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Abstract

In this paper we provide theoretical support for the so-called “Sigmoidal Gaussian Cox
Process” approach to learning the intensity of an inhomogeneous Poisson process on a d-
dimensional domain. This method was proposed by Adams, Murray and MacKay (ICML,
2009), who developed a tractable computational approach and showed in simulation and
real data experiments that it can work quite satisfactorily. The results presented in the
present paper provide theoretical underpinning of the method. In particular, we show how
to tune the priors on the hyper parameters of the model in order for the procedure to
automatically adapt to the degree of smoothness of the unknown intensity, and to achieve
optimal convergence rates.

Keywords: inhomogeneous Poisson process, Bayesian intensity learning, Gaussian pro-
cess prior, optimal rates, adaptation to smoothness

1. Introduction

Inhomogeneous Poisson processes are widely used models for count and point data in a
variety of applied areas. A typical task in applications is to learn the underlying intensity
of a Poisson process from a realised point pattern. In this paper we consider nonparametric
Bayesian approaches to this problem. These do not assume a specific parametric form of the
intensity function and produce posterior distributions which do not only give an estimate
of the intensity, for example through the posterior mean or mode, but also give a measure
of the remaining uncertainty through the spread of the posterior.

Several papers have explored nonparametric Bayesian approaches in this setting. An
early reference is Mgller et al. (1998), who study log-Gaussian priors. Gugushvili and Spreij
(2013) recently considered Gaussian processes combined with different, non-smooth link
functions. Kernel mixtures priors are considered in Kottas and Sansé (2007). Spline-based
priors are used in DiMatteo et al. (2001) and Belitser et al. (2013).

The present study is motivated by a method that is not covered by earlier theoretical
papers, namely the method of Adams et al. (2009). These authors presented the first
approach that is also computationally fully nonparametric in the sense that it does not
involve potentially inaccurate finite-dimensional approximations. The method involves a
prior on the intensity that is a random multiple of a transformed Gaussian process (GP).
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Both the hyper parameters of the GP and the multiplicative constant are endowed with
priors as well, resulting in a hierarchical Bayes procedure (details in Section 2.3). Simulation
experiments and real data examples in Adams et al. (2009) show that the method can give
very satisfactory results.

The aim of this paper is to advance the theoretical understanding of the method of
Adams et al. (2009), which they termed “Sigmoidal Gaussian Cox Process” (SGCP). It is
by now well known both from theory and practice that nonparametric Bayesian methods
need to be tuned very carefully to produce good results. An unfortunate choice of the prior
or incorrectly tuned hyper parameters can easily result in procedures that give misleading
results or that make sub-optimal use of the information in the training data. See for
instance the by now classical reference Diaconis and Freedman (1986), or the more recent
paper van der Vaart and van Zanten (2011) and the references therein.

A challenge in this problem (and in nonparametric function learning in general) is to
devise a procedure that avoids overfitting and underfitting. The difficulty is that the appro-
priate degree of “smoothing” depends on the (unknown) regularity of the intensity function
that produces the data. Indeed, intuitively it is clear that if the function is very smooth then
to learn the intensity at a certain location we can borrow more information from neighbor-
ing points than if it is very rough. Ideally we want to have a procedure that automatically
uses the appropriate degree of smoothing, that is, that adapts to regularity.

To address this issue theoretically it is common to take an asymptotic point of view.
Specifically, we assume that we have n independent sets of training data, produced by
Poisson processes on the d-dimensional domain S = [0,1]? (say), with the same intensity
function \g : S — [0, 00). We aim to construct the learning procedure such that we achieve
an optimal learning rate, irrespective of the regularity level of the intensity. In the problem
at hand it is known that if Ay has regularity § > 0, then the best rate that any procedure
can achieve is of the order n~5/(4+28) This can be made precise in the minimax framework,
for instance. For a fixed estimation or learning procedure, one can determine the largest
expected loss that is incurred when the true function generating the data is varied over
a ball of functions with fixed regularity 5, say. This will depend on n and quantifies the
worst-case rate of convergence for that fixed estimator for S-regular truths. The minimax
rate is obtained by minimising this over all possible estimators. So it is the best convergence
rate that any procedure can achieve, uniformly over a ball of functions with fixed regularity
B. See, for example, Tsybakov (2009) for a general introduction to the minimax approach
and Kutoyants (1998) or Reynaud-Bouret (2003) for minimax results in the context of the
Poisson process model that we consider in this paper.

Note that the smoothness degree is unknown to us, so we can not use it in the construc-
tion of the procedure, but still we want that the posterior contracts around Ag at the rate
nB/d+28) a5 p — oo, if Ag is S-smooth. In this paper we prove that with appropriate
priors on the hyper parameters, the SGCP approach of Adams et al. (2009) attains this
optimal rate (up to a logarithmic factor). It does so for every regularity level 8 > 0, so it
is fully rate-adaptive.

Technically the paper uses the mathematical framework for studying contraction rates
for Gaussian and conditionally Gaussian priors as developed in van der Vaart and van Zanten
(2008a) and van der Vaart and van Zanten (2009). We also use an extended version of a
general result for Bayesian inference for 1-dimensional Poisson processes from Belitser et al.
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(2013). On a general level the line of reasoning is similar to that of van der Vaart and van
Zanten (2009). However, due to the presence of a link function and a random multiplicative
constant in the SGCP model (see Section 2 ahead) the results of the latter paper do not
apply in the present setting and additional mathematical arguments are required to prove
the desired results.

The paper is organised as follows. In Section 2 we describe the Poisson process ob-
servation model and the SGCP prior model, which together determine a full hierarchical
Bayesian model. The main result about the performance of the SGCP approach is presented
and discussed in Section 3. Mathematical proofs are given in Section 4. In Section 5 we
make some concluding remarks.

2. The SGCP Model

In this section we describe the observation model and the SGCP prior model for the intensity.

2.1 Observation Model

We assume we observe n independent copies of an inhomogeneous Poisson process on the
d-dimensional unit cube S = [0,1]? (adaptation to other domains is straightforward). We
denote these observed data by N', ..., N™. Formally every N’ is a counting measure on sub-
sets of S. The object of interest is the underlying intensity function. This is a (integrable)
function X : [0,1]¢ — [0, 00) with the property that given ), every N7 is a random counting
measure on [0, 1]¢ such that N7(A) and N7(B) are independent if the sets A, B C [0,1]? are
disjoint and the number of points N7 (B) falling in the set B has a Poisson distribution with
mean [ A(s) ds. If we want to stress that the probabilities and expectations involving the
observations N7 depend on A, we use the notations Py and E,, respectively. We note that
instead of considering observations from n independent Poisson processes with intensity A,
one could equivalently consider observations from a single Poisson process with intensity
naA.

2.2 Prior Model

The SGCP model introduced in Adams et al. (2009) postulates a-priori that the intensity
function A is of the form
A(s) = Na(g(s)), se s, (2.1)

where A* > 0 is an upper bound on A, g is a GP indexed by S and o is the sigmoid, or
logistic function on the real line, defined by o(z) = (1 +e7%)~!. In the computational
section of Adams et al. (2009) ¢ is modeled as a GP with squared exponential covariance
kernel and zero mean, with a prior on the length scale parameter. The hyper parameter \*
is endowed with an independent gamma prior.

In the mathematical results presented in this paper we allow a bit more flexibility in the
choice of the covariance kernel of the GP, the link function o and the priors on the hyper
parameters. We assume that g is a zero-mean, homogenous GP with covariance kernel given
in spectral form by

Eg(s)g(t) = / N ey de,  ste S, (2.2)
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where ¢ > 0 is an (inverse) length scale parameter and y is a spectral density on R? such
that the map a — p(af) on (0, 00) is decreasing for every ¢ € R? and that satisfies

/e‘s”“u(df) < 00 (2.3)

for some ¢ > 0 (the Euclidean inner product and norm are denoted by (-,-) and | - |,
respectively). Note that, in particular, the centered Gaussian spectral density satisfies this
condition and corresponds to the squared exponential kernel

Eg(s)g(t) = e~ lt=eI",

We endow the length scale parameter ¢ with a prior with density py on [0, 00), for which we
assume the bounds, for positive constants C1, D1, Ca, Ds, nonnegative constants p, ¢, and
every sufficiently large x > 0,

Ch2P exp(—Di1x% log? z) < py(z) < Caa? exp(—Daz?log? z). (2.4)

This condition is, for instance, satisfied if ¢ has a gamma distribution, which is a common
choice in practice. Note however that the technical condition (2.4) is only a condition on
the tail of the prior on £. On the upper bound A* we put a prior satisfying an exponential
tail bound. Specifically, we use a positive, continuous prior density py- on [0, 00) such that
for some ¢y, Cy, k > 0,

A pa-(z) dz < Coe™ 0% (2.5)

0

for all Ag > 0. Note that this condition is fulfilled if we place a gamma prior on A*. Finally,
we use a strictly increasing, infinitely smooth link function o : R — (0,1) in (2.1) that

satisfies
[Vo(z) = Vo(y)| < clo —y| (2.6)

for all z,y € R. This condition is in particular fulfilled for the sigmoid function employed
by Adams et al. (2009). It holds for other link functions as well, for instance for the cdf of
the standard normal distribution.

2.3 Full Hierarchical Model
With the assumptions made in the preceding sections in place, the full hierarchical specifi-
cation of the prior and observation model can then be summarised as follows:
¢ ~py (satisfying (2.4))
A* ~ py+  (satisfying (2.5))
g |4, \* ~ GP with kernel given by (2.2)—(2.3)
A g, L, \" ~ defined by (2.1), with smooth o satisfying (2.6)
N, ... ,N™|\ g,¢,\* ~ independent Poisson processes with intensity \.

Note that under the prior, several quantities are, by construction, independent. Specifically,
£ and A, are independent, and g and \* are independent.
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The main results of the paper concern the posterior distribution of the intensity function
)\, that is, the conditional A | N', ..., N™. Throughout we will denote the prior on \ by II
and the posterior by II(-| N!,..., N™). In this setting Bayes’ formula asserts that

[N, NP A TI(A)
T [p(NT, NN TN

(A€ B|N',...,N") (2.7)

where the likelihood is given by

p(N',...,N"|)\) = H oJs M@)N¥ (da) — [ (A(@)~1) da
i=1

(see, for instance, Kutoyants, 1998).

3. Main Result

Consider the prior and observations model described in the preceding section and let
I(-| N',...,N™) be the corresponding posterior distribution of the intensity function \.

The following theorem describes how quickly the posterior distribution contracts around
the true intensity Ao that generates the data. The rate of contraction depends on the
smoothness level of \g. This is quantified by assuming that Ay belongs to the Holder space
C?10,1])¢ for B > 0. By definition a function on [0, 1]¢ belongs to this space if it has partial
derivatives up to the order || and if the |B|th order partial derivatives are all Holder
continuous of the order § — |3]. Here |B] denotes the greatest integer strictly smaller
than 3. The rate of contraction is measured in the L?-distance between the square root of
intensities. This is the natural statistical metric in this problem, as it can be shown that
in this setting the Hellinger distance between the models with intensity functions A; and
A is equivalent to min{|[v/A; — v Xal|2, 1} (see Belitser et al., 2013). Here ||f||2 denotes the
L2-norm of a function on S = [0,1]%, that is, || f[|3 = [ f*(s) ds.

Theorem 1 Suppose that Ay € CP[0,1]¢ for some 8 > 0 and that g is strictly positive.
Then for all sufficiently large M > 0,

Ex IO : [VA = Volla = Mn=8/@+28) 1ogP n| N1, ... N™) = 0 (3.1)
as n — 0o, for some p > 0.

The theorem asserts that if the intensity Ag that generates the data is S-smooth, then,
asymptotically, all the posterior mass is concentrated in (Hellinger) balls around Ao with
a radius that is up to a logarithmic factor of the optimal order n#/(@+28)  Since the
procedure does not use the knowledge of the smoothness level 5, this indeed shows that the
method is rate-adaptive, that is, the rate of convergence adapts automatically to the degree
of smoothness of the true intensity. Let us mention once again that the conditions of the
theorem are in particular fulfilled if in (2.1), A* is taken gamma, o is the sigmoid (logistic)
function, and ¢ is a squared exponential GP with length scale ¢, with ¢¢ a gamma variable.

2913



KIRICHENKO AND VAN ZANTEN

4. Proof of Theorem 1

To prove the theorem we employ an extended version of a result from Belitser et al. (2013)
that gives sufficient conditions for having (3.1) in the case d = 1, cf. their Theorem 1.
Adaptation to the case of a general d € N is straightforward. To state the result we
need some (standard) notation and terminology. For a set of positive functions F we write
VF ={f,f € F}. Fore > 0andanorm ||-|| on F, let N(e, F,||-||) be the minimal number
of balls of radius e with respect to norm || - || needed to cover F. The uniform norm || f||co
of a function f on S is defined, as usual, as || f||cc = supseg |f(s)|. The space of continuous
function on S is denoted by C(S). As usual, a A b = min{a, b} and a V b = max{a, b}.

Let IT now be a general prior on the intensity function A and let TI(-| N',... N™) be
the corresponding posterior (2.7).

Theorem 2 Assume that Ao is bounded away from 0. Suppose that for positive sequences
Sy 0n — 0 such that n(d, A §,)% — 00 as n — oo and constants c1,co > 0, it holds that for
all L > 1, there exist subsets F,, C C(S) and a constant c3 such that

1 —TI(F,) < e Fnon, (4.1)
TN [|A = Aolloo < 6n) = cre™e20n, (4.2)
10g N(Bn, /F, || - I|2) < csno.. (4.3)

Then for e, = 0, V 0, and all sufficiently large M > 0,
Ex, IO : [V = vV oll2 = Me,|NY, .. N™) —= 0 (4.4)
as n — 0o.

We note that this theorem has a form that is commonly encountered in the literature
on contraction rates for nonparametric Bayes procedures. The so-called “prior mass condi-
tion” (4.2) requires that the prior puts sufficient mass near the true intensity function Ag
generating the data. The “remaining mass condition” (4.1) and the “entropy condition”
(4.3) together require that “most” of the prior mass should be concentrated on so-called
“sieves” F, that are not too large in terms of their metric entropy. The sieves grow as
n — oo and in the limit they capture all the posterior mass.

In the subsequent subsections we will show that the prior defined in Section 2.3 fulfills the
conditions of this theorem, for 6, = n~2/(28+d) (log n)*1 and §,, = Lin =0/ (28+d) (log n)(d+1)/242k1
with L1 > 0 and k1 = ((1 +d) V q)/(2+ d/$3). The proofs build on earlier work, especially
from van der Vaart and van Zanten (2009), in which results like (4.1)—(4.3) have been de-
rived for GP’s like g. Here we extend and adapt these results to deal with the additional
link function o and the prior on the maximum intensity A\*.

4.1 Prior Mass Condition

In this section we show that with \*, ¢ and ¢ as specified in Section 2.3 and \g € C?(S),
we have

P([X*0(g) = Mlloo < 8n) > cre ez (4.5)
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for constants ¢q1,co > 0 and J,, as defined above.
The link function o is strictly increasing and smooth, hence it has a smooth inverse
o~1:(0,1) = R. Define the function wy on S by

wo(s) = 0_1(2|)\§\((j‘10), s €S,

so that Ao = 2||[\o||cco(wo). Since the function \g is positive and continuous on the compact
set S, it is bounded away from 0 on S, say A\g = a > 0. It follows that \g(s)/2||Ao||cc Vvaries
in the compact interval [a/2||A\o||c0, 1/2] as s varies in S, hence wy inherits the smoothness
of Ao, that is, wg € C?(S).

Now observe that for ¢ > 0,

P([Ao(9) = dolloo < 2¢)
= P([(X" = 2[[Aolleo)a(9) + 2[[Aolloo(a(9) — o(w0))[lo < 2¢)
2 P(IA" = 2| Xolloc| < €)P(llo(g) = o(wo)lleo < €/2[[Aolloo)-

Since A* has a positive, continuous density the first factor on the right is bounded from
below by a constant times e. Since the function /o is Lipschitz by assumption, the second
factor is bounded from below by P(||g — wo||cc < ce) for a constant ¢ > 0. By Theorem 3.1
in van der Vaart and van Zanten (2009) we have the lower bound

)
P(|lg — wolloe < 8n) = e,

with d,, as specified above. The proof of (4.5) is now easily completed.

4.2 Construction of Sieves

Let H’ be the RKHS of the GP g with covariance (2.2) and let H{ be its unit ball (see
van der Vaart and van Zanten, 2008b for background on these notions). Let B; be the unit
ball in C[0, 1]¢ relative to the uniform norm. Define

Fo= | Ao (Gn),
A<,

where
T
Gy = [Mm /7”}]1’1“” +gn1831} U U (M,HY) +e,B1 | ,
" as<Yn

and A,, M, Vn, ™n and &, are sequences to be determined later. In the next two subsections
we study the metric entropy of the sieves F;, and the prior mass of their complements.

4.3 Entropy
Since /o is bounded and Lipschitz we have, for a,b € [0, \,,], some ¢ > 0 and f,g € G,

IVao(f) = Vbo(9)lse < [Va— Vol +ev/Aullf = glloc-
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Since |v/a — Vb < +/]a — b| for a,b > 0, it follows that for ¢ > 0,

N2y A Vs [ l2) < NV Ans [0, 2] /T DN e/, G, | - lloo),

and hence

1
log N (22 s /P |- [12) S 1og (=) +log N2/, G, |- 1)

3

By formula (5.4) from van der Vaart and van Zanten (2009),

)

3/9 1+d
2/ rm> . 210g2Mm/HMH

En En

for ||u|| the total mass of the spectral measure y, 72 the second moment of y, a constant
K>0 v, = an/(ZT\/&Mn), rn > A for some constant A > 0, and given that the following

relations hold:
dMAMB2\ o, > 2632, Mp/ ||| > en. (4.6)

By substituting 7, = e,/ An we get that for some constants K; and Ko,

3/47 13/2 11/4 1+d 1/2

M AN A 2T, MM,

108 N (200, V/Fos || - |12) < Kird <1og 7 ) + Kylog 22—
n n

when M,, > 1. In terms of 77 the conditions (4.6) can be rewritten as
dAMBPNY 27, > 232 MG ALY A pl] > . (4.7)

So we conclude that we have the entropy bound

108 N (7l v/ Fus || - |I2) < nig?

for sequences A\, M,, r, and 7, satisfying (4.7) and

3/47 r3/2 11/4 1+d 1/2
(log AN 2q \/277«”> MMy (48)

Krd ﬁ3/2 < nﬁ,zl, Kslog
n

n

Tin

4.4 Remaining Mass

By conditioning we have

P(\olg) ¢ F) = /0 T P(Alg) & Falpa- (V) d

An
< [ POete) € Fomear+ [ pean

n

By (2.5) the second term is bounded by a constant times exp(—coA%). For the first term,
note that for A < \,, we have

A No(Gn) D a(Gn),

N<An
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hence P(Ao(g) ¢ Fn) < P(g € Gn). From (5.3) in van der Vaart and van Zanten (2009) we
obtain the bound
Karh—d+1e=Dorflog?r

P < —M2/8

for some K3 > 0, &, < g¢ for a small constant g9 > 0, and M, r, and &, satisfying
M2 > 16 Kyre(log(rn/en)) T, o > 1, (4.9)

where K is some large constant. It follows that P(g ¢ G,,) is bounded above by a multiple
of exp (—Ln?) for a given constant L and 7, = An&n, provided M, rp, 7, and &, satisfy
(4.9) and

Dor®logdry, > 2Lni2, 1241 < elin M2 > 8Lnip. (4.10)

n

Note that in terms of 7,, (4.9) can be rewritten as
M2 > 16 K47 (log(rnhn /7)) e, 7 > 1 (4.11)
We conclude that if (4.11),(4.10) holds and
coNE > LniZ, (4.12)

then .
P(\o(g & Fn)) S e Fin.

4.5 Completion of the Proof

In the view of the preceding it only remains to show that 7, 7., 7, M, > 1 and A, can
be chosen such that relations (4.7), (4.8), (4.10), (4.11) and (4.12) hold.
One can see that it is true for 7, = J,, and 7,, = J,, described in the theorem, with r,,
M,, \, as follows:
1 2k
rp = Lon2+d(logn)d ,
M, = L3 7T (log n)%ﬁkl,

d 4k
An, = Lyn~@3+d) (logn) =

for some large constants Lo, L3, Ly > 0.

5. Concluding Remarks

We have shown that the SGCP approach to learning intensity functions proposed by Adams
et al. (2009) enjoys very favorable theoretical properties, provided the priors on the hyper
parameters are chosen appropriately. The result shows there is some flexibility in the
construction of the prior. The squared exponential GP may be replaced by other smooth
stationary processes, other link functions may be chosen, and there is also a little room
in the choice of the priors on the length scale and the multiplicative parameter. This
flexibility is limited, however, and although our result only gives upper bounds on the
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contraction rate, results like those of Castillo (2008) and van der Vaart and van Zanten
(2011) lead us to believe that one might get sub-optimal performance when deviating too
much from the conditions that we have imposed. Strictly speaking the matter is open
however and additional research is necessary to make this belief precise and to describe the
exact boundaries between good and sub-optimal behaviours.

We expect that a number of generalizations of our results are possible. For instance,
it should be possible to obtain generalizations to anisotropic smoothness classes and priors
as considered in Bhattacharya et al. (2014), and classes of analytic functions as studied in
van der Vaart and van Zanten (2009). These generalizations take considerable additional
technical work however and are therefore not worked out in this paper. We believe they
would not change the general message of the paper.

Acknowledgments

Research supported by the Netherlands Organisation for Scientific Research, NWO.

References

Adams, R. P., Murray, I. and MacKay, D. J. (2009). Tractable nonparametric Bayesian
inference in Poisson processes with Gaussian process intensities. In Proceedings of the
26th Annual International Conference on Machine Learning, pp. 9-16. ACM.

Belitser, E., Serra, P. and van Zanten, J. H. (2013). Rate-optimal Bayesian intensity smooth-
ing for inhomogeneous Poisson processes. To appear in J. Statist. Plann. Inference,
arXiw:1504.6017 .

Bhattacharya, A., Pati, D. and Dunson, D. (2014). Anisotropic function estimation using
multi-bandwidth Gaussian processes. Ann. Statist. 42(1), 352-381.

Castillo, I. (2008). Lower bounds for posterior rates with Gaussian process priors. Electron.
J. Stat. 2, 1281-1299.

Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates. Ann. Statist.
14(1), 1-67.

DiMatteo, I., Genovese, C. R. and Kass, R. E. (2001). Bayesian curve-fitting with free-knot
splines. Biometrika 88(4), 1055-1071.

Gugushvili, S. and Spreij, P. (2013). A note on non-parametric Bayesian estimation for
Poisson point processes. ArXiv E-prints.

Kottas, A. and Sansé, B. (2007). Bayesian mixture modeling for spatial Poisson process
intensities, with applications to extreme value analysis. Journal of Statistical Planning
and Inference 137(10), 3151-3163.

Kutoyants, Y. A. (1998). Statistical inference for spatial Poisson processes. Springer.

2918



OPTIMAL POISSON INTENSITY LEARNING WITH GP’s

Mpller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes.
Scandinavian Journal of Statistics 25(3), 451-482.

Reynaud-Bouret, P. (2003). Adaptive estimation of the intensity of inhomogeneous Poisson
processes via concentration inequalities. Probab. Theory Related Fields 126(1), 103-153.

Tsybakov, A. (2009). Introduction to Nonparametric Estimation. Springer Series in Statis-
tics. Springer, New York.

van der Vaart, A. W. and van Zanten, J. H. (2008a). Rates of contraction of posterior
distributions based on Gaussian process priors. Ann. Statist. 36(3), 1435-1463.

van der Vaart, A. W. and van Zanten, J. H. (2008b). Reproducing kernel Hilbert spaces of
Gaussian priors. IMS Collections 3, 200-222.

van der Vaart, A. W. and van Zanten, J. H. (2009). Adaptive Bayesian estimation using a
Gaussian random field with inverse gamma bandwidth. Ann. Statist. 37(5B), 2655-2675.

van der Vaart, A. W. and van Zanten, J. H. (2011). Information rates of nonparametric
Gaussian process methods. J. Mach. Learn. Res. 12, 2095-2119.

2919



	Introduction
	The SGCP Model
	Observation Model
	Prior Model
	Full Hierarchical Model

	Main Result
	Proof of Theorem 1
	Prior Mass Condition
	Construction of Sieves
	Entropy
	Remaining Mass
	Completion of the Proof

	Concluding Remarks

