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Abstract

Estimation of inverse covariance matrices, known as precision matrices, is important in
various areas of statistical analysis. In this article, we consider estimation of multiple
precision matrices sharing some common structures. In this setting, estimating each preci-
sion matrix separately can be suboptimal as it ignores potential common structures. This
article proposes a new approach to parameterize each precision matrix as a sum of com-
mon and unique components and estimate multiple precision matrices in a constrained l1
minimization framework. We establish both estimation and selection consistency of the
proposed estimator in the high dimensional setting. The proposed estimator achieves a
faster convergence rate for the common structure in certain cases. Our numerical examples
demonstrate that our new estimator can perform better than several existing methods in
terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data
set reveals some interesting gene networks across multiple cancer subtypes.

Keywords: covariance matrix, graphical model, high dimension, joint estimation, preci-
sion matrix

1. Introduction

Estimation of a precision matrix, which is an inverse covariance matrix, has attracted a
lot of attention recently. One reason is that the precision matrix plays an important role
in various areas of statistical analysis. For example, some classification techniques such as
linear discriminant analysis and quadratic discriminant analysis require good estimates of
precision matrices. In addition, estimation of a precision matrix is essential to establish
conditional dependence relationships in the context of Gaussian graphical models. Another
reason is that the high-dimensional nature of many modern statistical applications makes
the problem of estimating a precision matrix very challenging. In situations where the
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dimension p is comparable to or much larger than the sample size n, more feasible and
stable techniques are required for accurate estimation of a precision matrix.

To tackle such problems, various penalized maximum likelihood methods have been
considered by many researchers in recent years (Yuan and Lin, 2007; Banerjee et al., 2008;
Friedman et al., 2008; Rothman et al., 2008; Lam and Fan, 2009; Fan et al., 2009, and many
more). These approaches produce a sparse estimator of the precision matrix by maximizing
the penalized Gaussian likelihood with sparse penalties such as the l1 penalty and the
smoothly clipped absolute deviation penalty (Fan and Li, 2001). Ravikumar et al. (2011)
studied the theoretical properties of the l1 penalized likelihood estimator for a broad class
of population distributions.

Instead of using likelihood approaches, several techniques take advantage of the con-
nection between linear regression and the entries of the precision matrix. See for example
Meinshausen and Bühlmann (2006); Peng et al. (2009); Yuan (2010). In particular, these
approaches convert the estimation problem of the precision matrix into relevant regression
problems and solve them with sparse regression techniques accordingly. One advantage of
these approaches is that they can handle a wide range of distributions including the Gaus-
sian case. Cai et al. (2011) recently proposed a very interesting method to directly estimate
the precision matrix without the Gaussian distributional assumption. This approach solves
a constrained l1 minimization problem to obtain a sparse estimator of the precision ma-
trix. They showed that the proposed estimator has a faster convergence rate than the l1
penalized likelihood estimator for some non-Gaussian cases.

All aforementioned approaches focus on estimation of a single precision matrix. The
fundamental assumption of these approaches is that all observations follow the same dis-
tribution. However, in some real applications, this assumption can be unreasonable. As a
motivating example, consider the glioblastoma multiforme (GBM) cancer data set studied
by The Cancer Genome Atlas Research Network (The Cancer Genome Atlas Research Net-
work, 2008). It is shown in the literature that the GBM cancer can be classified into four
subtypes (Verhaak et al., 2010). In this case, it would be more realistic to assume that the
distribution of gene expression levels can vary from one subtype to another, which results
in multiple precision matrices to estimate (Lee et al., 2012). A naive way to estimate them
is to model each subtype separately. However, in this separate approach, modeling of one
subtype completely ignores the information on other subtypes. This can be suboptimal if
there exists some common structure across different subtypes.

To improve the estimation in presence of some common structure, several joint esti-
mation methods have been proposed recently in a penalized likelihood framework. See for
example Guo et al. (2011); Honorio and Samaras (2012); Danaher et al. (2014). These
methods employ various group penalties in the Gaussian likelihood framework to link the
estimation of separate precision matrices.

In this article, we propose a new method to jointly estimate multiple precision matrices.
Our approach uses a novel representation of each precision matrix as a sum of common and
unique matrices. Then we apply sparse constrained optimization on the common and unique
components. The proposed method is applicable for a broad class of distributions including
both the Gaussian and some non-Gaussian cases. The main strength of our method is
that it uses all available information to jointly estimate the common and unique structures,
which can be more preferable than separate modelings. The estimation can be improved
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if the precision matrices are similar to each other. Furthermore, our method is able to
discover unique structures of each precision matrix, which enables us to identify differences
among multiple precision matrices. The proposed estimator is shown to achieve a faster
convergence rate for the common structures in certain cases.

The rest of this article is organized as follows. In Section 2, we introduce our proposed
method after reviewing some existing separate approaches. We establish its theoretical
properties in Section 3. Section 4 develops computational algorithms to obtain a solution
for the proposed method. Simulated examples are presented in Section 5 to demonstrate
performance of our estimator and analysis of a glioblastoma cancer data example is provided
in Section 6. The proofs of theorems are provided in Appendix.

2. Methodology

In this section, we introduce a new method for estimating multiple precision matrices in
an l1 minimization framework. Consider a heterogeneous data set with G different groups.
For the gth group (g = 1, . . . , G), let {x(g)

1 , . . . , x(g)
ng} be an independent and identically

distributed random sample of size ng, where x(g)

k = (x(g)

ki , . . . , x
(g)

kp)T is a p-dimensional ran-

dom vector with the covariance matrix Σ(g)

0 and precision matrix Ω(g)

0 := (Σ(g)

0 )−1. For
detailed illustration of our proposed method, we first define some notations similar to
Cai et al. (2011). For a matrix X = (xij) ∈ Rp×q, we define the elementwise l1 norm
||X||1 =

∑p
i=1

∑q
j=1 |xij |, the elementwise l∞ norm |X|∞ = max1≤i≤p,1≤j≤q |xij | and the

matrix l1 norm ||X||L1
= max1≤j≤q

∑p
i=1 |xij |. For a vector x = (x1, . . . , xp)

T ∈ Rp, |x|1
and |x|∞ denote vector l1 and l∞ norms respectively. The notation X � 0 indicates that
X is positive definite. Let I be a p× p identity matrix. For the gth group, Σ̂(g) denotes the
sample covariance matrix. Write Ω(g)

0 = (ω(g)

ij,0); g = 1, . . . , G.

Our aim is to estimate the precision matrices, Ω(1)

0 , . . . ,Ω(G)

0 . The most naive way to
achieve this goal is to estimate each precision matrix separately by taking the inverses of
the sample covariance matrices. However, in high dimensional cases, the sample covari-
ance matrices are not only unstable for estimating the covariance matrices, but also not
invertible. To estimate the precision matrix in high dimensions, various estimators have
been introduced in the literature. For example, various l1 penalized Gaussian likelihood
estimators have been studied intensively in the literature (see for example, Yuan and Lin,
2007; Banerjee et al., 2008; Friedman et al., 2008; Rothman et al., 2008). In this framework,
the precision matrices can be estimated by solving the following G optimization problems:

min
Ω(g)�0

tr(Σ̂(g)Ω(g))− log{det(Ω(g))}+ λg
∑
i 6=j
|w(g)

ij |, g = 1, . . . , G, (1)

where λg is a tuning parameter which controls the degree of the sparsity in the estimated
precision matrices. Other sparse penalized Gaussian likelihood estimators have been pro-
posed as well (Lam and Fan, 2009; Fan et al., 2009).

Recently, Cai et al. (2011) proposed an interesting method of constrained l1 minimization
for inverse matrix estimation (CLIME), which can be directly implemented using linear
programming. In particular, the CLIME estimator of Ω(g)

0 is the solution of the following
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optimization problem:

min ||Ω(g)||1 subject to: |Σ̂(g)Ω(g) − I|∞ ≤ λg, (2)

where Σ̂(g) is the sample covariance matrix and λg is a tuning parameter. As the optimization
problem in (2) does not require symmetry of the solution, the final CLIME estimator is
obtained by symmetrizing the solution of (2). The CLIME estimator does not need the
Gaussian distributional assumption. Cai et al. (2011) showed that the convergence rate of
the CLIME estimator is faster than that of the l1 penalized Gaussian likelihood estimator
if the underlying true distribution has polynomial-type tails.

To estimate multiple precision matrices, Ω(1)

0 , . . . ,Ω(G)

0 , we can build G individual models
using the optimization problem (1) or (2). However, these separate approaches can be
suboptimal when the precision matrices share some common structure. Several recent
papers have proposed joint estimations of multiple precision matrices under the Gaussian
distributional assumption to improve estimation. In particular, such an estimator is the
solution of

min
{Ω}

G∑
g=1

ng

[
tr(Σ̂(g)Ω(g))− log{det(Ω(g))}

]
+ P ({Ω}),

where ng is the sample size of the g-th group, {Ω} = {Ω(1), . . . ,Ω(G)}, and P ({Ω}) is
a penalty function that encourages similarity across the G estimated precision matrices.
For example, Guo et al. (2011) employs a non-convex penalty called hierarchical group

penalty which has the form, P ({Ω}) = λ
∑

i 6=j

(∑G
g=1 |ω

(g)

ij |
)1/2

. Honorio and Samaras

(2012) adopts a convex penalty, P ({Ω}) = λ
∑

i 6=j |(ω
(1)

ij , . . . , ω
(G)

ij )|
p

(p > 1) where | · |p is

the vector lp norm. To separately control the sparsity level and the extent of similarity,

Danaher et al. (2014) considered a fused lasso penalty, P ({Ω}) = λ1
∑G

g=1

∑
i 6=j |ω

(g)

ij | +
λ2
∑

g<g′
∑

ij |ω
(g)

ij −ω
(g′)
ij |. In some simulation settings, they showed that the joint estimation

can perform better than separate l1 penalized normal likelihood estimation. As pointed by
Ravikumar et al. (2011), these penalized Gaussian likelihood estimators are applicable even
for some mild non-Gaussian data since maximizing a penalized likelihood can be interpreted
as minimizing a penalized log-determinant Bregman divergence. However, these approaches
were mainly designed for Gaussian data and can be less efficient when the underlying
distribution becomes far from Gaussian. In this paper, we propose a new joint method
for estimating multiple precision matrices, which is less dependent on the distributional
assumption and applicable for both Gaussian and non-Gaussian cases.

In our joint estimation method, we take the multi-task learning perspective and first
define the common structure M0 and the unique structure R(g)

0 as

M0 :=
1

G

G∑
g=1

Ω(g)

0 , R(g)

0 := Ω(g)

0 −M0; g = 1, . . . , G.

It follows from the definition that
∑G

g=1R
(g)

0 = 0, and consequently our representation is
identifiable. The idea of decomposing parameters into common and individual structures
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was previously considered in the context of supervised multi-tasking learning (Evgeniou
and Pontil, 2004). Their aim was to improve prediction performance of supervised multi-
tasking learning. Here we focus on better estimation of precision matrices with the common
and individual structures. The unique structure is defined to capture different strength of
the edges across all classes. In a special case that an element of M0 is zero, then the
corresponding nonzero element in R(g)

0 can be interpreted as a unique edge. Thus, the
unique structure can address differences in magnitude as well as unique edges. If all precision
matrices are very similar, then the unique structures defined above would be close to zero. In
this case, it can be natural and advantageous to encourage sparsity among {R(1)

0 , . . . , R(G)

0 }
in the estimation. To estimate the precision matrices consistently in high dimensions, it is
also necessary to assume some special structure of M0 as well. In our work, we also assume
that M0 is sparse. To estimate {M0, R

(1)

0 , . . . , R(G)

0 }, we propose the following constrained
l1 minimization criterion:

min{||M ||1 + ν

G∑
g=1

||R(g)||1}

s.t | 1
G

G∑
g=1

{Σ̂(g)(M +R(g))− I}|∞ ≤ λ1, |Σ̂(g)(M +R(g))− I|∞ ≤ λ2,
G∑
g=1

R(g) = 0, (3)

where λ1 and λ2 are tuning parameters and ν is a prespecified weight. Note that if λ1 > λ2,
then the second inequality constraints in (3) imply the first inequality constraint. Therefore,
we only consider a pair of (λ1, λ2) satisfying λ1 ≤ λ2. The first inequality constraint in (3)
reflects how close the final estimators are to the inverses of the sample covariance matrices in
an average sense. On the other hand, the second inequality constraint controls an individual
level of closeness between the estimators and the sample covariance matrices.

For illustration, consider an extreme case where all the precision matrices are the same.
In this case, the unique structures may be negligible and the first inequality constraint in
(3) approximately reduces to |(G−1

∑G
g=1 Σ̂(g))M−I|∞ ≤ λ1. Therefore, we can pool all the

sample covariance matrices to estimate the common structure which is the precision matrix
in this case. This would be advantageous than building each model separately. The value
of ν in (3) reflects how complex the unique structures of the resulting estimators are. If the
resulting estimators are expected to be very similar from each other, then a large value of
ν is preferred. In Section 3, ν is set to be G−1 or G−1/2 for our theoretical results.

Similar to Cai et al. (2011), the solutions in (3) are not symmetric in general. Therefore,
the final estimators are obtained after a symmetrization step. Let {M̂, R̂(1), . . . , R̂(G)} be
the solution of (3). Then we define Ω̂(g)

1 := M̂ + R̂(g); g = 1, . . . , G. The final estimator of
{Ω(1)

0 , . . . ,Ω(G)

0 } is obtained by symmetrizing {Ω̂(1)

1 , . . . , Ω̂(G)

1 } as follows. Let Ω̂(g)

1 = (ω̂(g)

ij,1).

Our joint estimator of multiple precision matrices (JEMP), {Ω̂(1), . . . , Ω̂(G)}, is defined as
symmetric matrices, {Ω̂(g) = (ω̂(g)

ij ); g = 1, . . . , G} with

ω̂(g)

ij = ω̂(g)

ij,1I{
G∑
g=1

|ω̂(g)

ij,1| ≤
G∑
g=1

|ω̂(g)

ji,1|}+ ω̂(g)

ji,1I{
G∑
g=1

|ω̂(g)

ij,1| >
G∑
g=1

|ω̂(g)

ji,1|}; g = 1, . . . , G.

Note that the solution Ω̂(g) is not necessarily positive definite. Although there is no guar-
antee for the solution to be positive definite, it can be positive definite with high probability.
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In our simulation study, we observed that within a reasonable range of tuning parameters,
almost all solutions are positive definite. Furthermore, one can perform projection of the
estimator to the space of positive definite matrices to ensure positive definitiveness as dis-
cussed in Yuan (2010).

As a remark, although we focus on generalizing CLIME for multiple graph estimation in
this paper, our proposed common and unique structure approach can also be applied to the
graphical lasso estimator under the Gaussian assumption as pointed out by one reviewer.
As a future research direction, it would be interesting to investigate how the common and
unique structure framework works in the graphical lasso estimator.

3. Theoretical Properties

In this section, we investigate theoretical properties of our proposed joint estimator JEMP.
In particular, we first construct the convergence rate of our estimator in the high dimensional
setting. Then we show that the convergence rate can be improved for the common structure
of the precision matrices in certain cases. Finally, the model selection consistency is shown
with an additional thresholding step.

For theoretical properties, we follow the set-up of Cai et al. (2011) and the results therein
are also used for our technical derivations. In this section, for simplicity, we assume that
n = n1 = · · · = nG. We consider the following class of matrices,

U := {Ω : Ω � 0, ‖Ω‖L1
≤ CM},

and assume that Ω(g)

0 ∈ U for all g = 1, . . . , G. This assumption requires that the true
precision matrices are sparse in terms of the l1 norm while allowing them to have many small
entries. Write E(x(g)) = (µ(g)

1 , . . . , µ(g)
p )T. We also make the following moment condition on

x(g) for our theoretical results.

Condition 1 There exists some 0 < η < 1/4 such that E[exp{t(x(g)

i − µ
(g)

i )2}] ≤ K < ∞
for all |t| ≤ η and all i, g and G log p/n ≤ η, where K is a bounded constant.

Condition 1 indicates that the components of x(g) are uniformly sub-Gaussian. This
condition is satisfied if x(g) follows a multivariate Gaussian distribution or has uniformly
bounded components.

Theorem 1 Assume Condition 1 holds. Let λ1 = λ2 = 3CMC0(log p/n)1/2, where C0 =
2η−2(2 + τ + η−1e2K2)2 and τ > 0. Set ν = G−1. Then

max
ij

 1

G

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0|

 ≤ 6C2
MC0

(
log p

n

)1/2

,

with probability greater than 1− 4Gp−τ .

In an average sense, the convergence rate can be viewed the same as that of the CLIME
estimator which is of order (log p/n)1/2. In this theorem, the first inequality constraint in
(3) does not play any role in the estimation procedure as we set λ1 = λ2. In the next
theorem, with properly chosen λ1, we construct a faster convergence rate for the common
part under certain conditions.
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Theorem 2 Assume Condition 1 holds. Suppose that there exists CR > 0 such that
‖R(g)

0 ‖L1 ≤ CR for all g = 1, . . . , G and (
∑G

g=1 ‖R
(g)

0 ‖L1) ≤ CRG
1/2. Set ν = G−1/2 and let

λ1 = (CM + CR)C0{log p/(nG)}1/2 and λ2 = CMC0(log p/n)1/2. Then

|M̂ −M0|∞ ≤ C0(2C2
M + 4CMCR + C2

R)

(
log p

nG

)1/2

,

with probability greater than 1− 2(1 + 3G)p−τ .

Theorem 2 states that our proposed method can estimate the common part more ef-
ficiently with the corresponding convergence rate of order {log p/(nG)}1/2, which is faster

than the order (log p/n)1/2.

Note that our theorems show consistency of our estimator in terms of the elementwise
l∞ norm. On the other hand, Guo et al. (2011) showed consistency of their estimator under
the Frobenious norm. Therefore, our theoretical results are not directly comparable to
the theorems in Guo et al. (2011). However, it is worthwhile to note that our Theorem 2
reveals the effect of G on the consistency while the theorems in Guo et al. (2011) do not
show explicitly how their estimator can have advantage over separate estimation in terms
of consistency.

Besides its estimation consistency, we also prove the model selection consistency of our
estimator which means that it reveals the exact set of nonzero components in the true
precision matrices with high probability. For this result, a thresholding step is introduced.
In particular, a threshold estimator Ω̃(g) = (ω̃(g)

ij ) based on {Ω̂(1), . . . , Ω̂(G)} is defined as,

ω̃(g)

ij = ω̂(g)

ij I{|ω̂
(g)

ij | ≥ δn},

where δn ≥ 2CMGλ2 and λ2 is given in Theorem 1. To state the model selection consistency
precisely, we define

S0 := {(i, j, g) : ω(g)

ij,0 6= 0}, Ŝ := {(i, j, g) : ω̃(g)

ij 6= 0} and θmin := min
(i,j,g)∈S0

G∑
g=1

|ω(g)

ij,0|.

Then the next theorem states the model selection consistency of our estimator.

Theorem 3 Assume Condition 1 holds. If θmin > 2δn, then

pr(S0 = Ŝ) ≥ 1− 4Gp−τ .

4. Numerical Algorithm

In this section, we describe how to obtain the numerical solutions of the optimization
problem (3). In Section 4.1, the optimization problem (3) is decomposed into p individual
subproblems and a linear programming approach is used to solve them. In Section 4.2, we
describe another algorithm using the alternating directions method of multiplier (ADMM).
Section 4.3 explains how the tuning parameters can be selected.

1041



Lee and Liu

4.1 Decomposition of (3)

Similar to the Lemma 1 in Cai et al. (2011), one can show that the optimization problem
(3) can be decomposed into p individual minimization problems. In particular, let ei be
the ith column of I. For 1 ≤ i ≤ p, let {m̂i, r̂

(1)

i , . . . , r̂
(G)

i } be the solution of the following
optimization problem:

min{|m|1 + ν

G∑
g=1

|r(g)|1}

s.t. | 1
G

G∑
g=1

{Σ̂(g)(m+ r(g))− ei}|∞ ≤ λ1, |Σ̂(g)(m+ r(g))− ei|∞ ≤ λ2,

G∑
g=1

r(g) = 0, (4)

where m, r(1), . . . , r(G) are vectors inRp. We can show that solving the optimization problem
(3) is equivalent to solving the p optimization problems in (4). The optimization problem in
(4) can be further reformulated as a linear programming problem and the simplex method
is used to solve this problem (Boyd and Vandenberghe, 2004). For our simulation study
and the GBM data analysis, we obtain the solution of (3) using the efficient R-package
fastclime, which provides a generic fast linear programming solver (Pang et al., 2014).

4.2 An ADMM Algorithm

In this section, we describe an alternating directions method of multipliers (ADMM) al-
gorithm to solve (4) which can be potentially more scalable than the previously explained
linear programming approach. We refer the reader to Boyd et al. (2010) for detailed expla-
nation of ADMM algorithms and their convergence properties.

To reformulate (4) into an appropriate ADMM form, define y = (mT, νr(1)T, . . . , νr(G)T)
T
,

zm =
∑G

g=1{Σ̂(g)(m+ r(g))− ei}/G, zg = Σ̂(g)(m+ r(g))− ei, and z = (z1
T, . . . , zG

T, zm
T)T.

Denote the a × a identity matrix as Ia×a and the a × b zero matrix as Oa×b. Then the
problem (4) can be rewritten as

min |y|1 s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2, Ay −Bz = C, where (5)

A =



Σ̂(1) ν−1Σ̂(1) Op×p · · · Op×p
Σ̂(2) Op×p ν−1Σ̂(2) · · · Op×p

...
...

...
. . .

...

Σ̂(G) Op×p Op×p · · · ν−1Σ̂(G)

G−1
∑G

g=1 Σ̂(g) (νG)−1Σ̂(1) (νG)−1Σ̂(2) · · · (νG)−1Σ̂(G)

Op×p Ip×p Ip×p · · · Ip×p


,

B =

(
I(1+G)p×(1+G)p

Op×(1+G)p

)
, and C = (ei

T, . . . , ei
T, Op×1)T. The scaled augmented Lagrangian

for (5) is given by

L(y, z, u) = |y|1 +
ρ

2
||Ay −Bz − C + u||22, s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2,

where u is a (2+G)p-dimensional vector of dual variables. With the current solution zk, uk,
the ADMM algorithm updates solutions sequentially as follows:
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(a) yk+1 = argminyL(y, zk, uk).

(b) zk+1 = argminzL(yk+1, z, uk), s.t. |zm|∞ ≤ λ1, |zg|∞ ≤ λ2.

(c) uk+1 = uk +Ayk+1 −Bzk+1 − c.

As argminyL(y, zk, uk) = argminy{|y|1 + ρ
2 ||Ay −Bz

k − C + uk||22}, the step (a) can be
viewed as an L1 penalized least squares problem. Therefore, the step (a) can be solved using
some existing algorithms for L1 penalized least squares problems. In addition, one can show
that the step (b) has a closed form of solution, zk+1 = min{max{A′yk+1−C ′+(uk)′,−λ}, λ}
where A′ is the submatrix of A consisting of the first (1 + G)p rows, C ′ and (uk)′ are the
corresponding subvectors of C and uk, and λ is a (1 +G)p-dimensional vector of which the
first Gp elements are λ2 and the rest are λ1. Note that scalability and computational speed
of this ADMM algorithm largely depend on the algorithm used for the step (a) as the other
steps have the explicit form of solutions.

4.3 Tuning Parameter Selection

To apply our method, we need to choose the tuning parameters, λ1 and λ2. In practice,
we construct several models with many pairs of λ1 and λ2 satisfying λ1 ≤ λ2 and evaluate
them to determine the optimal pair. To evaluate each estimator, we measure the likelihood
loss (LL) used in Cai et al. (2011) and its definition is

LL =
G∑
g=1

tr(Σ̂(g)
v Ω̂(g))− log{det(Ω̂(g))},

where Σ̂(g)
v is the sample covariance matrix of the gth group computed from an independent

validation set. As mentioned in Section 2, the likelihood loss can be applicable for both
Gaussian and some non-Gaussian data as it corresponds to the log-determinant Bregman
divergence between the estimators and empirical precision matrices in the validation set.
Among several pairs of tuning values, we select the pair which minimizes LL. If a validation
set is not available, aK-fold cross-validation can be combined to this criterion. In particular,
we first randomly split the data set into K parts of equal sizes. Denote the data in the kth
part by {X(1)

(k), . . . , X
(G)

(k)} which is used as a validation set for the kth estimator. For each

k, with a given value of (λ1, λ2), we obtain estimators using all observations which do not
belong to {X(1)

(k), . . . , X
(G)

(k)} and denote them as {Ω̂(G)

(k), . . . , Ω̂
(G)

(k)}. Then the likelihood loss

(LL) is defined as

LL =

K∑
k=1

G∑
g=1

tr(Σ̂(g)

(k)Ω̂
(g)

(k))− log{det(Ω̂(g)

(k))},

where Σ̂(g)

(k) is the sample covariance matrix of the gth group using X(g)

(k). Once the optimal
pair is selected which minimizes LL, the final model is constructed using all data points
with the selected pair.
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5. Simulated Examples

In this section, we carry out simulation studies to assess the numerical performance of our
proposed method. In particular, we compare the numerical performance of five methods:
two separate methods and three joint methods. In separate approaches, each precision
matrix is estimated separately via the CLIME estimator or the GLASSO estimator. For
joint approaches, all precision matrices are estimated together using our JEMP estimator,
the fused graphical lasso (FGL) estimator by Danaher et al. (2014), or the estimator by Guo
et al. (2011), which we refer to as JOINT estimator hereafter. In our proposed method, ν is
set to be G−1/2. We also tried different values of ν such as G−1, and the results are similar
thus omitted. We consider three models as described below: the first two from Guo et al.
(2011) and the last from Rothman et al. (2008); Cai et al. (2011). In all models, we set
p = 100, G = 3 and Ω(g)

0 = Ωc +U (g), where Ωc is common in all groups and U (g) represents
unique structure to the gth group. The common part, Ωc, is generated as follows:

Model 1. Ωc is a tridiagonal precision matrix. In particular, Σc := Ω−1
c = (σij) is first

constructed, where σij = exp(−|di − dj |/2), d1 < . . . < dp, and di − di−1 ∼ Unif(0.5, 1), i =
2, . . . , p. Then let Ωc = Σ−1

c .

Model 2. Ωc is a 3 nearest-neighbor network. In particular, p points are randomly
picked on a unit square and all pairwise distances among the points are calculated. Then we
find 3 nearest neighbors for each point and a pair of symmetric entries in Ωc corresponding
to a pair of neighbors has a value randomly chosen from the interval [−1,−0.5] ∪ [0.5, 1].

Model 3. Ωc = Γ + δI, where each off-diagonal entry in Γ is generated independently
from 0.5y, with y following the Bernoulli distribution with success probability 0.02. Here,
δ is selected so that the condition number of Ωc is equal to p.

For each U (g), we randomly pick a pair of symmetric off-diagonal entries and replace them
with values randomly chosen from the interval [−1,−0.5]∪[0.5, 1]. We repeat this procedure
until

∑
i<j I(|u(g)

ij | > 0)/
∑

i<j I(|ωij,c| > 0) = ρ, where Ωc = (ωij,c) and U (g) = u(g)

ij .
Therefore, ρ is the ratio of the number of unique nonzero entries to the number of common
nonzero entries. We consider four values of ρ = 0, 0.25, 1 and 4. To make the resulting
precision matrices positive-definite, each diagonal element of each matrix Ω(g)

0 is replaced
with 1.5 times the sum of the absolute values of the corresponding row. Finally, each
matrix Ω(g)

0 is standardized to have unit diagonals. Note that in the case of ρ = 1 or 4,
the true precision matrices are quite different from each other. From these cases, we can
assess how joint methods work when the precision matrices are not similar. In addition, we
also consider Model 4 below to assess how JEMP works when the precision matrices have
different structures from each other.

Model 4. Ω(1)

0 is the tridiagonal precision matrix as in Model 1, Ω(2)

0 is the 3 nearest-
neighbor network in Model 2, and Ω(3)

0 is the random network in Model 3.

For each group in each model, we generate a training sample of size n = 100 from
either a multivariate normal distribution N(0,Σ(g)

0 ) or a multivariate t-distribution with
the covariance matrix Σ(g)

0 and degrees of freedom of 3 or 5. In order to select optimal
tuning parameters, an independent validation set of size n = 100 is also generated from the
same distribution of the training sample. For each estimator, optimal tuning parameters
are selected as described in Section 4. We replicate simulations 50 times for each model.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 4.42 (0.02) 8.57 (0.03) 4.35 (0.02) 8.42 (0.03)

GLASSO 3.70 (0.02) 6.90 (0.03) 3.60 (0.02) 6.73 (0.03)

JOINT 3.43 (0.02) 6.64 (0.04) 3.41 (0.02) 6.61 (0.03)

FGL 1.99 (0.02) 3.75 (0.03) 2.09 (0.02) 3.92 (0.03)

JEMP 2.08 (0.02) 4.06 (0.04) 2.20 (0.02) 4.31 (0.04)

t (DF=5)

CLIME 5.75 (0.17) 10.63 (0.26) 5.81 (0.19) 10.75 (0.33)

GLASSO 5.60 (0.09) 10.23 (0.16) 5.45 (0.09) 10.00 (0.16)

JOINT 5.08 (0.11) 9.44 (0.15) 5.01 (0.12) 9.28 (0.19)

FGL 3.47 (0.07) 6.12 (0.11) 3.46 (0.08) 6.12 (0.11)

JEMP 3.21 (0.06) 6.14 (0.11) 3.41 (0.10) 6.52 (0.19)

t (DF=3)

CLIME 10.34 (0.83) 18.08 (1.05) 10.15 (0.91) 17.25 (1.06)

GLASSO 11.87 (0.33) 24.10 (0.95) 11.78 (0.33) 24.21 (0.95)

JOINT 8.84 (0.58) 15.16 (0.85) 8.95 (0.66) 15.17 (0.92)

FGL 7.01 (0.24) 12.39 (0.52) 7.40 (0.31) 13.23 (0.66)

JEMP 6.02 (0.33) 11.56 (0.73) 5.95 (0.30) 11.16 (0.62)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.23 (0.02) 8.15 (0.03) 3.67 (0.01) 6.95 (0.03)

GLASSO 3.37 (0.02) 6.33 (0.03) 2.57 (0.01) 4.96 (0.03)

JOINT 3.27 (0.01) 6.40 (0.03) 2.51 (0.01) 4.95 (0.02)

FGL 2.18 (0.01) 4.07 (0.02) 1.82 (0.01) 3.47 (0.02)

JEMP 2.38 (0.01) 4.77 (0.04) 2.11 (0.01) 4.28 (0.02)

t (DF=5)

CLIME 5.53 (0.16) 10.12 (0.23) 4.83 (0.17) 8.72 (0.25)

GLASSO 5.11 (0.09) 9.54 (0.17) 4.28 (0.09) 8.35 (0.19)

JOINT 4.71 (0.10) 8.71 (0.14) 3.87 (0.12) 7.03 (0.16)

FGL 3.31 (0.07) 5.95 (0.11) 2.54 (0.06) 4.68 (0.10)

JEMP 3.32 (0.07) 6.40 (0.13) 2.78 (0.07) 5.35 (0.12)

t (DF=3)

CLIME 9.89 (0.86) 17.82 (1.16) 8.93 (0.91) 16.58 (1.28)

GLASSO 11.32 (0.32) 23.77 (0.99) 10.42 (0.31) 23.70 (1.05)

JOINT 9.27 (1.68) 14.23 (1.26) 7.14 (0.65) 11.90 (0.72)

FGL 6.51 (0.25) 11.73 (0.56) 5.95 (0.27) 11.55 (0.67)

JEMP 5.71 (0.29) 10.99 (0.73) 4.72 (0.24) 9.04 (0.49)

Table 1: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 1.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 5.10 (0.02) 9.80 (0.04) 5.05 (0.02) 9.68 (0.04)

GLASSO 4.50 (0.02) 8.07 (0.03) 4.44 (0.02) 7.98 (0.03)

JOINT 3.89 (0.02) 7.42 (0.04) 4.13 (0.02) 7.84 (0.04)

FGL 2.26 (0.02) 4.26 (0.03) 2.70 (0.02) 5.02 (0.03)

JEMP 2.31 (0.02) 4.44 (0.03) 2.80 (0.02) 5.36 (0.03)

t (DF=5)

CLIME 6.60 (0.17) 12.03 (0.25) 6.62 (0.19) 12.09 (0.32)

GLASSO 6.78 (0.09) 11.67 (0.15) 6.56 (0.09) 11.37 (0.14)

JOINT 6.16 (0.10) 11.18 (0.16) 6.12 (0.14) 11.14 (0.23)

FGL 4.03 (0.07) 6.88 (0.11) 4.28 (0.07) 7.30 (0.10)

JEMP 3.74 (0.06) 6.98 (0.11) 4.15 (0.09) 7.72 (0.20)

t (DF=3)

CLIME 11.41 (0.87) 19.55 (1.06) 11.16 (0.93) 18.66 (1.09)

GLASSO 13.16 (0.34) 24.31 (0.88) 12.90 (0.34) 24.29 (0.88)

JOINT 10.14 (0.56) 16.96 (0.80) 10.24 (0.68) 17.03 (0.94)

FGL 8.34 (0.28) 13.78 (0.55) 8.55 (0.31) 14.16 (0.59)

JEMP 7.17 (0.36) 13.31 (0.84) 7.08 (0.31) 12.76 (0.61)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.84 (0.02) 9.27 (0.04) 3.77 (0.01) 7.14 (0.03)

GLASSO 4.07 (0.02) 7.42 (0.03) 2.68 (0.01) 5.09 (0.02)

JOINT 3.99 (0.01) 7.72 (0.03) 2.63 (0.01) 5.16 (0.02)

FGL 2.99 (0.01) 5.51 (0.02) 1.98 (0.01) 3.74 (0.01)

JEMP 3.20 (0.01) 6.34 (0.04) 2.35 (0.01) 4.74 (0.02)

t (DF=5)

CLIME 6.14 (0.16) 11.22 (0.24) 4.95 (0.17) 8.96 (0.25)

GLASSO 5.85 (0.09) 10.52 (0.16) 4.44 (0.09) 8.56 (0.18)

JOINT 5.44 (0.10) 10.05 (0.15) 4.02 (0.12) 7.32 (0.16)

FGL 4.07 (0.07) 7.17 (0.10) 2.68 (0.06) 4.91 (0.10)

JEMP 4.11 (0.06) 7.87 (0.13) 3.00 (0.07) 5.77 (0.13)

t (DF=3)

CLIME 10.53 (0.88) 18.53 (1.15) 9.10 (0.92) 16.84 (1.29)

GLASSO 12.11 (0.32) 23.89 (0.93) 10.59 (0.32) 23.77 (1.04)

JOINT 10.00 (1.67) 15.26 (1.26) 7.27 (0.64) 12.10 (0.72)

FGL 7.23 (0.25) 12.34 (0.52) 6.02 (0.26) 11.50 (0.64)

JEMP 6.59 (0.31) 12.19 (0.70) 4.99 (0.26) 9.48 (0.53)

Table 2: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 2.
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ρ = 0 ρ = 0.25

EL FL EL FL

Normal

CLIME 3.62 (0.02) 6.87 (0.03) 3.92 (0.02) 7.51 (0.04)

GLASSO 2.60 (0.01) 5.03 (0.03) 3.03 (0.01) 5.78 (0.03)

JOINT 2.53 (0.01) 4.97 (0.02) 2.99 (0.01) 5.89 (0.03)

FGL 1.54 (0.01) 2.95 (0.02) 2.21 (0.01) 4.16 (0.02)

JEMP 1.80 (0.01) 3.61 (0.03) 2.48 (0.01) 4.96 (0.03)

t (DF=5)

CLIME 4.77 (0.17) 8.68 (0.26) 5.23 (0.19) 9.63 (0.33)

GLASSO 4.32 (0.09) 8.42 (0.20) 4.82 (0.09) 9.11 (0.18)

JOINT 3.84 (0.12) 7.02 (0.16) 4.43 (0.15) 8.10 (0.21)

FGL 2.54 (0.06) 4.68 (0.10) 3.11 (0.07) 5.62 (0.10)

JEMP 2.60 (0.06) 4.99 (0.11) 3.35 (0.10) 6.44 (0.18)

t (DF=3)

CLIME 9.08 (0.84) 16.05 (1.07) 9.40 (0.92) 15.92 (1.06)

GLASSO 10.64 (0.33) 24.09 (1.06) 11.14 (0.33) 24.26 (1.01)

JOINT 7.54 (0.57) 13.03 (0.87) 8.35 (0.66) 14.09 (0.89)

FGL 5.87 (0.26) 11.39 (0.65) 6.72 (0.30) 12.53 (0.70)

JEMP 5.05 (0.37) 10.10 (0.93) 5.49 (0.30) 10.44 (0.66)

ρ = 1 ρ = 4

EL FL EL FL

Normal

CLIME 4.33 (0.02) 8.33 (0.03) 4.03 (0.02) 7.68 (0.03)

GLASSO 3.52 (0.02) 6.54 (0.03) 3.00 (0.01) 5.67 (0.03)

JOINT 3.50 (0.01) 6.86 (0.02) 2.94 (0.01) 5.78 (0.02)

FGL 2.90 (0.01) 5.37 (0.02) 2.28 (0.01) 4.28 (0.01)

JEMP 3.17 (0.01) 6.40 (0.02) 2.66 (0.01) 5.40 (0.02)

t (DF=5)

CLIME 5.64 (0.16) 10.31 (0.23) 5.20 (0.17) 9.42 (0.26)

GLASSO 5.31 (0.09) 9.81 (0.17) 4.71 (0.09) 8.93 (0.18)

JOINT 4.91 (0.11) 9.09 (0.14) 4.29 (0.12) 7.86 (0.17)

FGL 3.66 (0.06) 6.53 (0.10) 2.98 (0.07) 5.40 (0.10)

JEMP 3.93 (0.07) 7.56 (0.12) 3.27 (0.07) 6.32 (0.14)

t (DF=3)

CLIME 10.00 (0.87) 17.87 (1.16) 9.36 (0.88) 17.25 (1.26)

GLASSO 11.60 (0.32) 23.89 (0.97) 10.89 (0.31) 23.79 (0.99)

JOINT 9.52 (1.68) 14.60 (1.27) 7.57 (0.63) 12.59 (0.71)

FGL 6.71 (0.24) 11.84 (0.52) 6.36 (0.26) 11.87 (0.61)

JEMP 5.90 (0.26) 11.02 (0.59) 5.20 (0.26) 9.70 (0.51)

Table 3: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 3.
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Normal t (DF=5) t (DF=3)

EL FL EL FL EL FL

CLIME 4.39 (0.02) 8.45 (0.04) 6.06 (0.39) 10.82 (0.43) 10.59 (1.03) 17.35 (1.08)

GLASSO 3.62 (0.02) 6.71 (0.03) 5.57 (0.11) 10.02 (0.14) 11.79 (0.43) 24.06 (1.29)

JOINT 3.68 (0.01) 7.16 (0.03) 5.24 (0.14) 9.56 (0.17) 8.28 (0.37) 13.83 (0.50)

FGL 3.12 (0.01) 5.75 (0.02) 3.85 (0.07) 6.84 (0.11) 7.08 (0.33) 12.26 (0.71)

JEMP 3.50 (0.01) 7.04 (0.02) 4.27 (0.08) 8.17 (0.14) 6.22 (0.29) 11.27 (0.60)

Table 4: Comparison summaries using Entropy loss (EL) and Frobenius loss (FL) over 50

replications for Model 4.

To compare performance of five different methods, we use the average entropy loss and
the average Frobenius loss defined as,

EL = G−1
G∑
g=1

{
tr(Σ(g)

0 Ω̂(g))− log det(Σ(g)

0 Ω̂(g))− p
}
,

FL = G−1
G∑
g=1

‖ Ω(g)

0 − Ω̂(g) ‖2F ,

where ‖ . ‖F is the Frobenius norm of a matrix.

Table 1 reports the results for Model 1. In terms of estimation accuracy, the three
joint estimation methods, JEMP, FGL, and JOINT, outperform the two separate estima-
tion methods while JEMP and FGL show better performance than JOINT. In Gaussian
cases, FGL exhibits slightly smaller losses than JEMP. However, JEMP outperforms FGL
in terms of entropy loss for some cases when the underlying distribution is t5. If the true
underlying distribution is t3, then JEMP clearly outperforms FGL in both entropy loss and
Frobenius loss for all cases. This indicates that our proposed JEMP can have some ad-
vantage in estimation for some non-Gaussian data. Overall, JEMP shows very competitive
performance compared with other methods. Tables 2-3 report the results for Models 2 and
3 respectively. Performances of the methods show similar patterns as in Model 1. JEMP
and FGL perform best while FGL is slightly better in Gaussian cases and JEMP has the
best performance in the t3 case.

Table 4 summarizes the results for Model 4 in which the true precision matrices have dif-
ferent structures. As in Models 1-3, our method outperforms JOINT, CLIME, and GLASSO
for all cases. It shows competitive performance with FGL when the distribution is Gaussian
or t5. However, it outperforms FGL in the case of t3 distribution. This indicates that our
method works as well even when structures of precision matrices are different from each
other. Note that the precision matrices in Model 4 share many zero components although
their main structures are different. Joint methods can work better here since they encourage
many common zeros to be estimated as zeros simultaneously.
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Figure 1: Receiver operating characteristic curves averaged over 50 replications from Gaus-
sian distributions. In each panel, the horizontal and vertical axes are false posi-
tive rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.
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Figure 2: Receiver operating characteristic curves averaged over 50 replications from t5
distributions. In each panel, the horizontal and vertical axes are false positive
rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.
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Figure 3: Receiver operating characteristic curves averaged over 50 replications from t3
distributions. In each panel, the horizontal and vertical axes are false positive
rate and sensitivity respectively. Here, ρ is the ratio of the number of unique
nonzero entries to the number of common nonzero entries.
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Figures 1-3 show the estimated receiver operating characteristic (ROC) curves averaged
over 50 replications. In the Gaussian case of Figure 1, JEMP and FGL show similar per-
formance and outperform the others except the case of ρ = 1 in Model 3. In Figures 2
and 3 of multivariate t-distributions, it can be observed that JEMP has better ROC curves
when ρ = 0 for all three models. It also shows better performance than the others when
ρ = 0.25 for Models 1-2. When ρ = 1, all ROC curves move closer together. This is because
the true precision matrices become much denser in terms of the number of edges and thus
all methods have some difficulty in edge selection. Overall, our proposed JEMP estimator
delivers competitive performance in terms of both estimation accuracy and selection.

Note that JEMP and FGL encourage the estimated precision matrices to be similar
across all classes. This can be advantageous especially when the true precision matrices
have many common values. Therefore, JEMP and FGL can have better performance than
JOINT for such problems.

In terms of computational complexity, JEMP can be more intensive than separate es-
timation methods and JOINT as it involves a pair of tuning parameters (λ1, λ2) satisfying
λ1 ≤ λ2. The computational cost of JEMP can be potentially reduced using the ADMM
algorithm discussed in Section 4 with a further improved algorithm for the least squares
step.

6. Application on Glioblastoma Cancer Data

In this section, we apply our joint method to a Glioblastoma cancer data set. The data set
consists of 17814 gene expression levels of 482 GBM patients. The patients were classified
into four subtypes, namely, classical, mesenchymal, neural, and proneural with sample sizes
of 127, 145, 85, and 125 respectively (Verhaak et al., 2010). These subtypes are shown to be
different biologically, while at the same time, share similarities as well since they all belong
to GBM cancer. In this application, we consider the signature genes reported by Verhaak
et al. (2010). They established 210 signature genes for each subtype, which results 840
signature genes in total. These signature genes are highly distinctive for four subtypes and
reported to have good predictive power for subtype prediction. In our analysis, the goal
is to produce graphical presentation of relationships among these signature genes in each
subtype based on the estimation of the precision matrices. Among the 840 signature genes,
we excluded the genes with no subtype information or the genes with missing values. As
a result, total 680 genes were included in our analysis. To produce interpretable graphical
models using our JEMP estimator, we set the values of the tuning parameters as λ1 = 0.30
and λ2 = 0.40. JEMP estimated 214 edges shared among all subtypes, 9 edges present only
in two subtypes, and 1 edge present only in three subtypes.

The resulting gene networks are shown in Figure 4. The black lines are the edges shared
by all subtypes and the thick grey lines are the unique edges present only in two or three
subtypes. It is noticeable that most of edges are black lines, which means that they appear
in all subtypes. This indicates that the networks of the signature genes reported by Verhaak
et al. (2010) may be very similar across all subtypes as they all belong to GBM cancer.

All of the small red network’s genes in the upper region belong to the ZNF gene family.
This network includes ZNF211, ZNF227, ZNF228, ZNF235, ZNF419, and ZNF671. These
are known to be involved in making zinc finger proteins, which are regulatory proteins
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Figure 4: Graphical presentation of conditional dependence structures among genes using
our estimator of precision matrices. The black lines are the edges shared in
all subtypes and the thick grey lines are the unique edges present only in two or
three subtypes. The red, green, blue and orange genes are classical, mesenchymal,
proneural and neural genes respectively (Verhaak et al., 2010).
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Classical Mesenchymal

Neural Proneural

Figure 5: Four gene networks corresponding to four subtypes of the GMB cancer. In each
network, the black lines are the edges shared in all subtypes. The colored lines
are the edge shared only in two or three subtypes.
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that are related to many cellular functions. As they are all involved in the same biological
process, it may seem reasonable that this network is shared in all GBM subtypes.

The red genes are signature genes for the classical subtype. Likewise, green, blue and
orange genes are the mesenchymal, proneural and neural signature genes respectively. Each
class of signature genes tends to have more links with the genes in the same class. This is
expected because each class of signature genes is more likely to be highly co-expressed.

Each estimated network for each subtype is depicted in Figure 5. The black lines are
the edges shared by all subtypes and the colored lines are the edges appearing only in two
or three subtypes. One interesting edge is the one between EGFR and MEOX2. It does not
appear in the classical subtype while it is shared by all the other subtypes. EGFR is known
to be involved in cell proliferation and Verhaak et al. (2010) demonstrated the essential
role of this gene in GBM tumor genesis. Furthermore, high rates of EGFR alteration were
claimed in the classical subtype. Therefore, studying the relationship between EGFR and
MEOX2 can be an interesting direction for future investigation as only the classical subtype
lacks this edge.

There are 9 edges appearing only in two subtypes. These include SCG3 and ACSBG1,
GRIK5 and BTBD2, NCF4 and CSTA, IFI30 and BATF, HK3 and SLC11A1, ACSBG1 and
SCG3, GPM6A and OLIG2, C1orf61 and CKB, and PPFIA2 and GRM1. It would be also
interesting to investigate these relationships further as they are unique only in two subtypes.
For example, the edge between OLIG2 and GPM6A does not appear in the proneural
subtype while it is shared by Neural and Mesenchymal subtypes. High expression of OLIG2
was observed in the proneural subtype (Verhaak et al., 2010), which can down-regulate the
tumor suppressor p21. Therefore, it may be helpful to investigate the relationship between
OLIG2 and GPM6A for understanding the effect of OLIG2 in the proneural subtype.
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Appendix A.

Write Σ(g)

0 = (σ(g)

ij,0) and Σ̂(g) = (σ̂(g)

ij ). Let mj,0 and r(g)j,0 be the jth columns of M0 and R(g)

0

respectively. Define the jth columns of M̂ and R̂(g) as m̂j and r̂(g)j respectively. We first
state some results established by Cai et al. (2011) in the proof of their Theorem 1.

Lemma 4 Suppose Condition 1 holds. For any fixed g = 1, . . . , G, with probability greater
than 1− 4p−τ ,

max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ C0

(
log p

n

)1/2

,

where C0 is given in Theorem 1.
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Proof [Proof of Theorem 1] It follows from Lemma 4 that

max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ λ2/(3CM ) for all g = 1, . . . , G, (6)

with probability greater than 1− 4Gp−τ . All following arguments assume (6) holds. First,
we have that

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ = |Ω(g)

0 (Σ(g)

0 Ω̂(g)

1 − I)ej |∞ ≤ ||Ω(g)

0 ||L1
|(Σ(g)

0 Ω̂(g)

1 − I)ej |∞
≤ CM

{
|(Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ + |(Σ̂(g)Ω̂(g)

1 − I)ej |∞
}

≤ CM |Ω̂(g)

1 ej |1|Σ
(g)

0 − Σ̂(g)|∞ + CMλ2

≤ |Ω̂(g)

1 ej |1λ2/3 + CMλ2,

for all g = 1, . . . , G. Second, note that {M0, R
(1)

0 , . . . , R(G)

0 } is a feasible solution of (3) as

|I − Σ̂(g)(M0 +R(g)

0 )|∞ = |(Σ(g)

0 − Σ̂(g))Ω(g)

0 |∞ ≤ ||Ω
(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞ ≤ CMλ2/(3CM ) <
λ2 and λ1 = λ2. Therefore, we have that

G∑
g=1

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤
G∑

g=1

|Ω̂(g)

1 ej |1λ2/3 +GCMλ2 ≤ G

{
|m̂j |1 +G−1

G∑
g=1

|r̂(g)

j |1

}
λ2/3 +GCMλ2

≤ G

{
|mj,0|1 +G−1

G∑
g=1

|r(g)

j,0|1

}
λ2/3 +GCMλ2

≤ G3CMλ2/3 +GCMλ2 = 2GCMλ2 = 6GC2
MC0(log p/n)1/2.

By the inequality

max
ij

 1

G

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0|

 ≤ max
j

1

G

G∑
g=1

|(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤ 6C2
MC0

(
log p

n

)1/2

,

the proof is completed.

Lemma 5 With probability greater than 1− 2(1 +G)p−τ , the following holds:

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≤ C0

(
G log p

n

)1/2

.

Proof We adopt a similar technique used in Cai et al. (2011) for the proof of their Theorem
1. Without loss of generality, we assume that µ(g)

i = 0 for all i and g. Let y(g)

kij := x(g)

ki x
(g)

kj −
E(x(g)

ki x
(g)

kj ). Define x̄(g)

i :=
∑n

k=1 x
(g)

ki /n; i = 1, . . . , p, g = 1, . . . , G. Then
∑G

g=1(σ̂(g)

ij −σ
(g)

ij,0) =∑G
g=1

(∑n
k=1 y

(g)

kij/n− x̄
(g)

i x̄
(g)

j

)
. Let t := η(log p)1/2(nG)−1/2 and C1 := 2 + τ + η−1K2.

Using the Markov’s inequality and the inequality | exp(s) − 1 − s| ≤ s2 exp{max(s, 0)} for
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any s ∈ R, we can show that

pr

{
1

n

G∑
g=1

n∑
k=1

y(g)

kij ≥ η
−1C1

(
G log p

n

)1/2
}

= pr

{
G∑

g=1

n∑
k=1

y(g)

kij ≥ η
−1C1 (nG log p)

1/2

}

≤ exp
{
−tη−1C1(nG log p)1/2

}
E

{
exp

(
t

G∑
g=1

n∑
k=1

y(g)

kij

)}

= exp {−C1 log p}
G∏

g=1

n∏
k=1

E
{

exp(ty(g)

kij)
}

= exp

[
−C1 log p+

G∑
g=1

n log
{
E
(
ety

(g)
kij

)}]

≤ exp

[
−C1 log p+

G∑
g=1

n
{
E
(
ety

(g)
kij

)
− 1
}]

= exp

[
−C1 log p+

G∑
g=1

n
{
E
(
ety

(g)
kij − ty(g)

kij − 1
)}]

≤ exp

{
−C1 log p+

G∑
g=1

nt2E
(
y(g)

kij

2
e|ty

(g)
kij |
)}

≤ exp

{
−C1 log p+

G∑
g=1

(ηG)−1K2 log p

}
. (7)

The last inequality (7) holds since

nt2E

(
y(g)

kij

2
e|ty

(g)
kij |
)

= (ηG)−1(log p)E

{(
η3/2|y(g)

kij |
)2
et|y

(g)
kij |
}

and

E

{(
η3/2|y(g)

kij |
)2
et|y

(g)
kij |
}
≤ E

{
eη

3/2|y(g)kij |et|y
(g)
kij |
}
≤ E

{
eη

3/2|y(g)kij |eη
3/2|y(g)kij |

}
≤ E

{
eη|y

(g)
kij |
}
≤ E

{
e
η|x(g)ki x

(g)
kj |+ηE

(
|x(g)ki x

(g)
kj |

)}
≤
{
E

(
eη|x

(g)
ki x

(g)
kj |
)}2

≤
{
E

(
eηx

(g)
ki

2
/2+ηx

(g)
kj

2
/2

)}2

≤ E
(
eηx

(g)
ki

2
)
E

(
eηx

(g)
kj

2
)
≤ K2.

From (7), it follows that

pr

 1

n

G∑
g=1

n∑
k=1

y(g)

kij ≥ η
−1C1

(
G log p

n

)1/2
 ≤ exp

{
−C1 log p+ η−1K2 log p

}
≤ p−(τ+2).
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Therefore, we have

pr

max
ij

∣∣∣∣∣∣ 1n
G∑
g=1

n∑
k=1

y(g)

kij

∣∣∣∣∣∣ ≥ η−1C1

(
G log p

n

)1/2
 ≤ 2p−τ . (8)

Next, let C2 = 2+τ+η−1(eK)2. Cai et al. (2011) showed in the proof of their Theorem
1 that

pr

(
max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2 log p/n

)
≤ 2p−τ−1.

Using this result, we have that

pr

max
ij
|
G∑
g=1

x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n

 ≤ pr

 G∑
g=1

max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n


≤

G∑
g=1

pr

(
max
ij
|x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2 log p/n

)

≤
G∑
g=1

2p−τ−1 ≤ 2Gp−τ (9)

By (8), (9) and the inequality C0 > η−1C1 + η−2C2
2 (G log p/n)1/2, we see that

pr

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≥ C0

(
G log p

n

)1/2


≤ pr

max
ij

∣∣∣∣∣∣ 1n
G∑
g=1

n∑
k=1

y(g)

kij

∣∣∣∣∣∣ ≥ η−1C1

(
G log p

n

)1/2


+ pr

max
ij
|
G∑
g=1

x̄(g)

i x̄
(g)

j | ≥ η
−2C2

2G log p/n


≤ 2(1 +G)p−τ .

The proof is completed.

Proof [Proof of Theorem 2] By Lemma 4 and 5, we see that

max
ij
|
G∑
g=1

(σ̂(g)

ij − σ
(g)

ij,0)| ≤ C0

(
G log p

n

)1/2

and max
ij
|σ̂(g)

ij − σ
(g)

ij,0| ≤ C0

(
log p

n

)1/2

, (10)

for all g = 1, . . . , G with probability greater than 1−2(1+3G)p−τ . All following arguments
assume (10) holds. Note that {M0, R

(1)

0 , . . . , R(G)

0 } is a feasible solution of (3) as

|I − Σ̂(g)(M0 +R(g)

0 )|∞ = |(Σ(g)

0 − Σ̂(g))Ω(g)

0 |∞ ≤ ||Ω
(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞
≤ CMC0(log p/n)1/2 = λ2
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and

|G−1
G∑

g=1

{
I − Σ̂(g)(M0 +R(g)

0 )
}
|∞

≤ |G−1
G∑

g=1

(Σ(g)

0 − Σ̂(g))M0|∞ + |G−1
G∑

g=1

(Σ(g)

0 − Σ̂(g))R(g)

0 |∞

≤ ||M0||L1
|G−1

G∑
g=1

(Σ(g)

0 − Σ̂(g))|∞ +G−1
G∑

g=1

||R(g)

0 ||L1
|Σ(g)

0 − Σ̂(g)|∞

≤ CMC0 {log p/(nG)}1/2 + CRC0 {log p/(nG)}1/2 = λ1.

Now, we find an upper bound of |G(M̂ −M0)ej |∞ = |
∑G

g=1(Ω̂(g)

1 −Ω(g)

0 )ej |∞. In particular,
we use

|
G∑
g=1

(Ω̂(g)

1 − Ω(g)

0 )ej |∞ ≤ |
G∑
g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ + |
G∑
g=1

Ω(g)

0 (Σ̂(g)Ω̂(g)

1 − I)ej |∞. (11)

First, consider the first term in the right-hand side of (11). We can show that

|
G∑

g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ ≤ |
G∑

g=1

M0(Σ(g)

0 − Σ̂(g))m̂j |∞ + |
G∑

g=1

M (g)

0 (Σ(g)

0 − Σ̂(g))r̂(g)

j |∞

+ |
G∑

g=1

R(g)

0 (Σ(g)

0 − Σ̂(g))m̂j |∞ + |
G∑

g=1

R(g)

0 (Σ(g)

0 − Σ̂(g))r̂(g)

j |∞

≤ ||M0||L1

{
|

G∑
g=1

(Σ(g)

0 − Σ̂(g))|∞|m̂j |1 +

G∑
g=1

|Σ(g)

0 − Σ̂(g)|∞|r̂(g)

j |1

}

+

G∑
g=1

|R(g)

0 (Σ(g)

0 − Σ̂(g))|∞|m̂j |1 +

G∑
g=1

|R(g)

0 (Σ(g)

0 − Σ̂(g))|∞|r̂(g)

j |1.

Using the assumptions ||R(g)

0 ||L1 ≤ CR and
∑G

g=1 ||R
(g)

0 ||L1 ≤ G1/2CR, we have

|
G∑

g=1

Ω(g)

0 (Σ(g)

0 − Σ̂(g))Ω̂(g)

1 ej |∞ ≤ CMC0(G log p/n)1/2|m̂j |1 + CMC0(log p/n)1/2
G∑

g=1

|r̂(g)

j |1

+ CRC0(G log p/n)1/2|m̂j |1 + CRC0(log p/n)1/2
G∑

g=1

|r̂(g)

j |1

≤ C0(CM + CR)(G log p/n)1/2(|m̂j |1 +G−1/2
G∑

g=1

|r̂(g)

j |1)

≤ C0(CM + CR)(G log p/n)1/2(|mj,0|1 +G−1/2
G∑

g=1

|r(g)

j,0|1)

≤ C0(CM + CR)2(G log p/n)1/2. (12)
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For the second term in the right-hand side of (11), note that

|
G∑
g=1

Ω(g)

0 (Σ̂(g)Ω̂(g)

1 − I)ej |∞

≤ |
G∑
g=1

M0(Σ̂(g)Ω̂(g) − I)ej |∞ + |
G∑
g=1

R(g)

0 (Σ̂(g)Ω̂(g) − I)ej |∞

≤ ||M0||L1
|
G∑
g=1

(Σ̂(g)Ω̂(g) − I)ej |∞ +

G∑
g=1

||R(g)

0 ||L1
|(Σ̂(g)Ω̂(g) − I)ej |∞

≤ CMλ1 +G1/2CRλ2 = C0CM (CM + 2CR)(G log p/n)1/2. (13)

By (11), (12), (13) and the equality |M̂ −M0|∞ = maxj |(M̂ −M0)ej |∞ , we have

|M̂ −M0|∞ ≤ C0(2C2
M + 4CMCR + C2

R)

(
log p

nG

)1/2

.

The proof is completed.

Proof [Proof of Theorem 3] By Theorem 1, we see that

max
ij

G∑
g=1

|ω̂(g)

ij − ω
(g)

ij,0| ≤ 2GCMλ2 ≤ δn, (14)

with probability greater than 1 − 4Gp−τ . We show that S0 = Ŝ when (14) holds. For
any (i, j, g) /∈ S0, we have |ω̂(g)

ij | = |ω̂(g)

ij − ω
(g)

ij,0| ≤
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| ≤ δn. Therefore, we

see ω̃(g)

ij = 0, which implies Ŝ ⊂ S0. On the other hand, for any (i, j, g) ∈ S0, we have

|ω̂(g)

ij | ≥ |ω
(g)

ij,0| − |ω̂
(g)

ij − ω
(g)

ij,0| ≥ |ω
(g)

ij,0| −
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| > δn. Therefore, we see that

ω̃(g)

ij 6= 0, which implies S0 ⊂ Ŝ. In summary, we see that S0 = Ŝ if (14) holds, which implies

that pr(S0 = Ŝ) ≥ pr(maxij
∑G

g=1 |ω̂
(g)

ij − ω
(g)

ij,0| ≤ δn).
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