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Abstract

We are interested in learning causal relationships between pairs of random variables, purely
from observational data. To effectively address this task, the state-of-the-art relies on
strong assumptions on the mechanisms mapping causes to effects, such as invertibility or
the existence of additive noise, which only hold in limited situations. On the contrary,
this short paper proposes to learn how to perform causal inference directly from data,
without the need of feature engineering. In particular, we pose causality as a kernel mean
embedding classification problem, where inputs are samples from arbitrary probability
distributions on pairs of random variables, and labels are types of causal relationships.
We validate the performance of our method on synthetic and real-world data against the
state-of-the-art. Moreover, we submitted our algorithm to the ChaLearn’s “Fast Causation
Coefficient Challenge” competition, with which we won the fastest code prize and ranked
third in the overall leaderboard.
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1. Introduction

According to Reichenbach’s common cause principle (Reichenbach, 1956), the dependence
between two random variables X and Y implies that either X causes Y (denoted by X → Y ),
or that Y causes X (denoted by Y → X), or that X and Y have a common cause. In this
note, we are interested in distinguishing between these three possibilities by using samples
drawn from the joint probability distribution P on (X,Y ).

Two of the most successful approaches to tackle this problem are the information
geometric causal inference method (Daniusis et al., 2012; Janzing et al., 2014), and the
additive noise model (Hoyer et al., 2009; Peters et al., 2014). First, the Information Geometric
Causal Inference (IGCI) is designed to infer causal relationships between variables related by
invertible, noiseless relationships. In particular, assume that there exists a pair of functions
or mapping mechanisms f and g such that Y = f(X) and X = g(Y ). The IGCI method
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decides that X → Y if ρ(P (X), | log(f ′(X))|) < ρ(P (Y ), | log(g′(Y ))|), where ρ denotes
Pearson’s correlation coefficient. IGCI decides Y → X if the opposite inequality holds, and
abstains otherwise. The assumption here is that the cause random variable is independently
generated from the mapping mechanism; therefore it is unlikely to find correlations between
the density of the former and the slope of the latter. Second, the additive noise model
(ANM) assumes that the effect variable is equal to a nonlinear transformation of the cause
variable plus some independent random noise, i.e., Y = f(X) +NY . If X ⊥⊥ NY , then there
exists no model of the form X = g(Y ) +NX for which Y ⊥⊥ NX . As a result, one can find
the causal direction by performing independence test between the input variable and residual
variable in both directions. Specifically, the algorithm will conclude that X → Y if the pair
of random variables (X,NY ) are independent but the pair (Y,NX) is not. The algorithm
will conclude Y → X if the opposite claim is true, and abstain otherwise. The additive noise
model has been extended to study post-nonlinear models of the form Y = h(f(X) +NY ),
where h a monotone function (Zhang and Hyvärinen, 2009). The consistency of causal
inference under the additive noise model was established by Kpotufe et al. (2013) under
some technical assumptions.

As it becomes apparent from the previous exposition, there is a lack of a general method
to infer causality without assuming strong knowledge about the underlying causal mechanism.
Moreover, it is desirable to readily extend inference to other new model hypotheses without
incurring in the development of a new, specific algorithm. Motivated by this issue, we raise
the question:

Is it possible to automatically learn patterns revealing causal relationships between random
variables from large amounts of labeled data?

2. Learning to Learn Causal Inference

Unlike the methods described above, we propose a data-driven approach to build a flexible
causal inference engine. To do so, we assume access to some set of pairs {(Si, li)}ni=1,
where the sample Si = {(xij , yij)}ni

j=1 are drawn i.i.d. from the joint distribution Pi of
the two random variables Xi and Yi, which obey the causal relationship denoted by the
label li. To simplify exposition, the labels li = 1 denotes X → Y and li = −1 stands for
Y → X. Using these data, we build a causal inference algorithm in two steps. First, an
m-dimensional feature vector mi is extracted from each sample Si, to meaningfully represent
the corresponding distribution Pi. Second, we use the set {(mi, li)}ni=1 to train a binary
classifier, later used to predict the causal relationship between previously unseen pairs of
random variables. This framework can be straightforwardly extended to also infer the
“common cause” and “independence” cases, by introducing two extra labels.

Our setup is fundamentally different from the standard classification problem in the
sense that the inputs to the learners are samples from probability distributions, rather than
real-valued vectors of features (Muandet et al., 2012; Szabó et al., 2014). In particular, we
place two assumptions. First, the existence of a Mother distribution M(P, {−1,+1}) from
which all paired probability distributions Pi ∈ P on (Xi, Yi) and causal labels li ∈ {−1,+1}
are sampled, where P denotes the set of all distributions on two real-valued random variables.
Second, the causal relationships li can be inferred in most cases from observable properties of
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the distributions Pi. While these assumptions may not hold in generality, our experimental
evidence suggests their wide applicability in real-world data.

The rest of this paper is organized as follows. Section 3 elaborates on how to extract the
m−dimensional feature vectors mi from each causal sample Si. Section 4 provides empirical
evidence to validate our methods. Section 5 closes the exposition by commenting on future
research directions.

3. Featurizing Distributions with Kernel Mean Embeddings

Let P be the probability distribution of some random variable Z taking values in Rd. Then,
the kernel mean embedding of P associated with the positive definite kernel function k is

µk(P ) :=

∫
Rd

k(z, ·)dP (z) ∈ Hk, (1)

whereHk is the reproducing kernel Hilbert space (RKHS) endowed with the kernel k (Berlinet
and Thomas-Agnan, 2004; Smola et al., 2007). A sufficient condition which guarantees the
existence of µk is that the kernel k is bounded, i.e., supz∈Z k(z, z) <∞. One of the most
attractive property of µk is that it uniquely determines each distribution P when k is a
characteristic kernel (Sriperumbudur et al., 2010). In another words, ‖µk(P )−µk(Q)‖Hk

= 0
iff P = Q. Examples of characteristic kernels include the popular squared-exponential

k(z, z′) = exp
(
−γ‖z − z′‖22

)
, for γ > 0, (2)

which will be used throughout this work.
However, in practice, we do not have access to the true distribution P , and consequently

to the true embedding µk. Instead, we often have access to a sample S = {zi}ni=1 drawn
i.i.d. from P . Then, we can construct the empirical measure PS = 1

n

∑n
i=1 δ(zi), where δ(z)

is the Dirac mass at z, and estimate (1) by

µk(PS) :=
1

n

n∑
i=1

k(zi, ·) ∈ Hk. (3)

Though it can be improved (Muandet et al., 2014), the estimator (3) is the most common
due to its ease of implementation. We can essentially view (1) and (3) as the feature
representations of the distribution P and its sample S, respectively.

For some kernels such as (2), the feature maps (1) and (3) do not have a closed form,
or are infinite dimensional. This translates into the need of kernel matrices, which require
at least O(n2) computation. In order to alleviate these burdens, we propose to compute a
low-dimensional approximation of (3) using random Fourier features (Rahimi and Recht,
2007). In particular, if the kernel k is shift-invariant, we can exploit Bochner’s theorem
(Rudin, 1962) to construct a randomized approximation of (3), with form

µk,m(PS) =
1

n

n∑
i=1

[
cos(w′1zi + b1), . . . , cos(w′mzi + bm)

]′ ∈ Rm, (4)

where the vectors w1, . . . , wm ∈ Rd are sampled from the normalized Fourier transform of
k, and b1, . . . , bm ∼ U(0, 2π). The squared-exponential kernel in (2) is shift-invariant, and
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can be approximated in this fashion when setting wi ∼ N (0, 2γI). These features can be
computed in O(mn) time and stored in O(1) memory. Importantly, the low dimensional
representation µk,m is amenable for the off-the-shelf use with any standard learning algorithm,
and not only kernel-based methods.

Using the assumptions introduced in Section 1, the data {(mi, li)}ni=1 := {(µk,m(PSi), li)}ni=1

and a binary classifier, we can now pose causal inference as a supervised learning problem.

4. Numerical Simulations

We conduct an array of experiments to test the effectiveness of a simple implementation of
the presented causal learning framework1. Given the use of random embeddings (4) in our
classifier, we term our method the Randomized Causation Coefficient (RCC). Throughout
our simulations, we featurize each sample S = {(xi, yi)}ni=1 as

ν(S) = (µk,m(PSx), µk,m(PSy), µk,m(PS)), (5)

where the three elements forming (5) stand for the low-dimensional representations (4) of
the empirical kernel mean embeddings of {xi}ni=1, {yi}ni=1, and {(xi, yi)}ni=1, respectively.
This representation is motivated by the typical conjecture in causal inference about the
existence of asymmetries between the marginal and conditional distributions of causally-
related pairs of random variables (Schölkopf et al., 2012). Each of these three embeddings
has random features sampled to approximate the sum of three Gaussian kernels (2) with
hyper-parameters 0.1γ, γ, and 10γ, where γ is set using the median heuristic. In practice,
we set m = 1000, and observe no significant improvements when using larger amounts of
random features. To classify the embeddings (5) in each of the experiments, we use the
random forest implementation from Python’s sklearn-0.16-git. The number of trees
forming the forest is chosen from the set {100, 250, 500, 1000, 5000}, via cross-validation.

4.1 Tübingen Data

The Tübingen cause-effect pairs is a collection of heterogeneous, hand-collected, real-world
cause-effect samples2. Given the small size of this data set, we resort to the synthesis of some
Mother distribution to sample our training data from. To this end, assume that sampling a
synthetic cause-effect sample Ŝi := {(x̂ij , ŷij)}nj=1 equals the following generative process:

1. A cause vector (x̂ij)
n
j=1 is sampled from a mixture of Gaussians with c components. The

mixture weights are sampled from U(0, 1), and normalized to sum to one. The mixture
means and standard deviations are sampled from N (0, σ1), and N (0, σ2), respectively,
accepting only positive standard deviations. The cause vector is standardized.

2. A noise vector (ε̂ij)
n
j=1 is sampled from a centered Gaussian, with variance sampled

from U(0, σ3).

1. The source code of our experiments is available at https://github.com/lopezpaz/causation_
learning_theory.

2. The Tübingen cause-effect pairs data set can be downloaded at https://webdav.tuebingen.mpg.de/

cause-effect/.
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3. The mapping mechanism f̂i is a spline fitted using an uniform grid of df elements
from min((x̂ij)

n
j=1) to max((x̂ij)

n
j=1) as inputs, and df normally distributed outputs.

4. An effect vector is built as (ŷij := f̂i(x̂ij) + ε̂ij)
n
j=1, and standardized.

5. Return the cause-effect sample Ŝi := {(x̂ij , ŷij)}nj=1.

To choose a θ = (c, σ1, σ2, σ3, df ) that best resembles the unlabeled test data, we minimize
the distance between the embeddings of N synthetic pairs and the Tübingen samples

arg min
θ

∑
i

min
1≤j≤N

‖ν(Si)− ν(Ŝj)‖22,

over c, df ∈ {1, . . . , 10}, and σ1, σ2, σ3 ∈ {0, 0.5, 1, . . . , 5}, where the Ŝj is sampled using the
generative process described above, the Si are the Tübingen cause-effect pairs, and ν is as
in (5). This strategy can be thought of as transductive learning, since we have access to the
test inputs (but not their underlying causal relation) at the training time.

We set n = 1000, and N = 10, 000. Using the generative process described above, and
the best found parameter vector θ = (3, 2, 2, 2, 5), we construct the synthetic training data

{{ν({(x̂ij , ŷij)}nj=1),+1)}Ni=1,

{ν({(ŷij , x̂ij)}nj=1),−1)}Ni=1},

where {(x̂ij , ŷij)}nj=1 = Ŝi, and train our classifier on it. Figure 1 plots the classification
accuracy of RCC, IGCI (Daniusis et al., 2012), and ANM (Mooij et al., 2014) versus the
fraction of decisions that the algorithms are forced to make out of the 82 scalar Tüebingen
cause-effect pairs. To compare these results to other lower-performing methods, refer to
Janzing et al. (2012). Overall, RCC surpasses the state-of-the-art in these data, with a
classification accuracy of 81.61% when inferring the causal directions on all pairs. The
confidence of RCC is computed using the random forest’s output class probabilities.

4.2 ChaLearn’s “Fast Causation Coefficient” Challenge

We tested RCC at the ChaLearn’s Fast Causation Coefficient challenge (Guyon, 2014). We
trained a Gradient Boosting Classifier (GBC), with hyper-parameters chosen via a 4-fold
cross validation, on the featurizations (5) of the training data. In particular, we built two
separate classifiers: a first one to distinguish between causal and non-causal pairs (i.e., X−Y
vs {X → Y,X ← Y }), and a second one to distinguish between the two possible causal
directions on the causal pairs (i.e., X → Y vs X ← Y ). The final causation coefficient for a
given sample Si was computed as

score(Si) = p1(Si) · (2 · p2(Si)− 1),

where p1(x) and p2(x) are the class probabilities output by the first and the second GBCs,
respectively. We found it easier to distinguish between causal and non-causal pairs than to
infer the correct direction on the causal pairs.

RCC ranked third in the ChaLearn’s “Fast Causation Coefficient Challenge” competition,
and was awarded the prize to the fastest running code (Guyon, 2014). At the time of the
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Figure 1: Accuracy of RCC, IGCI and ANM on the Tübingen cause-effect pairs, as a function
of decision rate. The grey area depicts accuracies not statistically significant.

competition, we obtained a bidirectional AUC of 0.73 on the test pairs in two minutes
of test-time (Guyon, 2014). On the other hand, the winning entry of the competition,
which made use of hand-engineered features, took a test-time of 30 minutes, and achieved a
bidirectional AUC of 0.82. Interestingly, the performance of IGCI on the 20, 000 training
pairs is barely better than random guessing. The computational complexity of the additive
noise model (usually implemented as two Gaussian Process regressions followed by two
kernel-based independence tests) made it unfeasible to compare it on this data set.

5. Conclusions and Future Research

To conclude, we proposed to learn how to perform causal inference between pairs of random
variables from observational data, by posing the task as a supervised learning problem. In
particular, we introduced an effective and efficient featurization of probability distributions,
based on kernel mean embeddings and random Fourier features. Our numerical simulations
support the conjecture that patterns revealing causal relationships can be learnt from data.

In light of our encouraging results, we would like to mention four exciting research
directions. First, the proposed ideas can be used to learn other domain-general statistics,
such as measures of dependence (Lopez-Paz et al., 2013). Second, it is important to develop
techniques to visualize and interpret the causal features learned by our classifiers. This
direction is particularly essential for causal inference as it provides a data-dependent way of
discovering new hypothesis on underlying causal mechanism. Third, RCC can be extended to
operate not only on pairs, but also sets of random variables, and eventually reconstruct causal
DAGs from multivariate data. Finally, one may adapt the distributional learning theory of
Szabó et al. (2014) to analyze our randomized, classification setting. For preliminary results
on the last two points, we refer the reader to (Lopez-Paz et al., 2015).
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