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Abstract

A relaxed randomized Kaczmarz algorithm is investigated in a least squares regression
setting by a learning theory approach. When the sampling values are accurate and the
regression function (conditional means) is linear, such an algorithm has been well studied
in the community of non-uniform sampling. In this paper, we are mainly interested in
the different case of either noisy random measurements or a nonlinear regression function.
In this case, we show that relaxation is needed. A necessary and sufficient condition on
the sequence of relaxation parameters or step sizes for the convergence of the algorithm in
expectation is presented. Moreover, polynomial rates of convergence, both in expectation
and in probability, are provided explicitly. As a result, the almost sure convergence of the
algorithm is proved by applying the Borel-Cantelli Lemma.

Keywords: learning theory, relaxed randomized Kaczmarz algorithm, online learning,
space of homogeneous linear functions, almost sure convergence

1. Introduction

The Kaczmarz method is an iterative projection algorithm. It was originally proposed
for solving (overdetermined) systems of linear equations, and has been adapted to image
reconstruction, signal processing and numerous other applications.

Given a matrix A ∈ Rm×d and a vector b ∈ Rm, the classical Kaczmarz algorithm
(Kaczmarz, 1937) approximates a solution of the linear systems Ax = b by an iterative
scheme as

xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖2

ai, (1)

where i = k mod m, aTi is the i-th row of the matrix A, and x1 ∈ Rd is an initial vector.
Here 〈 , 〉 is the inner product in Rd and ‖ · ‖ the induced norm.

The convergence of the Kaczmarz algorithm (2) is well understood (Kaczmarz, 1937),
and its convergence rate depends on the order of rows of A. To avoid this dependence,
a randomized Kaczmarz algorithm was considered in (Strohmer and Vershynin, 2009) by
setting the probability of a row to be proportional to its norm. It takes the form

xk+1 = xk +
bp(i) − 〈ap(i), xk〉
‖ap(i)‖2

ap(i), (2)
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where p(i) takes values in {1, . . . ,m} with probability
‖ap(i)‖2

‖A‖2F
with ‖A‖2F =

∑m
i=1

∑d
j=1 a

2
ij

being the Frobenius norm square of A. Exponential convergence rate was proved for the
expected error E‖xk+1 − x‖2 of the randomized Kaczmarz algorithm (2) in (Strohmer and
Vershynin, 2009). When noise exists in the sample value b = Ax + ξ with ξ being a noise
vector, a bound for the expected error was obtained in (Needell, 2010) and divergence was
proved when the variance of ξ is positive. The error bound consists of an exponentially
convergent part and a noise-driven term proportional to the noise level maxi

|ξi|
‖ai‖2 .

The randomized Kaczmarz algorithm (2) was generalized in Chen and Powell (2012) to
a setting with a sequence of independent random measurement vectors {ϕt ∈ Rd}t as

xk+1 = xk +
yk − 〈ϕk, xk〉
‖ϕk‖2

ϕk. (3)

When the measurements have no noise yk = 〈ϕk, x〉, almost sure convergence was proved
and quantitative error bounds were provided in (Chen and Powell, 2012).

When the linear system Ax = b is overdetermined (m > d) and has no solution, the
Kaczmarz algorithm (2) can be modified by introducing a relaxation parameter ηk > 0 in

front of bi−〈ai,xk〉
‖ai‖2 ai and the output sequence {xk} converges to the least squares solution

arg minx∈Rd ‖Ax − b‖2 when limk→∞ ηk = 0. See, e.g., (Zouzias and Freris, 2013) and
references therein.

Setting ψk = 1
‖ϕk‖ϕk ∈ Sd−1 and ỹk = 1

‖ϕk‖yk yields an equivalent form of the scheme

(3) as

xk+1 = xk + {ỹk − 〈ψk, xk〉}ψk.

This form is similar to those in the literature of online learning for least squares regression
and together with the relaxed Kaczmarz method (Zouzias and Freris, 2013) motivates us
to consider the following relaxed randomized Kaczmarz algorithm.

Definition 1 With normalized measurement vectors {ψt ∈ Sd−1}t and sample values {ỹt ∈
R}t, the relaxed randomized Kaczmarz algorithm is defined by

xt+1 = xt + ηt {ỹt − 〈ψt, xt〉}ψt, t = 1, . . . , (4)

where x1 ∈ Rd is an initial vector and {ηt} is a sequence of relaxation parameters or step
sizes.

The purpose of this paper is to provide learning theory analysis for the relaxed random-
ized Kaczmarz algorithm. We shall assume throughout the paper that 0 < ηt ≤ 2 for each
t ∈ N and that the sequence {zt := (ψt, ỹt)}t∈N is independently drawn according to a Borel
probability measure ρ on Z := Sd−1 × R which satisfies E[|ỹ|2] <∞.

Our first goal is to deal with the noisy setting for the randomized Kaczmarz algorithm.
When the sampling process is noisy or nonlinear (to be defined below), we show that {xt}t
converges to some x∗ ∈ Rd in expectation if and only if limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞.

Moreover, the rate of convergence in expectation cannot be too fast. It tells us that the
relaxation parameter is necessary for the convergence in the noisy setting. When {ηt}t takes
the form ηt = η1t

−θ, we provide convergence rates in expectation and in confidence and
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prove the almost sure convergence. Such results were presented in the case of no noise in
(Strohmer and Vershynin, 2009; Chen and Powell, 2012) and are new in the noisy setting.

Our second goal is to give the first almost sure convergence result in online learning for
least squares regression when regularization is not needed. Such a result can be found in
(Tarrés and Yao, 2014) when regularization is imposed, while the convergence in expectation
without regularization was proved in (Ying and Pontil, 2008). We also present the first
consistency result for online learning when the approximation error (to be defined below)
does not tend to zero.

2. Main Results

To introduce our learning theory approach to the relaxed randomized Kaczmarz algorithm
(4), we decompose the probability measure ρ on Z = Sd−1×R into its marginal distribution
ρX on X := Sd−1 and conditional distributions ρ(·|ψ) at ψ ∈ X. The conditional means
define the regression function fρ : X → R as

fρ(ψ) =

∫
R
ỹdρ(ỹ|ψ), ψ ∈ X. (5)

The hypothesis space for the Kaczmarz algorithm (4) consists of homogeneous linear func-
tions

H =
{
fx ∈ L2

ρX
: x ∈ Rd

}
, where fx(ψ) := 〈x, ψ〉, ψ ∈ X. (6)

Definition 2 The sampling process associated with ρ is said to be noise-free if ỹ = fρ(ψ)
almost surely. Otherwise, it is called noisy. It is said to be linear if fρ ∈ H as a function
in L2

ρX
. Otherwise, it is called nonlinear.

The main difference between our analysis in this paper and that in the literature
(Strohmer and Vershynin, 2009; Needell, 2010; Chen and Powell, 2012) lies in the setting
when the sampling process is either noisy or nonlinear. These two situations can be handled
simultaneously by means of the least squares generalization error E(f) =

∫
Z(ỹ − f(ψ))2dρ,

a well developed concept in learning theory. The assumption E[|ỹ|2] < ∞ on ρ ensures
fρ ∈ L2

ρX
and E(fρ) <∞. The noise-free condition can be stated as E(fρ) = 0.

It is well known that the regression function minimizes E(f) among all the square integral
(with respect to ρX) functions f ∈ L2

ρX
, and satisfies

E(f)− E(fρ) = ‖f − fρ‖2L2
ρX

=

∫
X

(f(ψ)− fρ(ψ))2dρX . (7)

Since the hypothesis space H is a finite dimensional subspace of L2
ρX

, the continuous func-
tional E(f) achieves a minimizer

fH = arg min
f∈H
E(f). (8)

From (7) we see that fH is the best approximation of fρ in the subspace H. It is unique as
the orthogonal projection of fρ onto H. It can be written as fH = fx∗ for some x∗ ∈ Rd.
But such a vector x∗ is not necessarily unique.
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The linear condition can be stated as fρ = fH or fρ ∈ H as functions in L2
ρX

. So we
see that the sampling process is noisy or nonlinear if and only if E(fH) > 0. Now we can
state our first main result, to be proved in Section 4, which gives a characterization of the
convergence of {xt}t to some x∗ ∈ Rd in expectation.

Theorem 3 Define the sequence {xt}t by (4). Assume E(fH) > 0. Then we have the limit
limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for some x∗ ∈ Rd if and only if

lim
t→∞

ηt = 0 and
∞∑
t=1

ηt =∞. (9)

In this case, we have
∞∑
T=1

√
Ez1,...,zT ‖xT+1 − x∗‖2 =∞. (10)

Compared with the result on exponential convergence in expectation in the linear case
without noise (Strohmer and Vershynin, 2009), the somewhat negative result (10) tells us
that in the noisy setting the convergence in expectation cannot be as fast as Ez1,...,zT ‖xT+1−
x∗‖2 6= O(T−θ) for any θ > 2. But for θ < 1, such learning rates can be achieved by taking
ηt = η1t

−θ, as shown in the following second main result, to be proved in Section 4.

Theorem 4 Let ηt = η1t
−θ for some θ ∈ (0, 1] and η1 ∈ (0, 1). Define the sequence {xt}t

by (4). Then for some x∗ ∈ Rd we have

Ez1,...,zT ‖xT+1 − x∗‖2 ≤

{
C̃0T

−θ, if θ < 1,

C̃0T
−λrη1 , if θ = 1,

(11)

where C̃0 is a constant independent of T ∈ N (given explicitly in the proof) and λr is the
smallest positive eigenvalue of the covariance matrix CρX of the probability measure ρX
defined by

CρX = EρX [ψψT ] =

∫
X
ψψTdρX . (12)

Our third main result is the following confidence-based estimate for the error which will
be proved in Section 5.

Theorem 5 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈
[1/2, 1], ηt = η1t

−θ with 0 < η1 < min{1, 1
2λr
}, and 2 ≤ T ∈ N. Then for some x∗ ∈ Rd and

for any 0 < δ < 1, with confidence at least 1− δ we have

‖xT+1 − x∗‖ ≤

{
C̃1T

−θ/2 (log 4
δ

)2
log T, when θ ∈ [1/2, 1),

C̃1T
−λrη1 log 2

δ

√
log T , when θ = 1,

(13)

where C̃1 is a positive constant independent of T or δ (given explicitly in the proof).

Our last main result is about the almost sure convergence of the algorithm, which will
be proved in Section 6.
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Theorem 6 Under the assumptions of Theorem 5, we have for any ε ∈ (0, 1], the following
holds for some x∗ ∈ Rd:

(A) When 1/2 ≤ θ < 1, limt→∞ t
θ(1−ε)/2‖xt+1 − x∗‖ = 0 almost surely.

(B) When θ = 1, limt→∞ t
λrη1(1−ε)‖xt+1 − x∗‖ = 0 almost surely.

Let us demonstrate our setting by two examples without noise considered in the litera-
ture. The first example appeared in (Chen and Powell, 2012).

Example 1 If random measurement vectors {ϕt}∞t=1 are independent and nonzero almost
surely, then {ψk = 1

‖ϕk‖ϕk ∈ Sd−1} are independent.

The second example is from (Strohmer and Vershynin, 2009).

Example 2 Define the random vector ϕ which is a normalized row of a full rank matrix
A ∈ Rm×d, with probabilities as

ϕ =
aj
‖aj‖

with probability
‖aj‖2

‖A‖2F
j = 1, · · · ,m.

It was shown in Strohmer and Vershynin (2009) that the smallest eigenvalue of the covari-
ance matrix is positive:

λmin(E[ϕϕT ]) ≥ 1

‖A‖2F ‖A−1‖2
.

It means r = d and λr ≥ 1
‖A‖2F ‖A−1‖2 .

The third example is on homoskedastic models (Johnston, 1963).

Example 3 In the literature of homoskedastic models, it is assumed that the sample value
{yt}t satisfies yt = 〈x∗, ψt〉 + ξt with {ξt}t being independently drawn according to a zero
mean probability measure ξ. This corresponds to the special case when the conditional
distributions ρ(·|ψ) are given by ρ(·|ψ) = fρ(ψ) + ξ. Our setting induced by ρ is more
general and allows heteroskedastic models.

3. Connections to Learning Theory

The relaxed randomized Kaczmarz algorithm defined by (4) may be rewritten as an online
learning algorithm with output functions from the hypothesis space (6), and our main results
stated in the last section are new even in the online learning literature. To demonstrate
this, we denote the tth output function Ft on X induced by the vector xt to be given by
Ft(ψ) = 〈xt, ψ〉 for ψ ∈ X. Then the iteration relation (4) gives

Ft+1 = Ft + ηt {ỹt − Ft(ψt)} 〈·, ψt〉. (14)

This is a special kernel-based least squares online learning algorithm. Here a (Mercer) kernel
on a metric space X means a function K : X × X → R which is continuous, symmetric
and the matrix (K(xi, xj))

`
i,j=1 is positive semidefinite for any finite subset {xi}`i=1 ⊆ X .
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It generates a reproducing kernel Hilbert space (HK , ‖ · ‖K) by the set of fundamental
functions {K(·, x) : x ∈ X} with the inner product 〈K(·, x),K(·, y)〉K = K(x, y). A least
squares regularized online learning algorithm in HK is defined with {(ψt, ỹt) ∈ X × R}t
drawn independently according to a probability measure on Z = X × R as

Ft+1 = Ft − ηt {(Ft(ψt)− ỹt)K(·, ψt) + λFt} , t = 1, . . . , (15)

where λ ≥ 0 is a regularization parameter. The consistency of the online learning algorithm
(15) is well understood when the approximation error D(λ) tends to zero as λ→ 0.

Definition 7 The approximation error (or regularization error) of the pair (ρ,K) is defined
for λ > 0 as

D(λ) = inf
f∈HK

{
E(f)− E(fρ) + λ‖f‖2K

}
= inf

f∈HK

{
‖f − fρ‖2L2

ρX
+ λ‖f‖2K

}
. (16)

When λ > 0 (with regularization) and limλ→0D(λ) = 0, the error ‖FT+1 − fρ‖2L2
ρX

in

expectation and in confidence was bounded in (Smale and Yao, 2005; Ying and Zhou, 2006;
Smale and Zhou, 2009; Tarrés and Yao, 2014) by means of the decay of D(λ) and T . The
error analysis was done in Ying and Pontil (2008) without regularization (λ = 0) but under
the approximation error condition limλ→0D(λ) = 0. The error ‖FT+1 − fρ‖2K with the
HK-metric was also analyzed when fρ ∈ HK .

If we take the kernel to be the linear one: K(x, y) = 〈x, y〉 with X = Rd, and assume
that the marginal distribution ρX is supported on X = Sd−1, then ψt ∈ Sd−1 almost surely.
Set λ = 0, we see that the relaxed randomized Kaczmarz algorithm expressed in the form
(14) is the least squares online learning algorithm (15) without regularization. So the error
analysis from Ying and Pontil (2008) applies, but the condition limλ→0D(λ) = 0 is required
for the consistency in L2

ρX and even stronger conditions (stronger than fρ ∈ HK) are needed
for the consistency in the HK-metric.

Notice that for the linear kernel, ‖x‖ = ‖〈·, x〉‖K . So the error analysis carried out in this
paper provides bounds for the error ‖FT+1− fH‖K without the condition limλ→0D(λ) = 0.
Such results cannot be found in the literature of online learning. It leads to the problem
of carrying our similar error analysis for more general online learning algorithms associated
with more general kernels. Moreover, the best convergence rate in expectation of the general
kernel-based least squares online learning algorithm is O(T−1/2) in the literature (Smale
and Yao, 2005; Ying and Zhou, 2006; Smale and Zhou, 2009; Tarrés and Yao, 2014; Hu
et al., 2015). Theorem 4 demonstrates that the special online learning algorithm (4) has
convergence rates of type O(T−(1−ε)) for any ε > 0 and even of type O(T−1 log T ) shown in
Theorem 8 below, which is a great improvement.

Note that there is a gap between the negative result (10) and the positive one (11), which
leads to the natural question whether learning rates of type Ez1,...,zT ‖xT+1−x∗‖2 = O(T−θ)
are possible for 1 < θ ≤ 2. We conjecture that this is impossible for a general probability
measure ρ, but a noise condition might help. The case θ = 1 with a slight logarithmic
modification O(T−1 log T ) can be achieved by imposing a minor restriction on the step size
in the following theorem which will be proved in the next section. The authors thank Dr.
Yiming Ying for pointing out this result.
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Theorem 8 Let λr be as in Theorem 4 and ηt = 1
λr(t+t0)

for some t0 ∈ N such that

t0λr ≥ 1. Define the sequence {xt}t by (4). Then for some x∗ ∈ Rd, we have

Ez1,··· ,zT ‖xT+1 − x∗‖2 ≤ C̃3(T + t0)
−1 log T,

where C̃3 is a constant independent of T ∈ N (given explicitly in the proof).

4. Convergence in Expectation

In this section we prove our main results on convergence in expectation. To this end, we
need some preliminary analysis.

Recall the function fH defined by (8). It equals fx∗ for some x∗ ∈ Rd. As the orthogonal
projection of fρ onto the finite dimensional subspace H in the Hilbert space L2

ρX
, it satisfies

〈fρ − fx∗ , fx〉L2
ρX

=

∫
X

(fρ(ψ)− 〈x∗, ψ〉) 〈x, ψ〉dρX(ψ) = 0, ∀x ∈ Rd. (17)

The vector x∗ is not necessarily unique. To see this, we use the covariance matrix
CρX of the measure ρX defined by (12) and denote its eigenvalues to be λ1 ≥ . . . ≥ λr >
λr+1 = . . . = λd = 0 where r ∈ {1, . . . , d} is the rank of CρX . Denote the eigenspace
of CρX associated with the eigenvalue 0 as V0 and the orthogonal projection onto V0 as
P0. Then any vector x∗ + v from the set x∗ + V0 is also a minimizer of E(fx) in Rd, but
fx∗+v = fx∗ = fH as functions in the space L2

ρX
.

The following lemma about the residual vectors {rt = xt − x∗}t is a crucial step in our
analysis in this section.

Lemma 9 Define the sequence {xt}t by (4). Let x∗ ∈ Rd be such that fx∗ = fH. Denote
rt = xt − x∗. Then there holds

Ezt [‖rt+1‖2] = ‖rt‖2 + (−2ηt + η2t )‖frt‖2L2
ρX

+ η2t E(fH), ∀ t ∈ N. (18)

Proof Subtract x∗ from both sides of (4) and take inner products. We see from ‖ψt‖ = 1
that

‖rt+1‖2 = ‖rt‖2 + 2ηt {ỹt − 〈ψt, xt〉} 〈ψt, rt〉+ η2t {ỹt − 〈ψt, xt〉}
2 . (19)

Since xt does not depend on zt, taking expectation with respect to zt, we see from E[ỹt|ψt] =
fρ(ψt) and Ezt {ỹt − 〈ψt, xt〉}

2 = E(fxt) that

Ezt [‖rt+1‖2] = ‖rt‖2 + 2ηtEψt [{fρ(ψt)− 〈ψt, xt〉} 〈ψt, rt〉] + η2t E(fxt).

By (17), we know that the middle term above equals

2ηtEψt [{〈ψt, x∗〉 − 〈ψt, xt〉} 〈ψt, rt〉] = 2ηtEψt [{〈ψt,−rt〉} 〈ψt, rt〉] = −2ηt‖frt‖2L2
ρX
.

Since fx∗ is the orthogonal projection of fρ onto H, there holds E(fxt) = E(fρ) + ‖fρ −
fx∗‖2L2

ρX

+ ‖fx∗ − fxt‖2L2
ρX

= E(fH) + ‖frt‖2L2
ρX

. Then the desired identity (18) follows.
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We are in a position to prove our first main result.

Proof of Theorem 3 Necessity. We first analyze the first two terms of the right hand
side of the identity (18) in Lemma 9. Since 0 < ηt ≤ 2, we have −2ηt + η2t < 0. Observe
from the Schwarz inequality that |frt(ψ)|2 = |〈rt, ψ〉|2 ≤ ‖rt‖2‖ψ‖2 = ‖rt‖2 and thereby
‖frt‖2L2

ρX

≤ ‖rt‖2. It follows that

‖rt‖2 + (−2ηt + η2t )‖frt‖2L2
ρX
≥ ‖rt‖2 + (−2ηt + η2t )‖rt‖2 = (1− ηt)2‖rt‖2.

This together with (18) implies

Ezt [‖rt+1‖2] ≥ (1− ηt)2‖rt‖2 + η2t E(fH). (20)

Then we can proceed with proving the necessity. If limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for
some x∗ ∈ Rd and E(fH) > 0, we know from (20) that limT→∞ ηT = 0. It ensures the
existence of some integer t0 ≥ 2 such that ηt ≤ 1

3 for any t ≥ t0. Since 1 − η ≥ exp {−2η}
for 0 < η ≤ 1

3 , we know that for any t ≥ t0, (1 − ηt)2 ≥ exp {−4ηt}. Combining this with
(20) yields

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ ΠT
t=t0 exp {−4ηt}Ez1,...,zt0−1‖rt0‖2.

But (20) also tells us that Ez1,...,zt0−1‖rt0‖2 ≥ η2t0−1E(fH) > 0. So

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ exp

{
−4

T∑
t=t0

ηt

}
η2t0−1E(fH).

Since limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0, we must have
∑∞

t=1 ηt = ∞. This proves the
necessity.

Sufficiency. Recall that V0 is the eigenspace of the covariance matrix CρX associated
with the eigenvalue 0 and P0 is the orthogonal projection onto V0. Then ψt is orthogonal to
V0 almost surely for each t. It follows that P0(xt+1) = P0(xt) and thereby P0(xt) = P0(x1)
for each t. Take the vector x∗ to be the minimizer of E(fx) in Rd such that P0(x

∗) = P0(x1).
With this choice, rt is orthogonal to V0 for each t, and belongs to the orthogonal complement
V ⊥0 . Note that the eigenvalues of CρX restricted to the subspace V ⊥0 is at least λr > 0. So
we have

‖frt‖2L2
ρX

=

∫
X
|〈ψ, rt〉|2 dρX =

∫
X
rTt ψψ

T rtdρX = rTt CρXrt (21)

and ‖frt‖2L2
ρX

≥ λr‖rt‖2. The condition limt→∞ ηt = 0 ensures the existence of some t1 ∈ N
such that ηt ≤ 1 for any t ≥ t1. Thus, we see from (18) in Lemma 9 that for t ≥ t1,

Ezt [‖rt+1‖2] ≤ ‖rt‖2 − ηt‖frt‖2L2
ρX

+ η2t E(fH) ≤ (1− ηtλr)‖rt‖2 + η2t E(fH).

Applying this inequality iteratively for t = T, · · · t1 yields

Ez1,...,zT [‖rT+1‖2] ≤ Ez1,...,zt1−1 [‖rt1‖2]
T∏
t=t1

(1− ηtλr) + E(fH)

T∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr), (22)
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where we denote
∏T
k=t+1(1− ηkλr) = 1 for t = T . By the condition

∑∞
t=1 ηt =∞, one has

T∏
t=t1

(1− ηtλr) ≤ exp

{
−λr

T∑
t=t1

ηt

}
→ 0 as T →∞.

Thus for any ε > 0, there exists t2 = t2(ε) ∈ N such that for any T ≥ t2,

Ez1,...,zt1−1 [‖rt1‖2]
T∏
t=t1

(1− ηtλr) ≤ ε.

To deal with the other term of the bound (22) for ‖rT+1‖2, we use the assumption limt→∞ ηt =
0, and find some integer t(ε) ≥ t1 such that ηt ≤ λrε for any t ≥ t(ε). Write

T∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) =

t(ε)∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) +
T∑

t=t(ε)+1

η2t

T∏
k=t+1

(1− ηkλr). (23)

The second term of (23) can be bounded as

T∑
t=t(ε)+1

η2t

T∏
k=t+1

(1− ηkλr) = ε
T∑

t=t(ε)+1

ηtλr

T∏
k=t+1

(1− ηkλr)

= ε
T∑

t=t(ε)+1

(1− (1− ηtλr))
T∏

k=t+1

(1− ηkλr)

= ε

1−
T∏

k=t(ε)+1

(1− ηkλr)

 ≤ ε.
To bound the first term of (23), we apply the condition

∑∞
t=1 ηt =∞ again and find some

integer t3 = t3(ε) > t(ε) such that
∑t3

k=t(ε)+1 ηk ≥
1
λr

log t(ε)
ε . Hence

T∑
k=t(ε)+1

ηk ≥
t3∑

k=t(ε)+1

ηk ≥
1

λr
log

t(ε)

ε
, ∀ T ≥ t3.

It thus follows that for each t ∈ {t1, . . . , t(ε)},

T∏
k=t+1

(1− ηkλr) ≤ exp

{
−λr

T∑
k=t+1

ηk

}
≤ exp

−λr
T∑

k=t(ε)+1

ηk

 ≤ ε

t(ε)
.

Combining with the fact ηt ≤ 1 for each t ≥ t1, we see that the first term of (23) can be
bounded as

t(ε)∑
t=t1

η2t

T∏
k=t+1

(1− ηkλr) ≤
ε

t(ε)

t(ε)∑
t=t1

η2t ≤ ε.
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From the above analysis, we know that when T ≥ max{t1, t(ε), t2, t3},

Ez1,...,zT [‖rT+1‖2] ≤ ε+ 2E(fH)ε.

This proves the convergence limT→∞ Ez1,...,zT ‖xT+1 − x∗‖2 = 0 for some x∗ ∈ Rd and the
sufficiency is verified.

From the bound (20), we also see that

Ez1,...,zT ‖xT+1 − x∗‖2 ≥ η2TE(fH), ∀ T ∈ N.

This implies that

∞∑
T=1

√
Ez1,...,zT ‖xT+1 − x∗‖2 ≥

√
E(fH)

∞∑
T=1

ηT =∞.

The proof of Theorem 3 is complete.

In the proof of our second main result, we need some elementary inequalities.

Lemma 10 (a) For ν, a > 0, there holds

exp{−νx} ≤
( a
νe

)a
x−a, ∀x > 0. (24)

(b) Let ν > 0 and q2 ≥ 0. If 0 < q1 < 1, then for any t ∈ N, we have

t−1∑
i=1

i−q2 exp

−ν
t∑

j=i+1

j−q1

 ≤
(

2q1+q2

ν
+

(
1 + q2

ν(1− 2q1−1)e

) 1+q2
1−q1

)
tq1−q2 . (25)

For q1 = 1, we have

t−1∑
i=1

i−q2 exp

−ν
t∑

j=i+1

j−1

 ≤
{

2q2
|ν−q2+1| t

−min{ν,q2−1}, if ν 6= q2 − 1,

2q2t−ν log t, if ν = q2 − 1.
(26)

(c) For any t < T ∈ N and θ ∈ (0, 1], there holds

T∑
k=t+1

k−θ ≥
{

1
1−θ [(T + 1)1−θ − (t+ 1)1−θ], if θ < 1,

log(T + 1)− log(t+ 1), if θ = 1.
(27)

(d) For θ ∈ (0, 1], µ > 0, and T ∈ N, there holds

exp

{
−µ

T∑
t=1

t−θ

}
≤

 exp
{

µ
1−θ

}(
θ
µe

) θ
1−θ

T−θ, if θ < 1,

T−µ, if θ = 1.
(28)

Proof The inequalities in parts (a) and (b) can be found in (Smale and Zhou, 2009, Lemma
2).
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Part (c) can be proved by noting that

T∑
k=t+1

k−θ ≥
T∑

k=t+1

∫ k+1

k
x−θdx =

∫ T+1

t+1
x−θdx.

For part (d), we use the inequality (27) in part (c) to derive

exp

{
−µ

T∑
t=1

t−θ

}
≤

{
exp

{
µ

1−θ

}
exp

{
− µ

1−θT
1−θ
}
, if θ < 1,

T−µ, if θ = 1.

For θ ∈ (0, 1), by applying (24) with ν = µ
1−θ , x = T 1−θ and a = θ

1−θ , we get

exp

{
− µ

1− θ
T 1−θ

}
≤
(
θ

µe

) θ
1−θ

T−θ.

This proves the result.

We can now prove our second main result. This is done by following the estimate (22)
in the proof of Theorem 3.

Proof of Theorem 4 Since η1 < 1, we have ηt < 1 for all t ∈ N. Therefore, we can take
t1 = 1 in (22) and obtain

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr) + E(fH)

T∑
t=1

η2t

T∏
k=t+1

(1− ηkλr)

≤ ‖r1‖2 exp

{
−λrη1

T∑
t=1

t−θ

}

+E(fH)η21

T∑
t=1

t−2θ exp

{
−λrη1

T∑
k=t+1

k−θ

}
. (29)

Applying part (d) with µ = λrη1 of Lemma 10, we know that the first term of (29) can be
bounded as

‖r1‖2 exp

{
−λrη1

T∑
t=1

t−θ

}
≤

 ‖r1‖2 exp
{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

T−θ, if θ < 1,

‖r1‖2T−λrη1 , if θ = 1.

Applying part (b) of Lemma 10 with q1 = θ, q2 = 2θ, ν = λrη1, and noting that λrη1 < 1
by η1 ∈ (0, 1) and λr ∈ (0, 1], we know that the second term of (29) can be bounded by E(fH)η21

(
1 + 23θ

λrη1
+
(

1+2θ
λrη1(1−2θ−1)e

) 1+2θ
1−θ
)
T−θ, if θ < 1,

E(fH)η21

(
1 + 4

1−λrη1

)
T−λrη1 , if θ = 1.
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Thus, we get our desired result with C̃0 given by

C̃0 =


‖r1‖2 exp

{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

+E(fH)η21

(
λrη1+23θ

λrη1
+
(

1+2θ
λrη1(1−2θ−1)e

) 1+2θ
1−θ
)
, if θ < 1,

‖r1‖2 + E(fH)η21

(
1 + 4

1−λrη1

)
, if θ = 1.

This completes the proof of Theorem 4.

Remark 11 From the proof of Theorem 4, we see that if E(fH) = 0, then for some x∗ ∈ Rd,
we have

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr).

The above argument actually can be used to prove Theorem 8.

Proof of Theorem 8 Since η1 ≤ 1, we have ηt ≤ 1 for all t ∈ N. Thus, we can take t1 = 1
in (22) and obtain

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
T∏
t=1

(1− ηtλr) + E(fH)

T∑
t=1

η2t

T∏
k=t+1

(1− ηkλr)

= ‖r1‖2
T∏
t=1

(
1− 1

t+ t0

)

+
E(fH)

λ2r

T∑
t=1

1

(t+ t0)2

T∏
k=t+1

(
1− 1

k + t0

)
.

We note that
T∏

k=t+1

(
1− 1

k + t0

)
=

T∏
k=t+1

k + t0 − 1

k + t0
=

t+ t0
T + t0

.

It thus follows that

Ez1,...,zT [‖rT+1‖2] ≤ ‖r1‖2
t0

T + t0
+
E(fH)

λ2r

1

T + t0

T∑
t=1

1

t+ t0
.

With
∑T

t=1
1

t+t0
≤ log T+t0

t0+1 ≤ log T , we get the desired result with C̃3 given by

C̃3 = t0‖r1‖2 +
E(fH)

λ2r
.

This proves Theorem 8.
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5. Confidence-Based Estimates for Convergence

In this section, we prove our third main result, Theorem 5. Recall that V0 is the eigenspace of
the covariance matrix CρX associated with the eigenvalue 0. We choose x∗ as in the proof of
the sufficiency part of Theorem 3. With this choice, rt belongs to the orthogonal complement
V ⊥0 almost surely. Our error analysis is based on the following error decomposition.

5.1 Error Decomposition

For t ∈ N, set the operator Πt
k =

∏t
j=k(I−ηjCρX ) on Rd for k ≤ t and Πt

t+1 = I. Subtracting
x∗ from both sides of (4), we have

rk+1 = (I − ηkCρX )rk + ηkχk, (30)

where

χk = (ỹk − 〈ψk, x∗〉)ψk + (CρX − ψkψ
T
k )rk.

Applying this relationship iteratively for k = t, · · · , 1, we get

rt+1 = Πt
1r1 +

t∑
k=1

ηkΠ
t
k+1χk.

Thus

‖rt+1‖ ≤
∥∥Πt

1r1
∥∥+

∥∥∥∥∥
t∑

k=1

ηkΠ
t
k+1χk

∥∥∥∥∥ . (31)

The first term of the bound (31) is caused by the initial error, which is deterministic
and will be estimated in subsection 5.2. The second term is the sample error depending on
the sample. Since rk is independent of zk, by E[ỹk|ψk] = fρ(ψk) and (17),

E[χk|z1, . . . , zk−1] =

∫
X

(fρ(ψ)− 〈x∗, ψ〉)ψ + (CρX − ψψ
T )rkdρX(ψ) = 0.

It tells us that {ωk := ηkΠ
t
k+1χk}k is a martingale difference sequence. The idea of analyzing

the sample error by properties of martingale difference sequences can be found in the recent
work in (Tarrés and Yao, 2014) to which details about martingale difference sequences are
referred. In particular, we can apply the following Pinelis-Bernstein inequality from (Tarrés
and Yao, 2014) (derived from (Pinelis, 1994, Theorem 3.4)) to estimate the sample error.

Lemma 12 Let {ωk}k be a martingale difference sequence in a Hilbert space. Suppose that
almost surely ‖ωk‖ ≤ B and

∑t
k=1 E[‖ωk‖2|ω1, . . . , ωk−1] ≤ L2

t . Then for any 0 < δ < 1,
the following holds with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

ωk

∥∥∥∥∥ ≤ 2

(
B

3
+ Lt

)
log

2

δ
.

The required bounds B and Lt will be presented in subsections 5.3 and 5.4, respectively.
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5.2 Initial Error

Lemma 13 Let ηk = η1k
−θ with θ ∈ (0, 1] and η1 ∈ (0, 1). Then

‖Πt
1r1‖ ≤

{
C0t
−θ, when θ < 1,

C0t
−λrη1 , when θ = 1,

where

C0 =

 ‖r1‖ exp
{
λrη1
1−θ

}(
θ

λrη1e

) θ
1−θ

, when θ < 1,

‖r1‖, when θ = 1.

Proof By our choice of x∗, we know that r1 belongs to the subspace V ⊥0 . Thus, we have

‖Πt
1r1‖ ≤ ‖Πt

1|V ⊥0 ‖‖r1‖.

Here Πt
1|V ⊥0 denotes the restriction of the self adjoint operator Πt

1 onto V ⊥0 . Since {λl : l =

1, 2, · · · , r} are the eigenvalues of CρX restricted to V ⊥0 , λ1 ≤ 1 and η1 < 1, we have

‖Πt
1|V ⊥0 ‖ = sup

1≤l≤r

t∏
k=1

(1− ηkλl) ≤
t∏

k=1

(1− η1λrk−θ) ≤ exp

{
−λrη1

t∑
k=1

k−θ

}
.

Applying part (d) of Lemma 10, we get our desired result.

5.3 Bounding the Residual Sequence

To bound ωk = ηkΠ
t
k+1χk, we start with a rough bound for ‖rt‖.

Lemma 14 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈ [0, 1]
and ηt = η1t

−θ with η1 ∈ (0, 1). Then for any t ∈ N, we have almost surely

‖rt‖ ≤

{
C1t

1−θ
2 , when θ ∈ [0, 1),

C1

√
log(et), when θ = 1,

(32)

where C1 is a constant independent of t given by

C1 =

{ √
‖r1‖2+η1(M+‖x∗‖)2

1−θ , when θ ∈ [0, 1),√
‖r1‖2 + η1(M + ‖x∗‖)2, when θ = 1.

Proof Rewrite (19) with xt = x∗ + rt as

‖rt+1‖2 = ‖rt‖2 + 2ηt(ỹt − 〈ψt, x∗〉 − 〈ψt, rt〉)〈ψt, rt〉
+η2t (ỹt − 〈ψt, x∗〉 − 〈ψt, rt〉)2

= ‖rt‖2 + F(〈ψt, rt〉),
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where F : R→ R is a quadratic function given by

F(µ) = Fηt,ỹt,ψt,x∗(µ) = ηt(ηt − 2)µ2 + 2ηt(1− ηt)(ỹt − 〈ψt, x∗〉)µ+ η2t (ỹt − 〈ψt, x∗〉)2.

Note that ηt(ηt − 2) ≤ 0 by 0 < ηt ≤ η1 ≤ 1. A simple calculation shows that

max
x∈R
F(x) = −η

2
t (1− ηt)2(ỹt − 〈ψt, x∗〉)2

ηt(ηt − 2)
+ η2t (ỹt − 〈ψt, x∗〉)2 =

ηt(ỹt − 〈ψt, x∗〉)2

2− ηt
.

Since |ỹt| ≤M almost surely and ‖ψt‖ = 1,

|ỹt − 〈ψt, x∗〉| ≤ |ỹt|+ ‖ψt‖‖x∗‖ ≤M + ‖x∗‖.

Thus,

‖rt+1‖2 ≤ ‖rt‖2 +
ηt(ỹt − 〈ψt, x∗〉)2

2− ηt
≤ ‖rt‖2 + ηt(M + ‖x∗‖)2.

Using this relationship iteratively yields

‖rt+1‖2 ≤ ‖r1‖2 +

t∑
k=1

ηk(M + ‖x∗‖)2 = ‖r1‖2 + η1(M + ‖x∗‖)2
t∑

k=1

k−θ.

Since that

t∑
k=1

k−θ ≤ 1 +
t∑

k=2

∫ k

k−1
x−θdx =

{
t1−θ−θ
1−θ , when θ ∈ [0, 1),

log(et), when θ = 1,

we get

‖rt‖2 ≤

{
‖r1‖2+η1(M+‖x∗‖)2

1−θ t1−θ, when θ ∈ [0, 1),

(‖r1‖2 + η1(M + ‖x∗‖)2) log(et), when θ = 1,

which leads to the desired result.

5.4 Estimating Conditional Variance and Upper Bound

In this subsection, we give bounds for the two terms
∑t

k=1 η
2
kE[‖Πt

k+1χk‖2|z1, . . . , zk−1] and
sup1≤k≤t ‖ηkΠt

k+1χk‖ required in applying the Pinelis-Bernstein inequality.

Lemma 15 Let ηk = η1k
−θ with θ ∈ (0, 1] and η1 ∈ (0, 1). Then almost surely we have

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤
t∑

k=1

η21k
−2θ exp

−2η1λr

t∑
j=k+1

j−θ

(E(fH) + ‖rk‖22
)
.

(33)
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Proof Recall that both ψk and rk belong to V ⊥0 almost surely for each k ∈ N. As a result,
χk also belongs to V ⊥0 almost surely for each k. Hence

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤

t∑
k=1

η2k‖Πt
k+1|V ⊥0 ‖

2E[‖χk‖2|z1, . . . , zk−1].

Since η1 < 1 and λ1 ≤ 1, we have∥∥∥Πt
k+1|V ⊥0

∥∥∥ = sup
1≤l≤r

t∏
j=k+1

(1− ηjλl) ≤
t∏

j=k+1

(1− ηjλr)

≤ exp

−λr
t∑

j=k+1

ηj

 = exp

−λrη1
t∑

j=k+1

j−θ

 . (34)

Thus,

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤
t∑

k=1

η2k exp

−2λrη1

t∑
j=k+1

j−θ

E[‖χk‖2|z1, . . . , zk−1].

(35)

Since rk does not depend on zk, we see from ‖ψk‖ = 1, E[ỹk|ψk] = fρ(ψk) and (17) that

Ezk [〈(ỹk − 〈ψk, x∗〉)ψk, (CρX − ψkψ
T
k )rk〉]

= Ezk [(ỹk − 〈ψk, x∗〉)〈ψk, CρXrk〉]− Ezk [(ỹk − 〈ψk, x∗〉)〈ψk, rk〉‖ψk‖2]
= Eψk [(fρ(ψk)− 〈ψk, x∗〉)〈ψk, CρXrk〉]− Eψk [(fρ(ψk)− 〈ψk, x∗〉)〈ψk, rk〉] = 0.

It thus follows that

E[‖χk‖2|z1, . . . , zk−1] = Ezk [‖χk‖2]
= Ezk [(ỹk − 〈ψk, x∗〉)2] + Ezk [‖(CρX − ψkψ

T
k )rk‖2]

= E(fH) + Ezk〈(CρX − C
2
ρX

)rk, rk〉
≤ E(fH) + ‖rk‖22.

Putting the above bound into (35), we get the desire result.

Lemma 16 Assume that for some constant M > 0, |ỹ| ≤ M almost surely. Let θ ∈ [0, 1]
and ηt = η1t

−θ with η1 ∈ (0, 1). Then for any t ∈ N, we have almost surely

sup
1≤k≤t

‖ηkΠt
k+1χk‖ ≤

{
C2t
−θ max

{
sup1≤k≤t ‖rk‖, 1

}
, when θ < 1,

C2t
−λrη1 max

{
sup1≤k≤t ‖rk‖, 1

}
, when θ = 1,

(36)

where C2 is a constant given by

C2 =

 η1(M + ‖x∗‖+ 2)

(
2θ +

(
θ

eλrη1(1−2θ−1)

) θ
1−θ
)
, when θ < 1,

η1(M + ‖x∗‖+ 2)2λrη1 , when θ = 1.

3356



Learning Theory of Randomized Kaczmarz Algorithm

Proof Let k ∈ {1, . . . , t}. From the definition of χk, we have

‖χk‖ ≤ (|ỹk|+ ‖ψk‖‖x∗‖)‖ψk‖+ ‖CρX − ψkψ
T
k ‖‖rk‖.

But |ỹk| ≤M , ‖ψk‖ = 1 and ‖CρX‖ ≤ 1. So we have

‖χk‖ ≤M + ‖x∗‖+ 2‖rk‖ ≤ (M + ‖x∗‖+ 2) max{‖rk‖, 1}.

This together with (34) and the fact that χk belongs to V ⊥0 implies

‖ηkΠt
k+1χk‖ ≤ η1k

−θ‖Πt
k+1|V ⊥0 ‖‖χk‖

≤ η1(M + ‖x∗‖+ 2)k−θ‖Πt
k+1|V ⊥0 ‖max{‖rk‖, 1}

≤ η1(M + ‖x∗‖+ 2)k−θ exp

−λrη1
t∑

j=k+1

j−θ

max{‖rk‖, 1}.

What is left is to estimate

Ik := k−θ exp

−λrη1
t∑

j=k+1

j−θ

 .

For θ ∈ [1/2, 1), applying part (c) of Lemma 10 gives

Ik ≤ k−θ exp

{
− λrη1

1− θ
[(t+ 1)1−θ − (k + 1)1−θ]

}
.

If k ≥ t/2, then k−θ ≤ 2θt−θ and thus

Ik ≤ 2θt−θ.

If 1 ≤ k < t/2, then we have k+1 ≤ (t+1)/2 and (t+1)1−θ−(k+1)1−θ ≥ (1−2θ−1)(t+1)1−θ.
It follows that

Ik ≤ exp

{
−λrη1(1− 2θ−1)

1− θ
t1−θ

}
.

Applying part (a) of Lemma 10 with x = t1−θ, ν = λrη1(1−2θ−1)
1−θ and a = θ

1−θ , we get

Ik ≤
(

θ

eλrη1(1− 2θ−1)

) θ
1−θ

t−θ.

For θ = 1, by part (c) of Lemma 10, with λrη1 < 1, we have

Ik ≤ k−1
(
t+ 1

k + 1

)−λrη1
=

(
t

t+ 1
· k + 1

k

)λrη1
t−λrη1kλrη1−1 ≤ 2λrη1t−λrη1 .

From the above analysis, we conclude the desired result.
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5.5 Preliminary Error Analysis

Based on the above estimates, we can apply Lemma 12 to obtain an error bound.

Proposition 17 Under the assumptions of Theorem 5, for some x∗ ∈ Rd and for any
0 < δ < 1 and fixed t ∈ N, with confidence at least 1− δ, we have

‖xt+1 − x∗‖ ≤

{
C̃2t

1
2
−θ log 2

δ , when θ ∈ [13 , 1),

C̃2t
−λrη1

√
log(et) log 2

δ , when θ = 1,
(37)

where C̃2 is a positive constant independent of t or δ (given explicitly in the proof).

Proof To apply the Pinelis-Bernstein inequality to estimate ‖
∑t

k=1 ηkΠ
t
k+1χk‖, we need

bounds B and Lt.
By Lemmas 14 and 16, we have

sup
1≤k≤t

‖ηkΠt
k+1χk‖ ≤

{
C2(C1 + 1)t

1−3θ
2 , when θ < 1,

C2(C1 + 1)t−λrη1
√

log(et), when θ = 1.
(38)

By Lemmas 15 and 14, we get

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1]

≤

 C3
∑t

k=1 k
−(3θ−1) exp

{
−2λrη1

∑t
j=k+1 j

−θ
}
, when θ ∈ [13 , 1),

C3 log(et)
∑t

k=1 k
−2 exp

{
−2λrη1

∑t
j=k+1 j

−1
}
, when θ = 1,

where
C3 = (E(fH) + C2

1 )η21.

Applying part (b) of Lemma 10 with ν = 2λrη1 < 1, q1 = θ and q2 = 3θ − 1, we have for
θ < 1,

t∑
k=1

k−(3θ−1) exp

−2λrη1

t∑
j=k+1

j−θ


≤

(
24θ−1

2λrη1
+

(
3θ

2λrη1e(1− 2θ−1)

) 3θ
1−θ
)
t1−2θ + t1−3θ,

and for θ = 1,

t∑
k=1

k−2 exp

−2λrη1

t∑
j=k+1

j−1

 ≤ 4

1− 2λrη1
t−2λrη1 + t−2.

Therefore, we get

t∑
k=1

η2kE[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤

{
C4t

1−2θ, when θ ∈ [13 , 1),
C4t
−2λrη1 log(et), when θ = 1,

(39)
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with

C4 =

 C3

(
24θ−1

2λrη1
+
(

3θ
2λrη1e(1−2θ−1)

) 3θ
1−θ

+ 1

)
, when θ ∈ [13 , 1),

C3
5−2λrη1
1−2λrη1 , when θ = 1.

Applying Lemma 12 to the martingale difference sequence {ωk := ηkΠ
t
k+1χk}k with B

and Lt given by (38) and (39) respectively, we know that with probability at least 1− δ,

sup
1≤j≤t

∥∥∥∥∥
j∑

k=1

ηkΠ
t
k+1χk

∥∥∥∥∥ ≤
{
C5t

1−2θ
2 log 2

δ , when θ ∈ [13 , 1),

C5t
−λrη1

√
log(et) log 2

δ , when θ = 1,

where

C5 = 2
(
C2(C1 + 1)/3 +

√
C4

)
.

Putting this bound into (31) with t replaced by j, and then applying Lemma 13 to bound
the initial error, we get the desired result with C̃2 = C0 + C5 from Lemma 12.

In the above procedure, we have used a rough bound (32) for ‖rt‖. This rough bound
tends to ∞ as t becomes large. In contrast, the bound provided in Proposition 17 tends to
0 (when θ ∈ (1/2, 1]) and is much better. But this bound holds with confidence. We shall
use this refined bound to improve our estimates in the following subsection.

5.6 Improved Error Analysis

In this subsection, we prove our third main result by improving the preliminary confidence-
based error bound in Proposition 17.

Proof of Theorem 5 When θ = 1, our desired bound follows from (37) with C̃1 = 2C̃2.

It remains to prove the case θ ∈ [1/2, 1). Let T ∈ N . Applying Proposition 17 with
t = 1, · · · , T , and taking the union event followed by rescaling, we know that there exists a
subset ZTδ of ZT with measure at least 1− δ such that

‖rt‖ ≤ C6 log
2

δ
log T, ∀ t = 1, . . . , T + 1, (z1, . . . , zT ) ∈ ZTδ , (40)

where C6 = 2C̃2 + ‖r1‖.
Now we turn to the essential part of the proof. Define another martingale difference

sequence {ω̃k}k by multiplying the one in the proof of Proposition 17 by a characteristic
function 1{‖rk‖≤C6 log

2
δ
log T} as

ω̃k = ηkΠ
T
k+1χk1{‖rk‖≤C6 log

2
δ
log T}.

From (36) and the multiplication with the characteristic function 1{‖rk‖≤C6 log
2
δ
log T}, we

have

sup
1≤k≤T

‖ω̃k‖ ≤ C2C6 log

(
2

δ

)
(log T )T−θ. (41)
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Notice that the characteristic function 1{‖rk‖≤C6 log
2
δ
log T} is independent of zk. Also,

from the proof of Lemma 15, we know that for each k ∈ {1, . . . , T},

E[‖Πt
k+1χk‖2|z1, . . . , zk−1] ≤ exp

−λrη1
t∑

j=k+1

j−θ

(E(fH) + ‖rk‖22
)
.

It follows by setting C7 = (E(fH) + C2
6 )η21 that

T∑
k=1

E
[
‖ω̃k‖2 |z1, . . . , zk−1

]
≤ C7

(
log

2

δ
log T

)2 T∑
k=1

k−2θ exp

−2λrη1

T∑
j=k+1

j−θ

 .

Applying part (b) of Lemma 10 yields

T∑
k=1

E
[
‖ω̃k‖2 |z1, . . . , zk−1

]
≤ C7

(
log

2

δ
log T

)2
(

23θ

2λrη1
+

(
1 + 2θ

2λrη1e(1− 2θ−1)

) 1+2θ
1−θ

+ 1

)
T−θ.

Using this bound as LT and (41) as the bound B in Lemma 12, we know that there exists
another subset Z̃Tδ of ZT with measure at least 1− δ such that for every (z1, . . . , zT ) ∈ Z̃Tδ ,
there holds ∥∥∥∥∥

T∑
k=1

ω̃k

∥∥∥∥∥ ≤ C8T
−θ
2

(
log

2

δ

)2

log T,

where

C8 =
2C2C6

3
+ 2
√
C7

(
23θ + 2λrη1

2λrη1
+

(
1 + 2θ

2λrη1e(1− 2θ−1)

) 1+2θ
1−θ
) 1

2

.

This together with (40) tells us that for every (z1, . . . , zT ) ∈ ZTδ ∩ Z̃Tδ , there holds∥∥∥∥∥
T∑
k=1

ηkΠ
T
k+1χk

∥∥∥∥∥ ≤ C8T
−θ
2

(
log

2

δ

)2

log T. (42)

The subset ZTδ ∩ Z̃Tδ has measure at least 1− 2δ. Therefore, we can put (42) into (31), and
apply Lemma 13 to bound the initial error, which proves Theorem 5 for the case θ ∈ [1/2, 1)
after scaling δ to δ/2 and setting the constant C̃1 = C0 + C8.

6. Almost Sure Convergence

In this section, we prove the almost sure convergence of the randomized Kaczmarz algorithm.
Recall that the almost sure convergence of a sequence of random variables {Xn} towards
X means that

P
(

lim
n→∞

Xn = X
)

= 1,
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or equivalently,

lim
n→∞

P
(

sup
k≥n
|Xk −X| > ε

)
= 0 for any ε > 0.

The Borel-Cantelli Lemma (see e.g. (Klenke, 2010)) asserts for a sequence (En)n of
events that if the sum of the probabilities is finite

∑∞
n=1 P(En) < ∞, then the probability

that infinitely many of them occur is 0, that is, P (lim supn→∞En) = P (∩∞n=1 ∪∞k=n En) = 0.
The following lemma is an easy consequence of the Borel-Cantelli Lemma. We give the proof
for completeness.

Lemma 18 Let {Xn} be a sequence of events in some probability space and {εn} be a
sequence of positive numbers satisfying limn→∞ εn = 0. If

∞∑
n=1

P (|Xn −X| > εn) <∞,

then Xn converges to X almost surely.

Proof Since limn→∞ εn = 0, for any ε > 0, there exists some n ∈ N such that for all k ≥ n,
εk < ε. Thus,

P
(

sup
k≥n
|Xk −X| > ε

)
≤ P

( ⋃
k≥n

(|Xk −X| > εk)
)
≤
∑
k≥n

P
(
|Xk −X| > εk

)
.

Letting n→∞, one gets P
(
supk≥n |Xk −X| > ε

)
→ 0. This proves the result.

Now we can apply Lemma 18 to prove our last main result.

Proof of Theorem 6 Set

Λt =

{
t−θ/2 when θ < 1,
t−λrη1 when θ = 1.

By Theorem 5, we have for any t ≥ 2 and 0 < δt < 1,

P

(
Λε−1t ‖xt+1 − x∗‖ > C̃1Λ

ε
t

(
log

4

δt

)2

log t

)
≤ δt.

Choose δt = t−2, and εt = C̃1Λ
ε
t (log 4/δt)

2 log t. Obviously

∞∑
t=2

P
(
Λε−1t ‖xt+1 − x∗‖ > εt

)
≤
∞∑
t=2

δt <∞

and

εt ≤ 4C̃1Λ
ε
t log3(2t)→ 0, as t→∞.

Then our conclusion of Theorem 6 follows from Lemma 18.
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Remark 19 The above method of proof can be used to get a more quantitative estimate for
the almost sure convergence of the Kaczmarz algorithm with noiseless random measurements
(Chen and Powell, 2012). In that setting, ηt ≡ 1, yt = fρ(ψt) and r = d. It was shown in
(Strohmer and Vershynin, 2009; Chen and Powell, 2012) that with q = 1− λr,

E‖xt+1 − x∗‖2 ≤ qt‖r1‖2.

It follows from the Chebyshev inequality that for any ε ∈ (0, 1),

P
(
qt(ε−1)‖xt+1 − x∗‖2 > qtεt2

)
= P

(
‖xt+1 − x∗‖2 > qtt2

)
≤ E[‖xt+1 − x∗‖2]

qtt2
.

Thus, we get

P
(
qt(ε−1)‖xt+1 − x∗‖2 > qtεt2

)
≤ ‖r1‖t−2.

Obviously, qtεt2 → 0 as t→∞, and
∑∞

t=1 ‖r1‖t−2 <∞. Applying Lemma 18 with εt = qtεt2,
we know that for any ε ∈ (0, 1),

lim
t→∞

(1− λr)t(ε−1)‖xt+1 − x∗‖2 = 0 almost surely.

7. Simulations and Discussions

In this section we provide some numerical simulations and further discussions on our error
analysis.

To illustrate our derived convergence rates and compare with the existing literature, we
carry out numerical simulations corresponding to Example 2 with the same data distribu-
tions as in (Needell, 2010): m = 200, d = 100, A ∈ R200×100 is a Gaussian matrix with each
entry drawn independently from the standard normal distribution N(0, 1), and y ∈ R100 is
a Gaussian noise with each component drawn independently from the normal distribution
with mean 0 and standard deviation 0.02. The measurement vectors {ψt = 1

‖ϕt‖ϕt} are

drawn from the normalized rows of A as in Example 2 and {ỹt = yt/‖ϕt‖} with mean
x∗ = 0. We conduct 100 trials for each choice of the relaxation parameter sequences
ηt = 1, ηt = 1/

√
t, ηt = 1/t. In each trial, algorithm (4) is run 100 times with random

Gaussian initial vectors of norm ‖x1‖ = 0.02. Figure 1 depicts the error ‖xt+1 − x∗‖ for
t = 1, . . . , 1500 (averaged with 100 trials and 100 initial vectors). The black line is a plot
with the constant relaxation parameter sequence ηt = 1, which verifies the divergence of the
algorithm, as proved in (Needell, 2010). The blue line is a plot with ηt = 1/

√
t, which hints

a slow convergence of the algorithm. The red line is a plot with ηt = 1/t, which confirms a
faster convergence. The above simulations are consistent with our error analysis.

In this paper, a learning theory approach to the relaxed randomized Kaczmarz algorithm
is presented. It yields new results and observations including a necessary and sufficient
condition (9), stated in Theorem 3, for the convergence in expectation when the sampling
process is noisy or nonlinear. For noise-free and linear sampling processes (that is, E(fH) =
0), we can see from Remark 11 with ηt ≡ 1 that Ez1,...,zT [‖xT+1−x∗‖2] ≤ ‖x1−x∗‖2(1−λr)T .
This exponential convergence result was proved in (Strohmer and Vershynin, 2009) for
Example 2 under the restriction that the matrix A has full column rank, where the number
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Figure 1: Error of the relaxed randomized Kaczmarz algorithm with ηt = 1 (black line),
ηt = 1/

√
t (blue line), and ηt = 1/t (red line)
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1− λr is replaced by a quantity involving ‖A−1‖ = inf{M : M‖Ax‖ ≥ ‖x‖ for all x}. Our
result is more general (valid for underdetermined systems with ‖A−1‖ =∞).

In the framework of Kaczmarz algorithms, we consider online learning algorithms asso-
ciated with the least squares loss. It would be interesting to extend our study to algorithms
associated with more general loss functions (Ying and Zhou, 2006) such as hinge loss, and
to consider error analysis without requiring the approximation error (Ying and Zhou, 2006)
tending to zero.
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