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Abstract
We propose a calibrated multivariate regression method named CMR for fitting high dimensional
multivariate regression models. Compared with existing methods, CMR calibrates regulariza-
tion for each regression task with respect to its noise level so that it simultaneously attains im-
proved finite-sample performance and tuning insensitiveness. Theoretically, we provide sufficient
conditions under which CMR achieves the optimal rate of convergence in parameter estimation.
Computationally, we propose an efficient smoothed proximal gradient algorithm with a worst-case
numerical rate of convergence O(1/ε), where ε is a pre-specified accuracy of the objective function
value. We conduct thorough numerical simulations to illustrate that CMR consistently outper-
forms other high dimensional multivariate regression methods. We also apply CMR to solve a
brain activity prediction problem and find that it is as competitive as a handcrafted model created
by human experts. The R package camel implementing the proposed method is available on the
Comprehensive R Archive Network http://cran.r-project.org/web/packages/camel/.

Keywords: calibration, multivariate regression, high dimension, sparsity, low Rank, brain ac-
tivity prediction

1. Introduction

This paper studies the multivariate regression problem. Let X ∈ Rn×d be the design matrix and
Y ∈ Rn×m be the response matrix, we consider a linear model

Y = XB0 + Z, (1)

where B0 ∈ Rd×m is an unknown regression coefficient matrix and Z ∈ Rn×m is a noise matrix
(Anderson, 1958; Breiman and Friedman, 2002). For a matrix A = [Ajk] ∈ Rd×m, we denote its jth

row and kth column by Aj∗ = (Aj1, ..., Ajm) ∈ Rm and A∗k = (A1k, ...,Adk)T ∈ Rd respectively.
We assume that all Zi∗’s are independently sampled from an m-dimensional distribution with mean
0 and covariance matrix Σ ∈ Rm×m.
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We can represent (1) as an ensemble of univariate linear regression models:

Y∗k = XB0
∗k + Z∗k, k = 1, ...,m,

which results in a multi-task learning problem (Baxter, 2000; Caruana, 1997; Caruana et al., 1996;
Thrun, 1996; Ando and Zhang, 2005; Johnson and Zhang, 2008; Zhang et al., 2006; Zhang, 2006).
Multi-task learning exploits shared common structure across tasks to obtain improved estimation
performance. In the past decade, significant progress has been made on designing various modeling
assumptions for multivariate regression.

One popular approach is to assume that the regression coefficients across different tasks are cou-
pled by some shared common factors so that B0 has a low rank structure, i.e., rank(B0)� min(d,m).
Under this assumption, a consistent estimator of B0 can be obtained by adopting either a non-convex
rank constraint (Anderson, 1958; Izenman, 1975; Reinsel and Velu, 1998; Anderson, 1999; Reinsel
and Velu, 1998; Izenman, 2008) or a convex relaxation using the nuclear norm regularization (Yuan
et al., 2007; Amit et al., 2007; Argyriou et al., 2008; Negahban and Wainwright, 2011; Rohde and
Tsybakov, 2011; Bunea et al., 2011, 2012; Bunea and Barbu, 2009; Mukherjee et al., 2012; Giraud,
2011; Argyriou et al., 2010; Foygel and Srebro, 2011; Johnson and Zhang, 2008; Salakhutdinov and
Srebro, 2010; Evgeniou et al., 2006; Heskes, 2000; Teh et al., 2005; Yu et al., 2005). Such a low rank
multivariate regression method is often applied to scenarios where m is large.

Another approach is to assume that all the regression tasks share a common sparsity pattern,
i.e., many B0

j∗’s are zero vectors. Such a joint sparsity assumption for multivariate regressions is a
natural extension from sparse univariate linear regressions. Similar to using the L1-regularization in
Lasso (Tibshirani, 1996; Chen et al., 1998), group regularization can be used to obtain a consistent
estimator of B0 (Yuan and Lin, 2005; Turlach et al., 2005; Meier et al., 2008; Lounici et al., 2011;
Kolar et al., 2011). Such a sparse multivariate regression method is often applied to scenarios where
the dimension d is large.

In this paper, we consider an uncorrelated structure for the noise matrix Z, i.e.,

Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
m−1, σ

2
m). (2)

Such an assumption allows us to efficiently solve the resulting estimation problem with a convex
program and prove that the obtained estimator achieves the minimax optimal rates of convergence
in parameter estimation.1 For example, many existing work propose to solve the convex program

B̂ = argmin
B

1√
n
||Y −XB||2F + λR(B), (3)

where λ > 0 is a tuning parameter, R(B) is a regularization function of B, and ||A||F =
√∑

j,k A2
jk

is the Frobenius norm of a matrix A. Popular choices of R(B) include

Nuclear Norm : ||B||∗ =

r∑
j=1

ψj(B), (4)

L1,p Norm : ||B||1,p =

d∑
j=1

(
m∑
k=1

|Bjk|p
)1/p

for 2 ≤ p <∞, (5)

L1,∞ Norm : ||B||1,∞ =

d∑
j=1

max
1≤k≤m

|Bjk|, (6)

1. See more details on exploiting the covariance structure of the noise matrix Z for multivariate regression in Breiman
and Friedman (2002); Reinsel (2003); Rothman et al. (2010).
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where r in (4) is the rank of B and ψj(B) represents the jth largest singular value of B. The
optimization problem (3) can be efficiently solved by the block coordinate descent algorithm (Liu
et al., 2009a,b; Liu and Ye, 2010; Zhao et al., 2014a,c), fast proximal gradient algorithm (Toh and
Yun, 2010; Beck and Teboulle, 2009a,b), and alternating direction method of multipliers(Boyd et al.,
2011; Liu et al., 2014b). Scalable software packages such as MALSAR have been developed (Zhou
et al., 2012).

The problem in (2) is amenable to statistical analysis. Under suitable conditions on the noise
and design matrices, let σmax = maxk σk and ||X||2 = ψ1(X) denote the largest singular value of X,
if we choose

Low Rank : λ = 2c · ||X||2
n
· σmax

(√
d+
√
m
)
, (7)

Joint Sparsity : λ = 2c · σmax

(√
log d+m1−1/p

)
, (8)

for some c > 1, then the estimator B̂ in (3) achieves the optimal rates of convergence2 (Lounici
et al., 2011; Rohde and Tsybakov, 2011). More specifically, there exists some universal constant C
such that, with high probability,

Low Rank :
1√
m
||B̂−B0||F ≤ C ·

||X||2√
n
· σmax

(√
r

n
+

√
rd

nm

)
,

Joint Sparsity :
1√
m
||B̂−B0||F ≤ C · σmax

(√
s log d

nm
+

√
sm1−2/p

n

)
,

where r is the rank of B0 for the low rank setting and s is the number of rows with non-zero entries
in B0 for the setting of joint sparsity.

The estimator in (3) has two drawbacks: (i) All the tasks are regularized by the same tuning
parameter λ, even though different tasks may have different σk’s. Thus more estimation bias is
introduced to the tasks with smaller σk’s since they have to compensate the tasks with larger σk’s.
In another word, these tasks are not calibrated (Zhao and Liu, 2014). (ii) The tuning parameter
selection, as shown in (7) and (8), involves the unknown parameter σmax. This requires the regular-
ization parameter to be carefully tuned over a wide range of potential values in order to get a good
finite-sample performance.

To overcome the above two drawbacks, we propose a new method named calibrated multivariate
regression (CMR) based on the convex program

B̂ = argmin
B

||Y −XB||2,1 + λR(B) (9)

where ||A||2,1 =
∑
k

√∑
j A2

jk is the L2,1 norm of a matrix A = [Ajk] ∈ Rd×m. This is a mul-

tivariate extension of the square-root Lasso estimator (Belloni et al., 2011; Sun and Zhang, 2012).
Similar to the square-root Lasso, the tuning parameter selection of CMR does not involve σmax.
Thus the resulting procedure adapts to different σk’s and achieves an improved finite-sample perfor-
mance comparing with the ordinary multivariate regression estimator (OMR) defined in (3). Since
both the loss and regularization functions in (9) are nonsmooth, CMR is computationally more chal-
lenging than OMR. To efficiently solve CMR, we develop a smoothed proximal gradient algorithm
with a worst-case iteration complexity of O(1/ε), where ε is a pre-specified accuracy of the objective
value (Nesterov, 2005; Chen et al., 2012; Zhao and Liu, 2012; Zhao et al., 2014b). Theoretically, we
show that under suitable conditions, CMR achieves the optimal rates of convergence in parameter

2. For the joint sparsity setting, the rate of convergence is optimal when R(B) = ||B||1,2. See more details in Lounici
et al. (2011)
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estimation. Numerical experiments on both synthetic and real data show that CMR universally out-
performs existing multivariate regression methods. For a brain activity prediction task, prediction
based on the features selected by CMR significantly outperforms that based on the features selected
by OMR, and is even competitive with that based on the handcrafted features selected by human
experts.

This paper is organized as follows: In §2, we describe the CMR method. In §3, we investigate the
statistical properties of CMR; In §4, we derive a smoothed proximal gradient algorithm for solving
CMR optimization. In §5, we conduct numerical experiments to illustrate the usefulness of the
proposed method. In §6, we discuss the relationships between our results and other related work.
Notation: Given a vector v = (v1, . . . , vd)

T ∈ Rd, for 1 ≤ p ≤ ∞, we define the vector norms:

||v||p =
(∑d

j=1 |vj |p
)1/p

for 1 ≤ p <∞ and ||v||∞ = max1≤j≤d |vj |. Given two matrices A = [Ajk]

and C = [Cjk] ∈ Rd×m, we define the inner product of A and C as 〈A,C〉 =
∑d
j=1

∑m
k=1 AjkCjk =

tr(ATC), where tr(A) is the trace of a matrix A. We use A∗k = (A1k, ...,Adk)T and Aj∗ =
(Aj1, ...,Ajm) to denote the kth column and jth row of A. Let S be some subspace of Rd×m, we use
AS to denote the projection of A onto S, i.e., AS = argminC∈S ||C−A||2F. Given a subspace U ⊂ Rd,
we define its orthogonal complement as U⊥ =

{
u ∈ Rd | uTv = 0, for all v ∈ U

}
. Moreover, we

define the Frobenius, spectral, and nuclear norms of A as ||A||F =
√
〈A,A〉, ||A||2 = ψ1(A),

and ||A||∗ =
∑r
j=1 ψj(A), where r is the rank of A, and ψj(A) is the jth largest singular value

of A. In addition, we define the matrix block norms as ||A||2,1 =
∑m
k=1 ||A∗k||2, ||A||2,∞ =

max1≤k≤m ||A∗k||2, ||A||1,p =
∑d
j=1 ||Aj∗||p, and ||A||∞,q = max1≤j≤d ||Aj∗||q, where 1 ≤ p ≤ ∞

and 1 ≤ q ≤ ∞. It is easy to verify that ||A||2,1 and ||A||∗ are dual norms of ||A||2,∞ and ||A||2
respectively. Let 1/∞ = 0, then if 1/p + 1/q = 1, ||A||∞,q and ||A||1,p are also dual norms of each
other.

2. Method

We solve the multivariate regression problem in (1) by the convex program

B̂ = argmin
B

||Y −XB||2,1 + λR(B), (10)

where R(B) is a regularization function and can take the forms in (4), (5), and (6).
To understand the intuition of (10), we show that the L2,1-loss can be viewed as a special case

of the weighted square loss function. More specifically, we consider the optimization problem

B̂∗ = argmin
B

m∑
k=1

1

σk
√
n
||Y∗k −XB∗k||22 + λR(B), (11)

where 1
σk
√
n

is the weight to calibrate the kth regression task. B̂∗ is an “oracle” estimator (not

practically calculable) since it assumes that all σk’s are given. Without any prior knowledge of σk’s,
we can use the following replacement of σk’s,

σ̃k =
1√
n
||Y∗k −XB∗k||2, k = 1, ...,m. (12)

We then recover (10) by replacing σk in (12) by σ̃k. In another word, CMR calibrates different tasks
by solving a regularized weighted least square problem with weights defined in (12).

3. Statistical Properties

For notational simplicity, we define a rescaled noise matrix W = [Wik] ∈ Rn×m with Wik = Zik/σk,
where EZ2

ik = σ2
k is defined in (2). Thus W is a random matrix with all entries having mean 0 and
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variance 1. We define G0 as the gradient of ||Y −XB||2,1 at B = B0. We see that G0 does not
depend on the unknown quantities σk’s since

G0
∗k =

XTZ∗k
||Z∗k||2

=
XTW∗kσk
||W∗kσk||2

=
XTW∗k

||W∗k||2
.

Thus it serves as an important pivotal in our analysis. Moreover, our analysis exploits the de-
composability of R(B), which is satisfied by the nuclear and L1,p norms (Negahban et al., 2012).

Definition 1 Let S and N be two subspaces of Rd×m, which are orthogonal to each other and also
satisfy S ⊆ N⊥. A regularization function R(·) is decomposable with respect to the pair (S,N ) if
for any A ∈ Rd×m, we have

R(A + C) = R(A) +R(C) for A ∈ S and C ∈ N .

The decomposability of R(B) is important in analyzing the statistical properties of the estimator in
(10). The next lemma shows that if we choose S to be some subspace of Rd×m containing the true
parameter B0, given a decomposable regularizer and a suitably chosen λ, the optimum to (10) lies
in a restricted set.

Lemma 2 Let B0 ∈ S and B̂ be an arbitrary3 optimum to (10). We denote the estimation error

as ∆̂ = B̂−B0 and the dual norm of R(·) as R∗(·). If λ ≥ cR∗(G0) for some c > 1, we have

∆̂ ∈Mc =

{
∆ ∈ Rd×m | R(∆N ) ≤ c+ 1

c− 1
R(∆N⊥)

}
. (13)

The proof of Lemma 2 is provided in Appendix A. To prove the main result, we assume that the
design matrix X satisfies a generalized restricted eigenvalue condition as below.

Assumption 1 Let B0 ∈ S, then there exist positive constants κ and c > 1 such that

κ = min
∆∈Mc\{0}

||X∆||F√
n||∆||F

.

Assumption 1 is the generalization of the restricted eigenvalue conditions for analyzing univariate
sparse linear models (Negahban et al., 2012; Bickel et al., 2009). Many design matrices satisfy this
assumption with high probability (Lounici et al., 2011; Negahban and Wainwright, 2011; Rohde and
Tsybakov, 2011; Raskutti et al., 2010).

3.1 Main Result

We first present a deterministic result for a general norm-based regularization function R(·), which
satisfies the decomposability in Definition 1.

Theorem 3 Suppose that the design matrix X satisfies Assumption 1. Let B̂ be an arbitrary opti-
mum to (10), and G0 be the gradient of ||Y −XB||2,1 at B = B0. We denote

Θ(N⊥,R) = max
A∈Rd×m\{0}

R(AN⊥)

||AN⊥ ||F
.

Let λ satisfy

2λΘ(N⊥,R) ≤ δ(c− 1)
√
nκ for some δ < 1, and λ ≥ cR∗(G0).

3. Since (10) is not a strictly convex program, the optimum to (10) is not necessarily unique.
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Then we have

1√
nm
||XB̂−XB0||F ≤

4λΘ(N⊥,R)σmax√
mnκ(c− 1)(1− δ)

||W||2,∞,

1√
m
||B̂−B0||F ≤

4λΘ(N⊥,R)σmax√
mnκ2(c− 1)(1− δ)

||W||2,∞,

where σmax = max
1≤k≤m

σk. Moreover, if we estimate σk’s by

σ̂k =
1√
n
||Y∗k −XB̂∗k||2 for all k = 1, ...,m, (14)

then we have

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
4λ2Θ2(N⊥,R)σmax√
nmnκ(c− 1)(1− δ)

||W||2,∞.

The proof of Theorem 3 is provided in Appendix B. Note that Theorem 3 is a deterministic bound
of the CMR estimator for a fixed λ. Since W is a random matrix, we need to bound ||W||2,∞ and
show that λ ≥ cR∗(G0) holds with high probability. For simplicity, we assume that each entry of
W follows a Gaussian distribution as follows.

Assumption 2 All Wik’s are independently generated from N(0,1).

We then refine error bounds of the CMR estimator under Assumption 2 for calibrated sparse mul-
tivariate regression and calibrated low rank multivariate regression respectively .

3.2 Calibrated Low Rank Multivariate Regression

We assume that the rank of B0 is r � min{d,m}, and B0 has a singular value decomposition
B0 =

∑r
j=1 ψj(B

0)ujv
T
j where ψj(B

0) is the jth largest singular value with uj ’s and vj ’s as the
corresponding left and right singular vectors. We define

U = span({u1, ...,ur}) ⊂ Rd and V = span({v1, ...,vr}) ⊂ Rm.

We then define S and N as follows,

S =
{

C ∈ Rd×m
∣∣∣ C∗k ∈ U , Cj∗ ∈ V for all j, k

}
, (15)

N =
{

C ∈ Rd×m
∣∣∣ C∗k ∈ U⊥, Cj∗ ∈ V⊥ for all j, k

}
. (16)

We can easily verify that B0 ∈ S and the nuclear norm is decomposable with respect to the pair
(S,N ), i.e.,

||A + C||∗ = ||A||∗ + ||C||∗ for A ∈ S and C ∈ N .

The next corollary provides the concrete rates of convergence for the calibrated low rank multi-
variate regression estimator.

Corollary 4 We assume that the design matrix X satisfies Assumption 1 with S and N chosen as
in (15) and (16), and each column of X is normalized so that

‖X∗j‖2√
n

= 1 for all j = 1, ..., d. (17)
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We also assume that the rescaled noise matrix W satisfies Assumption 2. By Theorem 3, for some
universal constants c0 ∈ (0, 1), c1 > 0, and large enough n, we take

λ =
2c||X||2(

√
d+
√
m)√

n(1− c0)
, (18)

then for some δ < 1, we have

1√
nm
||XB̂−XB0||F ≤

8c
√

2||X||2σmax√
nκ(c− 1)(1− δ)

√
1 + c0
1− c0

(√
r

n
+

√
rd

nm

)
,

1√
m
||B̂−B0||F ≤

8c
√

2||X||2σmax√
nκ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
r

n
+

√
rd

nm

)
,

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
64c2||X||22σmax

nκ(c− 1)(1− δ)

√
1 + c0

1− c0

(
rd

nm
+
r

n

)

with probability at least 1− 2 exp(−c1d− c1m)− 2 exp
(
−nc20/8 + logm

)
.

The proof of Corollary 4 is provided in Appendix C. The rate of convergence obtained in Corollary
4 matches the minimax lower bound4 presented in Rohde and Tsybakov (2011). See more details in
Theorems 5 and 6 of Rohde and Tsybakov (2011).

3.3 Calibrated Sparse Multivariate Regression

We now assume that the multivariate regression model in (1) is jointly sparse. More specifically, we
assume that B0 has s rows with nonzero entries and define

S =
{
C ∈ Rd×m | Cj∗ = 0 for all j such that B0

j∗ = 0
}
, (19)

N =
{
C ∈ Rd×m | Cj∗ = 0 for all j such that B0

j∗ 6= 0
}
. (20)

We can easily verify that we have B0 ∈ S and the L1,p norm is decomposable with respect to the
pair (S,N ), i.e.,

||A + C||1,p = ||A||1,p + ||C||1,p for A ∈ S and C ∈ N .

The next corollary provides the concrete rates of convergence for the calibrated sparse multivari-
ate regression estimator.

Corollary 5 We assume that the design matrix X satisfies Assumption 1 with S and N chosen as
in (19) and (20), and each column of X is normalized so that

m1/2−1/p‖X∗j‖2√
n

= 1 for all j = 1, ..., d. (21)

We also assume that the rescaled noise matrix W satisfies Assumption 2. By Theorem 3, for some
universal constant c0 ∈ (0, 1) and large enough n, let

λ =
2c(m1−1/p +

√
log d)√

1− c0
, (22)

4. In the fixed design setting for the low rank regression, ||X||2 is supposed to increase as an order of
√
n. Thus

||X||2/
√
n in (18) should be viewed as a constant.
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then for some δ < 1, we have

1√
nm
||XB̂−XB0||F ≤

8cσmax

κ(c− 1)(1− δ)

√
1 + c0
1− c0

(√
sm1−2/p

n
+

√
s log d

nm

)
,

1√
m
||B̂−B0||F ≤

8cσmax

κ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
sm1−2/p

n
+

√
s log d

nm

)
,

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
32c2σmax

κ(c− 1)(1− δ)

√
1 + c0

1− c0

(
sm1−2/p

n
+
s log d

mn

)

with probability at least 1− 2 exp(−2 log d)− 2 exp
(
−nc20/8 + logm

)
.

The proof of Corollary 5 is provided in Appendix D. Note that when we choose p = 2, the column
normalization condition (21) becomes

‖X∗j‖2√
n

= 1 for all j = 1, ..., d,

which is the same as (17). Then Corollary 5 implies that with high probability, we have

1√
m
||B̂−B0||F ≤

8cσmax

κ2(c− 1)(1− δ)

√
1 + c0
1− c0

(√
s

n
+

√
s log d

nm

)
. (23)

The rate of convergence obtained in (23) matches the minimax lower bound presented in Lounici
et al. (2011). See more details in Theorem 6.1 of Lounici et al. (2011).

Remark 6 From Corollaries 4 and 5, we see that CMR achieves the same rates of convergence as the
noncalibrated counterpart in parameter estimation. Moreover, the selected regularization parameter λ
in (18) and (22) does not involve σk’s. Therefore CMR makes the regularization parameter selection
insensitive to σmax.

4. Computational Algorithm

Though the L2,1 norm is nonsmooth, it is nondifferentiable only when a task achieves exact zero
residual, which is unlikely to happen in practice. This motivates us to apply the smoothing approach
proposed by Nesterov (2005) to obtain a smooth approximation so that we can avoid directly eval-
uating the subgradient of the L2,1 loss function. Thus we gain computational efficiency like other
smooth loss functions.

4.1 Smooth Approximation

We consider the Fenchel’s dual representation of the L2,1 loss:

||Y −XB||2,1 = max
||U||2,∞≤1

〈U,Y −XB〉.

Let µ > 0 be a smoothing parameter. The smooth approximation of the L2,1 loss can be obtained
by solving the optimization problem

||Y −XB||µ = max
||U||2,∞≤1

〈U,Y −XB〉 − µ

2
||U||2F. (24)
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Note that the equality in (24) is attained with U = ÛB:

ÛB
∗k =

Y∗k −XB∗k
max {||Y∗k −XB∗k||2, µ}

.

Nesterov (2005) has shown that ||Y −XB||µ have good computational structures: (1) It is convex
and differentiable with respect to B; (2) Its gradient takes a simple form as

Gµ(B) =
∂||Y −XB||µ

∂B
=
∂
(
〈ÛB,Y −XB〉 − µ||ÛB||2F/2

)
∂B

= −XT ÛB;

(3) Let γ = ||XTX||2, we have that Gµ(B) is Lipschitz continuous in B with the Lipschitz constant
γ/µ, i.e., for any B′, B′′ ∈ Rd×m,

||Gµ(B′)−Gµ(B′′)||F ≤
γ

µ
||B′ −B′′||F.

Therefore we consider a smoothed replacement of the optimization problem in (10):

B̃ = argmin
B

||Y −XB||µ + λR(B). (25)

4.2 Smoothed Proximal Gradient Algorithm

We then present a brief derivation of the smoothed proximal gradient algorithm for solving (25).
We first define three sequences of auxiliary variables {A(t)}, {V(t)}, and {H(t)} with A(0) = H(0) =
V(0) = B(0), a sequence of weights {θt = 2/(t + 1)}, and a nonincreasing sequence of step sizes
{ηt}∞t=0.

At the tth iteration, we take V(t) = (1 − θt)B(t−1) + θtA
(t−1). Let H̃(t) = V(t) − ηtGµ(V(t)).

When R(H) = ||H||∗, we take

H(t) =

min{d,m}∑
j=1

max
{
ψj(H̃

(t))− ηtλ, 0
}
ujv

T
j ,

where uj and vj are the left and right singular vectors of H̃(t) corresponding to the jth largest

singular value ψj(H̃
(t)). When R(H) = ||H||1,2, we take

H
(t)
j∗ = H̃j∗ ·max

{
1− ηtλ/||H̃j∗||2, 0

}
.

See more details about other choices of p in the L1,p norm in Liu et al. (2009a); Liu and Ye (2010).
To ensure that the objective function value is nonincreasing, we choose

B(t) = argmin
B∈{H(t), B(t−1)}

||Y −XB||µ + λR(B).

For simplicity, we can set {ηt} as a constant sequence, e.g., ηt = µ/γ for t = 1, 2, .... In practice,
we cam use the backtracking line search to adjust ηt and boost the performance. At last, we
take A(t) = B(t−1) + 1

θt
(H(t) − B(t−1)). Given a stopping precision ε, the algorithm stops when

max
{
||B(t) −B(t−1)||F, ||H(t) −H(t−1)||F

}
≤ ε.

Remark 7 The smoothed proximal gradient algorithm has a worst-case iteration complexity of
O(1/ε), where ε is a pre-specified accuracy of the objective value5. See more details in Nesterov
(2005); Beck and Teboulle (2009a).

5. During this paper was under review, a dual proximal gradient algorithm was proposed for solving (10). See more
details in Gong et al. (2014).
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5. Numerical Experiments

To compare the finite-sample performance between the calibrated multivariate regression (CMR)
and ordinary multivariate regression (OMR), we conduct numerical experiments on both simulated
and real data sets.

5.1 Simulated Data

We generate training data sets of 400 samples for the low rank setting and 200 samples for joint
sparsity setting. In details, for the low rank setting, we use the following data generation scheme:

(1) Generate each row of the design matrix Xi∗, i = 1, ..., 400, independently from a 200-dimensional
normal distribution N(0,Σ) where Σjj = 1 and Σj` = 0.5 for all ` 6= j.

(2) Generate the regression coefficient matrix B0 = LRT , where L ∈ R200×3, R ∈ R3×101, and all
entries of L and R are independently generated from N(0, 0.05).

(3) Generate the random noise matrix Z = WD where W ∈ R400×101 with all entries of W
independently generated from N(0, 1) and D is either of the following matrices

D = σmax · diag
(

20/100, 2−3/100, · · · , 2−297/100, 2−300/100
)
∈ R101×101, , (26)

D = σmax · diag (1, 1, · · · , 1, 1) ∈ R101×101. (27)

For the joint sparsity setting, we use the following data generation scheme:

(1) Generate each row of the design matrix Xi∗, i = 1, ..., 200, independently from a 800-dimensional
normal distribution N(0,Σ) where Σjj = 1 and Σj` = 0.5 for all ` 6= j.

(2) Let k = 1, . . . , 13, set the regression coefficient matrix B0 ∈ R800×13 as B0
1k = 3, B0

2k = 2,
B0

4k = 1.5, and B0
jk = 0 for all j 6= 1, 2, 4.

(3) Generate the random noise matrix Z = WD, where W ∈ R200×13 with all entries of W
independently generated from N(0, 1) and D is is either of the following matrices

D = σmax · diag
(

20/4, 2−1/4, · · · , 2−11/4, 2−12/4
)
∈ R13×13, (28)

D = σmax · diag (1, 1, · · · , 1, 1) ∈ R13×13. (29)

In addition, we generate validation sets (400 samples for the low rank setting and 200 samples for
the joint sparsity setting) for the regularization parameter selection, and testing sets (10,000 samples
for both settings) to evaluate the prediction accuracy.

Remark 8 The scale matrices in (26) and (28) consider the scenario, where the regression tasks
have different variances. The scale matrices in (27) and (29) consider the scenario, where all
regression tasks have the equal variance.

In numerical experiments, we set σmax = 1, 2, and 4 to illustrate the tuning insensitivity of
CMR. The regularization parameter λ of both CMR and OMR is chosen over a grid

Λ =
{

240/4λ0, 2
39/4λ0, · · · , 2−17/4λ0, 2−18/4λ0

}
.

We choose

λ0 =
||X||2
n

(
√
d+
√
m) and λ0 =

√
log d+

√
m
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for the low rank and joint sparsity settings. The optimal regularization parameter λ̂ is determined
by the prediction error as

λ̂ = argmin
λ∈Λ

||Ỹ − X̃B̂λ||2F,

where B̂λ denotes the obtained estimate using the regularization parameter λ, and X̃ and Ỹ denote
the design and response matrices of the validation set.

Since the noise level σk’s may vary across different regression tasks, we adopt the following three
criteria to evaluate the empirical performance:

P.E. =
1

10000
||Y −XB̂||2F, A.P.E. =

1

10000m
||(Y −XB̂)D−1||2F, E.E. =

1

m
||B̂−B0||2F,

where X and Y denote the design and response matrices of the testing set.
All simulations are implemented by MATLAB using a PC with Intel Core i5 3.3GHz CPU and

16GB memory. We set p = 2 for the joint sparsity setting, but it is straightforward to extend to
arbitrary p > 2. OMR is solved by the monotone fast proximal gradient algorithm, where we set the
stopping precision ε = 10−4. CMR is solved by the proposed smoothed proximal gradient algorithm,
where we set the stopping precision ε = 10−4, and the smoothing parameter µ = 10−4.

We compare the statistical performance between CMR and OMR. Tables 1-4 summarize the
results averaged over 200 simulations for both settings. In addition, since we know the true values
of σk’s, we also present the results of the oracle estimator B̂∗ defined in (11). The oracle estimator
is only for comparison purpose, and it is not a practical estimator.

Tables 1 and 3 present the empirical results when we adopt the scale matrix D defined in (26)
and (28) to generate the random noise. Though our theoretical analysis in §3 only shows CMR
attains the same rates of convergence as OMR, our empirical results show that CMR universally
outperforms OMR, and achieves almost the same performance as the oracle estimator. These results
corroborate the effectiveness of the calibration for each task.

σmax Method P.E. A.P.E. E.E.

1
Oracle 48.394(0.7421) 1.1659(0.0241) 0.1106(0.0245)
CMR 48.411(0.7431) 1.1668(0.0214) 0.1109(0.0133)
OMR 53.337(0.7063) 1.2880(0.0231) 0.2077(0.0137)

2
Oracle 183.38(0.9786) 1.0917(0.0068) 0.2425(0.0187)
CMR 183.40(1.2212) 1.0924(0.0063) 0.2430(0.0238)
OMR 194.66(1.4109) 1.1641(0.0112) 0.4637(0.0277)

4
Oracle 713.13(3.3923) 1.0554(0.0062) 0.5696(0.0669)
CMR 713.24(2.7685) 1.0565(0.0047) 0.5737(0.0533)
OMR 728.55(2.6500) 1.0793(0.0051) 0.8722(0.0526)

Table 1: Quantitative comparison of the statistical performance between CMR and OMR for the
low rank setting with D defined in (26). The results are averaged over 200 simulations
with the standard errors in parentheses. CMR universally outperforms OMR, and achieves
almost the same performance as the oracle estimator.

Tables 2 and 4 present the empirical results when we adopt the scale matrix D defined in (27)
and (29) with all σk’s being equal. We can see that CMR attains similar performance to OMR. This
indicates that CMR is a safe replacement of OMR for multivariate regressions.
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σmax Method P.E. A.P.E. E.E.

1
CMR 112.13(1.0051) 1.1103(0.0097) 0.2128(0.0190)
OMR 113.69(1.0163) 1.1951(0.0100) 0.2217(0.0193)

2
CMR 428.42(1.8061) 1.0605(0.0043) 0.4576(0.0344)
OMR 430.73(1.9636) 1.0758(0.0053) 0.4752(0.0413)

4
CMR 1669.2(5.0401) 1.0335(0.0028) 0.9621(0.0991)
OMR 1673.5(5.7879) 1.0378(0.0035) 1.0353(0.1104)

Table 2: Quantitative comparison of the statistical performance between CMR and OMR for the
low rank setting with D defined in (27). The results are averaged over 200 simulations with
the standard errors in parentheses. CMR and OMR achieve similar statistical performance.

σmax Method P.E. A.P.E. E.E.

1
Oracle 5.8759(0.0834) 1.0454(0.0149) 0.0245(0.0086)
CMR 5.8761(0.0669) 1.0459(0.0122) 0.0249(0.0078)
OMR 5.9012(0.0701) 1.0581(0.0162) 0.0290(0.0091)

2
Oracle 23.464(0.3237) 1.0441(0.0148) 0.0926(0.0342)
CMR 23.465(0.2600) 1.0446(0.0131) 0.0928(0.0268)
OMR 23.580(0.2832) 1.0573(0.0170) 0.1115(0.0365)

4
Oracle 93.532(0.8843) 1.0418(0.0962) 0.3342(0.1255)
CMR 93.542(0.9788) 1.0421(0.0113) 0.3346(0.1002)
OMR 94.094(1.0978) 1.0550(0.0166) 0.4125(0.1417)

Table 3: Quantitative comparison of the statistical performance between CMR and OMR for the
joint sparsity setting with D defined in (28). The results are averaged over 200 simulations
with the standard errors in parentheses. CMR universally outperforms OMR, and achieves
almost the same performance as the oracle estimator.

σmax Method P.E. A.P.E. E.E.

1
CMR 13.565(0.1411) 1.0435(0.0156) 0.0599(0.0199)
OMR 13.697(0.1554) 1.0486(0.0142) 0.0607(0.0128)

2
CMR 54.171(0.5791) 1.0418(0.0101) 0.2252(0.0644)
OMR 54.221(0.6173) 1.0427(0.0118) 0.2359(0.0821)

4
CMR 215.98(1.994) 1.0384(0.0099) 0.80821(0.2417)
OMR 216.19(2.391) 1.0394(0.0114) 0.81957(0.3180)

Table 4: Quantitative comparison of the statistical performance between CMR and OMR for the
joint sparsity setting with D defined in (29). The results are averaged over 200 simula-
tions with the standard errors in parentheses. CMR and OMR achieve similar statistical
performance.

1590



Calibrated Multivariate Regression

In addition, we also examine the optimal regularization parameters for CMR and OMR over all
replicates. We visualize the distribution of all 200 selected λ̂’s using the kernel density estimator. In
particular, we adopt the Gaussian kernel, and select the kernel bandwidth based on the 10-fold cross
validation. Figure 1 illustrates the estimated density functions. The horizontal axis corresponds to
the rescaled regularization parameter as follows:

Low Rank : log

(
λ̂

(
√
d+
√
m)||X||2/n

)
,

Joint Sparsity : log

(
λ̂√

log d+
√
m

)
.

We see that the optimal regularization parameters of OMR significantly vary with different σmax. In
contrast, the optimal regularization parameters of CMR are more concentrated. This is consistent
with our claimed tuning insensitivity.
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(a) The low rank setting with D defined in (26)
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(b) The low rank setting with D defined in (27)
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(c) The joint sparsity setting with D defined in (28)
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(d) The joint sparsity setting with D defined in (29)

Figure 1: The distributions of the selected regularization parameters using the kernel density esti-
mator. The numbers in the parentheses are σmax’s. The optimal regularization parameters
of OMR are more spread with different σmax than those of CMR and the oracle estimator.

5.2 Real Data

We apply CMR on a brain activity prediction problem which aims to build a parsimonious model
to predict a person’s neural activity when seeing a stimulus word. As is illustrated in Figure 2, for
a given stimulus word, we first encode it into an intermediate semantic feature vector using some
corpus statistics. We then model the brain’s neural activity pattern using CMR. Creating such a
predictive model not only enables us to explore new analytical tools for the fMRI data, but also helps
us to gain deeper understanding on how human brain represents knowledge (Mitchell et al., 2008).
As will be shown in the section, prediction based on the features selected by CMR significantly
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outperforms that based on the features selected by OMR, and is even better than that based on the
handcrafted features selected by human experts.

(b) model for predicting fMRI brain activity pattern 

Predict fMRI brain activity patterns in response to text stimulus

!"#$%&'()*'

?+',%,-.& Model

!"#$%)/01'2

!"#$%0334'&

%50//'.& !"#$%50//'.&

%6)*7*4'& !"#$%6)*7*4'&

89/:4:2%,-.&2

%0334'&

Standard solution 
Linear models
(More restrictive)

Our solution
Nonlinear models
(Less restrictive)

.

;5'%'<3'.)/'+=2%0.'%*-+&:*='&%)+%>")=*5'44%'=%0?%8*)'+*'%@AB

(a) illustration of the data collection procedure

"apple"
predicted 
activities 

for "apple"

stimulus word

intermediate semantic features mapping learned from fMRI data

(Mitchell et al., Science,2008)

Figure 2: An illustration of the fMRI brain activity prediction problem (Mitchell et al., 2008). (a) To
collect the data, a human participant sees a sequence of English words and their images.
The corresponding fMRI images are recorded to represent the brain activity patterns; (b)
To build a predictive model, each stimulus word is encoded into intermediate semantic
features (e.g. the co-occurrence statistics of this stimulus word in a large text corpus).
These intermediate features can then be used to predict the brain activity pattern.

5.2.1 Data

The data are obtained from Mitchell et al. (2008) and contain a fMRI image data set and a text
data set. The fMRI data are collected from an experiment with 9 participants.60 nouns are selected
as stimulus words from 12 different categories (See Table 5). When a participant sees a stimulus
word, the fMRI device records an image6. Each image contains 20,601 voxels that represent the
neural activities of the participant’s brain. Therefore the total number of images is 9 × 60 = 540.
Since many of the 20,601 voxels are noisy, Mitchell et al. (2008) exploit a “stability score” approach
to extract 500 most stable voxels. See more details in Mitchell et al. (2008).

The text data set is collected from the Google Trillion Word corpus7. It contains the co-
occurrence frequencies of the 60 stimulus words with 5,000 most frequent English words in the
corpus with 100 stop words removed. In Mitchell et al. (2008), 25 sensory-action verbs (See Table 6)
are handcrafted by human experts based on the domain knowledge of cognitive neuroscience. These
25 words are closely related to the 60 stimulus words in their semantics meanings. For example,
“eat” is related to vegetables such as “lettuce” or “tomato”, and “wear” is related to clothing such
as “shirt” and “dress”.

When building multivariate linear models, Mitchell et al. (2008) use the co-occurrence frequencies
of each stimulus word with 25 sensory verbs as covariates and use the corresponding fMRI image as
response. They estimate a 25-dimensional multivariate linear model by the ridge regression. They
show that the obtained predictive model significantly outperforms random guess. Thus, they treat
these 25 words as a semantic basis.

In our experiment below, we apply CMR to automatically select a semantic basis from all 5,000
most frequent English words. Compared with the protocol used in Mitchell et al. (2008), our
approach is completely data-driven and outperforms the handcraft method in the brain activity
prediction accuracy for 5 out of 9 participants.

6. Each image is actually the average of 6 consecutive recordings of each word.
7. http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Category Exemplar 1 Exemplar 2 Exemplar 3 Exemplar 4 Exemplar 5

animals bear cat cow dog horse
body parts arm eye foot hand leg
buildings apartment barn church house igloo
building parts arch chimney closet door window
clothing coat dress pants shirt skirt
furniture bed chair desk dresser table
insects ant bee beetle butterfly fly
kitchen utensils bottle cup glass knife spoon
man made objects bell key refrigerator telephone watch
tools chisel hammer pliers saw screwdriver
vegetables carrot celery corn lettuce tomato
vehicles airplane bicycle car train truck

Table 5: The 60 stimulus words used in Mitchell et al. (2008) from 12 categories (5 per category).

See Eat Run Say Enter
Hear Touch Push Fear Drive
Listen Rub Fill Open Wear
Taste Approach Move Lift Break
Smell Manipulate Ride Near Clean

Table 6: The 25 verbs used in Mitchell et al. (2008). They are handcrafted based on the domain knowledge
of cognitive science, and are independent on the data set.

5.2.2 Experimental Protocol in Mitchell et al. (2008)

The evaluation procedure of Mitchell et al. (2008) is based on the leave-two-out cross validation over
all
(
60
2

)
= 1, 770 possible partitions. In each partition, we select 58 stimulus words out of 60 as the

training set. Recall that each stimulus word is represented by 5,000 features and each feature is the
co-occurrence frequency of a potential basis word with the stimulus word, we obtain a 58 × 5, 000
design matrix. Similarly, we can format the fMRI images corresponding to the 58 training stimulus
words into a 58 × 500 response matrix. In the training stage, we apply CMR and OMR to select
25 basis words by adjusting the regularization parameters. We then use the remaining two stimulus
words as a validation set and apply the estimated models to predict the neural activity of these two
stimulus words. We evaluate the prediction performance based on the combined cosine similarity
measure defined as follow.

Definition 9 (Combined Similarity Measure, Mitchell et al. (2008)) Let u ∈ Rm and v ∈
Rm denote the observed fMRI images of two stimulus words in the validation set, and û ∈ Rm and
v̂ ∈ Rm denote the corresponding predicted fMRI images. We say that the predicted images û and
v̂ correctly label two validation stimulus words, if

cos(u, û) + cos(v, v̂) > cos(u, v̂) + cos(v, û), (30)

where cos(u,v) = (uTv)/(||u||2||v||2).

We then summarize the overall prediction accuracy for each participant by the percentage of the
correct labelings over all 1,770 partitions. Table 7 presents the prediction accuracies for the 9
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participants. We see that CMR universally outperforms OMR across all 9 participants by 4.42% on
average. Note that the statistically significant accuracy at 5% level is 0.61, CMR achieves statistically
significant advantages for 8 out of 9 participants.

Method P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9

CMR 0.783 0.724 0.748 0.528 0.772 0.713 0.728 0.739 0.763
OMR 0.749 0.685 0.732 0.485 0.724 0.661 0.688 0.682 0.693

Table 7: Prediction accuracies evaluated using the experimental protocol in Mitchell et al. (2008).
CMR universally outperforms OMR across all participants.

5.2.3 An Improved Experimental Protocol

There are two drawbacks of the previous protocol: (1) The selected basis words vary a lot across
different partitions of the cross validation and participants. Such high variability makes the obtained
results difficult to interpret; (2) The automatic semantic basis selection method of CMR and OMR
is sensitive to data outliers, which are common in fMRI studies. In this section, we improve this
protocol to address these two problems in a more data-driven manner.

Our main idea is to simultaneously exploit the training data of multiple participants and use the
stability criterion to select more stable semantic basis words (Meinshausen and Bühlmann, 2010). In
detail, for each participant to be evaluated, we choose three other representatives out of the remaining
eight according to who achieve the best three leave-two-out cross validation prediction accuracies
in Table 7. Taking Participant 2 and CMR as an example, the three selected representatives are
Participants 1, 3, and 9 with the three highest accuracies of 0.783, 0.772, and 0.763. In this way,
we could eliminate the effects of possible data outliers. We then combine the fMRI images of three
representatives and formulate a multivariate regression problem with 1,500 dimensional response.
We conduct the leave-two-out cross validation as in the previous protocol using the combined data
set, and count the frequency of each potential basis word that appears in all 1,770 partitions. We
then choose the 25 most frequent words as the semantic basis. Finally, we apply the same procedure
as in the previous protocol on the current candidate participant and evaluate the prediction accuracy
using the combined cosine score.

Table 8 summarizes the prediction performance based on this improved protocol. We also report
the results obtained by the 25 handcrafted basis. Compared with the results in Table 7, we see
that the performance of CMR is greatly improved. For Participants 1, 2, 3, 5, and 8, the prediction
performance of CMR significantly outperforms the handcraft method. Moreover, since the candidate
participant is not involved in the semantic basis word selection, our results imply that the selected
semantic basis have good generalization capability across participants.

Method P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9

CMR 0.840 0.794 0.861 0.651 0.823 0.722 0.738 0.720 0.780
OMR 0.803 0.789 0.801 0.602 0.766 0.623 0.726 0.749 0.765

Handcraft 0.822 0.776 0.773 0.727 0.782 0.865 0.734 0.685 0.819

Table 8: Prediction accuracies evaluated used a more heuristic protocol. CMR significantly outper-
forms the handcrafted basis words for 5 out of 9 participants.
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Table 9 lists 35 basis words obtained by CMR using the improved protocol. The words in the bold
font are common ones shared by all 9 participants. We see that our list contains nouns, adjectives,
and verbs. These words are closely related to the 60 stimulus words. For example, lodge, hotel, and
floor are closely related to “building” and “building parts”; green and fruit clearly refer to words in
“vegetable”; built and using are related to “tools” and “man made objects”.

av balls booking built cartoon cream
cut country discounts floor fruit green
hold holidays hotel interior kill liquid
located lodge log measure mesh near
offers put reg room sale separate
shipping soft usd using went

Table 9: The 35 basis words selected by CMR using the improved protocol. The words in the bold
font are shared by predictive models for all 9 participants.

6. Discussion and Conclusion

Two other related methods are the square-root low rank multivariate regression (Klopp, 2011) and
the square-root sparse multivariate regression (Bunea et al., 2013). They solve the convex program

B̂ = argmin
B

||Y −XB||F + λR(B). (31)

The Frobenius loss in (31) makes the regularization parameter selection independent of σmax, but it
does not calibrate different regression tasks. We can rewrite (31) as

(B̂, σ̂) = argmin
B,σ

1√
nmσ

||Y −XB||2F + λR(B) subject to σ =
1√
nm
||Y −XB||F. (32)

Since σ in (32) is not specific to any individual task, it cannot calibrate the regularization. Thus it
is fundamentally different from CMR.

The calibration technique proposed in this paper is quite general, and can be extended to more
sophisticated scenarios, e.g. the regularization function is weakly decomposable or geometrically
decomposable (Geer, 2014; Lee et al., 2013), or the regression coefficient matrix can be decomposed
into multiple structured matrices (Agarwal et al., 2012; Chen et al., 2011; Gong et al., 2012; Jalali
et al., 2010; Obozinski et al., 2010). Accordingly, the extensions of our proposed theory are also
straightforward. We only need to replace their squared Frobenius loss-based analysis with the L2,1

loss based analysis in this paper.

Appendix A. Proof of Lemma 2

Note that the following two relations are frequently used in our analysis,

Y −XB0 = XB0 + Z−XB0 = Z and Y −XB̂ = XB0 + Z−XB̂ = Z−X∆̂.

Proof Since B0 ∈ S, we have B0
S⊥ = 0. Then we have

R(B̂) = R(B0 + ∆̂) = R(B0
S + ∆̂N⊥ + ∆̂N ) ≥ R(B0

S + ∆̂N )−R(∆̂N⊥). (33)
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Since R(·) is decomposable with respect to (S,N ), (33) further implies

R(B̂) ≥ R(B0
S) +R(∆̂N )−R(∆̂N⊥). (34)

Since B0 ∈ S, we have R(B0) = R(B0
S). Then by rearranging (34), we obtain

R(B0)−R(B̂) ≤ R(∆̂N⊥)−R(∆̂N ). (35)

Since B̂ is the optimum to (10), by (34), we further have

||X∆̂− Z||2,1 − ||Z||2,1 ≤ λ(R(B0)−R(B0 + ∆̂)) ≤ λ(R(∆̂N⊥)−R(∆̂N )). (36)

Due to the convexity of || · ||2,1, we know

||X∆̂− Z||2,1 − ||Z||2,1 ≥ 〈G0, ∆̂〉 ≥ −|〈G0, ∆̂〉|. (37)

By the Cauchy-Schwarz inequality, we obtain

|〈G0, ∆̂〉| ≤ R∗(G0)R(∆̂) ≤ λ

c
(R(∆̂N⊥) +R(∆̂N )), (38)

where the last inequality comes from the assumption λ ≥ cR∗(G0) and the triangle inequality

R(∆̂) ≤ R(∆̂N⊥) +R(∆̂N ). By combining (36), (37), and (38), we obtain

−λ
c

(R(∆̂N⊥) +R(∆̂N )) ≤ λ(R(∆̂N⊥)−R(∆̂N )). (39)

By rearranging (39), we obtain (c− 1)R(∆̂N ) ≤ (c+ 1)R(∆̂N⊥), which completes the proof.

Appendix B. Proof of Theorem 3

Proof We have

||X∆̂− Z||2,1 − ||Z||2,1 =

m∑
k=1

(||X∆̂∗k − Z∗k||2 − ||Z∗k||2)

=

m∑
k=1

||X∆̂∗k||22 − 2(X∆̂∗k)TZ∗k

||X∆̂∗k − Z∗k||2 + ||Z∗k||2
≥

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

− 2

m∑
k=1

|∆̂T
∗kX

TZ∗k|
||Z∗k||2

. (40)

Since G0
∗k = XTZ∗k/||Z∗k||2, we have

m∑
k=1

|∆̂T
∗kX

TZ∗k|
||Z∗k||2

=

m∑
k=1

|∆̂T
∗kG

0
∗k| ≤

m∑
k=1

d∑
j=1

|∆̂jkG
0
jk| ≤ R∗(G0)R(∆̂), (41)

where the last inequality follows from the Cauchy-Schwarz inequality. Recall that in the proof of
Lemma 2, we already have (36) as follows,

||X∆̂− Z||2,1 − ||Z||2,1 ≤ λ(R(∆̂N⊥)−R(∆̂N )). (42)

Therefore by combining (42) with (40) and (41), we obtain

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

≤ λ
(
R(∆̂N⊥)−R(∆̂N )

)
+ 2R∗(G0)R(∆̂)

≤ λ (1 + 2/c)R(∆̂N⊥) + λ (2/c− 1)R(∆̂N ) ≤ 2λ

c− 1
R(∆̂N⊥), (43)
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where the second inequality comes from the assumption λ ≥ cR∗(G0) and the triangle inequality

R(∆̂) ≤ R(∆̂N⊥) +R(∆̂N ), and the last inequality comes from (13) in Lemma 2. Meanwhile, by
the triangle inequality, we also have

m∑
k=1

||X∆̂∗k||22
||X∆̂∗k||2 + 2||Z∗k||2

≥
∑m
k=1 ||X∆̂∗k||22

||X∆̂||2,∞ + 2||Z||2,∞
≥ ||X∆̂||2F
||X∆̂||F + 2||Z||2,∞

, (44)

where the last inequality comes from the fact ||X∆̂||2,∞ ≤ ||X∆̂||F. Combining (43) and (44), we
obtain

||X∆̂||2F
||X∆̂||F + 2||Z||2,∞

≤ 2λ

c− 1
R(∆̂N⊥) ≤ 2λΘ(N⊥,R)||∆̂||F

c− 1
, (45)

where the last inequality comes from the definition of Θ(N⊥,R). By Assumption 1, we can rewrite
(45) as

||X∆̂||2F ≤
2λΘ(N⊥,R)

(c− 1)
√
nκ
||X∆̂||2F +

4λΘ(N⊥,R)√
nκ(c− 1)

||Z||2,∞||X∆̂||F.

Given 2λΘ(N⊥,R) ≤ δ(c− 1)
√
nκ for some δ < 1, we have

||X∆̂||F ≤
4λΘ(N⊥,R)√
nκ(c− 1)(1− δ)

||Z||2,∞ ≤
4λΘ(N⊥,R)σmax√
nκ(c− 1)(1− δ)

||W||2,∞. (46)

By Assumption 1 again, we obtain

||∆̂||F ≤
4λΘ(N⊥,R)σmax

nκ2(c− 1)(1− δ)
||W||2,∞. (47)

We proceed with the standard deviation estimation. By (36), we have

||Y −XB̂||2,1 − ||Y −XB0||2,1 ≤ λR(∆̂N⊥)− λR(∆̂N ) ≤ λR(∆̂N⊥). (48)

Combining (48) with a simple variant of Assumption 1

κ ≤ ||X∆̂||F√
n||∆̂||F

≤ ||X∆̂||F√
n||∆̂N⊥ ||F

≤ Θ(N⊥,R)||X∆̂||F√
nR(∆̂N⊥)

, (49)

we have

√
n

(
m∑
k=1

σ̂k −
m∑
k=1

σk

)
≤ λΘ(N⊥,R)||X∆̂||F√

nκ
≤ 4λ2Θ2(N⊥,R)σmax

nκ(c− 1)(1− δ)
||W||2,∞, (50)

where the last inequality comes from (46). By (37), (38), and Lemma 2, we have

||Y −XB̂||2,1 − ||Y −XB0||2,1 ≥ −
λ

c
(R(∆̂N⊥) +R(∆̂N )) ≥ − 2λ

c− 1
R(∆̂N⊥). (51)

By (49) again, we have

√
n

(
m∑
k=1

σ̂k −
m∑
k=1

σk

)
≥ −8λ2Θ2(N⊥,R)σmax

nκ(c− 1)2(1− δ)
||W||2,∞. (52)

Thus combining (50) and (52), we have

1

m

∣∣∣∣∣
m∑
k=1

σ̂k −
m∑
k=1

σk

∣∣∣∣∣ ≤ max

{
1,

2

c− 1

}
4λ2Θ2(N⊥,R)σmax√
nmnκ(c− 1)(1− δ)

||W||2,∞. (53)
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Appendix C. Proof of Corollary 4

We need to introduce the following lemmas for our proof.

Lemma 10 Suppose that we have all entries of a random vector v = (v1, ..., vn)T ∈ Rn indepen-
dently generated from the standard Gaussian distribution with mean 0 and variance 1. For any
c0 ∈ (0, 1), we have

P
(∣∣∣||v||22 − n∣∣∣ ≥ c0n) ≤ 2 exp

(
−nc

2
0

8

)
.

The proof of Lemma 10 is provided in Johnstone (2001), therefore omitted.

Lemma 11 Suppose that we have all entries of W independently generated from the standard Gaus-
sian distribution with mean 0 and variance 1, then there exists some universal constant c1 such that

P
(
||XTW||2√

n
≤ 2||X||2√

n
(
√
m+

√
d)

)
≥ 1− 2 exp(−c1(d+m)). (54)

The proof of Lemma 11 is provided in Appendix E. Now we proceed to derive the refined error
bound for the calibrated low rank regression estimator.
Proof Since we have all entries of W independently generated from N(0, 1), then by Lemma 10,
for any c0 ∈ (0, 1), we have

P
(√

(1− c0)n ≤ ||W∗k||2 ≤
√

(1 + c0)n
)
≥ 1− 2 exp

(
−nc

2
0

8

)
.

By taking the union bound over all k = 1, ...,m, we have

P
(√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2 ≤ max
1≤k≤m

||W∗k||2 ≤
√

(1 + c0)n
)

≥ 1− 2m exp

(
−nc

2
0

8

)
. (55)

Now conditioning on the event
√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2, we have

R∗(G0) = ||G0||2 = max
||v||2≤1

√√√√ m∑
k=1

(vTXTW∗k)2

||W∗k||22

≤ max
||v||2≤1

√√√√√√
m∑
k=1

(vTXTW∗k)2

(1− c0)n
=
||XTW||2√

(1− c0)n
. (56)

By Lemma 11, there exists some universal positive constant c1 such that we have

P

(
||XTW||2√

(1− c0)n
≤ 2||X||2(

√
d+
√
m)√

n(1− c0)

)
≥ 1− 2 exp (−c1(d+m)) . (57)

Given any matrix A in N⊥, A has at most rank 2r (See more details in Appendix B of Negahban
and Wainwright (2011)). Then we have

||A||∗ =

2r∑
j=1

ψj(A) ≤
√

2r

√√√√ 2r∑
j=1

ψj(A)2 =
√

2r||A||F.
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Therefore we have Θ(N⊥, || · ||∗) =
√

2r. Theorem 3 requires

2λΘ(N⊥,R) ≤ δκ(c− 1)
√
n for some δ < 1. (58)

Thus if we take

λ =
2c||X||2(

√
m+

√
d)√

n(1− c0)
,

then we need n to be large enough

n ≥ 4
√

2c||X||2(
√
rm+

√
rd)

δκ(c− 1)
√

1− c0
,

such that (58) can be secured. Then by combining (55), (56), (57), (47), and (53), we complete the
proof.

Appendix D. Proof of Corollary 5

We need to introduce the following lemma for our proof.

Lemma 12 Suppose that we have all entries of W independently generated from the standard Gaus-
sian distribution with mean 0 and variance 1, then we have

P
(

max
1≤j≤d

1√
n
||WTX∗j ||q ≤ 2

(
m1−1/p +

√
log d

))
≥ 1− 2

d
,

where 1/p+ 1/q = 1.

The proof of Lemma 12 is provided in Appendix F. Now we proceed to derive the refined error
bound for the joint sparsity setting.
Proof Recall that we already have (55),

P
(√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2 ≤ max
1≤k≤m

||W∗k||2 ≤
√

(1 + c0)n
)

≥ 1− 2m exp

(
−nc

2
0

8

)
. (59)

Now conditioning on the event
√

(1− c0)n ≤ min
1≤k≤m

||W∗k||2, we have

R∗(G0) = ||G0||∞,q = max
1≤j≤d

(
n∑
k=1

(WT
∗kX∗j)

q

||W∗k||q2

)1/q

≤
max
1≤j≤d

||WTX∗j ||q

min
1≤k≤m

||W∗k||2
≤ ||X

TW||∞,q√
(1− c0)n

. (60)

By Lemma 12, we have

P

(
||XTW||∞,q√

(1− c0)n
≤ 2m1−1/p√

(1− c0)
+

2
√

log d√
(1− c0)

)
≥ 1− 2

d
. (61)

Given any matrix A in N⊥, A has at most s nonzero rows. Then we have

||A||1,p =
∑

Aj∗ 6=0

||Aj∗||p ≤
∑

Aj∗ 6=0

||Aj∗||2 ≤
√
s

√ ∑
Aj∗ 6=0

||Aj∗||22 =
√
s||A||F.
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Therefore we have Θ(N⊥, || · ||1,p) =
√
s for any 2 ≤ p ≤ ∞. Theorem 3 requires

2λΘ(N⊥,R) ≤ δκ(c− 1)
√
n for some δ < 1. (62)

Thus if we take

λ =
2c(m1−1/p +

√
log d)√

1− c0
,

then we need n to be large enough

√
n ≥ 4c

√
s(m1−1/p +

√
log d)

δκ(c− 1)
√

1− c0
,

such that (62) can be secured. Then by combining (59), (60), (61), (47), and (53), we complete the
proof.

Appendix E. Proof of Lemma 11

Proof Since W has all its entries independently generated from the standard Gaussian distribution
with mean 0 and variance 1, then all XTW∗k/

√
n’s are essentially independently generated from a

multivariate Gaussian distribution with mean 0 and covariance matrix XTX/n.
Thus by Corollary 5.50 in Vershynin (2010) on the singular values of Gaussian random matrices

(Davidson and Szarek, 2001), we know that there exists a universal positive constant c1 such that

P
(
||XTW||2√

n
≤ 2||X||2√

n
(
√
m+

√
d)

)
≥ 1− 2 exp(−c1(d+m)), (63)

which completes the proof.

Appendix F. Proof of Lemma 12

Proof We adopt the similar proof strategy in Negahban et al. (2012), and begin our proof by
establishing the tail bound of ||WTX∗j ||q/

√
n.

Deviation above the mean : Given any pair of W, W̃ ∈ Rn×m and 1/q + 1/p = 1, we have∣∣∣∣ 1√
n
||WTX∗j ||q −

1√
n
||W̃TX∗j ||q

∣∣∣∣ ≤ 1√
n
||(W − W̃)TX∗j ||q

=
1√
n

max
||θ||p≤1

〈θ, (W − W̃)TX∗j〉. (64)

By the Cauchy-Schwartz inequality, we have

1√
n

max
||θ||p≤1

〈θXT
∗j ,W − W̃〉 ≤ ||W − W̃||F√

n
max
||θ||p≤1

||θXT
∗j ||F. (65)

Since θXT
∗j is a rank one matrix, its singular value decomposition is

θXT
∗j = ||θ||2||X∗j || ·

θ

||θ||2
·

XT
∗j

||X∗j ||2
.
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Consequently, we have

1√
n

max
||θ||p≤1

||θXT
∗j ||F =

||X∗j ||2√
n

max
||θ||p≤1

||θ||2
(i)

≤ m1/2−1/p||X∗j ||2√
n

(ii)

≤ 1. (66)

where (i) comes from ||θ||2 ≤ m1/2−1/p||θ||p, and (ii) comes from the column normalization condition
(21). Combining (64), (65), and (66), we obtain∣∣∣∣ 1√

n
||WTX∗j ||q −

1√
n
||W̃TX∗j ||q

∣∣∣∣ ≤ ||W − W̃||F. (67)

which implies that ||WTX∗j ||q/
√
n is a Lipschitz continuous function of W with a Lipschitz constant

as 1. By the Gaussian concentration of measure for Lipschitz functions (Ledoux and Talagrand,
2011), we have

P
(

1√
n
||WTX∗j ||q ≥ E

1√
n
||WTX∗j ||q + ξ

)
≤ 2 exp

(
−ξ

2

2

)
. (68)

Upper bound of the mean : Given any β ∈ Rm, we define a zero mean Gaussian random variable
Jβ = βTWTX∗j/

√
n, and note that we have 1√

n
||WTX∗j ||q = max||β||p=1 Jβ. Thus given any two

vectors ||β||p ≤ 1 and ||β′||p ≤ 1, we have

E(Jβ − Jβ′)2 =
1

n
||X∗j ||22||β − β′||22 ≤ ||β − β′||22,

where the last inequality comes from (21) and m1−1/p ≥ 1.
Then we define another Gaussian random variable Kβ = βTω, where ω = (ω1, ..., ωm)T ∼

N(0, Im) is standard Gaussian. By construction, for any pair β,β′ ∈ Rm, we have

E[(Kβ −Kβ′)2] = ‖β − β′‖22 ≥ E(Jβ − Jβ′)2.

Thus by the Sudakov-Fernique comparison principle (Ledoux and Talagrand, 2011), we have

E
1√
n
||WTX∗j ||q = E max

||β||p=1
Jβ ≤ E max

||β||p=1
Kβ.

By definition of Kβ, we have

E max
||β||p=1

Kβ = E||ω||q ≤ m1/q(E|ω1|q)1/q, (69)

where the last inequality comes from Jensen’s inequality and the fact that |ω1|1/q is a concave
function of ω1 for q ∈ [1, 2]. Eventually, by Hölder inequality, we obtain

(E|ω1|q)1/q ≤
√
Eω2

1 = 1. (70)

Combing (69) and (70), we obtain

E max
||β||p=1

Kβ ≤ m1−1/p ≤ 2m1−1/p. (71)

Then combing (68) and (71), we have

P
(

1√
n
||WTX∗j ||q ≥ 2m1−1/p + ξ

)
≤ 2 exp

(
−ξ

2

2

)
.

Taking the union bound over j = 1, ..., d and let ξ = 2
√

log d, we have

P
(

1√
n
||XTW||∞,q ≥ 2m1−1/p + 2

√
log d

)
≤ 2

d
.

This finishes the proof.
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