective for approximate inference is based on linear pro-
gramming relaxations of the MAP problem (LP-MAP; Schlesinger 1976). Several message-
passing and dual decomposition algorithms have been proposed to address the resulting
LP problems, taking advantage of the underlying graph structure (Wainwright et al., 2005;
Kolmogorov, 2006; Werner, 2007; Komodakis et al., 2007; Globerson and Jaakkola, 2008;
Jojic et al., 2010). All these algorithms have a similar consensus-based architecture: they
repeatedly perform certain “local” operations in the graph (as outlined in Table 1), until
some form of local agreement is achieved. The simplest example is the projected subgradient
dual decomposition (PSDD) algorithm of Komodakis et al. (2007), which has recently en-
joyed great success in NLP applications (see Rush and Collins 2012 and references therein).
The major drawback of PSDD is that it is too slow to achieve consensus in large problems,
requiring O(1/ε2) iterations for an ε-accurate solution. While block coordinate descent
schemes are usually faster to make progress (Globerson and Jaakkola, 2008), they may get
stuck in suboptimal solutions, due to the non-smoothness of the dual objective function.
Smoothing-based approaches (Jojic et al., 2010; Hazan and Shashua, 2010) do not have
these drawbacks, but in turn they typically involve adjusting a “temperature” parameter
for trading off the desired precision level and the speed of convergence, and may suffer from
numerical instabilities in the near-zero temperature regime.

In this paper, we present a new LP-MAP algorithm called AD3 (alternating directions
dual decomposition), which allies the modularity of dual decomposition with the effective-
ness of augmented Lagrangian optimization, via the alternating directions method of mul-
tipliers (Glowinski and Marroco, 1975; Gabay and Mercier, 1976). AD3 has an iteration
bound of O(1/ε), an order of magnitude better than the PSDD algorithm. Like PSDD, AD3

alternates between a broadcast operation, where subproblems are assigned to local work-
ers, and a gather operation, where the local solutions are assembled by a controller, which
produces an estimate of the global solution. The key difference is that AD3 regularizes
their local subproblems toward these global estimate, which has the effect of speeding up
consensus. In many cases of interest, there are closed-form solutions or efficient procedures
for solving the AD3 local subproblems (which are quadratic). For factors lacking such a
solution, we introduce an active set method which requires only a local MAP decoder (the
same requirement as in PSDD). This paves the way for using AD3 with dense or structured
factors.

Our main contributions are:

• We derive AD3 and establish its convergence properties, blending classical and newer
results about ADMM (Eckstein and Bertsekas, 1992; Boyd et al., 2011; Wang and
Banerjee, 2012). We show that the algorithm has the same form as the PSDD method
of Komodakis et al. (2007), with the local MAP subproblems replaced by quadratic
programs. We also show that AD3 can be wrapped into a branch-and-bound procedure
to retrieve the exact MAP.

496

Alternating Directions Dual Decomposition

Algorithm Local Operation

TRW-S (Wainwright et al., 2005; Kolmogorov, 2006) max-marginals
MPLP (Globerson and Jaakkola, 2008) max-marginals
PSDD (Komodakis et al., 2007) MAP
Norm-Product BP (Hazan and Shashua, 2010) marginals
Accelerated DD (Jojic et al., 2010) marginals
AD3 (Martins et al., 2011a) QP/MAP

Table 1: Several LP-MAP inference algorithms and the kind of the local operations they
need to perform at the factors to pass messages and compute beliefs. Some of these
operations are the same as the classic loopy BP algorithm, which needs marginals
(sum-product variant) or max-marginals (max-product variant). In Section 6, we
will see that the quadratic problems (QP) required by AD3 can be solved as a
sequence of local MAP problems.

• We show that these AD3 subproblems can be solved exactly and efficiently in many
cases of interest, including Ising models and a wide range of hard factors representing
arbitrary constraints in first-order logic. Up to a logarithmic term, the asymptotic cost
in these cases is the same as that of passing messages or doing local MAP inference.

• For factors lacking a closed-form solution of the AD3 subproblems, we introduce a new
active set method. All is required is a black box that returns local MAP configurations
for each factor (the same requirement of the PSDD algorithm). This paves the way for
using AD3 with large dense or structured factors, based on off-the-shelf combinatorial
algorithms (e.g., Viterbi or Chu-Liu-Edmonds).

AD3 was originally introduced by Martins et al. (2010, 2011a) (then called DD-ADMM).
In addition to a considerably more detailed presentation, this paper contains contributions
that substantially extend that preliminary work in several directions: the O(1/ε) rate of
convergence, the active set method for general factors, and the branch-and-bound procedure
for exact MAP inference. It also reports a wider set of experiments and the release of open-
source code (available at http://www.ark.cs.cmu.edu/AD3), which may be useful to other
researchers in the field.

This paper is organized as follows. We start by providing background material: MAP
inference in graphical models and its LP-MAP relaxation (Section 2); the PSDD algorithm
of Komodakis et al. (2007) (Section 3). In Section 4, we derive AD3 and analyze its conver-
gence. The AD3 local subproblems are addressed in Section 5, where closed-form solutions
are derived for Ising models and several structural constraint factors. In Section 6, we intro-
duce an active set method to solve the AD3 subproblems for arbitrary factors. Experiments
with synthetic models, as well as in protein design and dependency parsing (Section 7)
testify for the success of our approach. Finally, a discussion of related work in presented in
Section 8, and Section 9 concludes the paper.

497

http://www.ark.cs.cmu.edu/AD3

Martins, Figueiredo, Aguiar, Smith, and Xing

2. Background

We start by providing some background on inference in graphical models.

2.1 Factor Graphs

Let Y1, . . . , YM be random variables describing a structured output, with each Yi taking
values in a finite set Yi. We follow the common assumption in structured prediction that
some of these variables have strong statistical dependencies. In this article, we use factor
graphs (Tanner, 1981; Kschischang et al., 2001), a convenient way of representing such
dependencies that captures directly the factorization assumptions in a model.

Definition 1 (Factor graph) A factor graph is a bipartite graph G := (V, F,E), com-
prised of:

• a set of variable nodes V := {1, . . . ,M}, corresponding to the variables Y1, . . . , YM ;

• a set of factor nodes F (disjoint from V);

• a set of edges E ⊆ V × F linking variable nodes to factor nodes.

For notational convenience, we use Latin letters (i, j, ...) and Greek letters (α, β, ...) to refer
to variable and factor nodes, respectively. We denote by ∂(·) the neighborhood set of its
node argument, whose cardinality is called the degree of the node. Formally, ∂(i) := {α ∈
F | (i, α) ∈ E}, for variable nodes, and ∂(α) := {i ∈ V | (i, α) ∈ E} for factor nodes. We
use the short notation Yα to refer to tuples of random variables, which take values on the
product set Yα :=

∏
i∈∂(α) Yi.

We say that the joint probability distribution of Y1, . . . , YM factors according to the
factor graph G = (V, F,E) if it can be written as

P(Y1 = y1, . . . , YM = yM) ∝ exp

(∑
i∈V

θi(yi) +
∑
α∈F

θα(yα)

)
, (1)

where θi(·) and θα(·) are called, respectively, the unary and higher-order log-potential
functions.1 To accommodate hard constraints, we allow these functions to take values in
R̄ := R ∪ {−∞}, but we require them to be proper (i.e., they cannot take the value −∞ in
their whole domain). Figure 1 shows examples of factor graphs with hard constraint factors
(to be studied in detail in Section 5.2).

2.2 MAP Inference

Given a probability distribution specified as in (1), we are interested in finding an assignment
with maximal probability (the so-called MAP assignment/configuration):

ŷ1, . . . , ŷM ∈ arg max
y1,...,yM

∑
i∈V

θi(yi) +
∑
α∈F

θα(yα). (2)

1. Some authors omit the unary log-potentials, which do not increase generality since they can be absorbed
into the higher-order ones. We explicitly state them here since they are frequently used in practice, and
their presence highlights a certain symmetry between potentials and marginal variables that will appear
in the sequel.

498

Alternating Directions Dual Decomposition

Figure 1: Constrained factor graphs, with soft factors shown as green squares above the
variable nodes (circles) and hard constraint factors as black squares below the
variable nodes. Left: a global factor that constrains the set of admissible outputs
to a given codebook. Right: examples of declarative constraints; one of them is a
factor connecting existing variables to an extra variable, allows scores depending
on a logical functions of the former.

In fact, this problem is not specific to probabilistic models: other models, e.g., trained
to maximize margin, also lead to maximizations of the form above. Unfortunately, for a
general factor graph G, this combinatorial problem is NP-hard (Koller and Friedman, 2009),
so one must resort to approximations. In this paper, we address a class of approximations
based on linear programming relaxations, described formally in the next section.

Throughout the paper, we will make the following assumption:

Assumption 2 The MAP problem (2) is feasible, i.e., there is at least one assignment
y1, . . . , yM such that

∑
i∈V θi(yi) +

∑
α∈F θα(yα) > −∞.

Note that Assumption 2 is substantially weaker than other assumptions made in the lit-
erature on graphical models, which sometimes require the solution of to be unique, or the
log-potentials to be all finite. We will see in Section 4 that this is all we need for AD3 to
be globally convergent.

2.3 LP-MAP Inference

Schlesinger’s linear relaxation (Schlesinger, 1976; Werner, 2007) is the building block for
many popular approximate MAP inference algorithms. Let us start by representing the log-
potential functions in vector notation, θi := (θi(yi))yi∈Yi ∈ R̄|Yi| and θα := (θα(yα))yα∈Yα ∈
R̄|Yα|. We introduce “local” probability distributions over the variables and factors, repre-
sented as vectors of the same size:

pi ∈ ∆|Yi|, ∀i ∈ V and qα ∈ ∆|Yα|, ∀α ∈ F,

where ∆K := {u ∈ RK | u ≥ 0, 1>u = 1} denotes the K-dimensional probability sim-
plex. We stack these distributions into vectors p and q, with dimensions P :=

∑
i∈V |Yi|

and Q :=
∑

α∈F |Yα|, respectively. If these local probability distributions are “valid”
marginal probabilities (i.e., marginals realizable by some global probability distribution

499

Martins, Figueiredo, Aguiar, Smith, and Xing

P(Y1, . . . , YM)), then a necessary (but not sufficient) condition is that they are locally con-
sistent. In other words, they must satisfy the following calibration equations:∑

yα∼yi

qα(yα) = pi(yi), ∀yi ∈ Yi, ∀(i, α) ∈ E, (3)

where the notation ∼ means that the summation is over all configurations yα whose ith
element equals yi. Equation (3) can be written in vector notation as Miαqα = pi, ∀(i, α) ∈
E, where we define consistency matrices

Miα(yi,yα) =

{
1, if yα ∼ yi
0, otherwise.

The set of locally consistent distributions forms the local polytope:

L(G) =

{
(p, q) ∈ RP+Q

∣∣∣∣∣ qα ∈ ∆|Yα|, ∀α ∈ F
Miαqα = pi, ∀(i, α) ∈ E

}
. (4)

We consider the following linear program (the LP-MAP inference problem):

LP-MAP: maximize
∑
α∈F

θα
>qα +

∑
i∈V

θi
>pi

with respect to (p, q) ∈ L(G).
(5)

If the solution (p∗, q∗) of problem (5) happens to be integral, then each p∗i and q∗α will be
at corners of the simplex, i.e., they will be indicator vectors of local configurations y∗i and
y∗α, in which case the output (y∗i)i∈V is guaranteed to be a solution of the MAP decoding
problem (2). Under certain conditions—for example, when the factor graph G does not
have cycles—problem (5) is guaranteed to have integral solutions. In general, however,
the LP-MAP decoding problem (5) is a relaxation of (2). Geometrically, L(G) is an outer
approximation of the marginal polytope, defined as the set of valid marginals (Wainwright
and Jordan, 2008). This is illustrated in Figure 2.

2.4 LP-MAP Inference Algorithms

While any off-the-shelf LP solver can be used for solving problem (5), specialized algorithms
have been designed to exploit the graph structure, achieving superior performance on several
benchmarks (Yanover et al., 2006). Some of these algorithms are listed in Table 1. Most of
these specialized algorithms belong to two classes: block (dual) coordinate descent, which
take the form of message-passing algorithms, and projected subgradient algorithms, based
on dual decomposition.

Block coordinate descent methods address the dual of (5) by alternately optimizing
over blocks of coordinates. Examples are max-sum diffusion (Kovalevsky and Koval, 1975;
Werner, 2007); max-product sequential tree-reweighted belief propagation (TRW-S, Wain-
wright et al. 2005; Kolmogorov 2006); and the max-product linear programming algorithm
(MPLP; Globerson and Jaakkola 2008). These algorithms work by passing local messages
(that require computing max-marginals) between factors and variables. Under certain con-
ditions (more stringent than Assumption 2), one may obtain optimality certificates when

500

Alternating Directions Dual Decomposition

Figure 2: Marginal polytope (in green) and its outer approximation, the local polytope (in
blue). Each element of the marginal polytope corresponds to a joint distribution
of Y1, . . . , YM , and each vertex corresponds to a configuration y ∈ Y, having
coordinates in {0, 1}. The local polytope may have additional fractional vertices,
with coordinates in [0, 1].

the relaxation is tight. A disadvantage of coordinate descent algorithms is that they may
get stuck at suboptimal solutions (Bertsekas et al. 1999, Section 6.3.4), since the dual ob-
jective is non-smooth (cf. equation (8) below). An alternative is to optimize the dual with
the projected subgradient method, which is globally convergent (Komodakis et al., 2007),
and requires computing local MAP configurations as its subproblems. Finally, smoothing-
based approaches, such as the accelerated dual decomposition method of Jojic et al. (2010)
and the norm-product algorithm of Hazan and Shashua (2010), smooth the dual objective
with an en tropic regularization term, leading to subproblems that involve computing local
marginals.

In Section 8, we discuss advantages and disadvantages of these and other LP-MAP
inference methods with respect to AD3.

3. Dual Decomposition with the Projected Subgradient Algorithm

We now describe the projected subgradient dual decomposition (PSDD) algorithm proposed
by Komodakis et al. (2007). As we will see in Section 4, there is a strong affinity between
PSDD and the main focus of this paper, AD3.

Let us first reparameterize (5) to express it as a consensus problem. For each edge
(i, α) ∈ E, we define a potential function θiα := (θiα(yi))yi∈Yi that satisfies

∑
α∈∂(i) θiα =

θi; a trivial choice is θiα = |∂(i)|−1θi, which spreads the unary potentials evenly across the
factors. Since we have a equality constraint pi = Miαqα, problem (5) is equivalent to the
following primal formulation:

LP-MAP-P: maximize
∑
α∈F

θα +
∑
i∈∂(α)

M>
iαθiα

>qα
with respect to p ∈ RP , qα ∈ ∆|Yα|,∀α ∈ F,

subject to Miαqα = pi, ∀(i, α) ∈ E.

(6)

Note that, although the p-variables do not appear in the objective of (6), they play
a fundamental role through the constraints in the last line, which are necessary to ensure

501

Martins, Figueiredo, Aguiar, Smith, and Xing

that the marginals encoded in the q-variables are consistent on their overlaps. Indeed, it is
this set of constraints that complicate the optimization problem, which would otherwise be
separable into independent subproblems, one per factor. Introducing Lagrange multipliers
λiα := (λiα(yi))yi∈Yi for each of these equality constraints leads to the Lagrangian function

L(q,p,λ) =
∑
α∈F

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα − ∑
(i,α)∈E

λiα
>pi, (7)

the maximization of which w.r.t. q and p will yield the (Lagrangian) dual objective. Since
the p-variables are unconstrained, we have

max
q,p

L(q,p,λ) =

{
g(λ) if λ ∈ Λ,
+∞ otherwise,

and we arrive at the following dual formulation:

LP-MAP-D: minimize g(λ) :=
∑
α∈F

gα(λ)

with respect to λ ∈ Λ,
(8)

where Λ :=
{
λ |

∑
α∈∂(i) λiα = 0, ∀i ∈ V

}
is a linear subspace, and each gα(λ) is the

solution of a local subproblem:

gα(λ) := max
qα∈∆|Yα|

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα
= max

yα∈Yα

θα(yα) +
∑
i∈∂(α)

(θiα(yi) + λiα(yi))

 ; (9)

the last equality is justified by the fact that maximizing a linear objective over the prob-
ability simplex gives the largest component of the score vector. Note that the local sub-
problem (9) can be solved by a ComputeMAP procedure, which receives unary potentials
ξiα(yi) := θiα(yi)+λiα(yi) and factor potentials θα(yα) (eventually structured) and returns
the MAP ŷα.

Problem (8) is often referred to as the master or controller, and each local subproblem
(9) as a slave or worker. The master problem (8) can be solved with a projected subgradient
algorithm.2 By Danskin’s rule (Bertsekas et al., 1999, p. 717), a subgradient of gα is readily
given by

∂gα(λ)

∂λiα
= Miαq̂α, ∀(i, α) ∈ E;

and the projection onto Λ amounts to a centering operation. Putting these pieces together
yields Algorithm 1. At each iteration, the algorithm broadcasts the current Lagrange mul-
tipliers to all the factors. Each factor adjusts its internal unary log-potentials (line 6) and

2. A slightly different formulation is presented by Sontag et al. (2011) which yields a subgradient algorithm
with no projection.

502

Alternating Directions Dual Decomposition

Algorithm 1 PSDD Algorithm (Komodakis et al., 2007)

1: input: graph G, parameters θ, maximum number of iterations T , step sizes (ηt)
T
t=1

2: for each (i, α) ∈ E, choose θiα such that
∑

α∈∂(i) θiα = θi
3: initialize λ = 0
4: for t = 1 to T do
5: for each factor α ∈ F do
6: set unary log-potentials ξiα := θiα + λiα, for i ∈ ∂(α)
7: set q̂α := ComputeMap(θα +

∑
i∈∂(α) M>

iαξiα)
8: set q̂iα := Miαq̂α, for i ∈ ∂(α)
9: end for

10: compute average pi := |∂(i)|−1
∑

α∈∂(i) q̂iα for each i ∈ V
11: update λiα := λiα − ηt (q̂iα − pi) for each (i, α) ∈ E
12: end for
13: output: dual variable λ and upper bound g(λ)

invokes the ComputeMap procedure (line 7).3 The solutions achieved by each factor are
then gathered and averaged (line 10), and the Lagrange multipliers are updated with step
size ηt (line 11). The two following propositions establish the convergence properties of
Algorithm 1.

Proposition 3 (Convergence rate) If the non-negative step size sequence (ηt)t∈N is di-
minishing and nonsummable (lim ηt = 0 and

∑∞
t=1 ηt = ∞), then Algorithm 1 converges

to the solution λ∗ of LP-MAP-D (8). Furthermore, after T = O(1/ε2) iterations, we have
g(λ(T))− g(λ∗) ≤ ε.

Proof: This is a property of projected subgradient algorithms (see, e.g., Bertsekas et al.
1999).

Proposition 4 (Certificate of optimality) If, at some iteration of Algorithm 1, all the
local subproblems are in agreement (i.e., if q̂iα = pi after line 10, for all i ∈ V), then: (i) λ
is a solution of LP-MAP-D (8); (ii) p is binary-valued and a solution of both LP-MAP-P
and MAP.

Proof: If all local subproblems are in agreement, then a vacuous update will occur in
line 11, and no further changes will occur. Since the algorithm is guaranteed to converge,
the current λ is optimal. Also, if all local subproblems are in agreement, the averaging in
line 10 necessarily yields a binary vector p. Since any binary solution of LP-MAP is also a
solution of MAP, the result follows.

Propositions 3–4 imply that, if the LP-MAP relaxation is tight, then Algorithm 1 will
eventually yield the exact MAP configuration along with a certificate of optimality. Ac-
cording to Proposition 3, even if the relaxation is not tight, Algorithm 1 still converges to

3. Note that, if the factor log-potentials θα have special structure (e.g., if the factor is itself combinatorial,
such as a sequence or a tree model), then this structure is preserved since only the internal unary
log-potentials are changed. Therefore, if evaluating ComputeMap(θα) is tractable, so is evaluating
ComputeMap(θα +

∑
i∈∂(α) M

>
iαξiα).

503

Martins, Figueiredo, Aguiar, Smith, and Xing

a solution of LP-MAP. Unfortunately, in large graphs with many overlapping factors, it
has been observed that convergence can be quite slow in practice (Martins et al., 2011b).
This is not surprising, given that it attempts to reach a consensus among all overlapping
components; the larger this number, the harder it is to achieve consensus. We describe in
the next section another LP-MAP decoder (AD3) with a faster convergence rate.

4. Alternating Directions Dual Decomposition (AD3)

AD3 avoids some of the weaknesses of PSDD by replacing the subgradient method with the
alternating directions method of multipliers (ADMM). Before going into a formal derivation,
let us go back to the PSDD algorithm to pinpoint the crux of its weaknesses. It resides in
two aspects:

1. The dual objective function g(λ) is non-smooth, this being why “subgradients” are
used instead of “gradients.” It is well-known that non-smooth optimization lacks some
of the good properties of its smooth counterpart. Namely, there is no guarantee of
monotonic improvement in the objective (see Bertsekas et al. 1999, p. 611). Ensuring
convergence requires using a diminishing step size sequence, which leads to slow con-
vergence rates. In fact, as stated in Proposition 3, O(1/ε2) iterations are required to
guarantee ε-accuracy.

2. A close look at Algorithm 1 reveals that the consensus is promoted solely by the
Lagrange multipliers (line 6). These can be regarded as “price adjustments” that are
made at each iteration and lead to a reallocation of resources. However, no “memory”
exists about past allocations or adjustments, so the workers never know how far they
are from consensus. One may suspect that a smarter use of these quantities may
accelerate convergence.

The first of these aspects has been addressed by the accelerated dual decomposition method
of Jojic et al. (2010), which improves the iteration bound to O(1/ε); we discuss that work
further in Section 8. We will see that AD3 also yields a O(1/ε) iteration bound with some
additional advantages. The second aspect is addressed by AD3 by broadcasting the current
global solution in addition to the Lagrange multipliers, allowing the workers to regularize
their subproblems toward that solution.

4.1 Augmented Lagrangians and the Alternating Directions Method of
Multipliers

Let us start with a brief overview of augmented Lagrangian methods. Consider the following
general convex optimization problem with equality constraints:

maximize f1(q) + f2(p)
with respect to q ∈ Q,p ∈ P

subject to Aq + Bp = c,
(10)

where Q ⊆ RP and P ⊆ RQ are convex sets and f1 : Q → R̄ and f2 : P → R̄ are concave
functions. Note that the LP-MAP problem stated in (6) has this form. For any η ≥ 0,

504

Alternating Directions Dual Decomposition

consider the problem

maximize f1(q) + f2(p)− η
2‖Aq + Bp− c‖2

with respect to q ∈ Q,p ∈ P

subject to Aq + Bp = c,
(11)

which differs from (10) in the extra term penalizing violations of the equality constraints;
since this term vanishes at feasibility, the two problems have the same solution. The La-
grangian of (11),

Lη(q,p,λ) = f1(q) + f2(p) + λ>(Aq + Bp− c)− η

2
‖Aq + Bp− c‖2,

is called the η-augmented Lagrangian of (10). The so-called augmented Lagrangian methods
(Bertsekas et al., 1999, Section 4.2) address problem (10) by seeking a saddle point of Lηt ,
for some sequence (ηt)t∈N. The earliest instance is the method of multipliers (Hestenes,
1969; Powell, 1969), which alternates between a joint update of q and p through

(qt+1,pt+1) := arg max
q,p
{Lηt(q,p,λt) | q ∈ Q,p ∈ P} (12)

and a gradient update of the Lagrange multiplier,

λt+1 := λt − ηt(Aqt+1 + Bpt+1 − c).

Under some conditions, this method is convergent, and even superlinear, if the sequence
(ηt)t∈N is increasing (Bertsekas et al. 1999, Section 4.2). A shortcoming of this method is
that problem (12) may be difficult, since the penalty term of the augmented Lagrangian
couples the variables p and q. The alternating directions method of multipliers (ADMM)
avoids this shortcoming, by replacing the joint optimization (12) by a single block Gauss-
Seidel-type step:

qt+1 := arg max
q∈Q

Lηt(q,p
t,λt) = arg max

q∈Q
f1(q) + (A>λt)

>
q − ηt

2
‖Aq + Bpt − c‖2, (13)

pt+1 := arg max
p∈P

Lηt(q
t+1,p,λt) = arg max

p∈P
f2(p)+(B>λt)

>
p− ηt

2
‖Aqt+1 +Bp−c‖2. (14)

In general, problems (13)–(14) are simpler than the joint maximization in (12). ADMM was
proposed by Glowinski and Marroco (1975) and Gabay and Mercier (1976) and is related to
other optimization methods, such as Douglas-Rachford splitting (Eckstein and Bertsekas,
1992) and proximal point methods (see Boyd et al. 2011 for an historical overview).

4.2 Derivation of AD3

Our LP-MAP-P problem (6) can be cast into the form (10) by proceeding as follows:

• let Q in (10) be the Cartesian product of simplices, Q :=
∏
α∈F ∆|Yα|, and P := RP ;

• let f1(q) :=
∑

α∈F

(
θα +

∑
i∈∂(α) M>

iαθiα

)>
qα and f2 :≡ 0;

505

Martins, Figueiredo, Aguiar, Smith, and Xing

• let A in (10) be a R × Q block-diagonal matrix, where R =
∑

(i,α)∈E |Yi|, with one
block per factor, which is a vertical concatenation of the matrices {Miα}i∈∂(α);

• let −B be a R × P matrix of grid-structured blocks, where the block in the (i, α)th
row and the ith column is a negative identity matrix of size |Yi|, and all the other
blocks are zero;

• let c := 0.

The η-augmented Lagrangian associated with (6) is

Lη(q,p,λ) =
∑
α∈F

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα− ∑
(i,α)∈E

λiα
>pi−

η

2

∑
(i,α)∈E

‖Miαqα−pi‖2.

This is the standard Lagrangian (7) plus the Euclidean penalty term. The ADMM updates
are

Broadcast: q(t) := arg max
q∈Q

Lηt(q,p
(t−1),λ(t−1)), (15)

Gather: p(t) := arg max
p∈RP

Lηt(q
(t),p,λ(t−1)), (16)

Multiplier update: λ
(t)
iα := λ

(t−1)
iα − ηt

(
Miαq

(t)
α − p

(t)
i

)
, ∀(i, α) ∈ E. (17)

We next analyze the broadcast and gather steps, and prove a proposition about the multi-
plier update.

4.2.1 Broadcast Step

The maximization (15) can be carried out in parallel at the factors, as in PSDD. The only
difference is that, instead of a local MAP computation, each worker now needs to solve a
quadratic program of the form:

max
qα∈∆|Yα|

θα +
∑
i∈∂(α)

M>
iα(θiα + λiα)

>qα − η

2

∑
i∈∂(α)

‖Miαqα − pi‖2. (18)

This differs from the linear subproblem (9) of PSDD by the inclusion of an Euclidean penalty
term, which penalizes deviations from the global consensus. In Sections 5 and 6, we will
give procedures to solve these local subproblems.

506

Alternating Directions Dual Decomposition

4.2.2 Gather Step

The solution of problem (16) has a closed form. Indeed, this problem is separable into
independent optimizations, one for each i ∈ V ; defining qiα := Miαqα,

p
(t)
i := arg min

pi∈R|Yi|

∑
α∈∂(i)

(
pi −

(
qiα − η−1

t λiα
))2

= |∂(i)|−1
∑
α∈∂(i)

(
qiα − η−1

t λiα
)

=
1

|∂(i)|
∑
α∈∂(i)

qiα.

The equality in the last line is due to the following proposition:

Proposition 5 The sequence λ(1),λ(2), . . . produced by the updates (15)–(17) is dual fea-
sible, i.e., we have λ(t) ∈ Λ for every t, with Λ as in (8).

Proof: We have:

∑
α∈∂(i)

λ
(t)
iα =

∑
α∈∂(i)

λ
(t−1)
iα − ηt

 ∑
α∈∂(i)

q
(t)
iα − |∂(i)|p(t)

i


=
∑
α∈∂(i)

λ
(t−1)
iα − ηt

 ∑
α∈∂(i)

q
(t)
iα −

∑
α∈∂(i)

(
q

(t)
iα − η

−1
t λ

(t−1)
iα

) = 0.

Assembling all these pieces together leads to AD3 (Algorithm 2), where we use a fixed
step size η. Notice that AD3 retains the modular structure of PSDD (Algorithm 1). The key
difference is that AD3 also broadcasts the current global solution to the workers, allowing
them to regularize their subproblems toward that solution, thus speeding up the consensus.
This is embodied in the procedure SolveQP (line 7), which replaces ComputeMAP of
Algorithm 1.

4.3 Convergence Analysis

Before proving the convergence of AD3, we start with a basic result.

Proposition 6 (Existence of a Saddle Point) Under Assumption 2, we have the fol-
lowing properties (regardless of the choice of log-potentials):

1. LP-MAP-P (6) is primal-feasible;

2. LP-MAP-D (8) is dual-feasible;

3. The Lagrangian function L(q,p,λ) has a saddle point (q∗,p∗,λ∗) ∈ Q×P×Λ, where
(q∗,p∗) is a solution of LP-MAP-P and λ∗ is a solution of LP-MAP-D.

507

Martins, Figueiredo, Aguiar, Smith, and Xing

Algorithm 2 Alternating Directions Dual Decomposition (AD3)

1: input: graph G, parameters θ, penalty constant η
2: initialize p uniformly (i.e., pi(yi) = 1/|Yi|, ∀i ∈ V, yi ∈ Yi)
3: initialize λ = 0
4: repeat
5: for each factor α ∈ F do
6: set unary log-potentials ξiα := θiα + λiα, for i ∈ ∂(α)

7: set q̂α := SolveQP
(
θα +

∑
i∈∂(α) M>

iαξiα, (pi)i∈∂(α)

)
8: set q̂iα := Miαq̂α, for i ∈ ∂(α)
9: end for

10: compute average pi := |∂(i)|−1
∑

α∈∂(i) q̂iα for each i ∈ V
11: update λiα := λiα − η (q̂iα − pi) for each (i, α) ∈ E
12: until convergence
13: output: primal variables p and q, dual variable λ, upper bound g(λ)

Proof: Property 1 follows directly from Assumption 2 and the fact that LP-MAP is a
relaxation of MAP. To prove properties 2–3, define first the set of structural constraints Q̄ :=∏
α∈F Q̄α, where Q̄α := {qα ∈ ∆|Yα| | qα(yα) = 0, ∀yα s.t. θα(yα) = −∞} are truncated

probability simplices (hence convex). Since all log-potential functions are proper (due to
Assumption 2), we have that each Q̄α is non-empty, and therefore Q̄ has non-empty relative
interior. As a consequence, the refined Slater’s condition (Boyd and Vandenberghe, 2004,
§5.2.3) holds; let (q∗, p∗) ∈ Q̄× P be a primal feasible solution of LP-MAP-P, which exists
by virtue of property 1. Then, the KKT optimality conditions imply the existence of a
λ∗ such that (q∗,p∗,λ∗) is a saddle point of the Lagrangian function L, i.e., L(q,p,λ∗) ≤
L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ) holds for all q,p,λ. Naturally, we must have λ∗ ∈ Λ, otherwise
L(., .,λ∗) would be unbounded with respect to p.

We are now ready to show the convergence of AD3, which follows directly from the
general convergence properties of ADMM. Remarkably, unlike in PSDD, convergence is
ensured with a fixed step size, therefore no annealing is required.

Proposition 7 (Convergence of AD3) Let (q(t),p(t),λ(t))t be the sequence of iterates
produced by Algorithm 2 with a fixed ηt = η. Then the following holds:

1. primal feasibility of LP-MAP-P (6) is achieved in the limit, i.e.,

‖Miαq
(t)
α − p

(t)
i ‖ → 0, ∀(i, α) ∈ E;

2. the primal objective sequence
(∑

i∈V θi
>p

(t)
i +

∑
α∈F θα

>q
(t)
α

)
t∈N

converges to the so-

lution of LP-MAP-P (6);

3. the dual sequence (λ(t))t∈N converges to a solution of the dual LP-MAP-D (8); more-
over, this sequence is dual feasible, i.e., it is contained in Λ. Thus, g(λ(t)) in (8)
approaches the optimum from above.

508

Alternating Directions Dual Decomposition

Proof: See Boyd et al. (2011, Appendix A) for a simple proof of the convergence of
ADMM in the form (10), from which 1, 2, and the first part of 3 follow immediately. The
two assumptions stated in Boyd et al. (2011, p.16) are met: denoting by ιQ the indicator
function of the set Q, which evaluates to zero in Q and to −∞ outside Q, we have that
functions f1 + ιQ and f2 are closed proper convex (since the log-potential functions are
proper and f1 is closed proper convex), and the unaugmented Lagrangian has a saddle
point (see property 3 in Proposition 6). Finally, the last part of statement 3 follows from
Proposition 5.

The next proposition, proved in Appendix A, states the O(1/ε) iteration bound of AD3,
which is better than the O(1/ε2) bound of PSDD.

Proposition 8 (Convergence rate of AD3) Assume the conditions of Proposition 7.
Let λ∗ be a solution of the dual problem (8), λ̄T := 1

T

∑T
t=1 λ

(t) be the “averaged” La-
grange multipliers after T iterations of AD3, and g(λ̄T) the corresponding estimate of the
dual objective (an upper bound). Then, g(λ̄T)− g(λ∗) ≤ ε after T ≤ C/ε iterations, where
C is a constant satisfying

C ≤ 5η

2

∑
i∈V
|∂(i)| × (1− |Yi|−1) +

5

2η
‖λ∗‖2

≤ 5η

2
|E|+ 5

2η
‖λ∗‖2. (19)

As expected, the bound (19) increases with the number of overlapping variables, quan-
tified by the number of edges |E|, and the magnitude of the optimal dual vector λ∗. Note
that if there is a good estimate of ‖λ∗‖, then (19) can be used to choose a step size η that
minimizes the bound—the optimal step size is η = ‖λ∗‖ × |E|−1/2, which would lead to
T ≤ 5ε−1|E|1/2‖λ∗‖. In fact, although Proposition 7 guarantees convergence for any choice
of η, we observed in practice that this parameter has a strong impact on the behavior of
the algorithm. In our experiments, we dynamically adjust η in earlier iterations using the
heuristic described in Boyd et al. (2011, Section 3.4.1), and freeze it afterwards, not to
compromise convergence.

4.4 Stopping Conditions and Implementation Details

We next establish stopping conditions for AD3 and discuss some implementation details
that can provide significant speed-ups.

4.4.1 Primal and Dual Residuals

Since the AD3 iterates are dual feasible, it is also possible to check the conditions in Propo-
sition 4 to obtain optimality certificates, as in PSDD. Moreover, even when the LP-MAP
relaxation is not tight, AD3 can provide stopping conditions by keeping track of primal and
dual residuals, as described in Boyd et al. (2011, §3.3), based on which it is possible to
obtain certificates, not only for the primal solution (if the relaxation is tight), but also to

509

Martins, Figueiredo, Aguiar, Smith, and Xing

terminate when a near optimal relaxed primal solution has been found.4 This is an impor-
tant advantage over PSDD, which is unable to provide similar stopping conditions, and is
usually stopped rather arbitrarily after a given number of iterations.

The primal residual r
(t)
P is the amount by which the agreement constraints are violated,

r
(t)
P =

∑
(i,α)∈E ‖Miαq

(t)
α − p(t)

i ‖2∑
(i,α)∈E |Yi|

∈ [0, 1],

where the constant in the denominator ensures that r
(t)
P ∈ [0, 1]. The dual residual r

(t)
D ,

r
(t)
D =

∑
(i,α)∈E ‖p

(t)
i − p

(t−1)
i ‖2∑

(i,α)∈E |Yi|
∈ [0, 1],

is the amount by which a dual optimality condition is violated (see Boyd et al. 2011, §3.3
for details). We adopt as stopping criterion that these two residuals fall below a threshold,
e.g., 10−6.

4.4.2 Approximate Solutions of the Local Subproblems

The next proposition states that convergence may still hold if the local subproblems are
only solved approximately. The importance of this result will be clear in Section 6, where we
describe a general iterative algorithm for solving the local quadratic subproblems. Essen-
tially, Proposition 9 allows these subproblems to be solved numerically up to some accuracy
without compromising global convergence, as long as the accuracy of the solutions improves
sufficiently fast over AD3 iterations.

Proposition 9 (Eckstein and Bertsekas, 1992) Let ηt = η, and for each iteration t,

let q̂(t) contain the exact solutions of (18), and q̃(t) those produced by an approximate
algorithm. Then Proposition 7 still holds, provided that the sequence of errors is summable,
i.e.,

∑∞
t=1 ‖q̂

(t) − q̃(t)‖ <∞.

4.4.3 Runtime and Caching Strategies

In practice, considerable speed-ups can be achieved by caching the subproblems, a strategy
which has also been proposed for the PSDD algorithm by Koo et al. (2010). After a few

iterations, many variables pi reach a consensus (i.e., p
(t)
i = q

(t+1)
iα , ∀α ∈ ∂(i)) and enter

an idle state: they are left unchanged by the p-update (line 10), and so do the Lagrange

variables λ
(t+1)
iα (line 11). If at iteration t all variables in a subproblem at factor α are

idle, then q
(t+1)
α = q

(t)
α , hence the corresponding subproblem does not need to be solved.

Typically, many variables and subproblems enter this idle state after the first few rounds.
We will show the practical benefits of caching in the experimental section (Section 7.4,
Figure 9).

4. This is particularly useful if inference is embedded in learning, where it is more important to obtain a
fractional solution of the relaxed primal than an approximate integer one (Kulesza and Pereira, 2007;
Martins et al., 2009).

510

Alternating Directions Dual Decomposition

4.5 Exact Inference with Branch-and-Bound

Recall that AD3, as just described, solves the LP-MAP relaxation of the actual problem.
In some problems, this relaxation is tight (in which case a certificate of optimality will be
obtained), but this is not always the case. When a fractional solution is obtained, it is
desirable to have a strategy to recover the exact MAP solution.

Two observations are noteworthy. First, as we saw in Section 2.3, the optimal value
of the relaxed problem LP-MAP provides an upper bound to the original problem MAP.
In particular, any feasible dual point provides an upper bound to the original problem’s
optimal value. Second, during execution of the AD3 algorithm, we always keep track of a
sequence of feasible dual points (as guaranteed by Proposition 7, item 3. Therefore, each
iteration constructs tighter and tighter upper bounds. In recent work (Das et al., 2012),
we proposed a branch-and-bound search procedure that finds the exact solution of the ILP.
The procedure works recursively as follows:

1. Initialize L = −∞ (our best value so far).

2. Run Algorithm 2. If the solution p∗ is integer, return p∗ and set L to the objective
value. If along the execution we obtain an upper bound less than L, then Algorithm 2
can be safely stopped and return “infeasible”—this is the bound part. Otherwise (if
p∗ is fractional) go to step 3.

3. Find the “most fractional” component of p∗ (call it p∗j (.)) and branch: for every
yj ∈ Yj , create a branch where pj(yj) = 1 and pj(y

′
j) = 0 for y′j 6= yj , and go

to step 2, eventually obtaining an integer solution p∗|yj or infeasibility. Return the
p∗ ∈ {p∗|yj}yj∈Yj that yields the largest objective value.

Although this procedure has worst-case exponential runtime, in many problems for which
the relaxations are near-exact it is found empirically very effective. We will see one example
in Section 7.3.

5. Local Subproblems in AD3

This section shows how to solve the AD3 local subproblems (18) exactly and efficiently,
in several cases, including Ising models and logic constraint factors. These results will be
complemented in Section 6, where a new procedure to handle arbitrary factors widens the
applicability of AD3. By subtracting a constant, re-scaling, and flipping signs, problem (18)
can be written more compactly as

minimize
1

2
‖Mqα − a‖2 − b>qα (20)

with respect to qα ∈ R|Yα|

subject to 1>qα = 1, qα ≥ 0,

where a := (ai)i∈∂(α), with ai := pi + η−1(θiα + λiα); b := η−1θα; and M := (Miα)i∈∂(α)

denotes a matrix with
∑

i |Yi| rows and |Yα| columns.
We show that problem (20) has a closed-form solution or can be solved exactly and

efficiently, in several cases; e.g., for Ising models, for factor graphs imposing first-order logic

511

Martins, Figueiredo, Aguiar, Smith, and Xing

(FOL) constraints, and for Potts models (after binarization). In these cases, AD3 and the
PSDD algorithm have (asymptotically) the same computational cost per iteration, up to a
logarithmic factor.

5.1 Ising Models

Ising models are factor graphs containing only binary pairwise factors. A binary pairwise
factor (say, α) is one connecting two binary variables (say, Y1 and Y2); thus Y1 = Y2 = {0, 1}
and Yα = {00, 01, 10, 11}. Given that q1α, q2α ∈ ∆2, we can write q1α = (1 − z1, z1),
q2α = (1− z2, z2). Furthermore, since qα ∈ ∆4 and marginalization requires that qα(1, 1) +
qα(1, 0) = z1 and qα(0, 1) + qα(1, 1) = z2, we can also write qα = (1 − z1 − z2 + z12, z1 −
z12, z2 − z12, z12). Using this parameterization, problem (20) reduces to:

minimize
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

with respect to z1, z2, z12 ∈ [0, 1]3

subject to z12 ≤ z1, z12 ≤ z2, z12 ≥ z1 + z2 − 1, (21)

where

c1 =
a1α(1) + 1− a1α(0)− bα(0, 0) + bα(1, 0)

2

c2 =
a2α(1) + 1− a2α(0)− bα(0, 0) + bα(0, 1)

2

c12 =
bα(0, 0)− bα(1, 0)− bα(0, 1) + bα(1, 1)

2
.

The next proposition (proved in Appendix B.1) establishes a closed form solution for this
problem, which immediately translates into a procedure for SolveQP for binary pairwise
factors.

Proposition 10 Let [x]U := min{max{x, 0}, 1} denote projection (clipping) onto the unit
interval U := [0, 1]. The solution (z∗1 , z

∗
2 , z
∗
12) of problem (21) is the following. If c12 ≥ 0,

(z∗1 , z
∗
2) =


([c1]U, [c2 + c12]U), if c1 > c2 + c12

([c1 + c12]U, [c2]U), if c2 > c1 + c12

([(c1 + c2 + c12)/2]U, [(c1 + c2 + c12)/2]U), otherwise,

z∗12 = min{z∗1 , z∗2}; (22)

otherwise ,

(z∗1 , z
∗
2) =


([c1 + c12]U, [c2 + c12]U), if c1 + c2 + 2c12 > 1
([c1]U, [c2]U), if c1 + c2 < 1
([(c1 + 1− c2)/2]U, [(c2 + 1− c1)/2]U), otherwise,

z∗12 = max{0, z∗1 + z∗2 − 1}. (23)

512

Alternating Directions Dual Decomposition

5.2 Factor Graphs with First-Order Logic Constraints

Hard constraint factors allow specifying “forbidden” configurations, and have been used
in error-correcting decoders (Richardson and Urbanke, 2008), bipartite graph matching
(Duchi et al., 2007), computer vision (Nowozin and Lampert, 2009), and natural language
processing (Smith and Eisner, 2008). In many applications, declarative constraints are useful
for injecting domain knowledge, and first-order logic (FOL) provides a natural language to
express such constraints. This is particularly useful in learning from scarce annotated data
(Roth and Yih, 2004; Punyakanok et al., 2005; Richardson and Domingos, 2006; Chang
et al., 2008; Poon and Domingos, 2009).

In this section, we consider hard constraint factors linked to binary variables, with
log-potential functions of the form

θα(yα) =

{
0, if yα ∈ Sα
−∞, otherwise,

where Sα ⊆ {0, 1}|∂(α)| is an acceptance set. These factors can be used for imposing FOL
constraints, as we describe next. We define the marginal polytope Zα of a hard constraint
factor α as the convex hull of its acceptance set,

Zα = conv Sα. (24)

As shown in Appendix B.2, the AD3 subproblem (20) associated with a hard constraint
factor is equivalent to that of computing an Euclidean projection onto its marginal polytope:

minimize ‖z − z0‖2

with respect to z ∈ Zα, (25)

where z0i := (ai(1)+1−ai(0))/2, for i ∈ ∂(α). We now show how to compute this projection
for several hard constraint factors that are building blocks for writing FOL constraints. Each
of these factors performs a logical function, and hence we represent them graphically as logic
gates (Figure 3).

5.2.1 One-Hot XOR (Uniqueness Quantification)

The “one-hot XOR” factor linked to K ≥ 1 binary variables is defined through the following
potential function:

θXOR(y1, . . . , yK) :=

{
0 if ∃!k ∈ {1, . . . ,K} s.t. yk = 1
−∞ otherwise,

where ∃! denotes “there is one and only one.” The name “one-hot XOR” stems from the
following fact: for K = 2, exp(θXOR(.)) is the logic eXclusive-OR function; the prefix “one-
hot” expresses that this generalization to K > 2 only accepts configurations with precisely
one “active” input (not to be mistaken with other XOR generalizations commonly used for
parity checks). The XOR factor can be used for binarizing a categorical variable, and to
express a statement in FOL of the form ∃!x : R(x).

513

Martins, Figueiredo, Aguiar, Smith, and Xing

XOR OR OR-OUT

Figure 3: Logic factors and their marginal polytopes; the AD3 subproblems (25) are projec-
tions onto these polytopes. Left: the one-hot XOR factor (its marginal polytope
is the probability simplex). Middle: the OR factor. Right: the OR-with-output
factor.

From (24), the marginal polytope associated with the one-hot XOR factor is

ZXOR = conv
{
y ∈ {0, 1}K | ∃!k ∈ {1, . . . ,K} s.t. yk = 1

}
= ∆K

as illustrated in Figure 3. Therefore, the AD3 subproblem for the XOR factor consists in
projecting onto the probability simplex, a problem well studied in the literature (Brucker,
1984; Michelot, 1986; Duchi et al., 2008). In Appendix B.3, we describe a simple O(K logK)
algorithm. Note that there are O(K) algorithms for this problem which are slightly more
involved.

5.2.2 OR (Existential Quantification)

This factor represents a disjunction of K ≥ 1 binary variables,

θOR(y1, . . . , yK) :=

{
0 if ∃k ∈ {1, . . . ,K} s.t. yk = 1
−∞ otherwise,

The OR factor can be used to represent a statement in FOL of the form ∃x : R(x).

From Proposition 16, the marginal polytope associated with the OR factor is:

ZOR = conv
{
y ∈ {0, 1}K | ∃k ∈ {1, . . . ,K} s.t. yk = 1

}
=

{
z ∈ [0, 1]K

∣∣∣∣ K∑
k=1

zk ≥ 1

}
;

geometrically, it is a “truncated” hypercube, as depicted in Figure 3. We derive aO(K logK)
algorithm for projecting onto ZOR, using a sifting technique and a sort operation (see Ap-
pendix B.4).

514

Alternating Directions Dual Decomposition

5.2.3 Logical Variable Assignments: OR-With-Output

The two factors above define a constraint on a group of existing variables. Alternatively, we
may want to define a new variable (say, yK+1) which is the result of an operation involving
other variables (say, y1, . . . , yK). Among other things, this will allow dealing with “soft
constraints,” i.e., constraints that can be violated but whose violation will decrease the
score by some penalty. An example is the OR-with-output factor:

θOR−out(y1, . . . , yK , yK+1) :=

{
1 if yK+1 = y1 ∨ · · · ∨ yK
0 otherwise.

This factor constrains the variable yK+1 to indicate the existence of one or more active
variables among y1, . . . , yK . It can be used to express the following statement in FOL:
T (x) := ∃z : R(x, z).

The marginal polytope associated with the OR-with-output factor (also depicted in
Figure 3):

ZOR−out = conv

{
y ∈ {0, 1}K+1

∣∣∣∣ yK+1 = y1 ∨ · · · ∨ yK
}

=

{
z ∈ [0, 1]K+1

∣∣∣∣ K∑
k=1

zk ≥ zK+1, zk ≤ zK+1,∀k ∈ {1, . . . ,K}

}
.

Although projecting onto ZOR−out is slightly more complicated than the previous cases, in
Appendix B.5, we propose (and prove correctness of) an O(K logK) algorithm for this task.

5.2.4 Negations, De Morgan’s Laws, and AND-With-Output

The three factors just presented can be extended to accommodate negated inputs, thus
adding flexibility. Solving the corresponding AD3 subproblems can be easily done by reusing
the methods that solve the original problems. For example, it is straightforward to handle
negated conjunctions (NAND),

θNAND(y1, . . . , yK) :=

{
−∞ if yk = 1, ∀k ∈ {1, . . . ,K}
0 otherwise,

= θOR(¬y1, . . . ,¬yK),

as well as implications (IMPLY),

θIMPLY(y1, . . . , yK , yK+1) :=

{
0 if (y1 ∧ · · · ∧ yK)⇒ yK+1

−∞ otherwise

= θOR(¬y1, . . . ,¬yK , yK+1).

In fact, from De Morgan’s laws, ¬ (Q1(x) ∧ · · · ∧QK(x)) is equivalent to ¬Q1(x) ∨ · · · ∨
¬QK(x), and (Q1(x) ∧ · · · ∧QK(x)) ⇒ R(x) is equivalent to (¬Q1(x) ∨ · · · ∨ ¬QK(x)) ∨
R(x). Another example is the AND-with-output factor,

θAND−out(y1, . . . , yK , yK+1) :=

{
0 if yK+1 = y1 ∧ · · · ∧ yK
−∞ otherwise

= θOR−out(¬y1, . . . ,¬yK ,¬yK+1),

515

Martins, Figueiredo, Aguiar, Smith, and Xing

which can be used to impose FOL statements of the form T (x) := ∀z : R(x, z).

Let α be a binary constraint factor with marginal polytope Zα, and β a factor obtained
from α by negating the kth variable. For notational convenience, let symk : [0, 1]K → [0, 1]K

be defined as (symk(z))k = 1 − zk and (symk(z))i = zi, for i 6= k. Then, the marginal
polytope Zβ is a symmetric transformation of Zα,

Zβ =
{
z ∈ [0, 1]K

∣∣ symk(z) ∈ Zα

}
,

and, if projZα denotes the projection operator onto Zα,

projZβ (z) = symk

(
projZα(symk(z))

)
.

Naturally, projZβ can be computed as efficiently as projZα and, by induction, this procedure
can be generalized to an arbitrary number of negated variables.

5.3 Potts Models and Graph Binarization

Although general factors lack closed-form solutions of the corresponding AD3 subproblem
(20), it is possible to binarize the graph, i.e., to convert it into an equivalent one that only
contains binary variables and XOR factors. The procedure is as follows:

• For each variable node i ∈ V , define binary variables Ui,yi ∈ {0, 1}, for each state
yi ∈ Yi; link these variables to a XOR factor, imposing

∑
yi∈Yi pi(yi) = 1.

• For each factor α ∈ F , define binary variables Uα,yα ∈ {0, 1} for every yα ∈ Yα. For
each edge (i, α) ∈ E and each yi ∈ Yi, link variables {Uα,yα | yα ∼ yi} and ¬Ui,yi to
a XOR factor; this imposes the constraint pi(yi) =

∑
yα∼yi qα(yα).

The resulting binary graph is one for which we already presented the machinery needed for
solving efficiently the corresponding AD3 subproblems. As an example, for Potts models
(graphs with only pairwise factors and variables that have more than two states), the
computational cost per AD3 iteration on the binarized graph is asymptotically the same as
that of the PSDD and other message-passing algorithms; for details, see Martins (2012).

6. An Active Set Method For Solving the AD3 Subproblems

In this section, we complement the results of Section 5 with a general active-set procedure
for solving the AD3 subproblems for arbitrary factors, the only requirement being a black-
box MAP solver—the same as the PSDD algorithm. This makes AD3 applicable to a wide
range of problems. In particular, it makes possible to handle structured factors, by invoking
specialized MAP decoders (functions ComputeMAP in Algorithm 1). In practice, as we
will see in Section 7, the active set method we next present largely outperforms the graph
binarization strategy outlined in Section 5.3.

Our active set method is based on Nocedal and Wright (1999, Section 16.4); it is an
iterative algorithm that addresses the AD3 subproblems (20) by solving a sequence of linear
problems. The next crucial proposition (proved in Appendix C) states that the problem
(20) always admits a sparse solution.

516

Alternating Directions Dual Decomposition

Proposition 11 Problem (20) admits a solution q∗α ∈ R|Yα| with at most
∑

i∈∂(α) |Yi| −
|∂(α)|+ 1 non-zero components.

The fact that the solution lies in a low dimensional subspace makes active set methods
appealing, since they only keep track of an active set of variables, that is, the non-zero
components of qα. Proposition 11 tells us that such an algorithm only needs to maintain at
most O(

∑
i |Yi|) elements in the active set—note the additive, rather than multiplicative,

dependency on the number of values of the variables. Our active set method seeks to identify

the low-dimensional support of the solution q∗α, by generating sparse iterates q
(1)
α , q

(2)
α , . . .,

while it maintains a working set W ⊆ Yα with the inequality constraints of (20) that are
inactive along the way (i.e., those yα for which qα(yα) > 0 holds strictly). Each iteration
adds or removes elements from the working set while it monotonically decreases the objective
of (20).5

Lagrangian and KKT conditions. Let τ and µ be dual variables associated with the
equality and inequality constraints of (20), respectively. The Lagrangian function is

L(qα, τ,µ) =
1

2
‖Mqα − a‖2 − b>qα − τ(1− 1>qα)− µ>qα.

This gives rise to the following Karush-Kuhn-Tucker (KKT) conditions:

M>(a−Mqα) + b = τ1− µ (∇qαL = 0) (26)

1>qα = 1, qα ≥ 0, µ ≥ 0 (Primal/dual feasibility) (27)

µ>qα = 0 (Complementary slackness). (28)

The method works at follows. At each iteration s, it first checks if the current iterate q
(s)
α

is a subspace minimizer, i.e., if it optimizes the objective of (20) in the sparse subspace
defined by the working set W , {qα ∈ ∆|Yα| | qα(yα) = 0,∀yα /∈ W}. This check can be
made by first solving a relaxation where the inequality constraints are ignored. Since in this
subspace the components of qα not in W will be zeros, one can simply delete those entries
from qα and b and the corresponding columns in M; we use a horizontal bar to denote
these truncated R|W |-vectors. The problem can be written as:

minimize
1

2
‖M̄q̄α − a‖2 − b̄

>
q̄α

with respect to q̄α ∈ R|W |

subject to 1>q̄α = 1. (29)

The solution of this equality-constrained QP can be found by solving a system of KKT
equations:6 [

M̄>M̄ 1
1> 0

] [
q̄α
τ

]
=

[
M̄>a+ b̄

1

]
. (30)

5. Our description differs from Nocedal and Wright (1999) in which their working set contains active
constraints rather than the inactive ones. In our case, most constraints are active for the optimal q∗α,
therefore it is appealing to store the ones that are not.

6. Note that this is a low-dimensional problem, since we are working in a sparse working set. By caching the
inverse of the matrix in the left-hand side, this system can be solved in time O(|W |2) at each iteration.

517

Martins, Figueiredo, Aguiar, Smith, and Xing

The solution of (30) will give (q̂α, τ̂), where q̂α ∈ R|Yα| is padded back with zeros. If

it happens that q̂α = q
(s)
α , then this means that the current iterate q

(s)
α is a subspace

minimizer; otherwise a new iterate q
(s+1)
α will be computed. We next discuss these two

events.

• Case 1: q
(s)
α is a subspace minimizer. If this happens, then it may be the case that

q
(s)
α is the optimal solution of (20). By looking at the KKT conditions (26)–(28), we

have that this will happen iff M>(a −Mq
(s)
α) + b ≤ τ (s)1. Define w := a −Mqα.

The condition above is equivalent to

max
yα∈Yα

b(yα) +
∑
i∈∂(α)

wi(yi)

 ≤ τ (s).

It turns out that this maximization is precisely a local MAP inference problem, given
a vector of unary potentials w and factor potentials b. Thus, the maximizer ŷα
can be computed via the ComputeMAP procedure, which we assume available. If
b(ŷα) +

∑
i∈∂(α)wi(ŷi) ≤ τ (s), then the KKT conditions are satisfied and we are done.

Otherwise, ŷα indicates the most violated condition; we will add it to the active set
W , and proceed.

• Case 2: q
(s)
α is not a subspace minimizer. If this happens, then we compute a new

iterate q
(s+1)
α by keeping searching in the same subspace. We have already solved a

relaxation in (29). If we have q̂α(yα) ≥ 0 for all yα ∈W , then the relaxation is tight,

so we just set q
(s+1)
α := q̂α and proceed. Otherwise, we move as much as possible in

the direction of q̂α while keeping feasibility, by defining q
(s+1)
α := (1−β)q

(s)
α +βq̂α—as

described in Nocedal and Wright (1999), the value of β ∈ [0, 1] can be computed in
closed form:

β = min

{
1, min
yα∈W : q

(s)
α (yα)>q̂α(yα)

q
(s)
α (yα)

q
(s)
α (yα)− q̂α(yα)

}
. (31)

If β < 1, this update will have the effect of making one of the constraints active,

by zeroing out q
(s+1)
α (yα) for the minimizing yα above. This so-called “blocking

constraint” is thus be removed from the working set W .

Algorithm 3 describes the complete procedure. The active set W is initialized arbitrarily:
a strategy that works well in practice is, in the first AD3 iteration, initialize W := {ŷα},
where ŷα is the MAP configuration given log-potentials a and b; and in subsequent AD3

iterations, warm-start W with the support of the solution obtained in the previous iteration.
Each iteration of Algorithm 3 improves the objective of (20), and, with a suitable

strategy to prevent cycles and stalling, the algorithm is guaranteed to stop after a finite

Note also that adding a new configuration yα to the active set, corresponds to inserting a new column
in M̄, thus the matrix inversion requires updating M̄>M̄. From the definition of M and simple algebra,
the (yα,y

′
α) entry in M>M is simply the number of common values between the configurations yα and

y′α. Hence, when a new configuration yα is added to the active set W , that configuration needs to be
compared with all the others already in W .

518

Alternating Directions Dual Decomposition

Algorithm 3 Active Set Algorithm for Solving a General AD3 Subproblem

1: input: Parameters a, b,M, starting point q
(0)
α

2: initialize W (0) as the support of q
(0)
α

3: for s = 0, 1, 2, . . . do
4: solve the KKT system and obtain q̂α and τ̂ (30)

5: if q̂α = q
(s)
α then

6: compute w := a−Mq̂α
7: obtain the tighter constraint ŷα via eŷα = ComputeMAP(b+ M>w)
8: if b(ŷα) +

∑
i∈∂(α)wi(ŷi) ≤ τ̂ then

9: return solution q̂α
10: else
11: add the most violated constraint to the active set: W (s+1) := W (s) ∪ {ŷα}
12: end if
13: else
14: compute the interpolation constant β as in (31)

15: set q
(s+1)
α := (1− β)q

(s)
α + βq̂α

16: if if β < 1 then
17: pick the blocking constraint ŷα in (31)
18: remove ŷα from the active set: W (s+1) := W (s) \ {ŷα}
19: end if
20: end if
21: end for
22: output: q̂α

number of steps (Nocedal and Wright, 1999, Theorem 16.5). In practice, since it is run as a
subroutine of AD3, Algorithm 3 does not need to be run to optimality, which is convenient
in early iterations of AD3 (this is supported by Proposition 9). The ability to warm-start
with the solution from the previous round is very useful in practice: we have observed that,
thanks to this warm-starting strategy, very few inner iterations are typically necessary for
the correct active set to be identified. We will see some empirical evidence in Section 7.4.

7. Experiments

In this section, we provide an empirical comparison between AD3 (Algorithm 2) and four
other algorithms: generalized MPLP (Globerson and Jaakkola, 2008); norm-product BP
(Hazan and Shashua, 2010);7 the PSDD algorithm of Komodakis et al. (2007) (Algorithm 1)
and its accelerated version introduced by Jojic et al. (2010). All these algorithms address the
LP-MAP problem; the first are message-passing methods performing block coordinate de-
scent in the dual, whereas the last two are based on dual decomposition. The norm-product
BP and accelerated dual decomposition algorithms introduce a temperature parameter to
smooth their dual objectives. All the baselines have the same algorithmic complexity per

7. For norm-product BP, we adapted the code provided by the authors, using the “trivial” counting numbers
cα = 1, ciα = 0, and ci = 0, ∀(i, α) ∈ E, which leads to a concave entropy approximation.

519

Martins, Figueiredo, Aguiar, Smith, and Xing

iteration, which is asymptotically the same as that of the AD3 applied to a binarized graph,
but different from that of AD3 with the active set method.

We compare the performance of the algorithms above in several data sets, including
synthetic Ising and Potts models, protein design problems, and two problems in natural
language processing: frame-semantic parsing and non-projective dependency parsing. The
graphical models associated with these problems are quite diverse, containing pairwise bi-
nary factors (AD3 subproblems solved as described in Section 5.1), first-order logic factors
(addressed using the tools of Section 5.2), dense factors, and structured factors (tackled
with the active set method of Section 6).

7.1 Synthetic Ising and Potts Models

We start by comparing AD3 with their competitors on synthetic Ising and Potts models.

7.1.1 Ising Models

Figure 4 reports experiments with random Ising models, with single-node log-potentials
chosen as θi(1) − θi(0) ∼ U[−1, 1] and random edge couplings in U[−ρ, ρ], where ρ ∈
{0.1, 0.2, 0.5, 1.0}. Decompositions are edge-based for all methods. For MPLP and norm-
product BP, primal feasible solutions (ŷi)i∈V are obtained by decoding the single node
messages (Globerson and Jaakkola, 2008); for the dual decomposition methods, ŷi =
argmaxyi pi(yi).

We observe that PSDD is the slowest algorithm, taking a long time to find a “good”
primal feasible solution, arguably due to the large number of components. The accelerated
dual decomposition method (Jojic et al., 2010) is also not competitive in this setting, as it
takes many iterations to reach a near-optimal region. MPLP, norm-product, and AD3 all
perform very similarly regarding convergence to the dual objective, with a slight advantage
of the latter two. Regarding their ability to find a “good” feasible primal solution, AD3

and norm-product BP seem to outperform their competitors. In a batch of 100 experiments
using a coupling ρ = 0.5, AD3 found a best dual than MPLP in 18 runs and it lost 11
times (the remaining 71 runs were ties); it won over norm-product BP 73 times and never
lost. In terms of primal solutions, AD3 won over MPLP in 47 runs and it lost 12 times (41
ties); and it won over norm-product in 49 runs and it lost 33 times (in all cases, relative
differences lower than 1× 10−6 were considered as ties).

7.1.2 Potts Models

The effectiveness of AD3 in the non-binary case is assessed using random Potts models,
with single-node log-potentials chosen as θi(yi) ∼ U[−1, 1] and pairwise log-potentials as
θij(yi, yj) ∼ U[−10, 10] if yi = yj and 0 otherwise. All the baselines use the same edge
decomposition as before, since they handle multi-valued variables; for AD3, we tried two
variants: one where the graph is binarized (see Section 5.3); and one which works in the
original graph through the active set method, as described in Section 6.

As shown in Figure 5, MPLP and norm-product BP decrease the objective very rapidly
in the beginning and then slow down considerably; the accelerated dual decomposition
algorithm, although slower in early iterations, eventually surpasses them. Both variants of
AD3 converge as fast as the accelerated dual decomposition algorithm in later iterations,

520

Alternating Directions Dual Decomposition

Figure 4: Evolution of the dual objective and the best primal feasible one in the experiments
with 30×30 random Ising models, generated as described in the main text. For the
subgradient method, the step sizes are ηt = η0/k(t), where k(t) is the number of
times the dual decreased up to the tth iteration, and η0 was chosen with hindsight
in {0.001, 0.01, 0.1, 10} to yield the best dual objective. For accelerated dual
decomposition, the most favorable parameter ε∈{0.1, 1, 10, 100} was chosen. For
norm-product BP, the temperature was set as τ = 0.001, and the dual objective
is computed with zero temperature (which led to better upper bounds). AD3

uses η=0.1 for all runs.

and are almost as fast as MPLP and norm-product in early iterations, getting the best of
both worlds. Comparing the two variants of AD3, we observe that the active set variant
clearly outperforms the binarization variant. Notice that since AD3 with the active set
method involves more computation per iteration, we plot the objective values with respect
to the normalized number of oracle calls (which matches the number of iterations for the
other methods).

7.2 Protein Design

We compare AD3 with the MPLP implementation8 of Sontag et al. (2008) in the benchmark
protein design problems9 of Yanover et al. (2006). In these problems, the input is a three-
dimensional shape, and the goal is to find the most stable sequence of amino acids in
that shape. The problems can be represented as pairwise factor graphs, whose variables
correspond to the identity of amino acids and rotamer configurations, thus having hundreds
of possible states. Figure 6 plots the evolution of the dual objective over runtime, for two of
the largest problem instances, i.e., those with 3167 (1fbo) and 1163 (1kw4) factors. These
plots are representative of the typical performance obtained in other instances. In both
cases, MPLP steeply decreases the objective at early iterations, but then reaches a plateau

8. Available at http://cs.nyu.edu/~dsontag/code; that code includes a “tightening” procedure for re-
trieving the exact MAP, which we don’t use, since we are interested in the LP-MAP relaxation (which
is what AD3 addresses).

9. Available at http://www.jmlr.org/papers/volume7/yanover06a/.

521

http://cs.nyu.edu/~dsontag/code
http://www.jmlr.org/papers/volume7/yanover06a/

Martins, Figueiredo, Aguiar, Smith, and Xing

Figure 5: Evolution of the dual objective in the experiments with random 20 × 20 Potts
models with 8-valued nodes, generated as described in the main text. For PSDD
and the accelerated dual decomposition algorithm, we chose η0 and ε as before.
For AD3, we set η = 1.0 in both settings (active set and binarization). In the
active set method, no caching was used and the plotted number of iterations is
corrected to make it comparable with the remaining algorithms, since each outer
iteration of AD3 requires several calls to a MAP oracle (we plot the normalized
number of oracle calls instead). Yet, due to warm-starting, the average number
of inner iterations is only 1.04, making the active set method extremely efficient.
For all methods, the markers represent every 100 iterations.

with no further significant improvement. AD3 rapidly surpasses MPLP in obtaining a better
dual objective. Finally, observe that although earlier iterations of AD3 take longer than
those of MPLP, this cost is amortized in later iterations, by warm-starting the active set
method.

1000 2000 3000 4000 5000 6000 7000
430

435

440

445

450

455

Runtime (secs.)

D
ua

l O
bj

ec
tiv

e

Protein Design (1fpo)

MPLP
every 100 iterations

AD3

every 100 iterations

500 1000 1500 2000
150

155

160

Protein Design (1kw4)

Runtime (secs.)

D
ua

l O
bj

ec
tiv

e

MPLP
every 100 iterations

AD3

every 100 iterations

Figure 6: Protein design experiments (see main text for details). In AD3, η is adjusted as
proposed by Boyd et al. (2011, §3.4.1), initialized at η = 1.0 and the subproblems
are solved by the proposed active set method. Although the plots are with respect
to runtime, they also indicate iteration counts.

522

Alternating Directions Dual Decomposition

200 400 600 800 1000
25.8

25.9

26

26.1

Number of Iterations

D
ua
lO

bj
ec
tiv
e

Frame−Semantic Parsing

0 200 400 600 800
42.12

42.14

42.16

42.18

100 200 300 400 500
20.1

20.2

20.3

20.4

200 400 600 800 1000

60.6
60.8
61

61.2
61.4

200 400 600 800 1000
63

64

65

66 MPLP

Subgrad.

AD3

Figure 7: Experiments in five frame-semantic parsing problems (Das, 2012, Section 5.5).
The projected subgradient uses ηt = η0/t, with η0 = 1.0 (found to be the best
choice for all examples). In AD3, η is adjusted as proposed by Boyd et al. (2011),
initialized at η = 1.0.

7.3 Frame-Semantic Parsing

We now report experiments on a natural language processing task involving logic con-
straints: frame-semantic parsing, using the FrameNet lexicon (Fillmore, 1976). The goal
is to predict the set of arguments and roles for a predicate word in a sentence, while re-
specting several constraints about the frames that can be evoked. The resulting graphical
models are binary constrained factor graphs with FOL constraints (see Das et al. 2012 for
details about this task). Figure 7 shows the results of AD3, MPLP, and PSDD on the five
most difficult problems (which have between 321 and 884 variables, and between 32 and 59
factors), the ones in which the LP relaxation is not tight. Unlike MPLP and PSDD, which
did not converge after 1000 iterations, AD3 achieves convergence in a few hundreds of iter-
ations for all but one example. Since these examples have a fractional LP-MAP solution,
we applied the branch-and-bound procedure described in Section 4.5 to obtain the exact
MAP for these examples. The whole data set contains 4,462 instances, which were parsed
by this exact variant of the AD3 algorithm in only 4.78 seconds, against 43.12 seconds of
CPLEX, a state-of-the-art commercial ILP solver.

7.4 Dependency Parsing

The final set of experiments assesses the ability of AD3 to handle problems with structured
factors. The task is dependency parsing (illustrated in the left part of Figure 8), an impor-
tant problem in natural language processing (Eisner, 1996; McDonald et al., 2005), to which
dual decomposition has been recently applied (Koo et al., 2010). We use an English data
set derived from the Penn Treebank (PTB)(Marcus et al., 1993), converted to dependen-
cies by applying the head rules of Yamada and Matsumoto (2003); we follow the common
procedure of training in sections §02–21 (39,832 sentences), using §22 as validation data
(1,700 sentences), and testing on §23 (2,416 sentences). We ran a part-of-speech tagger on
the validation and test splits, and devised a linear model using various features depend-

523

Martins, Figueiredo, Aguiar, Smith, and Xing

 * We learned a lesson in 1987 about volatility

Figure 8: Left: example of a sentence (input) and its dependency parse tree (output to
be predicted); this is a directed spanning tree where each arc (h,m) represent a
syntactic relationships between a head word h and the a modifier word m. Right:
the parts used in our models. Arcs are the basic parts: any dependency tree can
be “read out” from its arcs. Consecutive siblings and grandparent parts introduce
horizontal and vertical Markovization. We break the horizontal Markovianity
via all siblings parts (which look at arbitrary pairs of siblings, not necessarily
consecutive). Inspired by transition-based parsers, we also adopt head bigram
parts, which look at the heads attached to consecutive words.

ing on words, part-of-speech tags, and arc direction and length. Our features decompose
over the parts illustrated in the right part of Figure 8. We consider two different models
in our experiments: a second order model with scores for arcs, consecutive siblings, and
grandparents; a full model, which also has scores for arbitrary siblings and head bigrams.

If only scores for arcs were used, the problem of obtaining a parse tree with maximal
score could be solved efficiently with a maximum directed spanning tree algorithm (Chu and
Liu, 1965; Edmonds, 1967; McDonald et al., 2005); the addition of any of the other scores
makes the problem NP-hard (McDonald and Satta, 2007). A factor graph representing the
second order model, proposed by Smith and Eisner (2008) and Koo et al. (2010), contains
binary variables representing the candidate arcs, a hard-constraint factor imposing the tree
constraint, and head automata factors modeling the sequences of consecutive siblings and
grandparents. The full model has additional binary pairwise factors for each possible pair
of siblings (significantly increasing the number of factors), and a sequential factor modeling
the sequence of heads.10 We compare the PSDD and AD3 algorithms for this task, using the
decompositions above, which are the same for both methods. These decompositions select
the largest factors for which efficient MAP oracles exist, based on the Chu-Liu-Edmonds
algorithm and on dynamic programming. The active set method enables AD3 to depend
only on these MAP oracles.

Figure 9 illustrates the remarkable speed-ups that the caching and warm-starting pro-
cedures bring to both the AD3 and PSDD algorithms. A similar conclusion was obtained
by Koo et al. (2010) for PSDD and by Martins et al. (2011b) for AD3 in a different factor
graph. Figure 10 shows average runtimes for both algorithms, as a function of the sentence
length, and plots the percentage of instances for which the exact solution was obtained,

10. In previous work (Martins et al., 2011b), we implemented a similar model with a more complex fac-
tor graph based on a multi-commodity flow formulation, requiring only the FOL factors described in
Section 5.2. In the current paper, we consider a smaller graph with structured factors, which leads to sig-
nificantly faster runtimes. More involved models, including third-order features, were recently considered
in Martins et al. (2013).

524

Alternating Directions Dual Decomposition

0 200 400 600 800 1000 1200 1400 1600 1800
iterations

0

200

400

600

800

1000

#
o
ra

cl
e

ca
lls

(n
o
rm

a
liz

e
d

)

AD3 (full)
PSDD (full)

Figure 9: Number of calls to ComputeMAP for AD3 and PSDD, as a function of the
number of iterations. The number of calls is normalized by dividing by the
number of factors: in PSDD, this number would equal the number of iterations if
there was no caching (black line); each iteration of AD3 runs 10 iterations of the
active set method, thus without caching or warm-starting the normalized number
of calls would be ten times the number of AD3 iterations. Yet, it is clear that both
algorithms make significantly fewer calls. Remarkably, after just a few iterations,
the number of calls made by the AD3 and PSDD algorithms are comparable,
which means that the number of active set iterations is quickly amortized during
the execution of AD3.

along with a certificate of optimality. For the second-order model, AD3 was able to solve
all the instances to optimality, and in 98.2% of the cases, the LP-MAP was exact. For the
full model, AD3 solved 99.8% of the instances to optimality, being exact in 96.5% of the
cases. For the second order model, we obtained in the test set (PTB §23) a parsing speed
of 1200 tokens per second and an unlabeled attachment score of 92.48% (fraction of correct
dependency attachments excluding punctuation). For the full model, we obtained a speed
of 900 tokens per second and a score of 92.62%. All speeds were measured in a desktop
PC with Intel Core i7 CPU 3.4 GHz and 8GB RAM. The parser is publicly available as an
open-source project at http://www.ark.cs.cmu.edu/TurboParser.

8. Discussion and Related Work

We next discuss some of the strengths and weaknesses of AD3 over other recently proposed
LP-MAP inference algorithms. As mentioned in the beginning of Section 4, one of the main
sources of difficulty is the non-smoothness of the dual objective function (8). This affects
both block coordinate descent methods (such as MPLP), which can get stuck at suboptimal
stationary points, and the PSDD algorithm, which is tied to the slow O(1/ε2) convergence
of subgradient methods.

Several “smoothing methods” have been proposed in the literature to obviate these
drawbacks. Johnson et al. (2007) added an entropic regularization term to the dual objective
(8), opening the door for gradient methods; and Jojic et al. (2010) applied an accelerated

525

http://www.ark.cs.cmu.edu/TurboParser

Martins, Figueiredo, Aguiar, Smith, and Xing

0 10 20 30 40 50
sentence length (words)

0.00

0.05

0.10

0.15

0.20
a
v
e
ra
g
e
ru
n
ti
m
e
(s
e
c.
)

AD3 (full)
Subgrad. (full)
AD3 (sec. ord.)
Subgrad. (sec. ord.)

0 100 200 300 400 500 600
oracle calls (normalized)

60

65

70

75

80

85

90

95

100

#
ce
rt
if
ic
a
te
s
(%

)

AD3 (full)
Subgrad. (full)
AD3 (sec. ord.)
Subgrad. (sec. ord.)

Figure 10: Left: average runtime in PTB §22, as a function of sentence length. Right: per-
centage of instances, as a function of the normalized number of ComputeMAP
calls (see the caption of Figure 9), for which the exact solution was obtained
along with a certificate of optimality. The maximum number of iterations is
2000 for both methods.

gradient method to the smoothed problem (Nesterov, 1983), yielding a O(1/ε) iteration
bound (the same asymptotic bound as AD3, as established in Proposition 15). This method
has been recently improved by Savchynskyy et al. (2011), through adaptive smoothing and
a dynamic estimation of the Lipschitz constant. In a related line of research, Hazan and
Shashua (2010) proposed a class of norm-product message-passing algorithms that can be
used for both marginal and MAP inference. Norm-product BP implements a primal-dual
ascent scheme for optimizing a fractional entropy approximation, constructed as a linear
combination of variable and factor entropic terms. For a proper choice of counting numbers,
the resulting objective function is convex and smooth, and the amount of smoothness can
be controlled by a temperature parameter τ . With τ = 0, norm-product is similar to
MPLP and can get stuck at a suboptimal solution; but with a positive τ , the norm-product
algorithm is globally convergent to a solution which is O(τ)-close to the LP-MAP optimal
value.

Compared with AD3, the smoothing-based methods mentioned above have the advan-
tage that their local subproblems can typically be transformed into marginal inference
problems, which in many cases can be solved with brute-force counting or dynamic pro-
gramming. However, they also have important drawbacks. First, their precision depends
critically on the temperature parameter; e.g., the O(1/ε) iteration bound of Jojic et al.
(2010) requires setting the temperature to O(ε), which scales the potentials by O(1/ε) and
may lead to numerical instabilities. Second, the solution of the local subproblems are al-
ways dense; although some marginal values may be low, they are never exactly zero. This
contrasts with the projected subgradient and the AD3 algorithms, for which the solutions
of the local subproblems are spanned by one or a small number of MAP configurations. As
shown in the experimental section (Figure 9), caching these configurations across iterations
may lead to great speedups.

While smoothing-based methods that use quadratic regularizers (as opposed to entropic
ones) have also been proposed—most notably the proximal point method of Ravikumar et al.

526

Alternating Directions Dual Decomposition

(2010)—these methods also have disadvantages over AD3. The proximal point method of
Ravikumar et al. (2010) for pairwise MRFs is a double-loop algorithm, where a penalty term
with varying magnitude is added to the primal objective, and a globally smooth problem is
solved iteratively in the inner loop, using cyclic Bregman projections. Applied to a general
factor graph and using a quadratic penalty, the problems solved in the inner loop resemble
the AD3 subproblems, with an important difference: there is an extra Euclidean penalty

of the form ‖qα − q
(t)
α ‖2. While this term makes the subproblems strongly convex, it also

destroys the sparsity property mentioned in Proposition 11, which results in substantially
more messages needing to be passed around (in particular, messages with size |Yα|, which
can be prohibitive for factors with large degree). A different strategy has been proposed
by Pletscher and Wulff (2012), who combined the LP-MAP relaxation described here with
a non-convex QP relaxation, which unlike other smoothing methods increases the effect of
the penalty term through the progression of the algorithm.

Finally, it should be noted that other strategies have been recently proposed to over-
come the weaknesses of coordinate descent algorithms and PSDD, which are not based on
smoothing the dual objective. The fact that the PSDD algorithm has “no memory” across
iterations (pointed out in the beginning of Section 4) has been addressed by Kappes et al.
(2012) in their bundle method, which remembers past updates, at the cost of extra memory
storage and more involved local subproblems. The fact that coordinate descent methods
can get stuck in suboptimal solutions has been addressed by Schwing et al. (2012), who
proposed a ε-descent strategy as a way to move away from corners, mixing coordinate and
steepest descent steps; the latter, however, require solving QPs as an intermediate step.

During the preparation of this paper, and following our earlier work (Martins et al.,
2010, 2011a), AD3 has been successfully applied to several NLP problems (Martins et al.,
2011b, 2013; Das et al., 2012; Almeida and Martins, 2013), and a few related methods
have appeared. Meshi and Globerson (2011) also applied ADMM to MAP inference in
graphical models, although addressing the dual problem (the one underlying the MPLP
algorithm) rather than the primal. Yedidia et al. (2011) proposed the “divide-and-concur”
algorithm for LDPC (low-density parity check) decoding, which shares aspects of AD3,
and can be seen as an instance of non-convex ADMM. Barman et al. (2011) proposed
an algorithm analogous to AD3 for the same LDPC decoding problem; their subproblems
correspond to projections onto the parity polytope, for which they have derived an efficient
algorithm. More recently, Fu et al. (2013) proposed a Bethe-ADMM procedure resembling
AD3, but with an inexact variant of ADMM that makes the subproblems become marginal
computations. Recent work also addressed budget and knapsack constraints, important
for dealing with cardinality-based potentials and to promote diversity (Tarlow et al., 2010;
Almeida and Martins, 2013).

9. Conclusions

We introduced AD3, a new LP-MAP inference algorithm based on the alternating directions
method of multipliers (ADMM) (Glowinski and Marroco, 1975; Gabay and Mercier, 1976).

AD3 enjoys the modularity of dual decomposition methods, but achieves faster consen-
sus, by penalizing, for each subproblem, deviations from the current global solution. Using
recent results, we showed that AD3 converges to an ε-accurate solution with an iteration

527

Martins, Figueiredo, Aguiar, Smith, and Xing

bound of O(1/ε). AD3 can handle factor graphs with hard constraints in first-order logic,
using efficient procedures for projecting onto the marginal polytopes of the correspond-
ing factors. This opens the door for using AD3 in problems with declarative constraints
(Roth and Yih, 2004; Richardson and Domingos, 2006). A closed-form solution of the AD3

subproblem was also derived for pairwise binary factors.
We introduced a new active set method for solving the AD3 subproblems for arbitrary

factors. This method requires only a local MAP oracle, as the PSDD algorithm. The active
set method is particularly suitable for these problems, since it can take advantage of warm
starting and it deals well with sparse solutions—which are guaranteed by Proposition 11.
We also show how AD3 can be wrapped in a branch-and-bound procedure to retrieve the
exact MAP.

Experiments with synthetic and real-world data sets have shown that AD3 is able to
solve the LP-MAP problem more efficiently than other methods for a variety of problems,
including MAP inference in Ising and Potts models, protein design, frame-semantic parsing,
and dependency parsing.

Our contributions open several directions for future research. One possible extension is
to replace the Euclidean penalty of ADMM by a general Mahalanobis distance. The conver-
gence proofs can be trivially extended to Mahalanobis distances, since they correspond to
an affine transformation of the subspace defined by the equality constraints of (11). Simple
operations, such as scaling these constraints, do not affect the algorithms that are used to
solve the subproblems, thus AD3 can be generalized by including scaling parameters.

Since the AD3 subproblems can be solved in parallel, significant speed-ups may be
obtained in multi-core architectures or using GPU programming. This has been shown to
be very useful for large-scale message-passing inference in graphical models (Felzenszwalb
and Huttenlocher, 2006; Low et al., 2010; Schwing et al., 2011).

The branch-and-bound algorithm for obtaining the exact MAP deserves further exper-
imental study, as similar approaches have been proven useful in MAP inference problems
(Sun et al., 2012). An advantage of AD3 is its ability to quickly produce sharp upper
bounds. For many problems, there are effective rounding procedures that can also produce
lower bounds, which can be exploited for guiding the search. There are also alternatives to
branch-and-bound, such as tightening procedures (Sontag et al., 2008; Batra et al., 2011),
which progressively add larger factors to decrease the duality gap. The variant of AD3 with
the active set method can be used to handle these larger factors.

Acknowledgments

A. M. was supported by the EU/FEDER programme, QREN/POR Lisboa (Portugal), un-
der the Intelligo project (contract 2012/24803) and by FCT grants PTDC/EEI-SII/2312/2012
and UID/EEA/50008/2013. A. M. and M. F. were supported by FCT grant Pest-OE/EEI/0008/2013.
N. S. was supported by NSF CAREER IIS-1054319. E. X. was supported by AFOSR
FA9550010247, ONR N000140910758, NSF CAREER DBI-0546594, NSF IIS-0713379, and
an Alfred P. Sloan Fellowship.

528

Alternating Directions Dual Decomposition

Appendix A. Proof of Convergence Rate of AD3

In this appendix, we show the O(1/ε) convergence bound of the ADMM algorithm. We
use a recent result established by Wang and Banerjee (2012) regarding convergence in a
variational setting, from which we derive the convergence of ADMM in the dual objective.
We then consider the special case of AD3, interpreting the constants in the bound in terms
of properties of the graphical model.

We start with the following proposition, which states the variational inequality associ-
ated with the Lagrangian saddle point problem associated with (10),

min
λ∈Λ

max
q∈Q,p∈P

L(q,p,λ), (32)

where L(q,p,λ) := f1(q) + f2(p) + λ>(Aq + Bp− c) is the standard Lagrangian, and
Λ := {λ | maxq∈Q,p∈P L(q,p,λ) <∞}.

Proposition 12 (Variational inequality) Let W := Q × P × Λ. Given w = (q,p,λ) ∈
W, define h(w) := f1(q) + f2(p) and F (w) := (A>λ,B>λ,−(Aq + Bp − c)). Then,
w∗ := (q∗,p∗,λ∗) ∈W is a primal-dual solution of (32) if and only if:

∀w ∈W, h(w)− h(w∗) + (w −w∗)>F (w∗) ≤ 0. (33)

Proof: Assume w∗ is a primal-dual solution of (32). Then, the saddle point conditions
imply L(q,p,λ∗) ≤ L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ) for every w := (q,p,λ) ∈W. Hence:

0 ≥ L(q,p,λ∗)− L(q∗,p∗,λ)

= f1(q) + f2(p) + λ∗>(Aq + Bp− c)− f1(q∗)− f2(p∗)− λ>(Aq∗ + Bp∗ − c)
= h(w)− h(w∗) + (w −w∗)>F (w∗).

Conversely, letw∗ satisfy (33). Takingw = (q∗,p∗,λ), we obtain L(q∗,p∗,λ∗) ≤ L(q∗,p∗,λ).
Taking w = (q,p,λ∗), we obtain L(q,p,λ∗) ≤ L(q∗,p∗,λ∗). Hence (q∗,p∗,λ∗) is a saddle
point, and therefore a primal-dual solution.

The next result, due to Wang and Banerjee (2012) and related to previous work by
He and Yuan (2011), concerns the convergence rate of ADMM in terms of the variational
inequality stated above.

Proposition 13 (Variational convergence rate) Assume the conditions in Proposition 7.
Let w̄T = 1

T

∑T
t=1w

t, where wt := (qt,pt,λt) are the ADMM iterates with λ0 = 0. Then,
after T iterations:

∀w ∈W, h(w)− h(w̄T) + (w − w̄T)>F (w̄T) ≤ C/T, (34)

where C = η
2‖Aq + Bp0 − c‖2 + 1

2η‖λ‖
2 is independent of T .

529

Martins, Figueiredo, Aguiar, Smith, and Xing

Proof: From the variational inequality associated with the q-update (13) we have for every
q ∈ Q11

0 ≥ ∇qLη(qt+1,pt,λt)
>

(q − qt+1)

= ∇f1(qt+1)
>

(q − qt+1) + (q − qt+1)
>

A>(λt − η(Aqt+1 + Bpt − c))

≥(i) f1(q)− f1(qt+1) + (q − qt+1)
>

A>(λt − η(Aqt+1 + Bpt − c))

=(ii) f1(q)− f1(qt+1) + (q − qt+1)
>

A>λt+1 − η(A(q − qt+1))
>

B(pt − pt+1), (35)

where in (i) we have used the concavity of f1, and in (ii) we used (13) for the λ-updates.
Similarly, the variational inequality associated with the p-updates (14) yields, for every
p ∈ P:

0 ≥ ∇pLη(qt+1,pt+1,λt)
>

(p− pt+1)

= ∇f2(pt+1)
>

(p− pt+1) + (p− pt+1)
>

B>(λt − η(Aqt+1 + Bpt+1 − c))

≥(i) f2(p)− f2(pt+1) + (p− pt+1)
>

B>λt+1, (36)

where in (i) we have used the concavity of f2. Summing (35) and (36), and noting again
that λt+1 = λt − η(Aqt+1 + Bpt+1 − c), we obtain, for every w ∈W,

h(wt+1)− h(w) + (wt+1 −w)
>
F (wt+1)

≥ −ηA(q − qt+1)
>

B(pt − pt+1)− η−1(λ− λt+1)
>

(λt+1 − λt). (37)

We next rewrite the two terms in the right hand side:

ηA(q − qt+1)
>

B(pt − pt+1) =
η

2

(
‖Aq + Bpt − c‖2 − ‖Aq + Bpt+1 − c‖2

+ ‖Aqt+1 + Bpt+1 − c‖2 − ‖Aqt+1 + Bpt − c‖2
)

;

η−1(λ− λt+1)
>

(λt+1 − λt) =
1

2η

(
‖λ− λt‖2 − ‖λ− λt+1‖2 − ‖λt − λt+1‖2

)
.

Summing (37) over t and noting that η−1‖λt − λt+1‖2 = η‖Aqt+1 + Bpt+1 − c‖2:

T−1∑
t=0

(
h(wt+1)− h(w) + (wt+1 −w)

>
F (wt+1)

)
≥ −η

2

(
‖Aq + Bp0 − c‖2 − ‖Aq + BpT − c‖2 −

T−1∑
t=0

‖Aqt+1 + Bpt − c‖2
)

− 1

2η

(
‖λ− λ0‖2 − ‖λ− λT ‖2

)
≥ −η

2
‖Aq + Bp0 − c‖2 − 1

2η
‖λ‖2. (38)

11. Given a problem maxx∈X f(x), where f is concave and differentiable and X is convex, a point x∗ ∈ X is
a maximizer iff it satisfies the variational inequality ∇f(x∗)>(x− x∗) ≤ 0 for all x ∈ X (Facchinei and
Pang, 2003).

530

Alternating Directions Dual Decomposition

From the concavity of h, we have that h(w̄T) ≥ 1
T

∑T−1
t=0 h(wt+1). Note also that, for every

w̃, the function w 7→ (w − w̃)>F (w) is affine:

(w − w̃)>F (w) = (q − q̃)>A>λ+ (p− p̃)>B>λ− (λ− λ̃)
>

(Aq + Bp− c)

= −(Aq̃ + Bp̃− c)>λ+ λ̃
>

(Aq + Bp− c)
= F (w̃)>w − c>λ̃.

As a consequence, 1
T

∑T−1
t=0

(
h(wt+1) + (wt+1 −w)

>
F (wt+1)

)
≤ h(w̄T)+(w̄T −w)>F (w̄T),

and from (38), we have that h(w)− h(w̄T) + (w − w̄T)>F (w̄T) ≤ C/T , with C as in (34).
Note also that, since Λ is convex, we must have λ̄T ∈ Λ.

Next, we use the bound in Proposition 13 to derive a convergence rate for the dual
problem.

Proposition 14 (Dual convergence rate) Assume the conditions stated in Proposition 13,
with w̄T defined analogously. Let g : Λ → R be the dual objective function, g(λ) :=
maxq∈Q,p∈P L(q,p,λ), and let λ∗ ∈ arg minλ∈Λ g(λ) be a dual solution. Then, after T
iterations, ADMM achieves an O(1

T)-accurate solution λ̄T :

g(λ∗) ≤ g(λ̄T) ≤ g(λ∗) +
C

T
,

where the constant C is given by

C =
5η

2

(
max
q∈Q
‖Aq + Bp0 − c‖2

)
+

5

2η
‖λ∗‖2. (39)

Proof: By applying Proposition 13 to w = (q̄T , p̄T ,λ) we obtain for arbitrary λ ∈ Λ:

−(λ− λ̄T)
>

(Aq̄T + Bp̄T − c) ≤ O(1/T). (40)

By applying Proposition 13 to w = (q,p, λ̄T) we obtain for arbitrary q ∈ Q and p ∈ P:

f1(q̄T) + f2(p̄T) + (Aq̄T + Bp̄T − c)
>λ̄T

≥ f1(q) + f2(p) + (Aq + Bp− c)>λ̄T −O(1/T).

In particular, let g(λ̄T) = maxq∈Q,p∈P L(q,p, λ̄T) = L(q̂T , p̂T , λ̄T) be the value of the dual
objective at λ̄T , where (q̂T , p̂T) are the corresponding maximizers. We then have:

f1(q̄T) + f2(p̄T) + (Aq̄T + Bp̄T − c)
>λ̄T ≥ g(λ̄T)−O(1/T). (41)

Finally we have (letting w∗ = (q∗,p∗,λ∗) be the optimal primal-dual solution):

g(λ∗) = max
q∈Q,p∈P

f1(q) + f2(p) + λ∗>(Aq + Bp− c)

≥ f1(q̄T) + f2(p̄T) + λ∗>(Aq̄T + Bp̄T − c)
≥(i) f1(q̄T) + f2(p̄T) + λ̄

>
T (Aq̄T + Bp̄T − c)−O(1/T)

≥(ii) g(λ̄T)−O(1/T),

531

Martins, Figueiredo, Aguiar, Smith, and Xing

where in (i) we used (40) and in (ii) we used (41). By definition of λ∗, we also have
g(λ̄T) ≥ g(λ∗). Since we applied Proposition 13 twice, the constant inside the O-notation
becomes

C =
η

2

(
‖Aq̄T + Bp0 − c‖2 + ‖Aq̂T + Bp0 − c‖2

)
+

1

2η

(
‖λ∗‖2 + ‖λ̄T ‖2

)
. (42)

Even though C depends on q̄T , q̂T , and λ̄T , it is easy to obtain an upper bound on C
when Q is a bounded set, using the fact that the sequence (λt)t∈N is bounded by a constant,
which implies that the average λ̄T is also bounded. Indeed, from Boyd et al. (2011, p.107),
we have that

V t := η−1‖λ∗ − λt‖2 + η‖B(p∗ − pt)‖2

is a Lyapunov function, i.e., 0 ≤ V t+1 ≤ V t for every t ∈ N. This implies that V t ≤ V 0 =
η−1‖λ∗‖2 + η‖B(p∗ − p0)‖2; since V t ≥ η−1‖λ∗ − λt‖2, we can replace above and write:

0 ≥ ‖λ∗ − λt‖2 − ‖λ∗‖2 − η2‖B(p∗ − p0)‖2 = ‖λt‖2 − 2λ∗>λt − η2‖B(p∗ − p0)‖2

≥ ‖λt‖2 − 2‖λ∗‖‖λt‖ − η2‖B(p∗ − p0)‖2,

where in the last line we invoked the Cauchy-Schwarz inequality. Solving the quadratic
equation, we obtain ‖λt‖ ≤ ‖λ∗‖+

√
‖λ∗‖2 + η2‖B(p0 − p∗)‖2, which in turn implies

‖λt‖2 ≤ 2‖λ∗‖2 + η2‖B(p0 − p∗)‖2 + 2‖λ∗‖
√
‖λ∗‖2 + η2‖B(p0 − p∗)‖2

≤ 2‖λ∗‖2 + η2‖B(p0 − p∗)‖2 + 2(‖λ∗‖2 + η2‖B(p0 − p∗)‖2)

= 4‖λ∗‖2 + 3η2‖Aq∗ + Bp0 − c‖2, (43)

the last line following from Aq∗ + Bp∗ = c. Replacing (43) in (42) yields the result.

Finally, we will see how the bounds above apply to the AD3 algorithm.

Proposition 15 (Dual convergence rate of AD3) After T iterations of AD3, we achieve
an O(1

T)-accurate solution λ̄T :=
∑T−1

t=0 λ
(t):

g(λ∗) ≤ g(λ̄T) ≤ g(λ∗) +
C

T
,

where C = 5η
2

∑
i |∂(i)|(1− |Yi|−1) + 5

2η‖λ
∗‖2 is a constant independent of T .

Proof: With the uniform initialization of the p-variables in AD3, the first term of (39) is
maximized by a choice of qα-variables that puts all mass in a single configuration. That is:

max
qiα
‖qiα − |Yi|−11‖2 =

(
(1− |Yi|−1)2 + (|Yi| − 1)|Yi|−2

)
= 1− |Yi|−1.

This leads to the desired bound.

532

Alternating Directions Dual Decomposition

Appendix B. Derivation of Solutions for AD3 Subproblems

B.1 Binary Pairwise Factors

In this section, we prove Proposition 10. Let us first assume that c12 ≥ 0. In this case, the
constraints z12 ≥ z1 + z2 − 1 and z12 ≥ 0 in (21) are always inactive and the problem can
be simplified to:

minimize
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12

with respect to z1, z2, z12

subject to z12 ≤ z1, z12 ≤ z2, z1 ∈ [0, 1], z2 ∈ [0, 1]. (44)

If c12 = 0, the problem becomes separable, and a solution is

z∗1 = [c1]U, z∗2 = [c2]U, z∗12 = min{z∗1 , z∗2},

which complies with (22). We next analyze the case where c12 > 0. The Lagrangian of (44)
is:

L(z,µ,λ,ν) =
1

2
(z1 − c1)2 +

1

2
(z2 − c2)2 − c12z12 + µ1(z12 − z1) + µ2(z12 − z2)

−λ1z1 − λ2z2 + ν1(z1 − 1) + ν2(z2 − 1).

At optimality, the following Karush-Kuhn-Tucker (KKT) conditions need to be satisfied:

∇z1L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗1 = c1 + µ∗1 + λ∗1 − ν∗1 (45)

∇z2L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ z∗2 = c2 + µ∗2 + λ∗2 − ν∗2 (46)

∇z12L(z∗,µ∗,λ∗,ν∗) = 0 ⇒ c12 = µ∗1 + µ∗2 (47)

λ∗1z
∗
1 = 0, λ∗2z

∗
2 = 0 (48)

µ∗1(z∗12 − z∗1) = 0, µ∗2(z∗12 − z∗2) = 0 (49)

ν∗1(z∗1 − 1) = 0, ν∗2(z∗2 − 1) = 0 (50)

µ∗,λ∗,ν∗ ≥ 0 (51)

z∗12 ≤ z∗1 , z∗12 ≤ z∗2 , z∗1 ∈ [0, 1], z∗2 ∈ [0, 1] (52)

We are going to consider three cases separately:

1. z∗1 > z∗2 From the primal feasibility conditions (52), this implies z∗1 > 0, z∗2 < 1,

and z∗12 < z∗1 . Complementary slackness (48,49,50) implies in turn λ∗1 = 0, ν∗2 = 0,
and µ∗1 = 0. From (47) we have µ∗2 = c12. Since we are assuming c12 > 0, we then
have µ∗2 > 0, and complementary slackness (49) implies z∗12 = z∗2 . Plugging this into
(45)–(46) we obtain

z∗1 = c1 − ν∗1 ≤ c1, z∗2 = c2 + λ∗2 + c12 ≥ c2 + c12.

Now we have the following:

• Either z∗1 = 1 or z∗1 < 1. In the latter case, ν∗1 = 0 due to (50), hence z∗1 = c1.
Since in any case we must have z∗1 ≤ c1, we conclude that z∗1 = min{c1, 1}.

533

Martins, Figueiredo, Aguiar, Smith, and Xing

• Either z∗2 = 0 or z∗2 > 0. In the latter case, λ∗2 = 0 due to (48), hence z∗2 = c2+c12.
Since in any case we must have z∗2 ≥ λ2, we conclude that z∗2 = max{0, c2 + c12}.

In sum:
z∗1 = min{c1, 1}, z∗12 = z∗2 = max{0, c2 + c12},

and our assumption z∗1 > z∗2 can only be valid if c1 > c2 + c12.

2. z∗1 < z∗2 By symmetry, we have

z∗2 = min{c2, 1}, z∗12 = z∗1 = max{0, c1 + c12},

and our assumption z∗1 < z∗2 can only be valid if c2 > c1 + c12.

3. z∗1 = z∗2 In this case, it is easy to verify that we must have z∗12 = z∗1 = z∗2 , and we

can rewrite our optimization problem in terms of one variable only (call it z). The
problem becomes that of minimizing 1

2(z − c1)2 + 1
2(z − c2)2 − c12z, which equals a

constant plus (z − c1+c2+c12
2)2, subject to z ∈ U , [0, 1]. Hence:

z∗12 = z∗1 = z∗2 = [(c1 + c2 + c12)/2]U .

Putting all the pieces together, we obtain the solution displayed in (22).
It remains to address the case where c12 < 0. By redefining c′1 = c1 + c12, c′2 = 1 − c2,

c′12 = −c12, z′2 = 1 − z2, and z′12 = z1 − z12, we can reduce (21) to the form in (44).
Substituting back in (22), we obtain the solution displayed in (23).

B.2 Marginal Polytope of Hard Constraint Factors

The following proposition establishes that the marginal polytope of a hard constraint factor
is the convex hull of its acceptance set.

Proposition 16 Let α be a binary hard constraint factor with degree K, and consider the
set of all possible distributions P(Y α) which satisfy P(Y α = yα) = 0 for every yα /∈ Sα.
Then, the set of possible marginals realizable for some distribution in that set is given by

Zα :=

{
(q1α(1), . . . , qKα(1))

∣∣∣∣ qiα = Miαqα, for some qα ∈ ∆|Yα| s.t. qα(yα) = 0, ∀yα /∈ Sα

}
= conv Sα.

Proof: From the fact that we are constraining qα(yα) = 0,∀yα /∈ Sα, it follows:

Zα =

z ≥ 0

∣∣∣∣∣ ∃qα ≥ 0 s.t. ∀i ∈ ∂(α), zi =
∑
yα∈Sα
yi=1

qα(yα) = 1−
∑
yα∈Sα
yi=0

qα(yα)


=

z ≥ 0

∣∣∣∣∣ ∃qα ≥ 0,
∑
yα∈Sα

qα(yα) = 1 s.t. z =
∑
yα∈Sα

qα(yα)yα


= conv Sα.

534

Alternating Directions Dual Decomposition

Algorithm 4 Projection onto simplex (Duchi et al., 2008)

Input: z0

Sort z0 into y0: y1 ≥ . . . ≥ yK
Find ρ = max

{
j ∈ [K] | y0j − 1

j

(
(
∑j

r=1 y0r)− 1
)
> 0
}

Define τ = 1
ρ (
∑ρ

r=1 y0r − 1)
Output: z defined as zi = max{z0i − τ, 0}.

For hard constraint factors, the AD3 subproblems take the following form (cf. (20)):

minimize
1

2

∑
i∈∂(α)

‖qiα − ai‖2 with respect to qα ∈ ∆|Yα|, qiα ∈ R|Yi|, ∀i ∈ ∂(α)

subject to qiα = Miαqα, qα(yα) = 0, ∀yα 6= Sα.

From Proposition 16, and making use of a reduced parametrization, noting that ‖qiα −
ai‖2 = (qiα(1) − ai(1))2 + (1 − qiα(1) − ai(0))2, which equals a constant plus 2(qiα(1) −
(ai(1) + 1− ai(0))/2)2, we have that this problem is equivalent to:

minimize
1

2
‖z − z0‖2 with respect to z ∈ Zα,

where z0i := (ai(1) + 1− ai(0))/2, for each i ∈ ∂(α).

B.3 XOR Factor

For the XOR factor, the quadratic problem in (20) reduces to that of projecting onto the
simplex. That problem is well-known in the optimization community (see, e.g., Brucker
1984; Michelot 1986); by writing the KKT conditions, it is simple to show that the solution
z∗ is a soft-thresholding of z0, and therefore the problem can be reduced to that of finding
the right threshold. Algorithm 4 provides an efficient procedure; it requires a sort operation,
which renders its cost O(K logK). A proof of correctness appears in Duchi et al. (2008).12

B.4 OR Factor

The following procedure can be used for computing a projection onto ZOR:

1. Set z̃ as the projection of z0 onto the unit cube. This can be done by clipping each co-
ordinate to the unit interval U = [0, 1], i.e., by setting z̃i = [z0i]U = min{1,max{0, z0i}}.
If
∑K

i=1 z̃i ≥ 1, then return z̃. Else go to step 2.

2. Return the projection of z0 onto the simplex (use Algorithm 4).

The correctness of this procedure is justified by the following lemma:

Lemma 17 (Sifting Lemma.) Consider a problem of the form

P : min
x∈X

f(x) subject to g(x) ≤ 0, (53)

12. This cost can be reduced to O(K) using linear-time selection algorithms (Pardalos and Kovoor, 1990).

535

Martins, Figueiredo, Aguiar, Smith, and Xing

where X is nonempty convex subset of RD and f : X → R and g : X → R are convex
functions. Suppose that the problem (53) is feasible and bounded below, and let A be the set of
solutions of the relaxed problem minx∈X f(x), i.e. A = {x ∈ X | f(x) ≤ f(x′), ∀x′ ∈ X}.
Then:

1. if for some x̃ ∈ A we have g(x̃) ≤ 0, then x̃ is also a solution of the original problem
P ;

2. otherwise (if for all x̃ ∈ A we have g(x̃) > 0), then the inequality constraint is
necessarily active in P , i.e., problem P is equivalent to minx∈X f(x) subject to g(x) =
0.

Proof: Let f∗ be the optimal value of P . The first statement is obvious: since x̃ is a
solution of a relaxed problem we have f(x̃) ≤ f∗; hence if x̃ is feasible this becomes an
equality. For the second statement, assume that ∃x ∈ X subject to g(x) < 0 (otherwise, the
statement holds trivially). The nonlinear Farkas’ lemma (Bertsekas et al., 2003, Prop. 3.5.4,
p. 204) implies that there exists some λ∗ ≥ 0 subject to f(x) − f∗ + λ∗g(x) ≥ 0 holds for
all x ∈ X. In particular, this also holds for an optimal x∗ (i.e., such that f∗ = f(x∗)),
which implies that λ∗g(x∗) ≥ 0. However, since λ∗ ≥ 0 and g(x∗) ≤ 0 (since x∗ has to be
feasible), we also have λ∗g(x∗) ≤ 0, i.e., λ∗g(x∗) = 0. Now suppose that λ∗ = 0. Then we
have f(x) − f∗ ≥ 0, ∀x ∈ X, which implies that x∗ ∈ A and contradicts the assumption
that g(x̃) > 0, ∀x̃ ∈ A. Hence we must have g(x∗) = 0.

Let us see how the Sifting Lemma applies to the problem of projecting onto ZOR. If
the relaxed problem in the first step does not return a feasible point then, from the Sifting
Lemma, the constraint

∑K
i=1 zi ≥ 1 has to be active, i.e., we must have

∑K
i=1 zi = 1. This,

in turn, implies that z ≤ 1, hence the problem becomes equivalent to the XOR case. In
sum, the worst-case runtime is O(K logK), although it is O(K) if the first step succeeds.

B.5 OR-with-output Factor

Solving the AD3 subproblem for the OR-with-output factor is slightly more complicated
than in the previous cases; however, we next see that it can also be addressed in O(K logK)
time with a sort operation. The polytope ZOR−out can be expressed as the intersection of
the following three sets:13

UK+1 := [0, 1]K+1

A1 := {z ∈ RK+1 | zk ≤ zK+1,∀k = 1, . . . ,K}

A2 :=
{
z ∈ [0, 1]K+1

∣∣ ∑K
k=1 zk ≥ zK+1

}
.

We further define A0 := [0, 1]K+1∩A1, and we denote by projZ(z) the Euclidean projection
of a point z onto a convex set Z. From Lemma 17, we have that the following procedure is
correct:

13. Actually, the set UK+1 is redundant, since we have A2 ⊆ UK+1 and therefore ZOR−out = A1 ∩ A2.
However it is computationally advantageous to consider this redundancy, as we shall see.

536

Alternating Directions Dual Decomposition

1. Set z̃ := projUK+1(z0). If z̃ ∈ A1 ∩ A2, then we are done: just return z̃. Else, if
z̃ ∈ A1 but z̃ /∈ A2, discard z̃ and go to step 3. Otherwise, discard z̃ and go to step
2.

2. Set z̃ := projA0
(z0) (we will describe later how to compute this projection). If z̃ ∈ A2,

return z̃. Otherwise, discard z̃ and go to step 3.

3. Set z̃ := projĀ2
(z0), where Ā2 := {z ∈ [0, 1]K+1 |

∑K
k=1 zk = zK+1} (this set is

precisely the marginal polytope of a XOR factor with the last output negated, hence
the projection corresponds to the local subproblem for that factor, for which we can
employ Algorithm 4).

Note that the first step above can be omitted; however, it avoids performing step 2 (which
requires a sort) unless it is really necessary. To completely specify the algorithm, we only
need to explain how to compute the projection onto A0 (step 2). The next proposition
states that this can be done by first projecting onto A1, and then projecting the result onto
[0, 1]K+1.

We first start with a lemma establishing a sufficient condition for the composition of
two individual projections be equivalent to projecting onto the intersection (which is not
true in general).14

Lemma 18 Let X ⊆ RD and Y ⊆ RD be convex sets, and suppose z∗ = projY (z0 + z∗ −
z′) holds for any z0 ∈ RD, where z′ = projY (z0), and z∗ = projX(z′). Then, we have
projX∩Y = projX ◦ projY .

Proof: Assume z∗ = projY (z0 +z∗−z′). Then, we have (z0 + z∗ − z′ − z∗)>(z − z∗) ≤ 0
for all z ∈ Y ; in particular, (z0 − z′)>(z − z∗) ≤ 0 for all z ∈ X ∩ Y . On the other
hand, the definition of z∗ implies (z′ − z∗)>(z − z∗) ≤ 0 for all z ∈ X, and in particular
for z ∈ X ∩ Y . Summing these two inequalities, we obtain (z0 − z∗)>(z − z∗) ≤ 0 for all
z ∈ X ∩ Y , that is, z∗ = projX∩Y (z0).

Proposition 19 It holds projA0
= projUK+1 ◦ projA1

. Furthermore, a projection onto A1

can be computed in O(K logK) time using Algorithm 5.

Proof: We first prove the second part. Note that a projection onto A1 can be written as
the following problem:

minimize
1

2
‖z − z0‖2 subject to zk ≤ zK+1, ∀k = 1, . . . ,K, (54)

14. This is equivalent to Dykstra’s projection algorithm (Boyle and Dykstra, 1986) converging in one itera-
tion.

537

Martins, Figueiredo, Aguiar, Smith, and Xing

and we have successively:

min
zk≤zK+1, ∀k

1

2
‖z − z0‖2 = min

zK+1

1

2
(zK+1 − z0,K+1)2 +

K∑
k=1

min
zk≤zK+1

1

2
(zk − z0k)

2

= min
zK+1

1

2
(zK+1 − z0,K+1)2 +

K∑
k=1

1

2
(min{zK+1, z0k} − z0k)

2

= min
zK+1

1

2
(zK+1 − z0,K+1)2 +

1

2

∑
k∈I(zK+1)

(zK+1 − z0k)
2.

where I(zK+1) , {k ∈ [K] : z0k ≥ zK+1}. Assuming that the set I(zK+1) is given, the
previous is a sum-of-squares problem whose solution is

z∗K+1 =
z0,K+1 +

∑
k∈I(zK+1) z0k

1 + |I(zK+1)|
.

The set I(zK+1) can be determined by inspection after sorting z01, . . . , z0K . The procedure
is shown in Algorithm 5.

To prove the first part, we invoke Lemma 18. It suffices to show that z∗ = projA1
(z0 +

z∗ − z′) holds for any z0 ∈ RD, where z′ = projA1
(z0), and z∗ = projUK+1(z′). Looking at

Algorithm 5, we see that:

z′k =

{
τ, if k = K + 1 or z0k ≥ τ
z0k, otherwise,

z∗k = [z′k]U =

{
[τ]U, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise.

z0k + z∗k − z′k =

{
[τ]U − τ + z0k, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise.

Now two things should be noted about Algorithm 5:

• If a constant is added to all entries in z0, the set I(zK+1) remains the same, and τ
and z are affected by the same constant;

• Let z̃0 be such that z̃0k = z0k if k = K + 1 or z0k ≥ τ , and z̃0k ≤ τ otherwise. Let
z̃ be the projected point when such z̃0 is given as input. Then I(z̃K+1) = I(zK+1),
τ̃ = τ , z̃k = zk if k = K + 1 or z0k ≥ τ , and z̃k = z̃0k otherwise.

The two facts above allow to relate the projection of z0 + z∗ − z′ with that of z0. Using
[τ]U−τ as the constant, and noting that, for k 6= K+1 and z0k < τ , we have [z0k]U−[τ]U+τ ≥
τ if z0k < τ , the two facts imply that:

projA1
(z0 + z∗ − z′) =

{
z′k + [τ]U − τ = [τ]U, if k = K + 1 or z0k ≥ τ
[z0k]U , otherwise;

hence z∗ = projA1
(z0 + z∗ − z′), which concludes the proof.

538

Alternating Directions Dual Decomposition

Algorithm 5 Projection onto A1

Input: z0

Sort z01, . . . , z0K into y1 ≥ . . . ≥ yK
Find ρ = min

{
j ∈ [K + 1] | 1

j

(
z0,K+1 +

∑j−1
r=1 yr

)
> yj

}
Define τ = 1

ρ

(
z0,K+1 +

∑ρ−1
r=1 yr

)
Output: z defined as zK+1 = τ and zi = min{z0i, τ}, i = 1, . . . ,K.

Appendix C. Proof of Proposition 11

We first show that the rank of the matrix M is at most
∑

i∈∂(α) |Yi| − ∂(α) + 1. For each
i ∈ ∂(α), let us consider the |Yi| rows of M. By definition of M, the set of entries on these
rows which have the value 1 form a partition of Yα, hence, summing these rows yields the
all-ones row vector, and this happens for each i ∈ ∂(α). Hence we have at least ∂(α)−1 rows
that are linearly dependent. This shows that the rank of M is at most

∑
i∈∂(α) |Yi|−∂(α)+1.

Let us now rewrite (20) as

minimize
1

2
‖u− a‖2 + g(u) with respect to u ∈ R

∑
i |Yi|, (55)

where g(u) is the solution value of the following linear problem:

minimize − b>qα with respect to qα ∈ R|Yα| (56)

subject to


Mqα = u
1>qα = 1
qα ≥ 0.

From the simplex constraints (last two lines), we have that problem (56) is bounded
below (i.e., g(u) > −∞). Furthermore, problem (56) is feasible (i.e., g(u) < +∞) iff
u ∈

∏
i∈∂(α) ∆|Yi|, which in turn implies 1>qα = 1. Hence we can add these constraints to

the problem in (55), discard the constraint 1>qα = 1 in (56), and assume that the resulting
problem (which we reproduce below) is feasible and bounded below:

minimize − b>qα with respect to qα ∈ R|Yα|

subject to Mqα = u, qα ≥ 0. (57)

Problem (57) is a linear program in standard form. Since it is feasible and bounded, it
admits a solution at a vertex of the constraint set (Rockafellar, 1970). We have that a
feasible point q̂α is a vertex if and only if the columns of M indexed by {yα | q̂α(yα) 6= 0}
are linearly independent. We cannot have more than

∑
i∈∂(α) |Yi|−∂(α)+1 of these columns,

since this is the rank of M. It follows that (57) (and hence (20)) has a solution q∗α with at
most

∑
i∈∂(α) |Yi| − ∂(α) + 1 nonzeros.

539

Martins, Figueiredo, Aguiar, Smith, and Xing

References

M. B. Almeida and A. F. T. Martins. Fast and robust compressive summarization with dual
decomposition and multi-task learning. In Proc. of the Annual Meeting of the Association
for Computational Linguistics, 2013.

S. Barman, X. Liu, S. Draper, and B. Recht. Decomposition methods for large scale LP
decoding. In 49th Annual Allerton Conference on Communication, Control, and Com-
puting, pages 253–260. IEEE, 2011.

D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations for MAP-MRF inference: A local
primal-dual gap based separation algorithm. In International Conference on Artificial
Intelligence and Statistics, pages 146–154, 2011.

D. Bertsekas, W. Hager, and O. Mangasarian. Nonlinear Programming. Athena Scientific,
1999.

D.P. Bertsekas, A. Nedic, and A.E. Ozdaglar. Convex Analysis and Optimization. Athena
Scientific, 2003.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers,
2011.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J.P. Boyle and R.L. Dykstra. A method for finding projections onto the intersections of
convex sets in Hilbert spaces. In Advances in Order Restricted Statistical Inference, pages
28–47. Springer Verlag, 1986.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research
Letters, 3(3):163–166, 1984.

M. Chang, L. Ratinov, and D. Roth. Constraints as prior knowledge. In International
Conference of Machine Learning: Workshop on Prior Knowledge for Text and Language
Processing, July 2008.

Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965.

D. Das. Semi-Supervised and Latent-Variable Models of Natural Language Semantics. PhD
thesis, Carnegie Mellon University, 2012.

D. Das, A.F.T. Martins, and N.A. Smith. An exact dual decomposition algorithm for
shallow semantic parsing with constraints. In Proc. of First Joint Conference on Lexical
and Computational Semantics (*SEM), 2012.

J. Duchi, D. Tarlow, G. Elidan, and D. Koller. Using combinatorial optimization within
max-product belief propagation. Advances in Neural Information Processing Systems,
19, 2007.

540

Alternating Directions Dual Decomposition

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the
L1-ball for learning in high dimensions. In Proc. of International Conference of Machine
Learning, 2008.

J. Eckstein and D. Bertsekas. On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55(1):
293–318, 1992.

J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240, 1967.

J.M. Eisner. Three new probabilistic models for dependency parsing: An exploration. In
Proc. of International Conference on Computational Linguistics, pages 340–345, 1996.

F. Facchinei and J.S. Pang. Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, volume 1. Springer Verlag, 2003.

P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70(1):41–54, 2006.

C.J. Fillmore. Frame semantics and the nature of language. Annals of the New York
Academy of Sciences, 280(1):20–32, 1976.

Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree decomposition based parallel
MAP inference. In Proc. of Uncertainty in Artificial Intelligence, 2013.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers and Mathematics with Applications, 2(1):
17–40, 1976.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing algorithms
for MAP LP-relaxations. Neural Information Processing Systems, 20, 2008.

R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par penalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires.
Rev. Franc. Automat. Inform. Rech. Operat., 9:41–76, 1975.

T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-passing
for approximate inference. IEEE Transactions on Information Theory, 56(12):6294–6316,
2010.

B.S. He and X.M. Yuan. On the O(1/t) convergence rate of alternating direction method.
SIAM Journal of Numerical Analysis (to appear), 2011.

M. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Appli-
cations, 4:302–320, 1969.

J.K. Johnson, D.M. Malioutov, and A.S. Willsky. Lagrangian relaxation for MAP estimation
in graphical models. In 45th Annual Allerton Conference on Communication, Control and
Computing, 2007.

541

Martins, Figueiredo, Aguiar, Smith, and Xing

V. Jojic, S. Gould, and D. Koller. Accelerated dual decomposition for MAP inference. In
International Conference of Machine Learning, 2010.

J. Kappes, B. Savchynskyy, and C. Schnorr. A bundle approach to efficient MAP-inference
by Lagrangian relaxation. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2012.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The
MIT Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28:1568–1583, 2006.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decomposition:
Message-passing revisited. In Proc. of International Conference on Computer Vision,
2007.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition for
parsing with non-projective head automata. In Proc. of Empirical Methods for Natural
Language Processing, 2010.

V.A. Kovalevsky and V.K. Koval. A diffusion algorithm for decreasing energy of max-sum
labeling problem. Technical report, Glushkov Institute of Cybernetics, Kiev, USSR, 1975.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47, 2001.

A. Kulesza and F. Pereira. Structured learning with approximate inference. Neural Infor-
mation Processing Systems, 2007.

S. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996. ISBN 0-19-852219-3.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.M. Hellerstein. Graphlab: A
new parallel framework for machine learning. In International Conference on Uncertainty
in Artificial Intelligence, 2010.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus
of English: the Penn treebank. Computational Linguistics, 19(2):313–330, 1993.

A. F. T. Martins. The Geometry of Constrained Structured Prediction: Applications to
Inference and Learning of Natural Language Syntax. PhD thesis, Carnegie Mellon Uni-
versity and Instituto Superior Técnico, 2012.

A. F. T. Martins, N. A. Smith, and E. P. Xing. Polyhedral outer approximations with
application to natural language parsing. In Proc. of International Conference of Machine
Learning, 2009.

A. F. T. Martins, N. A. Smith, E. P. Xing, P. M. Q. Aguiar, and M. A. T. Figueiredo.
Augmented dual decomposition for MAP inference. In Neural Information Processing
Systems: Workshop in Optimization for Machine Learning, 2010.

542

Alternating Directions Dual Decomposition

A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An
augmented Lagrangian approach to constrained MAP inference. In Proc. of International
Conference on Machine Learning, 2011a.

A. F. T. Martins, N. A. Smith, P. M. Q. Aguiar, and M. A. T. Figueiredo. Dual decom-
position with many overlapping components. In Proc. of Empirical Methods for Natural
Language Processing, 2011b.

A. F. T. Martins, M. B. Almeida, and N. A. Smith. Turning on the turbo: Fast third-
order non-projective turbo parsers. In Proc. of the Annual Meeting of the Association for
Computational Linguistics, 2013.

R. McDonald and G. Satta. On the complexity of non-projective data-driven dependency
parsing. In Proc. of International Conference on Parsing Technologies, 2007.

R. T. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-projective dependency parsing
using spanning tree algorithms. In Proc. of Empirical Methods for Natural Language
Processing, 2005.

O. Meshi and A. Globerson. An alternating direction method for dual MAP LP relaxation.
In European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, 2011.

C. Michelot. A finite algorithm for finding the projection of a point onto the canonical
simplex of Rn. Journal of Optimization Theory and Applications, 50(1):195–200, 1986.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Math. Doklady, 27:372–376, 1983.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer verlag, 1999.

S. Nowozin and C.H. Lampert. Global connectivity potentials for random field models. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 818–825. IEEE,
2009.

P. M. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Mathematical Programming, 46(1):321–328,
1990.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

P. Pletscher and S. Wulff. LPQP for MAP: Putting LP Solvers to Better Use. In Proc. of
International Conference on Machine Learning, 2012.

H. Poon and P. Domingos. Unsupervised semantic parsing. In Proc. of Empirical Methods
in Natural Language Processing, 2009.

M. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher,
editor, Optimization, pages 283–298. Academic Press, 1969.

543

Martins, Figueiredo, Aguiar, Smith, and Xing

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Learning and inference over constrained
output. In Proc. of International Joint Conference on Artificial Intelligence, 2005.

P. Ravikumar, A. Agarwal, and M. Wainwright. Message-passing for graph-structured
linear programs: Proximal methods and rounding schemes. Journal of Machine Learning
Research, 11:1043–1080, 2010.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1):107–136,
2006.

T.J. Richardson and R.L. Urbanke. Modern Coding Theory. Cambridge University Press,
2008.

R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

D. Roth and W. Yih. A linear programming formulation for global inference in natural
language tasks. In International Conference on Natural Language Learning, 2004.

A.M. Rush and M. Collins. A tutorial on dual decomposition and Lagrangian relaxation
for inference in natural language processing. Journal of Artificial Intelligence Research,
45:305–362, 2012.

B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterov’s scheme for
Lagrangian decomposition and MAP labeling. In IEEE Conference on Computer Vision
and Pattern Recognition, 2011.

M. Schlesinger. Syntactic analysis of two-dimensional visual signals in noisy conditions.
Kibernetika, 4:113–130, 1976.

A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Distributed message passing for
large scale graphical models. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1833–1840, 2011.

A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Globally convergent dual MAP
LP relaxation solvers using Fenchel-Young margins. In Advances in Neural Information
Processing Systems 25, pages 2393–2401, 2012.

D. Smith and J. Eisner. Dependency parsing by belief propagation. In Proc. of Empirical
Methods for Natural Language Processing, 2008.

D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T Jaakkola. Tightening LP relaxations
for MAP using message-passing. In Proc. of Uncertainty in Artificial Intelligence, 2008.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for inference.
In Optimization for Machine Learning. MIT Press, 2011.

M. Sun, M. Telaprolu, H. Lee, and S. Savarese. An efficient branch-and-bound algorithm for
optimal human pose estimation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1616–1623, 2012.

R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Informa-
tion Theory, 27(5):533–547, 1981.

544

Alternating Directions Dual Decomposition

D. Tarlow, I. E. Givoni, and R. S. Zemel. HOP-MAP: Efficient message passing with high
order potentials. In AISTATS, 2010.

M. Wainwright and M. Jordan. Graphical Models, Exponential Families, and Variational
Inference. Now Publishers, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on trees:
message-passing and linear programming. IEEE Transactions on Information Theory, 51
(11):3697–3717, 2005.

H. Wang and A. Banerjee. Online alternating direction method. In Proc. of International
Conference on Machine Learning, 2012.

T. Werner. A linear programming approach to max-sum problem: A review. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29:1165–1179, 2007.

H. Yamada and Y. Matsumoto. Statistical dependency analysis with support vector ma-
chines. In Proc. of International Conference on Parsing Technologies, 2003.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief
propagation—an empirical study. Journal of Machine Learning Research, 7:1887–1907,
2006.

J.S. Yedidia, Y. Wang, and S.C. Draper. Divide and concur and difference-map BP decoders
for LDPC codes. IEEE Transactions on Information Theory, 57(2):786–802, 2011.

545

	Introduction
	Background
	Factor Graphs
	MAP Inference
	LP-MAP Inference
	LP-MAP Inference Algorithms

	Dual Decomposition with the Projected Subgradient Algorithm
	Alternating Directions Dual Decomposition (AD3)
	Augmented Lagrangians and the Alternating Directions Method of Multipliers
	Derivation of AD3
	Broadcast Step
	Gather Step

	Convergence Analysis
	Stopping Conditions and Implementation Details
	Primal and Dual Residuals
	Approximate Solutions of the Local Subproblems
	Runtime and Caching Strategies

	Exact Inference with Branch-and-Bound

	Local Subproblems in AD3
	Ising Models
	Factor Graphs with First-Order Logic Constraints
	One-Hot XOR (Uniqueness Quantification)
	OR (Existential Quantification)
	Logical Variable Assignments: OR-With-Output
	Negations, De Morgan's Laws, and AND-With-Output

	Potts Models and Graph Binarization

	An Active Set Method For Solving the AD3 Subproblems
	Experiments
	Synthetic Ising and Potts Models
	Ising Models
	Potts Models

	Protein Design
	Frame-Semantic Parsing
	Dependency Parsing

	Discussion and Related Work
	Conclusions
	Proof of Convergence Rate of AD3
	Derivation of Solutions for AD3 Subproblems
	Binary Pairwise Factors
	Marginal Polytope of Hard Constraint Factors
	XOR Factor
	OR Factor
	OR-with-output Factor

	Proof of Proposition 11

