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Abstract

This paper investigates the Euler’s elastica (EE) model for high-dimensional supervised
learning problems in a function approximation framework. In 1744 Euler introduced the
elastica energy for a 2D curve on modeling torsion-free thin elastic rods. Together with
its degenerate form of total variation (TV), Euler’s elastica has been successfully applied
to low-dimensional data processing such as image denoising and image inpainting in the
last two decades. Our motivation is to apply Euler’s elastica to high-dimensional super-
vised learning problems. To this end, a supervised learning problem is modeled as an
energy functional minimization under a new geometric regularization scheme, where the
energy is composed of a squared loss and an elastica penalty. The elastica penalty aims
at regularizing the approximated function by heavily penalizing large gradients and high
curvature values on all level curves. We take a computational PDE approach to minimize
the energy functional. By using variational principles, the energy minimization problem is
transformed into an Euler-Lagrange PDE. However, this PDE is usually high-dimensional
and can not be directly handled by common low-dimensional solvers. To circumvent this
difficulty, we use radial basis functions (RBF) to approximate the target function, which
reduces the optimization problem to finding the linear coefficients of these basis functions.
Some theoretical properties of this new model, including the existence and uniqueness of so-
lutions and universal consistency, are analyzed. Extensive experiments have demonstrated
the effectiveness of the proposed model for binary classification, multi-class classification,
and regression tasks.

Keywords: supervised learning, Fuler’s elastica, total variation, geometric regularization,
Fuler-Lagrange PDE, function approximation, universal consistency
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“Read FEuler, read Fuler, he is our master in everything”
— Pierre-Simon Laplace (1749-1827)

1. Introduction

Supervised learning (Murphy, 2012; Hastie et al., 2009; Bishop, 2006) aims at inferring a
function that maps inputs to desired outputs under the guidance of training data. Two main
tasks in supervised learning are classification and regression. Numerous supervised learn-
ing methods have been developed in several decades; Caruana and Niculescu-Mizil (2006)
gave a comprehensive empirical comparison of these methods. A most recent evaluation
of classification methods was conducted by Fernandez-Delgado et al. (2014): 179 classifiers
arising from 17 families were compared on 121 data sets, showing that random forests, sup-
port vector machines (SVM), neural networks, and boosting are among the top methods
nowadays. Roughly speaking, existing methods can be divided into two main categories:
statistics based and function learning based. One advantage of function learning methods
is that powerful mathematical theories in functional analysis can be explored rather than
doing optimizations on discrete data points.

Most function learning methods can be derived from the energy regularization frame-
work, which minimizes a fitting loss term plus a smoothing penalty. It is arguable that
the most successful classification and regression method is the support vector machines
(SVM) (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Schélkopf and Smola, 2002),
whose cost function is composed of a hinge loss and a RKHS norm penalty determined
by a kernel. There are several variants of SVM by combining different losses and different
penalties (Steinwart, 2005; Bartlett et al., March 2006; Huang et al., 2014). In particular,
when replacing the hinge loss by a squared loss, the modified algorithm is called Regular-
ized Least Squares (RLS) method (Rifkin, 2002). Instead of considering a variety of loss
terms, manifold regularization (Belkin et al., 2006) introduced a geometric regularizer of
squared gradient magnitude on a manifold. Its discrete version corresponds to graph Lapla-
cian regularization (Zhou and Schélkopf, 2005; Nadler et al., 2009). A most recent work
is the geometric level set (GLS) classifier (Varshney and Willsky, 2010), with an energy
functional composed of a margin-based loss and a geometric regularization term based on
the surface area of the decision boundary. The GLS classifier was motivated by the study of
minimal surfaces and its applications in image processing. Experiments showed that GLS
is competitive with SVM and other state-of-the-art classifiers.

Following the geometric regularization approach, in this paper we propose to use the
Euler’s elastica for supervised learning problems. The energy functional is composed of
a squared loss and an FEuler’s elastica (EE in the sequel) regularizer. Briefly, an elastica
regularizer integrates two important geometric factors, gradients and curvatures, in a unified
manner. Particularly, its degenerate form is the well-known “total variation” (TV) if only
considering gradients and disregarding the influence of curvatures. Since both TV and EE
models have achieved great success in image denoising and image inpainting (Chan and
Shen, 2005; Aubert and Kornprobst, 2006), a natural question is whether the success of TV
and EE models on image processing applications can be transferred to high dimensional
data analysis such as supervised learning. This paper investigates the question by extending
TV and EE models to supervised learning settings, and evaluating their performance on
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Figure 1: Results on two moon data by using the EE classifier. (a) Decision boundary
(in blue) that separates two classes of points (represented by red stars or green
circles); (b) learned target function illustrated as a surface in a 3D space.

benchmark data sets against state-of-the-art methods. Figure 1 shows the classification
result and the learned target function on the popular example of two moon dataset by
using the EE classifier. Note that three important factors considered in the EE classifier,
gradient, curvature, and margin between two classes, are depicted in different directions on
one data point of the produced decision boundary in Figure 1(b).

Although some researchers in the machine learning community may think that the super-
vised learning problems have been widely studied and several leading algorithms like SVM
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Schélkopf and Smola, 2002), boosting
(Schapire and Freund, 2012), and random forests (Breiman, 2001) have been available to
achieve superb classification performance, we argue that this work provides a new perspec-
tive on understanding supervised learning problems. Particularly, the contributions of this
paper are:

1. A proper balance of three important factors in supervised learning: margin, gradient,
and curvature. Here the term margin refers to the original geometric meaning used
in SVM for binary classification problems, namely, the perpendicular distance from
a data point to the decision boundary in the input space. The margin of a SVM
classifier sign(w-h(x)) can be written as y(w-h(x))/(||w||2||/h(x)]|2), where w denotes
the coefficients of the separating hyperplane, and h(x) is the high-dimensional feature
vector representation of a data point x. Similarly, the margin in boosting can be
defined as y(w - h(x))/(||w|1]|h(x)]lec), or simply yf(x) if the combined classifier
f(x) has been properly normalized (see Schapire and Freund, 2012, chap. 5). Large
margins play a central role in developing several state-of-the-art classifiers. Following
the traditions in image processing, in this work the squared loss (y — f(x))? is used
for easier derivative calculations on both classification and regression tasks. Note that

3639



LiNn, XUE, WANG, HUANG, AND ZHA

the squared loss is equivalent to a margin-based loss (1 —%f(x))?, called the quadratic
loss (Bartlett et al., March 2006, table 1), since y € {—1,+1} in binary classifications.
On the other hand, the term gradient is related to the slope of function values in
a continuous setting, while the curvature measures the degree to which all the level
curves (including the decision boundary) is curved. Both gradients and curvatures are
geometric measurements that reflect the complexity of the output classifier. The trade-
off between the squared loss and the complexity involving gradients and curvatures in
this work is new to the machine learning community.

2. Euler-Lagrange PDEs that characterize the optimal solution for supervised learning
problems. Historically, PDEs have been used to describe a wide range of physical phe-
nomena such as sound, heat, fluid flow, electrostatics, electrodynamics, or elasticity.
Surprisingly, these seemingly distinct physical phenomena can be unified under a PDE
framework, which implies that they are essentially governed by same or similar na-
ture’s mechanism. A natural question is, can PDEs be applicable to high-dimensional
supervised learning problems? To the best of our knowledge, Varshney and Will-
sky (2010) were the first attempt to propose level set based PDEs for classification.
Following this research line, we propose the Euler-Lagrange PDEs derived from Eu-
ler’s elastica model and its degenerate total-variation model, for classification and
regression. These PDEs reveal equilibrium conditions of the desired fitting process
for supervised learning.

3. Two numerical algorithms for solving the elastica based supervised learning problem
in high dimensions. By using radial basis function approximation, we present two PDE
solvers: the gradient descent time marching method and the lagged linear equation
iteration method.

The remainder of this paper is organized as follows. In Section 2 we begin with a
brief review of TV and EE models used in image processing. The proposed models for
supervised learning are described in Section 3, followed by the corresponding numerical
solutions presented in Section 4. Some theoretical properties of the proposed models are
discussed in Section 5. Section 6 presents the experimental results, and Section 7 concludes
the paper.

2. Preliminaries

For better understanding the proposed method, we firstly review the notions of total vari-
ation and Euler’s elastica from an image processing perspective, and point out some con-
nections with prior work in the machine learning literature.

2.1 Total Variation (TV)

A function is said to have bounded variation (BV functions in the sequel) if its total variation
is finite. For simplicity we begin with the classical definition of total variation (TV) for a
function of one real variable. The total variation of a real-valued function f defined on an
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interval [a,b] € R is the quantity

np—1

Vit (/) = sup Y i) = fli)l, (1)
=0

where the supremum runs over the set of all partitions P of the given interval [a, b], with np
being the number of points in a specific partition P. If f is differentiable and its derivative
is Riemann-integrable, the total variation can be written as

b
Vo(f) = / 1 (@)lde.

Intuitively it measures the total distance along the direction of the y-axis, neglecting the
contribution of motion along x-axis, traveled by a point moving along the graph. Notice
that if f/(z) > 0 for all x € [a,b], it is simply equal to f(b) — f(a) by the fundamental
theorem of calculus.

The modern definition is based on the concept of distributional derivatives. Let Q C R
be a bounded open interval. A function f € L!(f2) is said to be of bounded variation (BV)
if

sup{ [ 1)@yt s € CH). ollmiey < 1} < . )

where C1(Q) is the space of continuously differentiable functions with compact support
in 2, and || - ||ec(q) is the essential supremum norm. Note that this definition may have
some variants, e.g. imposing the test function that satisfies ¢ € C2°(Q) and ||| co) < 1
(Golubov and Vitushkin, 2001). An equivalent definition is that BV functions are functions
whose distributional derivative is a finite Radon measure. Also the two definitions (1) and
(2) are consistent. It is natural to generalize the definition (2) for functions of several
variables. For an open  C R, the total variation of f € L'(Q) is given by

sup {/va cpd o= (p1,02,,0a) € CHQRY), @]l 1o < 1} <00,  (3)
©

where ¢ is a vector-valued test function, V-¢ = > d¢; /0z; is the divergence operator, and
all the components of ¢ has a L>(€2)-norm less than one. For more details of TV definitions
and the BV function space, one can refer to Chan and Shen (2005), Aubert and Kornprobst
(2006), Ambrosio et al. (2000), Giusti (1994), and Golubov and Vitushkin (2001).

By penalizing large gradients of the target functions, total variation has been widely
used for image processing tasks such as denoising and inpainting. The pioneering work is
Rudin, Osher, and Fatemi’s image denoising model (Rudin et al., 1992):

E[u]:/ﬂ((u—uo)z—FMVu])dx,

where ug is the input image with noise, u is the desired output image, A is a regulation
parameter that balances the two terms, Vu is the gradient vector (Ou/0x,0u/dy) for a
function u(z, y), |Vul is the lo-length of the gradient vector, and 2 denotes a 2D rectangular
image domain. The first fitting term measures the fidelity to the input, while the second
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is a p-Sobolev regularization term (p = 1) where the gradient Vu is understood in the
distributional sense. The main benefit is to preserve significant image edges during the
denoising procedure (Chan and Shen, 2005; Aubert and Kornprobst, 2006), as image edges
are important features that should be faithfully retained in image processing. The common
downside of TV-based methods is that piecewise constant images with |Vu| = 0 almost
everywhere are favored over piecewise smooth images, which is the so-called staircasing
effect (Duan et al., 2013). Euler’s elastica model is one of high order approaches to overcome
this drawback, which is described in the next subsection.

In the machine learning literature, p-Sobolev regularizer can be found in the literature
of nonparametric smoothing splines, generalized additive models, and projection pursuit
regression models (Hastie et al., 2009). Specifically, Belkin et al. (2006) proposed the
manifold regularization term

/ |V yrul?de,
zeM

for any smooth function u(z) on a manifold M. On the other hand, discrete graph Laplacian
regularization was discussed in Zhou and Schélkopf (2005) as

> [Voul,
veV

where v is a vertex from a vertex set V', and p is an arbitrary number. This penalty measures
the roughness of the discrete function u over a graph.

2.2 Euler’s Elastica (EE)

The elastica energy first appeared in Euler’s work in 1744 on modeling torsion-free thin
elastic rods (for the history see Levien, 2008; Fraser, 1991). Then Mumford (1994) rein-
troduced elastica into computer vision for measuring the quality of interpolating curves in
disocclusion. Later, elastica based image inpainting methods were developed in Masnou
and Morel (1998) and Chan et al. (2002).

A smooth curve v is said to be Euler’s elastica if it is the equilibrium curve of the
elasticity energy:

E[y] = /(a + bK?)ds, (4)

where a and b are two non-negative constant weights, £ denotes the scalar curvature (see
Appendix A for its definition), and ds is an infinitesimal arc length element. Euler obtained
the energy in studying the steady shape of a thin and torsion-free rod under external forces.
The curve implies the lowest elastica energy, thus getting its name. The ratio a/b (if b # 0)
indicates the relative importance of the total length versus total squared curvature (Chan
and Shen, 2005, chap. 2.1).

According to Mumford (1994), the key link between the elastica curves and image in-
painting relies on the the interpolation capability of elasticas. Elasticas were discovered to
comply to the connectivity principle (Chan and Shen, 2001; Kanizsa, 1979) in visual per-
ception better than total variation. This principle in vision psychology shows that humans
mostly prefer having two disjoint parts occluded by another object connected psychologi-
cally, even when they are far apart. Such kinds of “nonlinear splines”, like classical polyno-
mial splines, are natural tools for completing the missing or occluded edges. Besides, there
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is an interesting Bayesian rationale revealed by Mumford (1994) (see also Chan et al., 2002)
by considering the random walk of a drunk. Suppose the drunk starts from the origin of a
2-D ground and each step is straight. With some distribution assumptions on the step size
and the orientation of each step, the maximum likelihood estimation (MLE) of such discrete
random walk is approximately equivalent to the minimization of the elastica energy (4) in
a continuous fashion. This drunk walking model also sheds light on the choice of “2” for
the curvature power in (4). For any p > 1, one could consider the general p-elastica energy

Bl = [ a-+ bleP)ds.
Y

Notice that the situation of p = 1 is less ideal since in this case the total curvature energy
permits sudden turns. Chan et al. (2002) pointed out that generic stationary points of the
p-elastica energy are forbidden when p > 3, implying that p € (1,3) sounds to be a good
choice.

A common approach to bridge the gap between a prior energy model for curves and that
for images is using level sets (or called isophotes), pioneered by Osher and Sethian (1988).
By “lifting” a curve prior model into a 2D space, one can construct an image prior model
imposed on all the level curves of an image (corresponding to a 2D function). Formally, the
Euler’s elastica of all the level curves of an image u can be expressed as

L
= a K/Q S
E[u]_/l_o/w_l( + b2 dsdl, (5)

where ~; is the level curve determined by u(x) = [, and the level value [ varies in the image
range [0, L]. Let dt denote an infinitesimal length element along the normal direction n of
the level curve (or along the steepest ascent curve), then we have

dl

— = |Vu| or dl=|Vuldt.

dt

Thus by the co-area formula (Giusti, 1994), the integrated elastica energy (5) now passes

on to u by
L
Elu] = / / (a + bK?)|Vu|dtds = /(a + bK?)|Vu|dz,
=0 J~;:u=l Q

since dt and ds represent a couple of orthogonal length elements. Here €2 denotes the whole
rectangular image domain. Now the elastica energy of an image is completely expressed in
terms of u, when considering the well known curvature formula (Morel and Solimini, 1995)
for any level curve 7, : u(z) =1

Vu
=V-N=V:-|—=—], 6
) () )
where V- denotes the divergence operator, defined as

L 0A 0B

B VAR b M
v 8a:+8y

3643



LiNn, XUE, WANG, HUANG, AND ZHA

for a vector V = (A, B), and N is the ascending unit normal field Vu/|Vu|. See Appendix
A for a short derivation of (6). Of course this curvature expression makes sense only for
a certain class of smooth functions (such as C?(2)) and requires to be relaxed in order to
handle more general functions (like BV or L! functions).

Given a small image region D to be inpainted in the whole image domain 2, Chan and
Shen (2005) proposed an inpainting model based on Euler’s elastica

E = (u — ug)?dx + /\/ (a + bk?)|Vul|dz, (7)
oD Q

where A is a trade-off parameter that balances the first fitting term and the second smoothing
term. Notice that the second term in (7) is an elastica regularizer that penalizes high elastica
energy on all the level curves of u(z), as expressed in (5). By using calculus of variation
(van Brunt, 2004), its minimization is reduced to a nonlinear Euler-Lagrange equation.
Its numerical method can be implemented by a finite difference scheme, and experimental
results show that this elastica based inpainting method performs better than TV based
approaches.

Note that total variation can be regarded as a degenerate form of Euler’s elastica if
setting a = 1 and b = 0 in (7). In fact, elastica is a combination of total variation that
suppresses oscillations in the gradient direction, and a curvature regularizer that penalizes
non-smooth level set curves (see Figure 1).

3. The Proposed Framework

We first set up the supervised learning problem, and then introduce three models, Laplacian,
total variation, and Euler’s elastica, in an increasing order of computational complexity.

3.1 Problem Setup

The general supervised learning problem can be described as follows:

e Given a training data set {(x1,¥1),...(Xn, ¥n)} Where each data point x; € Q C R? is
a d-dimensional column vector and y; is the corresponding target variable, the goal is
to estimate an unknown function u(x) for predicting the desired y on a newly coming
point x.

The difference between classification and regression lies only in the corresponding target
values, with one discrete and the other continuous. For regression, we simply use u(x) to
approximate the target values; for binary classification, the decision boundaries are given
by the zero level set of u(x), or sign(u(x)). Most popular multi-class classifiers are based
on some types of reductions to binary classifications; we defer the discussion of multi-class
problems to the experiments section.

The widely used functional regularization framework for supervised learning can be
formulated as:

n%m)\S(u) +ZL<yiﬂu(Xi))7 (8)
=1
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where S(u) is a smoothing term or called a penalty and L(-) denotes a loss function. The
penalty term is used to control the complexity of the learned function, which has proven to
be essential in Statistical Learning Theory (Vapnik, 1998; Bousquet et al., 2004; Boucheron
et al., 2005; von Luxburg and Scholkopf, 2008). The misclassification risk corresponds to
the use of 0-1 loss: Lo—1(y,u(x)) = 1ly # sign u(x)], where 1[a] denotes an indicator
function that is 1 if o holds true and 0 otherwise. Or we can slightly misuse the notation
to allow a margin based representation: Lo_1(y,u(x)) = 1(yu(x)), where 1(«) is 1 if « <0
and 0 otherwise. It is well known that directly minimizing the 0-1 loss is computationally
intractable for many nontrivial classes of functions, and often some nonnegative convex
nondecreasing loss function are considered for computational efficiency. Another advantage
of such convex surrogates for 0-1 loss is that it is possible to demonstrate the Bayes-risk
consistency and to obtain uniform upper bounds on the generalization risk. See Bartlett
et al. (March 2006) and Boucheron et al. (2005, Section 4.2) for more discussions.

In the literature a variety of convex surrogate loss functions L(.) have been proposed
for binary classification where y € {—1, 41}, such as:

1. hinge loss Lpinge(y, u(x)) = max{0,1 — yu(x)} for SVM;
2. squared 1oss Lsguarea(y, u(x)) = (y — u(x))? for RLS;
3. logistic loss Liogistic(y, u(x)) = log(1 + exp(—yu(x))) for logistic regression;

4. and exponential 1088 Legponential (¥, u(x)) = exp(—yu(x)) in boosting.

Except for the squared loss, other above losses are margin-based since the classification
margin yu(x) is explicitly used. When restricting the discussion on binary classification
where y € {—1, 41}, the squared loss is actually equivalent to the quadratic loss (1—yu(x))?
which is then margin-based.

Throughout the paper, the squared loss is used in all our models due to several reasons:
(1) The derivative of a squared loss is very simple to calculate; (2) It can be applied to
both classification and regression, without any modification; (3) For classification, Rifkin
(2002) showed that the RLS method based on squared loss can offer comparable or slightly
better accuracies than hinge loss based SVM; (4) Using squared loss is consistent to the
related work in image processing area, leading to identical or similar PDEs; (5) We have
no intention to exhaustively try and compare different loss functions; instead our focus is
on the second term which is a new geometric regularization for supervised learning. For
more loss functions and penalties, one can refer to Steinwart (2005), Bartlett et al. (March
2006), and Huang et al. (2014).

Our goal is to explore how TV and EE can be applied to classification and regression
problems on high dimensional data sets. To this end, we prefer a continuous integral form
rather than the discrete summation form in (8). In contrast to discrete methods such
as SVM and graph Laplacian, the proposed framework operates in a continuous fashion
where powerful mathematical analysis tools can play a role. Specifically, the calculus of
variations plays a role in minimizing the energy functional, leading to the Euler-Lagrange
PDE. A typical procedure of this computational PDE approach has three steps: (1) Set
up the function learning problem under a continuous setting by designing a proper energy
functional; (2) Derive the Euler-Lagrange PDE via the calculus of variations; (3) Finally
solve the PDE numerically on discrete data points.
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3.2 Laplacian Regularization (LR)

A commonly used model with squared loss can be written as
n 2
mgn AS(u) + Z (u(xl) - yl) .

i=1

If the RKHS norm is used as the smoothing term S(u), the model is called regularized
least squares (RLS) (Rifkin, 2002). Another natural choice is the squared Lo-norm of the
gradient: S(u) = |Vu|?, as proposed in Belkin et al. (2006). We need to move from the
discrete cost function to a continuous functional to leverage powerful mathematical tools.
Suppose © € R? is a regular region that contains all the given data points. Under a
continuous setting, we have the following Laplacian regularization (LR) model:

Ernlu] = /Q (AIVul? + (1~ )?) x. (9)

This LR model has been widely used in the image processing literatures. By calculus of
variations (see Appendix B), the minimization is reduced to the following Euler-Lagrange
PDE with a natural boundary condition over the boundary 0€:

{ —Mu+ (u—y) =0,

10
%loq =0, (10)

where Aw is the Laplacian operator of u defined as

d
AuiVQu:V-Vu:Z

9%u
O(x(9)2’

and n denotes the outer normal of 9€2. This PDE (10) is relatively simple and can be easily
solved using common methods in two and three dimensions. The next section provides a
function approximation method for solving the PDE in high dimensions.

One can observe that the PDE (10) is very similar to the Poisson’s equation —Au = f in
mathematical physics, where f is a given function. Hence its behavior shares certain degrees
of similarity with Poisson’s equation. Particularly, if u fits y perfectly (satisfying u —y = 0)
in a small neighborhood of a particular point x, then by (10) we have Au = 0 and further by
u—y = 0 we also have Ay = 0 in this neighborhood. On the contrary, if Ay # 0 (implying
that y(x) is not a harmonic function), then we can not obtain u—y = 0; otherwise by (10) we
have Au = 0 and Ay = 0, which is contradictive to our assumption Ay # 0. Therefore, the
smoothness of the target variable y(x) determines the fitting degree for supervised learning.
The regularization parameter A controls the strength of this connection.

Throughout the paper, the natural boundary condition is adopted for easier treatments.
It is well known that boundary conditions can play a significant role in traditional low-
dimensional PDE areas, where the shape of the domain boundary is explicitly determined.
In these situations, boundary conditions are given by the underlying real problems and
their physical meanings are clear. However, in our case of high dimensional spaces for
supervised learning, there is no need to specify the exact domain boundary as long as this
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domain contains all the data points. Often the input data is preprocessed by scaling each
attribute into the range [—1,+1] or [0,1], and hence in practice we define the domain of
our TV/EE models as a d-dimensional hypercube. Scaling has been a very important step
for using neural networks and SVM, with some advantages discussed in Hsu et al. (2007).
Most of these considerations also apply to our algorithms. Recall that our focus is to learn
the target function u(x) on an “active” region that contains both the given training data
and the future test data, whereas this active region is usually far away from the boundary
of the hypercube domain in our settings. Hence boundary values in our high dimensional
models are not so important as in low dimensional spaces, and we use the natural boundary
condition purely from a computational aspect, just like the related work in image processing.
Note that in the GLS classifier (Varshney and Willsky, 2010), the issue of PDE boundary
conditions was treated in a similar way.

3.3 Total Variation (TV)

Similar to image denoising, the total variation (TV) model for supervised learning can be
formulated as

ETV[u]:/Q()\Vu|+;(u—y)2>dx. (11)

The only difference between LR and TV is just on the p-Sobolev regularizer with p = 2
for LR and p = 1 for TV, respectively. Intuitively, LR penalizes gradients on edges too
much due to the squared gradient magnitude, while TV is rather milder to permit sharper
edges near the decision boundaries between two classes. Similarly, by calculus of variations
(see Appendix B) we get the following PDE, which is the exactly same to that in image
denoising area:
-V <|§Z|> + (u—y)=0. (12)
Note that by the same curvature notation (6) of the associated level hypersurfaces, (12) can
be compactly written as
A+ (u—y)=0. (13)

See Appendix A for this curvature notation in R%, which amounts to the mean curvature
up to a constant factor 1/(d — 1). The PDE (13) implies that the mean curvature s of all
level hypersurfaces with respect to the approximation function u(x) imposes an equilibrium
condition on the fitting process of u —y = 0.

3.4 Euler’s Elastica (EE)

The more complicated elastica model for supervised learning can be formulated as
1
Euplu] = / (M@ +b52)| Vel + 5w~ y)?)dx, (14)
Q
where « is given by (6). Due to the elastica regularizer, the final decision boundary and all
level sets of u(x) should have a low elastica energy. If setting a = 1 and b = 0, this model

degenerates to the total variance model. Therefore, a unified solution can be implemented
for both TV and EE models, as described in the next section.

3647



LiNn, XUE, WANG, HUANG, AND ZHA

Using calculus of variations, we obtain the following PDE for the elastica model:
AV -V(u)+ (u—y) =0, (15)

where the vector field V(u) is called the fluz of the elastica energy related to u(x) and can
be expressed as a decomposition in a natural orthogonal frame (N, T):

T O(f'(%)|[Vul)

V() = fN - o S (16)
1 ! !
= SN = o { VU 0IVul) = NN, V(S ()| V) |
= JN = V()| Vul) + o Val(Tu, T (6) Val)

V| V3
Here f(k) = 1+ bx? by fixing a = 1 for simplicity, and N, T are the normal and tangent
vectors given by:

Vu

[Vul”

The directional derivative along T for a function u is defined as the inner product of Vu
and T:

ou/0T =Vu-T = (Vu,T).

See Appendix B for the detailed derivations from (14) to (15), which originates from Chan
et al. (2002). When b = 0, (15) degenerates to (12) as f'(xk) = 0 and Kk = V - N. Again,
the PDE (15) indicates that the divergence of the flux vector field, namely the first term
V - V(u), imposes an equilibrium condition on the fitting process of u —y = 0.

4. Numerical Algorithms

Due to the nonlinearity of the regularizer in TV and EE models, the corresponding PDEs in
(12) and (15) are too complicated to be efficiently solved in high dimensional space. Even
though the PDE in (10) associated with the LR model can be solved by Finite Difference
Method (FDM) or Finite Element Method (FEM) in 2-D or 3-D spaces, currently we have
no PDE tools to deal with such high dimensional problems. Therefore we take a function
approximation idea by using radial basis functions (RBF), similar to the treatment in GLS
(Varshney and Willsky, 2010). Then the computational PDE problems can be reduced to
finding the expanding coefficients.

In the literature of image denoising and inpainting, dynamic programming was firstly
employed to solve elastica related image processing problems in Masnou and Morel (1998).
The most widely used method is the computational PDE approach (Chan and Shen, 2005;
Aubert and Kornprobst, 2006), partially due to the following reasons:

1. The theory of PDEs is well established;

2. Many variational problems or their regularized approximations can often be effectively
computed from their Euler-Lagrange equations;
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3. Asin classical mathematical physics, PDEs are powerful tools to describe, model, and
simulate many dynamic as well as equilibrium phenomena.

Later in Bae et al. (2011) and Komodakis and Paragios (2009), graph-cuts methods are
applied to elastica models. Several numerical solutions (Tai et al., 2011; Hahn et al., 2011;
Duan et al., 2013) are based on the operator splitting technique and the augmented La-
grangian method (ALM), which decomposes the original problem into a series of subprob-
lems. All subproblems are either linear which can be solved efficiently by iterative solvers, or
having closed-form solutions. Recently, Bredies et al. (2013) proposed a convex, lower semi-
continuous approximation of Euler’s elastica energy on image processing tasks via functional
lifting, which can be expressed as a linear program. However, it is still unclear whether these
newly developed numerical methods are applicable to high dimensional elastica problems.

4.1 Approximation by Radial Basis Functions

The function approximation idea relies on the fact that a function u(x) can be expressed
as a sum of weighted basis function {¢;(x)}. For instance, a Taylor expansion represents a
function by using polynomials as basis functions. The Ritz method is a direct method for
solving problems in variational calculus by means of a linear combination of known basis
functions. In the literature of machine learning, the most widely used are the Gaussian
radial basis function (RBF) kernels, which are simple in expressions but have powerful
fitting ability. Hence we assume that the function u(x) to be learned has the following
representation

u(x) = Zwi(;ﬁi(x), (17)
i=1

where {¢;(x)} are a set of Gaussian RBF kernels

8i() = exp(— gl — i),

Here {x;} are the training samples in supervised learning, and ¢ is a tunable parameter. Note
that the granularity of this representation is well-matched to the data size, as the number
of RBFs is equal to the number of training samples. By using the RBF approximation,
the problem is reduced to finding the coefficients {w;}. Hence our approach is similar to
kernel machines with the Gaussian RBF kernels since the decision function is formulated
as a linear combination of RBFs. The main difference is that our approach is based on
the Euler’s elastica regularization term, while kernel methods in the literature employs a
squared norm of reproducing kernel Hilbert space for regularization.

Though there are numerous basis functions (also known as kernels) being proposed
by researchers, four basic types are often considered in the SVM literature and related
books: linear, polynomial, sigmoid, and Gaussian RBFs. In Hsu et al. (2007) the Gaussian
RBF kernel is suggested to be a reasonable first choice for training SVMs due to several
reasons. Most of these considerations also apply to our algorithms, such as the number of
hyperparameters, and the difficulties in numerical computations. In addition, one might
consider other types of RBFs instead of Gaussians, like compactly supported RBFs used in
scattered data interpolation (Wendland, 1995; Floater and Iske, 1996). The main purpose of
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compactly supported RBFs is for reducing computational complexity. However, the usage
of compactly supported RBFs might lead to numerical difficulties in the following derivative
calculations in our algorithms.

Let H(u) denote the Hessian matrix of u, and I be an identity matrix with a proper
size. For short notations we also use ¢; for ¢;(x). Based on the RBF approximation (17),
the following are some analytical expressions and handy notations that will be frequently
used later. See Appendix C for some derivations of these expressions. Note that d is the
dimension of the feature space.

Voi = —c(x—x;)pi,
Ap; = cle|x — x> — d)o, (18)
H(¢;) = —col+cE(x—x)(x—x) ¢, (19)

Vu = > wiVei=—c) wi(x—x;)p; = —cg,

g = iwz‘(x—xz‘)qﬁz‘,l (20)
Au = iwiAqbi:cZwi(c\x—xiF—d)qﬁi,
H(u) = :C(Zwi¢i>1j|-c2<1>, (21)

o = Z wi(x — x;)(x — x3) T 5,

Vu g
N7 W T el
K = ;Z’ (22)
1 ul H(u)Vu
= w(Au—W)
= Q{;wi(dx—xi\z—d—i—l)@—cggTT(I)gg}. (23)

4.2 Algorithm for LR

First, let us consider how to deal with the simplest LR model by solving the linear elliptic
PDE (10): —AAu + (u — y) = 0. By using the RBF approximation (17) and the linearity
of the Laplacian operator, the goal is reduced to finding a set of weights {w;}:

D wildi = AMg) =y

Let w = (wy,wa,...,w,)” and y = (y1,%2,...,Yn)", where n is the number of training
samples. Then w can be solved by the system of linear equations:

AW =Y, Aij = d)j(xi) — )\Aqﬁ](xZ)
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Numerically, the following regularized least squares solution is adopted in practice to avoid
ill-posed problems:
min [Aw — y[? + nlwl’

The closed-form solution is simply given by w = (ATA + nI)"'ATy with fast computa-
tional speed. It is interesting to see that both classification and regression problems can be
solved by fitting a set of linear equations. Naturally, the LR method can be regarded as
a generalization of linear regression Xw = y or ridge regression miny, |[Xw — y|? + n|w|?
(Hastie et al., 2009, chap. 3), where the original data matrix X is replaced by a “new” data
matrix A(X) in the LR model.

4.3 Algorithm for TV and EE Models

As the TV model is one degenerate case of the EE model, we describe solutions for the
more complicated EE model in this section. Here two algorithms are developed to tackle
the nonlinearity in (15): (1) gradient descent time marching, and (2) lagged linear equation
iteration.

4.3.1 GRADIENT DESCENT TIME MARCHING

A standard solution is the steepest gradient descent marching with an artificial time ¢:

ou(x,t) oFE Vu
o aZ“W‘(m)—(u—y) (24)

for the total variation PDE (12) and

8u(x,t) _8EEE

ot ou
for the elastica PDE (15). Note that by setting u; = —F,, the energy functional E should
decrease in the gradient direction as time marching. Here the partial derivative E, can be
obtained from the first variation of E (see Appendix A).

For image processing tasks, these gradient descent flows can be processed on a natural
regular grid of the image domain. For high dimensional data space, such computational
process is prohibitive. With the function approximation (17), a more practical way is
handling the gradient descent flow about the weight vector w. Consider a matrix form of
the function approximation (17) on all training data points:

=AV-V —(u—y) (25)

u(x1)
u = : = Uw, Uj; = ¢;(xi).

u(xn)

Thus we have the gradient descent flow about w:

@|X_X
ow  __,0u o1 ot
ot ot our

U

Bt Ix=xn
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Then in each iteration the weight vector w can be updated by
ouF)
8t X=X1
wkt) = wk) 4 g1 : ,
ouk)

ot Ix=xn

where 7 is a small time step. We first initialize the weight vector w as w(® = (W7 +
nI)~1¥Ty by solving the regularized least squares problem ¥w =y, with 7 a regularization
parameter. Then we get ©(9) = Uw(® | and run the iteration by computing w*+1) and »(*+1)
alternately.

Here we give some details about the computation of the partial derivatives. Clearly the
partial u; in (24) can be obtained by (23). By omitting the third and higher order terms,
V -V can be expanded into the following expression (see Appendix D):

V-V =rx+bs®—

2b(Au) 6b< Au K ) 2. 6b 2b (26)

BN N T ) A s A M

where

a=VulHu)Vu, B=VulHu)?Vu, v=Vu'H(u)*Vu.

We can see that if by setting b = 0, the expression of V - V is degenerated to kK = V -
(Vu/|Vul), which is exactly the same expression of the TV model.

The time complexity in each iteration is O(n?d), where n is the number of data points
and d is the dimension. There are 3 parameters in the algorithm: the RBF parameter c,
the regularization parameter A, and the elastica weight parameter b. Note that we always
set a = 1 since a can be absorbed into .

4.3.2 LAGGED LINEAR EQUATION ITERATION

Following the spirit of the lagged diffusivity fixed-point iteration method (Chan and Shen,
2005), we develop the following lagged linear equation iteration method. Empirically, the
original lagged diffusivity fixed-point iteration often yields poor performance due to its
brute-force linearization on the nonlinear PDE.

For the simpler TV model, by expanding the curvature term with (23) we have

T
A (Au— Vu' H(u)Vu

|Vl VulVu )—i—(u—y) =0,

or equivalently by the RBF approximation

_)\{Zi:wi(l—d+c|x—xi]2)¢i gg g}+| \{(szgbz)—y}—()

The above nonlinear equation about w is rather complex as g and ® contain the unknown
w. To simplify this equation, we use an iteration method that computes w or g alternately
by fixing the other variables. First, w is initialized as a random vector. Then g can be
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computed according to (20). Now assuming that g is fixed, we have

g'g g wilx —xi)(x—x)"¢ilg
glg glg
_ gt x—x)(x—x)'g
= ;wz(m( ng >

Thus the original nonlinear equation about w becomes a linear equation
[ 8|
(B o= B,
Ei wz( 3 ¢i=Y

where
g’ (x—x)(x—xi)"g

g'e

Using the lagged idea, we obtain the method of lagged linear equation iteration: (1) By

fixing g, solve the system of linear equations with respect to w to get a new w; (2) Compute

g with the updated w; (3) Iterate until convergence or reaching maximal iteration number.
For the more complicated EE model, we have to simplify the corresponding PDE greatly.

Following the lagged idea again, we first assume the term about curvature K = a + bx?

being fixed. Then K can be absorbed into A, leading to the following linear equation in a

similar way:
(18l ) _ gl
sz(AK %= 3KV

1

h=1-d+cx—x*>—c

Similarly, a two-step lagged iteration procedure can be developed for the EE model: (1)
By fixing g and K, solve the linear system with respect to w; (2) Compute g and K
with the updated w; (3) Iterate until convergence or reaching maximal iteration number.
There are three parameters: ¢, A, and the regularization parameter 1 (empirically chosen
in experiments) in the least squares problems.

5. Theoretical Properties

In this section, we explore some theoretical analysis for elastica based supervised learning
algorithms under the framework of statistical learning theory (SLT) (Vapnik, 1998; Bousquet
et al., 2004; Boucheron et al., 2005; von Luxburg and Schélkopf, 2008). First we present
the existence and uniqueness analysis of our TV /EE solutions. Then we prove that elastica
based classifiers are universally consistent, mainly based on the pioneering work of Steinwart
(2005) for SVM and other regularized kernel classifiers.

5.1 Existence and Uniqueness of TV

We first consider the TV model (11), which is a special yet useful case of the elastica model
(14). Tt is well-known that one can carry out the existence and uniqueness analysis for TV
model in image processing tasks. Thanks to the fact that most properties of a BV function
are independent of the data dimension, the following proof in R? is a trivial but detailed
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extension of the overly simplified proof for the TV-based image denoising model in (Chan
and Shen, 2005, Theorem 4.14 in chap. 4).

Before giving the theorem on existence and uniqueness, we first review several major
properties of BV functions (Chan and Shen, 2005, Section 2.2.2) (Aubert and Kornprobst,
2006, Section 2.2.3) that are frequently used in the following proofs.

Theorem 1 (1) (Completeness) BV(Q) C LY(Q) is a Banach space under the BV norm

lullsy = /Q (lul + |Vul)dx.

(2) (Weak Compactness) Let {u,} be a bounded sequence in BV(Q) where Q is a Lipschitz
domain. There must exist a subsequence which converges in L'(2).
(3) (L'-Lower Semicontinuity) Suppose a sequence {u,} converges to u in L'(2). Then

/ |Vu|dx < liminf/ |Vuy,|dx.
Q n Q
In particular if {un} is a bounded sequence in BV (), then u belongs to BV(Q) as well.

Theorem 2 (Existence and Uniqueness of TV) Under the assumption that the given
target function y(x) € L?(Q) with x € RY, the minimization problem

Brylu] = /Q (%(u )+ AVl ) dx

admits a unique solution u(x) € BV(Q).

Proof We first show the existence. Epy is finite for at least one BV function @(x) =
Jo y(x)dx, which is a constant function over Q with [Va| = 0. Thus there exist some BV
functions having finite E7y values. Clearly 0 is a lower bound of these Epy values. Hence
this nonempty number set of all Ey values with 0 as a lower bound must have an infimum
denoted as Ey(> 0). Since Ej is an infimum, we can select a sequence of BV functions
{u;} with bounded E7y values such that their Epy values converges to Ey. Note that such
sequence of {u;} must be bounded as well as in BV(Q2) in terms of the BV norm, since
the TV seminorm [, |Vuldx is contained in Epy and BV () € L'(Q2). According to the
weak compactness of the BV space, for the bounded sequence {u;} in BV(Q), there must
exist a subsequence indexed by i(k),k = 1,2,..., which converges in L'(2). Due to the
completeness of L'(Q2), let & € L'(Q) be its limit. By the L'-lower semicontinuity of the

TV seminorm, we have
/ |Va|dx < liminf/ |Vu;, |dx
Q k Q

and also & € BV(2) since {u;} is a bounded sequence in BV(Q2). Observe that E7y is lower
semicontinuous with respect to the L'(£2) topology because both of its components, the L?
norm (the squared loss in E7y ) and the TV seminorm, are lower semicontinuous. That is,

Ery [ﬂ] < limkinf Ery [uzk] = ue]l?R/f(Q) Ery [u] = Fy,
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indicating that there exists & € BV(2) achieving the minimum point of Ezy .

The uniqueness follows directly from the strict convexity of Epy. Thanks to the
Minkowski inequality ||f + gllzr < [|fllLe + ||g]|zr, the TV seminorm is convex (but not
strictly convex) given by

/ V(ou+ (1 —a)v)| = / laVu+ (1 — a)Vo| < a/ |Vu|+ (1 — a)/ |Vol,

Q Q Q Q

where o € [0,1]. Apparently the L? norm Jo(u — y)? is strictly convex. Hence combining
two components together, we have that Epy is strictly convex. Therefore as the minimum
point of Epy, 4 € BV() is unique. [ |

In the image processing literature, there are some variants of the existence and unique-
ness analysis for different TV models. Chan et al. (2002) discussed the existence of TV
inpainting models in the cases of noise free and having noise, but the uniqueness is ne-
glected. Aubert and Kornprobst (2006) present the existence and uniqueness analysis for
the TV-based image restoration problem

min Bry [u] = /Q (%(Ru )+ A0(|Vul) ) dx.

where R is a linear blurring operator and ¢ is a strictly convex and nondecreasing cost
function.

5.2 Existence of EE

We now consider the more complicated elastica model. In Ambrosio and Masnou (2003),
the authors proved that a relaxed version of elastica-based image inpainting has at least one
solution in BV(2). Here we give the existence proof of a discrete elastica model for binary
classification, which is adapted from the elegant proof in Steinwart (2005) for SVMs and
other regularized kernel classifiers. The existence is the first step to fulfill the consistency
proof in the next subsection. But the solution to elastica model can be non-unique, due to
the lack of convexity for this energy functional.

We begin with some preliminary notations. In the following, let R = [—o0, +00], Rt =
[0, +00), and R = [0,4+00]. A binary classifier is a rule that assigns to every training set
T ={(z1,91),---» (@n,yn)} € (X xY)" (Y = {—1,+1} for binary problems) a measurable
function f : X — R with the final decision given by signf(x). Similar to the gray scale
constraint in image processing tasks, we assume that f takes values in a bounded interval
(e.g. [—2,2]) since f should approximate y € {—1,+1} and the classification decision is
only rated with the sign of f. Sometimes we use a looser condition that f € Lo (X). For a
given loss function L(y, f(z)), write a cost function C(a,t) = aL(1,t)+(1—a)L(—1,t) for
a=PY =1|X =x) €[0,1] and t € R. For a fixed «, define M(a) and the corresponding
tq such that M(a) = C(a,ty) = min; C(a,t). We then give the basic condition on the loss
function L in order to guarantee that the solution t, minimizing C(«,t) tends to have the
same sign as the Bayes decision rule.

Definition 3 A continuous function L(y, f(x)) is called an admissible loss function if for
every o € [0,1] and to, € R we have to, < 0 if < 1/2 and to, > 0 if a > 1/2.
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A similar concept called classification-calibrated can be found in Bartlett et al.
(March 2006), requiring that an incorrect sign of ¢, always leads to a strictly larger M («).
The classification-calibrated condition generalizes the requirement of an admissible loss that
the minimizer of C(«,t) (if it exists) has the correct sign. The admissibility of L is neces-
sary in order to develop universally consistent classifiers (Steinwart, 2005). In particular,
the quadratic loss L(y, f(z)) = (1 — yf(z))? used in our classification models is admissible
and classification-calibrated; other examples can be found in Steinwart (2005) and Bartlett
et al. (March 2006). In the following we always assume that L(y, f(z)) is a margin-based
admissible loss function which is continuous with respect to the margin yf(z).

Definition 4 Let S(\,t) : RT x R" SR bean increasing function with respect to A and
t, which is continuous in 0 with respect to A and unbounded with respect to t. Moreover,
for all X > 0 there exists a t > 0 such that S(A\,t) < co. We call S(\,t) a regularization
function if for all X\ > 0 and s € RT we have S(\,0) = S(0,s) = 0, and if for all

A>0,t¢€ @Jr, and for all sequences {t,} C R" with t, — t and S(\ t,) < oo, we have
S\, tn) = S\ t).

In our TV/EE models, S(\,t) = At? clearly satisfies the requirements of a regulariza-
tion function. This regularization function is a typical setting in several variants of SVMs
(Steinwart, 2005), leaving the differences of these variants mainly on the loss functions.

Definition 5 The (0-1) risk of a measurable function f: X — R is defined by
Rp(f) = P({(z,y):signf(z) # y})
= Eggy~prl(y f(z)).
The smallest achievable risk
Rp =inf{Rp(f): f: X — R measurable}
is called the Bayes risk of P.

Definition 6 Given an admissible loss function L and a probability measure P, the L-risk
of a measurable function f: X — R is defined by

RL,P(f) = E(m,y)NPL(yvf(x))

_ / L(y., f(x))Px(dz) Py (dy)
(zy)~P
C

. (P(Y =1|X = x), f(z)) Px (dx).

The smallest possible L-risk is denoted by Ry p. Furthermore, given a regularization func-
tion S, the regularized L-risk is defined by

REpA(f) =S\ fllee) + Re,p(f)
for all X > 0. Here ||f|%p = [x(1+ bk?)|V fldx is the Euler’s elastica regularizer with a
misused norm notation, and Kk = V- (%). If overlooking the curvature term, it degenerates

to the TV seminorm ||f|3, = [ |Vfldz. If P is an empirical measure with respect to
T € (X xY)", we write R, v(f) and R}, \(f), respectively.
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Theorem 7 (Existence of EE) For all Borel probability measures P on X XY and all
A > 0, there always exists a function fpy € BV(X) minimizing the regularized L-risk
R\ (f). Moreover, for all such fpy € BV(X) we have || fpa|lpe < 65 where

oy = sup{t : S(\, t) <2[L(1,0) + L(—1,0)]}.

Proof The following proof is adapted from Steinwart (2005, Lemma 3.1), and the difference
lies on R}"% \ (f) where the original RKHS norm || f|| i for SVM is replaced by the pseudo-
norm || f||gg for EE. The proof consists of the following five steps. B

A. Clearly R} ,\(f) is finite for the BV function f(x) = E(;,)~p y or f(x) =0, which
is a constant function over X with |V f| = 0. Thus there exist some BV functions having
finite R;’%,(f) values. For all e € (0, L(1,0) + L(—1,0)], by the definition of an infimum
we can select an function f. € L'(X) with

R < inf R'Y +e.
IS = pelix) r.ealf)

Now we have

it RFG\() < R =0)

geri(x) b
= S\ [If=0[ge) + Re,p(f =0)
0+ Eqpy~prL(y, f(z) =0)
P(y = 12)L(1,0) + P(y = —1|2)L(~1,0)
L(1,0) + L(—1,0),

IN

where S satisfies the condition S(A,0) = 0 in the second equality. Furthermore,

S felles) < SO (Ifellze) + Rep(fe) = RES(fe)
<

Lt R, () +2 < 20L(L0) + L(-1.0))

As S(),t) is an increasing function with respect to ¢, we obtain the boundedness of || f||% -
Since || f||2y < ||fl|%, we also have the boundedness of | f-||%,, and f. € BV(X).

B. The Bolzano-Weierstrass theorem states that each bounded sequence in R" has a
convergent subsequence. In functional analysis, the Eberlein-Smulian theorem (Conway,
1990, Theorem 13.1 in chap. 5) states that three different kinds of weak compactness are
equivalent in a Banach space. Particularly, we will use the sequential compactness property
of a subset A in a Banach space: FEvery sequence from A has a convergent subsequence
whose limit is in A in the weak sense. Recall that BV(X) is a Banach space. By the two
theorems, there exist fpy € BV(X), a sequence {f;,} € BV(X), and two finite number
c1,c2 € RY such that || fz,[|Ee — c1, || fenllrv = ¢2, and f,, — fpx weakly. Note that the
weak convergence implies that fp ) is uniquely determined, || fp|py < liminf, | fs, || Bv,
and || fpallzr < liminf, || fs, ||z since BV(X) € L'(X) (Yosida, 1999, Theorem 5 and 9 in
Chapter V.1). In particular, by the weak compactness of the BV space, we further have that
{fe.} converges to fpy in L'(X). Thus yf.,(z) — yfpa(z) since the margin is a linear
functional of f. As L is continuous with respect the margin, we obtain L(y, f., (z)) —
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L(y, fpa(x)) for all (z,y) € X x Y. Recall that |L(y, f,(x))| is uniformly bounded by the
boundedness assumption of |f| and the continuity of L. Therefore, the bounded convergence
theorem (as a special case of Lebesgue dominated convergence theorem) implies

Rpp(fo() = /( M o () P ) By ()

= / L(y, frr(2)) Px (dz) Py (dy)
(z,y)~P

= Rpp(fra(x)).

C. By Rr.p(f:,) = Rr.p(fpn), for a fixed p > 0, there exists an index ng such that for
all n > ny we have both e, < p and Ry, p(fp) — R p(f-,) < p. In other words, we obtain
the following inequalities

S\ felleE) + R, p(fpa) — S feulleE) + R, p(fe,) = R 55 (fe0)

By Fiha ) 5

Ry5,\(fpa) +én
S\ [ feallee) + Rr.p(fpy) + en,

where the second inequality is based on the definition of f;, . It implies that

SN fenller) < SN feallER) +2n+p < SO |fPallEE) + 2p.

On the other hand, we need to consider another inequality in the opposite direction.
By the weak convergence we already have || fp||py < liminf, || fz,||Bv and |[fpa|lpr <
liminf, || f-, || 1. However these two inequalities have nothing to do with || f||gr. Thanks
to the lower semicontinuity of the mean curvature’s LP norm, Leonardi and Masnou (2009,

Theorem 4.4) proved that
Vf
Vf (1+|V- < ) P)dx

is lower semicontinuous in the class of C%(R?) functions whenever p > 1 for d = 2 or p > 2
for d > 3. An earlier result (Ambrosio and Masnou, 2003, Theorem 6) required p > d—1 for
d > 2. Of course the definition of F,(f) is valid only for a certain class of smooth functions
and we use the following relaxed functional (Ambrosio and Masnou, 2003; Leonardi and
Masnou, 2009)

ININ

IN

Folf) = inf{hhrginffp(fh) cfp— feLl}

to extend to the whole space L'(R?) (including BV (X)). We also have lower semicontinuity
of F,(f) (Ambrosio and Masnou, 2003, Theorem 5) and F,(f) = F,(f) whenever f €
C?(X) (Leonardi and Masnou, 2009, Theorem 4.4). Immediately we obtain

lfealles < liminf |[fe, ||e

and thus by the increasing property of S(A, 1),
SO ) < lim SO £, ll2).
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Combining the inequalities in two directions together yields

lim S(X, ([ feullpE) = SN [ fpallER)-
n—odo
D. Combining Ry, p(f:,) = Rr.p(fpa) with S\, || fz, |EE) = S\ || feallEE), we have

Ry pAJ=n) = Rppa(fr).

Because the definition of {f. } indicates

Riballe) = inf B0

we have found a fp) € BV(X) C L'(X) such that

Ry = inf R (f).

L,PM\(fP,)\) felLr%(X) L7P7)\(f)
E. The second assertion || fp||gr < 0y is obtained by the boundedness of f. in the first
step. |

5.3 Binary Classification Consistency

In classical statistics, a statistic 6, is a consistent estimator of a parameter # based on a
sample of size n if and only if for any £ > 0, lim, s P(]én — 0| > ¢e) =0. In the same
spirit, it is natural to request that a learning algorithm should eventually “converge” to an
optimal solution when more and more training examples are presented. In the literature of
machine learning, there exists two different types of consistency depending on the optimal
solution that belongs to some particular function space or the space of all functions (von
Luxburg and Schélkopf, 2008). The latter is often called Bayes consistency if the risk of a
learned classifier converges to the risk of the Bayes optimal decision rule. It is well accepted
that a good learning algorithm should satisfy this asymptotic property of consistency when
the data size is sufficiently large.

The literature on the consistency analysis of learning algorithms can be roughly classified
into following categories: (1) binary classification (Zhang, 2004a; Bartlett et al., March
2006), in particular for SVM (Steinwart, 2005), for Boosting (Bartlett and Traskin, 2007),
and for random forests (Biau et al., 2008); (2) multi-class classification (Zhang, 2004b;
Tewari and Bartlett, 2007; Glasmachers, 2010); (3) regression (Zakai and Ritov, 2009); (4)
learning to rank (Cossock and Zhang, 2008; Xia et al., 2008; Duchi et al., 2010); (5) multi-
label learning (Gao and Zhou, 2013). The work by Biau et al. (2008) showed that some
popular classifiers, including Breiman’s random forest classifier, are not consistent.

We first formalize the definitions of several kinds of consistency used in this section,
following von Luxburg and Schélkopf (2008) and Steinwart (2005).

Definition 8 A classifier f, is said to be (Bayes) consistent with respect to a given prob-
ability measure P if the risk R(f,) converges in probability to the Bayes risk, that is for all
e >0,

P(R(fn) —R(f*)>¢) =0 as n — 0
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where R(f) = P({(x,y) : signf(x) # y}) is the risk of a classifier f and f* denotes the
Bayes classifier. Furthermore, f, is said to be universally consistent if it is consistent
for all distributions P on X x Y. It is called strongly universally consistent if such
limiting property even holds almost surely (a.s.), that is

P(lim R(f,) = R(f*)) = 1

Note that the Bayes risk is the minimum that we can achieve in the space of all measur-
able functions, so we always have R(f,) > R(f*) and there is no need to use the absolute
value as in classical statistics.

We also need the notion of simple functions to approximate any function from LP(X).

Definition 9 A simple function is a function ¥ : X — R of the form
n
Y(x) =) eixa,(x)
i=1

where x4 is the indicator function of the set A and {c¢;} C R. Another description of a
simple function is a function that takes on finitely many values in its range.

Proposition 10 (From Regularized to Unregularized) For every Borel probability mea-
sure P on X XY, we have
lim R () = R

where fpy € BV(X) minimizes the regularized L-risk R}, \(f), and R p is the smallest
possible L-risk Ry, p(f) achieved by any measurable function f: X — R.

Proof First by the definition of fp ) we have
lim R"Y = i inf R"Y
S RLealfra) = i i Frpalh)

= 1 inf S(A R
Alg%)fellar\l/(x){ M fllee) + Re,p(f)}

= fellgf\lff(X){;% SN fller) + Rep(f)}

= inf R
seind o Brp(f)

since S(A,-) is continuous in 0 with respect to A and S(0,-) = 0. Next we show that the
following identities hold true

inf R = inf R =R
et ,p(f) semf L.p(f)=Rrp

for a sequence of embedding spaces BV(X) C L'(X) C {f : X — R measurable}, which
suffices to prove the assertion.

We first check the first identity. Recall that the simple functions that belong to LP(X)
are dense in LP(X) for 1 < p < oo (Hunter, 2011, Theorem 7.8). Note that an integrable

simple function
n
P = Z CiXA;
i=1
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belongs to LP(X) for 1 < p < oo if and only if p(4;) < oo for each A; C X such that
¢; # 0, meaning that its support has finite ;4 measure. On the other hand, each simple
function belongs to L>°. We restrict the discussion on bounded functions in LP(X) since any
unbounded f € LP(X) can be replaced by a modified bounded f € LP(X) to make the loss
L smaller. Hence the nice property of density indicates that for every bounded f € LP(X)
(1 < p < o0), there exists a sequence of simple functions g, such that ||f — g,|zr — 0 and
|gn(x)| < |f(z)| pointwise. The strong convergence in LP norm implies the weak convergence
in measure

Px({z € X : |f — gl > €}) > 0.

Since L(y, t) is uniformly continuous with respect to the second variable in the closed interval
[—|f(@)|,|f(z)]], for any fixed y we have

Px({x € X |L(y, f(x)) = L(y, gn(x))| = €}) = 0.

By the previous assumption that L(y, f(z)) is a margin-based admissible loss function which
is continuous with respect to the margin yf(z), there exists a function L(yf(z)) € L'(X)
such that

Ly, gn(2))| < L(yf(2)).

By the Lebesgue’s dominated convergence theorem, the expectation in Ry, p(f) and the limit
can change order:

Jm [ L) Pe@n Py = [ LS @) Py () Pe(dy)
(z,y)~P (z,y)~P
E(w,y)NPL(:% f(x))
= Rpp(f)

Thus by fixing p = 1 we have

inf{R : f simple} = inf R .
inf{ Rz, p(f) : f simple} ety L.p(f)

Clearly such simple functions belong to BV(X), and also by the definition of BV functions
we have BV(X) C L'(X). Then the relation of embedding spaces implies that

inf{R . f simple} > inf R > it Ry p(f).
inf{Rp.p(f) : f simple} > inf Rip(f)2 inf Rir(f)

Together with the previous identity between simple functions and L'(X) functions, the first
identity

inf R = inf R
et ,p(f) ey ,p(f)

follows.
The second identity comes from the fact

inf R =R
ey Lp(f)=Rrp
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with the proof given by Steinwart (2005, Proposition 3.2). On the other hand, the embed-
ding relationship L>(X) € LY(X) C {f : X — R measurable} leads to
inf R > inf R > Rr.p.
ey L,p(f) = i, Lp(f) = Rep

Therefore the second identity
inf R =R
fleLl Lp(f) L,P

holds true. [ |

Following the framework of consistency proof in Steinwart (2005), we need the final
piece of the puzzle by showing that some suitable concentration inequalities hold true for
our proposed algorithms. These concentration inequalities bridge the gap between the
expected L-risk of fp ) and the empirical L-risk of fp ). Steinwart’s framework is somehow
modular: each tuple of concentration inequality, loss function, and function space gives a
condition on {\, } ensuring |Ry, p(fpx)—Rr,7(fpa)| — 0, and each different combination of
this tuple leads to new consistency results. There exist several concentration inequalities in
Steinwart (2005) based on covering numbers, localized covering numbers, and algorithmic
stability. Among these three concentration inequalities, the algorithmic stability (Bousquet
and Elisseeff, 2002; Kutin and Niyogi, 2002; Poggio et al., 2004) is an elegant approach
that does not depend on any complexity measure of the underlying hypothesis space, but
rather depend on how the learning algorithm searches this space. However, stability based
concentration inequalities (Bousquet and Elisseeff, 2002) heavily rely on the reproducing
property of the RKHS space and often require that the regularization term is convex, while
these conditions do not hold for our elastica based learning algorithm. In the following we
give a concentration inequality based on covering numbers.

For a metric space (M, d) we define its covering number N'((M,d), ) to be the minimal
I such that there exist [ disks in M with radius € covering M:

l
N((M,d),e) imin{ leN : {z1,...,0} C M, M C UB(xi,e)},
i=1

where B(z,e) denotes the closed ball with center x and radius ¢ > 0. We also have to
measure the continuity of a given loss function L. The modulus of continuity of L is defined
by

W(Laé) = Sup{|L(y7t) - L(yat,)| tye va tat/ € Rv |t - t,| < 6}

In addition we define the inverted modulus of continuity as
wHL,e) = sup{d > 0: w(L,) <&l

Moreover, since only fpy € BV(X) and fr, € BV(X) are our focus considered in the
consistency results, we define the restricted loss function:

La() = L{y, f(x)) : y €Y, f € BV(X)NL¥(X), [|fllzv < dx,
where §) given in Theorem 7 is a simple upper bound on the TV semi-norm of the solutions

of Ry (1)
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Lemma 11 (Concentration) For all Borel probability measures P on X XY, all e > 0,
A>0, and all n > 1 we have

2ne?

P(‘RL,T(fT,A) - RL,P(fT,A)| > 5) < 2N (5)\17 W_l(LA>5/3)) €xXp ( - W> s

where I = {f € BV(X)NL>®(X) : ||fllzv < 6} is a metric space equipped with the || - ||oo
norm.

Proof Write the loss class as F = {L(-, f(-)) : f € BV(X) N L>®(X), || fllrv < é»}. Note
that F is a subset of C(X x Y') of nonnegative functions that are bounded by || Lj||co. Let
| = N(F,e/3) and consider fi,..., f; such that the disks D; centered at f; and with radius
£/3 cover F. Recall that Hoeffding’s inequality (Bousquet et al., 2004, Theorem 1) (see also
the book by Boucheron et al., 2013), perhaps the most elegant quantitative version of the
law of large numbers, states that for all € > 0,

2ne?

P23 1@ B @] > <) <200 (- 255)

where Z1,. .., Z, be nii.d. random variables with f(Z) € [a,b]. For each fixed f;, applying
Hoeffding’s inequality yields

2n(8/3)2)
LAl /7
with Rp p(f;) = E@y)~pL(y, fj(z)) and L(y, fj(z)) € [0, [|Lxl[oc]- As the disks D; are €/3

cover of F', the following inequalities hold true

sup |Rr7(f) — Rr,p(f)]

P(Rer(f;) = Rep(f) </3) 21— 2exp ( -

feDj
= fseug |Rpr(f) — Ror(fj) + Roor(f;) — Rop(f;) + R p(f;) — Ro,.p(f)]
]
< ¢/34+|Rrr(fj) — Rrp(fj)+¢/3
< e,

with probability at least 1 —2exp (— ﬁ) over the random choice of the training set 7.
Since ||f||gg < dy implies || f||7v < d», using the union bound we get

2ne?
P( sup |Rpr(f) = Rep(f)l =€) <2N(F,e/3)exp (- 5—).
IfIlEE<dx 9| Lall%
By the definition of the modulus of continuity, every e cover fi,..., fi with || fj||7yv < 0

defines an w(Ly,€) cover L(-, fi(-)),..., L(-, fi(-)) of F with respect to the supremum norm.
Thus we have

A/’(]:" 8/3) < N((S)\I, wil(L)\,é‘/Z‘})),
which immediately yields

2ne

P( sup [Rog(f) = Rep(f)] = &) < 2N (0aLw™ Ly, 2/3)) exp ( — W>‘

feonl
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Since Lemma 7 guarantees that || fpx||7v < 0x or || frallrv < 0y, the assertion follows. W

Theorem 12 (Universal Consistency) The classifier fr, € BV(X) minimizing the
reqularized empirical L-risk Rf% £, (f) is universally consistent for a positive sequence {\n}
with A, — 0 and

1
EHLAnllgo In N (65,1, w " (Ly,,€)) =0

for all e > 0.

Proof The Proposition 3.3 of Steinwart (2005) states that for any Borel probability measure
Pon X xY and for all € > 0, there exists a § > 0 such that for all measurable f : X — R
with Ry, p(f) < Rp.p + 0 we have Rp(f) < Rp +¢. Here L in Ry p(f) requires to be an
admissible loss function. Therefore, in order to prove the 0-1 risk Rp(fr.,) < Rp +¢, it
suffices to show the L-risk Ry, p(fra,) < Rr,p + 9.

The outline is given as follows:

Rrp(fra,) < SO llfra,llee) + Rop(fra,)
< SO lfrallee) + Ror(fra,) +6/3 (27)
< SO lfeallee) + Ror(fea,) +6/3 (28)
< SO Ifeallee) + Re,p(fpa,) +26/3 (29)
= R}, (fra,) +20/3
< Rpp+é. (30)

Among the above inequalities, (27) and (29) hold true by the empirical concentration in-
equality in Lemma 11 with probability at least

Ine?

L= 2N (03], w ™ (L, 2/3)) exp ( — W>

over the random choice of the training set 7, while (28) is obtained by the fact that fr ),

minimizes the regularized empirical L-risk R}, (f). Proposition 10 with respect to A, —

0 immediately implies (30): there exists an integer ng > 1 such that for all n > ng we have

IRy P, (fPAL) — Rip| < 6/3.

Note that the condition
1

assures that Ry, p(fr,) < Rr,p+ 6 holds true with probability 1 nearly as n — oo. Then
the universal consistency follows by P(Rp(fr,x,) — Rp <€) — 1 for all distributions P on
X xY. |
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Figure 2: Decision boundaries produced by SVM and EE with common parameters on two
moon data.

6. Experimental Results

The proposed two models (TV and EE) are compared with LR, SVM with RBF kernels
using the LIBSVM implementation (Chang and Lin, 2011), and Back-Propagation Neural
Networks (BPNN) in the Matlab neural network toolbox. Two implementations of our
methods are also compared: Gradient Descent method (GD) and Lagged Linear Equation
method (LAG). The maximum number of iterations in GD and LAG is empirically setting
as 40. Binary classification, multi-class classification, and regression tasks are tested on
synthetic and real-world data sets. We collected real data sets from the libsvm website
(Chang and Lin, 2011) and the UCI machine learning repository (Asuncion and Newman,
2013). Some attributes have been removed due to missing entries. Some data sets have a
huge number of instances, hence we use only 1000 instances in our experiments. All data
sets are scaled into [0,1] before training and testing.

6.1 Synthetic Data

We first compare our EE model and SVM for binary classification on two synthetic data
sets: the two moon data and one data set made by ourselves. Fig. 2 and Fig. 3 show the
decision boundaries produced by SVM and EE with common parameters. We can see that
SVM tends to yield curved or even wiggly decision boundaries to pursue low training errors.
In contrast, smooth or even straight decision boundaries with low curvature are favored by
EE, hence reducing the risk of overfitting.

One may argue that SVM can produce smooth and low curvature decision boundaries
by tuning the parameters. Fig. 4 shows the results of SVM with different combinations of
kernel parameter g and slack parameter C. For comparison, Fig. 5 displays the results of
EE with different combinations of regularization parameter A and kernel parameter c. We
can see that most decision boundaries produced by EE have lower curvature values and are
smoother than the results by SVM. Actually the elastica term in EE may be interpreted
as the accumulated bending energy of all level lines, including the level line on the decision
boundary.
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Figure 3: Decision boundaries produced by SVM and EE with common parameters on our
synthetic
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Figure 4: Decision boundaries produced by SVM with different parameter combinations on
two moon data.

6.2 Binary Classification

We use eleven data sets for binary classification. The optimal parameters for each algorithm
are selected by grid search using 5-fold cross-validation. To make the grid search more
practical, only two common parameters are searched for all methods except BPNN: (C,
g) for SVM, while (¢, A) for LR, TV, and EE. Empirically, the parameter 7 is set as
1 for LR, and the parameter b is fixed as 0.01 for EE. Then excluding BPNN, the two
common parameters are searched from —10 : 10 in logarithm with step 2. For each data
set, we randomly run the 5-fold cross validation ten times to reduce the influence of data
partitions.
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Figure 5: Decision boundaries produced by EE with different parameter combinations on
two moon data.

Table 1 gives the average classification accuracies (with standard deviations) for the five
methods. The results indicate that BPNN performs the worst, while the LAG version of EE
achieves the best accuracies on six data sets. LR and other implementations of TV and EE
are comparable with SVM. When comparing EE-LAG and SVM in a pairwise fashion, we
can see that EE-LAG achieves improvements over SVM on 10 datasets (though not much
statistically significant as the differences on two averaged accuracies is often less than one
standard deviation).

6.3 Multi-Class Classification

For multi-class tasks, we collected twelve data sets. For the 256-dimensional USPS data,
PCA is used as a preprocessing step to reduce the dimension to 30 and we randomly select
1000 samples for experiments. Same as the settings for binary problems, we use ten runs 5-
fold cross-validation to choose the optimal parameters for each method. All methods except
for BPNN have two common parameters which are searched from —10 : 10 in logarithm
with step 1.

Aside from BPNN that has a built-in ability for multi-class tasks, almost all function
learning approaches are originally designed for binary classification. In order to handle
multi-class situations, usually “one versus all” (OVA) or “one versus one” (OVO) strate-
gies can be adopted. If using OVA, one needs to learn M scoring functions to fulfill the
multi-class task, where M is the number of classes. The final decision is the label whose
scoring function achieves the largest value or confidence score. However, these scoring func-
tions are learned independently, often suffering to the so-called calibration problem (Mohri
et al., 2012, chap. 8). LIBSVM uses the OVO strategy, with some reasons and detailed
comparisons given in (Hsu and Lin, 2002). See also Mohri et al. (2012, chap. 8) for dis-
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. TV EE

Data Dim Num | SVM BPNN LR GD LAG GD LAG
Australian 14 690 | 85.94 85.34 87.06 87.11 87.01 86.54 87.25

+2.70 £1.97 £245 £2.06 +£2.46 +2.31 £2.01
Blood 4 748 | 79.01 79.08 79.32  79.55 79.42 79.73 79.73
transfusion +3.01 +£336 £3.74 £2.38 +£2.60 +2.18 +2.03
Breast- 10 683 | 97.36 96.40 97.60 97.36 97.72 97.13 97.83
cancer +1.59 +1.14 £1.27 £1.28 +£143 £1.37 =£1.29
Diabetes 8 768 | T7.73 76.85 7796 77.83 7781 78.23 78.10

+3.03 +4.22 £3.50 £3.19 +£2.73 254 +£2.63
German. 24 1000 | 77.10 76.37 77.10  76.19 7710 76.50 77.22
number +1.61 +1.61 £1.36 =£1.47 +£1.29 £1.59 =£1.30
Haberman’s 3 306 | 74.51 74.52  75.77 7530 7528 75.65 75.34
survival +4.31 £3.53 £3.00 =£3.31 +£3.78 +£3.42 +£3.32
Heart 13 270 | 83.70 81.76 84.26  84.45 84.58 84.78 84.96

+2.72  £3.16 £2.22 £2.82 £2.73 £2.69 £2.79
Liver- 6 345 | 73.62 71.52 73.20 74.81 73.62 7432 7391
disorders +5.72  +4.44 £2.95 £2.49 £2.65 £2.29 £2.83
Planning 12 182 | 73.63  67.62 72.22 7167 7167 7222  71.67
relax +4.41 +£4.93 £4.46 £4.93 +£4.08 +4.25 £4.79
Sonar 60 208 | 89.90 88.99  90.88 90.30 90.27  90.07  90.50

+4.41  £4.79 £3.83 £4.47 £4.72 327 £3.37
Vertebral 6 310 | 85.81 85.16 84.52  84.55 84.75 85.83 85.92
column +4.26 +3.12 £3.90 £4.14 +£4.37 £3.38 +£3.68

Table 1: Average accuracies (%) for binary classification with 5-fold cross-validation.

cussions between OVA and OVO. Recently in Varshney and Willsky (2010), an efficient
binary encoding strategy was proposed to represent the decision boundary by using only
m = [loga M| functions. Empirically we compared the loga M strategy and the OVA strat-
egy for LR, TV and EE, and found that the in most cases the logoM strategy performs
slightly better. As the codewords for making decisions are represented as 0-1 bits of length
m, the logo M strategy may somehow “favor” those methods with good function approxi-
mation ability. In multi-class experiments, the logo M strategy is used for LR, TV and EE,
while LIBSVM runs with the OVO strategy.

The multi-class results of classification accuracies are shown in Table 2. The accuracy
results demonstrate that both SVM and EE-GD offer the best accuracies on four (different)
data sets, and both EE-LAG and TV-GD take the first place on two (different) data sets. If
we compare SVM and EE-GD in a pairwise fashion by excluding other competing methods,
the results show that SVM wins on only five data sets while EE-GD performs better on
the other seven data sets. Therefore on multi-class tasks, Table 2 implies that our EE-GD
version can offer competitive results, or can perform slightly better than SVM.

6.4 Regression

We use ten regression data sets to validate the proposed TV/EE methods compared with
SVM, BPNN, and LR. All data sets are scaled into [0,1]. The same experimental settings
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. TV EE
Data Cls Dim Num | SVM  BPNN LR aD LAG aD LAG
Balance 3 4 625 | 98.40 92.48 89.44 90.88 89.92 90.40 91.36
scale +1.13 +1.77 +1.90 +1.25 +1.36 +1.80 +1.35
Flags 8 29 194 | 52.06 46.90 53.13 51.50 52.10 53.55 52.10
+7.57 +7.25 +7.34 +7.29 +7.10 +6.39 +7.22
Glass 6 9 214 | 73.83 63.99 73.81 75.59 76.19 75.82 75.71
+9.22 +11.83 £7.34 +8.73 +8.62 +9.07 +9.15
Hayes- 3 5 132 | 81.82 74.26 73.63 77.87 77.08 78.90 78.15
rath +4.12 +4.62 +4.31 +4.59 +4.67 +4.29 +4.31
Iris 3 4 150 | 96.67 96.00 95.33 96.00 96.00 96.00 96.00
+3.65 +3.37 +3.42 +3.50 +3.27 +3.33 +3.10
Statlog 7 19 2310 | 97.27 96.74 97.31 97.31 97.21 97.45 97.44
imageseg +0.91 +1.12 +0.95 +0.93 +0.88 +0.81 +0.83
Seeds 3 7 210 | 94.76 95.71 92.38 92.86 92.65 92.86 92.75
+1.78 +1.56 +1.85 +1.74 +1.62 +1.93 +1.87
Teaching 3 5 151 | 60.93 56.63 63.47 65.18 66.00 65.41 67.33
assist +20.97 +19.44 £17.28 +£14.26 +15.37 +16.23 £17.41
USPS 10 30 1000 | 94.10 89.72 94.90 94.40 94.80 94.40 95.00
+1.39 +2.79 +1.28 +1.32 +1.73 +1.54 +1.27
Vehicle 4 18 846 84.40 79.18 82.75 85.00 84.25 85.00 84.84
+0.70  +1.41 +1.33  £0.82 +0.93  +0.78  £0.90
Wine 3 13 178 | 98.88 97.78 99.44  99.44 99.43 99.44 98.86
+1.27 +1.43 +0.83 +0.83 +0.85 +0.83 +1.31
Yeast 10 8 1484 | 60.78 54.49 58.22 57.95 57.91 57.95 57.97
+3.26 +4.57 +3.79 +3.34 +3.27 +3.64 +3.52

Table 2: Average accuracies (%) for multi-class classification with 5-fold cross-validation.

are repeated by running ten times of 5-fold cross-validation for each data set. Table 3 shows
the regression results in mean square errors (MSE) with standard deviations.

Clearly, we can see that TV-LAG and two versions of EE achieve the best regression
results, with each winning three times on overall ten data sets. BPNN yields the lowest
errors on two data sets. Surprisingly SVM takes the first place on only one data set. If
we select SVM and LR in a pairwise fashion by excluding other methods, we find that LR
offers lower errors on seven data sets while SVM performs better on only other three data
sets. If we compare SVM and TV-GD separately by neglecting other methods, TV-GD
performs better on nine data sets. Note that TV-GD performs the worst among all versions
of TV/EE. These results demonstrate that compared with other competing methods, the
performance of SVM on regression tasks is rather unsatisfactory. The reason might be that
the original purpose of SVM is designed for classification, not for regression. In contrast,
our TV/EE methods exhibit excellent regression ability on these data sets.

6.5 Running Times

To compare the real performance in computational burdens, in Table 4 we list the running
times of the competing methods on five data sets for binary classification. The running times
are obtained for five-fold cross-validation in one single round, averaged by ten rounds. The
experiments are conducted on a PC Sever with two Intel Xeon 5620 cores and 8GB RAM.
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. TV EE
Data Dim Num | SVM  BPNN LR GD LAG GD LAG
Auto MPG 7 392 7.11 5.63 6.07 5.67 5.62 5.47 5.69
+0.56 +0.57 £0.55 £0.56 +0.53 +0.51 +£0.56
Concrete 8 1030 | 6.42 4.88 6.02 5.98 5.43 5.83 5.24
comp. str. +0.62 +£0.56 +£0.64 +£0.83 +0.60 +0.78 +£0.61
Concrete 9 103 | 4.48 14.30 5.01 1.86 1.61 1.76 1.61
slump test +2.00 +£7.14 +£1.70 £0.81 +0.70 +£0.71 £0.70
Forest 12 517 | 5.95 6.20 3.41 3.43 3.41 3.37 3.41
fires +3.62 +£3.73 +£3.69 £3.61 +3.69 +£3.54 £3.69
Housing 13 506 | 5.88 7.54 5.13 4.92 4.90 5.14 4.95
+2.28 +£2.41 £2.36 £2.47 229 +£2.39 £2.33
Machine 6 209 | 3.32 5.18 1.78 2.37 1.91 1.75 1.75
CPU +2.81 +£3.23 £1.70 £1.80 +£1.78 £1.72 £1.72
Pyrim 27 74 | 9.32 23.06 6.59 5.81 5.89 5.90 5.93
+9.75  +£9.97 +£6.22 £5.17 +585 +£6.09 £6.12
Servo 4 167 | 9.93 5.62 7.29 8.81 8.34 8.87 7.86
+5.09 +£5.24 +£5.80 £549 563 +£5.29 £5.83
Triazines 60 186 | 19.24  41.90 20.73  19.67 20.32 19.63 19.95
+6.61 £8.71 £4.46 £3.93 +4.08 +£2.50 £2.79
Yacht 6 308 | 4.52 3.70 7.75 2.33 1.45 2.07 1.45
hydrodynamics +0.31 +£0.29 £1.91 £047 +0.32 +£0.43 £0.32

Table 3: Regression errors measured by MSE (1073) with 5-fold cross-validation.

We can see that the computational burdens of TV/EE algorithms is similar to that of BPNN
in Matlab toolbox, but much slower than LIBSVM. The computational PDE approach of
our TV/EE models is implemented by gradient descent or lagged iteration, which often
requires a long time for assuring that the iterations converge. In each iteration, all the data
points participate in the computations of our methods within the current implementations.
In contrast, the solutions of SVM is essentially sparse, and recent several improvements
show that carefully selecting a small representative subset of the training data can further
greatly speed-up the optimization process of SVM (Nandan et al., 2014; Wang et al., 2014).

Our intention in this paper is not to develop a fully-fledged and highly optimized algo-
rithm for supervised learning problems. Instead, this work only serves as a starting point for
applying Euler’s elastica to classification and regression tasks. The above experiments have
demonstrated the excellent accuracies of our elastica based algorithms, though the numer-
ical solutions are rather slow. Hence there exists an opportunity to dramatically improve
the computational efficiency by considering the following techniques: (1) Some first order
numerical methods, like the augmented Lagrangian method (ALM). The operator splitting
method and ALM have been successfully implemented to solve Euler’s elastica model for
image applications (Tai et al., 2011; Hahn et al., 2011; Duan et al., 2013). The speed-up is
spectacular compared with prior approaches. Interestingly the ALM has been also applied
to optimize the primal SVM problem with linear computational cost (Nie et al., 2014). (2)
Imposing the sparsity constraint on the coefficients w. The sparsity property may enhance
the efficiency in each iteration. (3) Selecting a small representative subset of the training
data in a similar way proposed by Nandan et al. (2014) and Wang et al. (2014).
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. TV EE
Data Dim Num | SVM BPNN LR GD LAG GD LAG
Australian 14 690 | 0.859 30.673  4.734 24.734 32.453 25.734 33.197
Blood transfusion 4 748 | 0.297  22.247 5.938 28.467 35.746 27.481 36.497
Breast-cancer 10 683 | 0.453 20.318 4.609 18.953 19.447 19.732 20.278
Diabetes 8 768 | 0.547 23.142  6.453  20.120 20.981 22.145 21.519
German.number 24 1000 | 1.266 31.452 14.156 29.266 32.145 34.497 31.876

Table 4: Running times (in seconds) for binary classification with 5-fold cross-validation in
one single round.

7. Conclusion

Regularization framework and function learning approaches have become very popular in
the recent machine learning literature. Due to the great success of total variation and
Euler’s elastica models in image processing area, we extend these two models for supervised
classification and regression on high dimensional data sets. The TV regularizer permits
steeper edges near the decision boundaries, while the elastica smoothing term penalizes
non-smooth level set hypersurfaces of the target function. Compared with SVM and BPNN,
our proposed methods have demonstrated the competitive performance on commonly used
benchmark data sets. Specifically, TV and EE offer superb results on binary classification
and regression tasks, and performs slightly better than SVM on multiclass problems. In
comparison, SVM often yields excellent accuracies for multi-class classification, but offer
poor results on regression problems.

Our future work is to explore other possibilities in using different basis functions and to
speedup the training time. Recently, several fast Augmented Lagrangian Methods (ALM)
(Tai et al., 2011; Duan et al., 2013) have been applied to solve Euler’s elastica models in im-
age denoising, inpainting, and zooming applications. Particularly in Duan et al. (2013), the
Fuler’s elastica functional is reformulated as a serial of subproblems, which can be efficiently
solved by either closed-form solution or fast iteration method. Whether these methods can
be extended to high dimensional problems needs further investigations. Another interesting
direction is to extend the work of Zakai and Ritov (2009) on regression consistency to the
TV and EE models.
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Appendix A: Curvature

The following material comes from Aubert and Kornprobst (2006, chap. 2.4) with slightly
different notations. Readers are also referred to the classical geometry book of do Carmo
(1976).

Let c(p) = (x(p), y(p)) be aregular planar oriented curve on R? with parameter p € [0, 1].
Then T(p) = c/(p) = (/(p),y'(p)) is the tangent vector, N(p) = (—y'(p),2'(p)) is the
normal vector, and

s(p) = /0 "1 (@))dq = /0 @R T W 0)Pdg

is the arc length. Due to the regularity condition ¢/(p) # 0, the arc length s is a differentiable
function of p and ds/dp = |c¢/(p)|. If we parametrize the regular curve ¢ by s, then T(s) =
dc(s)/ds is the unit tangent vector satisfying |T(s)| = 1. The number k(s) = |dT(s)/ds]|
is called the curvature at s, measuring the change rate of the angle which neighboring
tangents make. Since |T(s)| = 1, we have T(s) - dT(s)/ds = 0, indicating dT(s)/ds is
collinear to the unit normal vector N(s). That is, under the arc length parametrization,
dT(s)/ds = k(s)N(s), or k(s) = |T x dT/ds| = |c/(s) x ¢"(s)| where x is the exterior
product. Back to the general parametrization c(p), we have
/ " /1,0 ",/
() = c (p)/>< )| _ Y-y (31)
' (p)]? ((2)2 + (y)2)3/2
Now we derive the divergence expression (6) of the curvature on a level curve. Consider
the case where c(s) is the I-level curve of a function u : R?> — R, denoted by

c(s) = {(x(s), y(s)) : u(z(s), y(s)) = I}-

By differentiating the equality u(x(s),y(s)) = with respect to s, we obtain

ugz'(s) + uyy'(s) = 0. (32)

Hence the vectors (2/(s),y'(s)) and (—uy,uy) are collinear, or equivalently for some \ we

(e

have

Note that since |¢/(s)| = 1, from (33) we get A = 1/|Vu| (supposing |Vu| # 0). If differen-
tiating again (32) with respect to s we obtain

Uz (77(5))? + yy (3 (8))? + 2ugyz’ ()Y () + ugx” (s) + uyy” (s) = 0.
Plugging (33) into the above equality leads to
1
A [t (y)® + tyy (u2)* = 2uzyuyua] + L (5)2"(s) = 2/(s)y"(5)] = 0,
By (31) we can deduce the curvature expression as

(s) — |c'(s) x c"(s)] — (DY (s) — 2" () (s) = uww(uy)2+uyy(ux)2 — 2Ugy Uy Uy
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Denoting f = [Vu| = /(uz)? + (uy)?, we have
Vu
v X)) =
<|VU!>

1 1
T Jalle — ﬁfyuy + ?(um + Uyy)

171 1 1

1
— 5 | 7 (Ualzz + Uy“yx)]um E [*(U:vuzvy + “y“yy)]“y + — (Ugz + Uyy)

2L f f

[
= b (U:L‘)2Uxoc + (Uy)zuyy + 2uguyUgy — (UI)Q + (uy)2 (Uze + tyy)
f

um(uy)2 + uyy(um)2 — Uy Uy Uy
[Vaul3

= ()

thus getting the curvature expression (6).

Since the above derivations only consider the case of level curves for a 2D function
u(z,y), here we give some remarks on the curvature expression (6) in high dimensional
spaces. For a level surface defined in 3D space, the curvature expression (6) at point p
amounts to the mean curvature of this surface:

1
H=-V-N
3V N

where N is a unit normal of the surface (see Chan and Shen, 2005, chap. 2.1.2). Formally,
the mean curvature is defined as the average of the principal curvatures (Spivak, 1999,
vol. 3, chap. 2): H = (k1 + k2)/2, where k1 and ko are two principal curvatures. In
this case, the Gaussian curvature is given by K = k1 - ke. More generally (Spivak, 1999,
vol. 4, chap. 7), for a (d — 1)-dimensional level hypersurface embedded in R? the mean
curvature is given as H = (k1 + -+ + k4—1)/(d — 1) in terms of principal curvatures.
More abstractly, the mean curvature is the trace of the second fundamental form divided
by d — 1 (or equivalently the shape operator or Weingarten map). The shape operator
s (Lee, 1997, chap. 8) is an extrinsic curvature, and the Gaussian curvature is given by
the determinant of s. Mean curvature is closely related to the first variation of surface
area, in particular a minimal surface such as a soap film, has mean curvature zero and a
soap bubble has constant mean curvature. Unlike Gauss curvature, the mean curvature is
extrinsic and depends on the embedding, for instance, a cylinder and a plane are locally
isometric but the mean curvature of a plane is zero while that of a cylinder is nonzero
(see http://en.wikipedia.org/wiki/Curvature). One can also refer to Ambrosio and Masnou
(2003) for the description of this high dimensional representation.

Appendix B: PDEs Derived by Calculus of Variations

We present the following derivations of the Euler-Lagrange PDEs by calculus of variations
(van Brunt, 2004). Note that the variation operator § acts much like a differentiation
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operator. First we list some expressions about § which are useful in the following derivations
(where F is a d-dimensional differentiable vector field):

0(Vu) =

d ou \2 d ou U
5[2 (ax@)) } _ z;zma(éw) = 2(Vu, 6Vu) = 2(Vu, Viu),

{3 ) )} = 310 () o3 ()

2|v1u|2<Vu,V5u) = <§Z|,V5u>,

d N d _ d
S G- S  TE ()
_;Wlul?’%vu’ Véu) = —|V2|3<Vu, Véu)

Proof of (9)=(10). Suppose u : RY — R is a differentiable function. The first variation,
Err — Epg + 0ELR, under u — u + du is given by

OELR

_ 5{/9[(u—y)2+)\]Vu|2}dx}
_ /Q{a[(u—yﬂ +25(j7up) bax

_ /Q [2(u — y)ou + 2\(Vu, vau)] dx

= 2{/9@ —y)dudx + /89 AVudu - ndS — /Q)\(V : Vu)éudx} (34)
- 2[ /Q (u — y)dudx + /8 ) )\g—zéuds - /Q AV - Vu)éudx} (35)
= 2/Q {(u —y) — )\Au} dudx. (36)

Here V- is the divergence operator, A is the Laplacian operator, and n denotes the outer
normal along the boundary 9€). The equation (34) is obtained based on the Gauss-Green
divergence theorem in vector calculus (Spiegel and Lipschutz, 2009) (which is a special case
of the more general Stokes’ theorem):

/V(V.F)dvz /S(F-n)dS,

where V is a subset of R? (in the case of d = 3, V represents a volume in 3D space) which
is compact and has a piecewise smooth boundary S (also indicated with 0V = S), F is a
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continuously differentiable vector field, and n is the outward pointing unit normal field of
the boundary 0V. In fact, we use the following corollary of the divergence theorem when
applied to the product of a scalar function g (that is du in our context) and a vector field
F (Vu in our context):

/[F (V) + g(V - F)]dV = /(gF -n)ds.
1% S

Then integration by parts implies (34). The equation (35) is written with the directional
derivative notation du/On = Vu -n = (Vu,n). The last equation (36) is due to the
assumption of natural boundary conditions

ou
’69 =0.

According to the fundamental lemma of calculus of variations, the integrand part in paren-
theses is equal to zero because du is an arbitrary function. Hence we obtain (10).

Proof of (11)=(12). The first variation, Epy — Epy +dE7py, under u — u—+ du is given
by

SEry = 5{/9[;(u—y)2+)\|Vu\}dx}

_ /Q L = )0u+ 26(1Vu])

_ /Q:(u—y)éu—i—)\<|§ g V5u>} dx
_ /Q (= + / Nlu' o suds - / |w Joudx  (37)
= /Q_(u— y) — AV - ; J&udx (38)

Again the integration term over the boundary 02 in (37) can be removed by the natural
boundary conditions. By the fundamental lemma of calculus of variations, the integrand
part in parentheses of (38) must equal to zero. Thus we get (12).

Proof of (14)=-(15). The original derivation comes from Chan et al. (2002). Let f(k) =
a + bk? and the elastica regularization term be

= [ vl

We need to prove that the first variation, R(u) — R(u)+ 0R(u), under v — u + du is given
by

SR(u) = / V-V (u)dudx,
Q
where V(u) is a flux field defined as

T 9(f'(r)|Vul)
|Vul oT '

V() = f(5)N —
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Here N is the ascending normal field Vu/|Vu/|, and T is the tangent field defined as T = N*.
Note that the exact orientation of T does not matter due to the coupling of T and 9/90T
in the expression. Since the curvature x is a function of u, by variational rules we have

OR(u) =

6{/Qf(/<;)|Vu|dx}

= [ {1vuls[£9)] + 701519l fax
Q
_ /Q{|Vu]f’(n)5n+f(/1)<’§ ‘ V) }dx

= [ Ivuls')

Sufawas = [ 109
Okdx + o [V ]8n5 udS — | f(k

Vu

\V | ) dudx  (39)

= [ {vulsr s — ) (v oo
_ /Q{|Vu]f'(/<a)5/£— [V (£ ufax.

Here the integration term over the boundary 02 in (39) can be removed by the natural
boundary conditions. The variation of curvature xk = V - N is a function of du, which can

be further written as

ok = 0(V-N)
- v-an
= V"S(yvm
ro1
- v. \Vu!( )+vu5(|w‘)}
- V. _ﬁku) Vu<|v1 ’3<Vu,V<5U)>)]
_ v. :WV(éu) mN<N V(éu))]
— V. :|V1U|(I—N®N)V(5u)}
_v. :|V1U|PT(V(5U))}.

Here I denotes the identity transform, Py = N ® N is the orthogonal projection onto the
ascending normal direction of u, and Pr = I —N®N = T ® T is the orthogonal projection
onto the tangent direction of u. Therefore by the Gauss-Green divergence theorem we have

/ \Vu|f'(k)drdx

- /f )ul{v

[

:/fPT 5und5’/

(V((Su))] }dx

|vu@ o (V(au))>dx
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= = | ([ evul]. o Pr(w(6u) pax
_ /<|v ’pT{ [£/5)ul] }, V(6u) yax (40)

B _/69 |VU\PT{ [f’(H)Nuﬂ}éu.ndS—i—/QV' |vl

—u’PT{V [f’(/i)]Vu@ }6udx

= /V WPT{ [f’(/f)|Vu@}5udx,

where proper natural boundary conditions are imposed to remove the integrations over the
boundary 012, and the equation (40) is given by the symmetry property of the projection

operator Py in an inner product.
T(0f/0T), we complete the derivations of (14)=

Pr(Vf) =

SR(u) =

- A

Finally, using the definition of directional derivative
(15) by

/Q{‘VUVI(/{)(SK [V ()N

v ﬁPT{ [
- —/QV~{f(n)N

- _/Qv'{f(“)N Vu|  OT

v} -

{ [f |qu }5udx
'(R)[Vul) .

}(5udx

18(

}5udx

= —/V-V&udx.
Q

Appendix C: Expressions in Terms of RBF Approximations

The following gives some useful expressions about Laplacian, Hessian, and curvature of u(x)

in terms of RBF approximations u(x) =
Proof of (18) for Laplacian:

* ¢y,
Oz Pz (9

Agy,
Proof of (19

(for i # j)

) for Hessian:
02 ¢y, 0
Ox(» o) B

S widi(x), where ¢;(x) = exp(—c|x — x;|%/2).

o — )
Ox(®)
3?;(;))%] — cPx
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= —c(a® — 2=V — &) g3)
= @ =)@ — )¢y

. 32¢k o (4) (3)\2
(for i = j) 920050 cle(z") — 7)) — 1y
H(¢k) = 62(){ — xk)(x — Xk)T¢k — Cgf)kI.
Proof of (21) for Hessian in terms of notation ® = Y | w;(x — x;)(x — x;) 7 ¢y
Hu) = Y wH(¢)
i=1
= Z wi[—cod + A (x — x;)(x — x;)T ]
i=1
= —CZ wid;iI + Z wi(x — x;)(x — x;)T ¢
i=1 i=1

- _ - b 2
= c(;wZ@)I—Fc .

To prove (23) and others derivations involving gradients in Appendix D, here we list some
useful expressions (notice that we do not distinguish H(u) from H(u)? due to symmetry):

d d
viver) = 93 (i) 1= X 25,07 (5,0)
0%u
= i28i1é) 8:0(’.);'1’(1) = 2H(u)Vu,
i=1 0% __
d 8u6z(zafz) 11/ Qu \27-1/2 4 ou N2
e = {3 )T S (T IS ()
= 2|éu (u)Vu—’v1u| (u)Vu,
d B d _ d
() = ()T - AL (T 5 5 (2]
= —2‘v1u’32H(u)Vu:—|v23 (u)Vu,
d B 3 d
) = TS ()] =23 ()55 (]
= —2|V3u|52H(u)Vu:—|vi5 (u)Vu.
Proof of (23) for curvature:
()
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_ tg. w+v(wlu|) Vu

[Vl

_ @AU—WZPH(U)VU-Vu

S 2 T

- {csz (e — ),_<—cg>T<c2(€r>_Zg§<T%_izugi;¢i>I><—cg>}
- = {Zwl lx — xif* — d+ 1) — gTT‘bgg}.

Appendix D: Expansion of V -V in Gradient Descent Time Marching

Here we give the derivations of the expansion (26) of V -V in Gradient Descent Time
Marching. For simpler notations we define

a=VulHu)Vu, B=VulHu)?Vu, v=Vu H(u)*Vu.
By definition (16)

T 0(f'(%)[Vul)
|Vul oT

V(' (5)[Vul) +

V() = f(r)N -

= SN oo |v2|3 WV, ¥ ()| Vu]))
= (1+bk*)N — —V(2b1<5|Vu|) +

vl Vu(Vu, V (2bk|Vul)),

1
[Vul?

we have

V.V = V- [(1+bk2)N] — 267 - | — (m\vm)}wbv.{

[Vl Vu[VuTV(s|Vul)| }. (41)

Vul?

Then we show the following derivations for the three parts on the right side of (41).
Part 1: The first term can be expanded as

V- -N+4bV - (k*N) = 6+ b[V(s%) - N+ £°V - N| = k + b(2:Vk - N + &%),
where V& can be further written as

Vi = V|V (’gz‘)}

= V[V(Wlu’> Vu +NU‘AU}
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- WJFV(W) (Nl ‘)+V(’v1 |)Au+‘1

~ Hv (|v |)+A“V<\vu|>

fW[H(u) Vu+ AuH(u)Vu).

Au)

Here the third equality is obtained by the formula for the gradient of a dot product

V(a-b) = (Va)-b+(Vb)-a

8(11 % 8b1 8bd
or; " 0z dory 0z
= b + a,
(9(11 8ad (9b1 8bd
Oxg o Oxg Oxy o Oxyg

and we omit the third order derivatives by notation - for easier calculations. Therefore,

the first term on the right side of (41) can be written as

V- (1+b)N) = k+br3— ’éb/p [VuH(u)?Vu + AuVu! H(u)Vu]
= Kk+bs®— |éb |4(aAu+B)
Part 2: The second term on the right side of (41) can be expanded as
V.
hv V(5| Val) |
1
- V(W) -vmmywﬁv [ (nyw)}
= oWV [Vl 4 wV(Vu))] + o (V- [[VulVh 4 kv (V)] )
!V K [Vl
_ T T
= ’vu|2Vu H(u)Vk — Vu |3Vu H(u)V(|Vu|)
!V |[ (IVul) - Vi + |Vul¥~V5 + Vi - V |Vu\)+j/V6|'V/U]
1
~ Vu'H(u)VE Vu'H(u) | =——H(u)V Vu'H(u)Vk
|v p v |v VO [ 0T + v
_ TH TH
\V ’2Vu (u)Vk — Vu ’4Vu (u)?Vu

1 K
= Vu PV uTH(u ){ — ’VU‘?’[H(U)?VU—&-AuH(u)VU]}— |Vu]46

7_(Au+ I€>5_ 1
— \vep T valt)” T wup "

Part 3: Finally we consider the third term on the right side of (41). With notation

v = V(k|Vul), we have

v. {|V1u|3vu [TV (x1vu))]}
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- V. ‘VZPVU(VU-V)}

- S(d) o ()

- [V(Nlu'd)(vu-v) +M -w+(|vv“ |:>Au
~ [V(Wlu'?,)-vw'@:’g](w v)

_ <\VA5|3 |v3‘5a)(Vu-v)

Because

Vu-v = Vu-[V(x|Vul)]
= Vu- (|Vu|Vk + &V (|Vul))
= |Vu|Vu: Vi + £Vu - V(|Vul)

1
= |Vul|Vu- { ~ VP [H(u)?Vu + AuH(u)Vu]} + kVu - (mH(u)VU)
K Au 1
- <|Vu| - |vu\2)0‘_ v

we obtain the expansion of the third term on the right side of (41):

V- { o Vu[Vul V(s vul) |}

[Vul?
Au 3
N <|Vu]3 a \Vu|5a> (Vu-v)
_ (rAu (Auw)? 3Au 3K 5 Au 3
- <|vuy4 N \Vu|5)a (\ww - yvuw)o‘ VTt

Putting all three parts together, we have the expansion of V-V as

2bk Au K 1
— A 2b
|Vu]4(a utp)+ {<|Vu|5 + |Vu|4>ﬁ+ |Vu|57}

kAu  (Au)? 3Au 3K 5 Au 3
+2b{(|Vu|4 e Jor+ (|vU|7 - |Vu|6>a vt |vu|70‘5}

2b(Au)? Au K 9 6b 2b
LG RN e (O .
vup @0 <\vu|7 |vu|6>0‘ Pt up?

V-V = k+0bk’

= Kk+4brd—
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