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Abstract

We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs)
H over infinite, discrete and countable sets V . In this setting we analyze in detail the
distributions of the corresponding Dirac point-masses of V . Illustrations include certain
models from neural networks: An Extreme Learning Machine (ELM) is a neural network-
configuration in which a hidden layer of weights are randomly sampled, and where the
object is then to compute resulting output. For RKHSs H of functions defined on a
prescribed countable infinite discrete set V , we characterize those which contain the Dirac
masses δx for all points x in V . Further examples and applications where this question
plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete
versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to
graph-Laplacians where the set V of vertices is then equipped with a resistance metric; and
finally (iii) the study of Gaussian free fields.

Keywords: Gaussian reproducing kernel Hilbert spaces, sampling in discrete systems,
resistance metric, graph Laplacians, discrete Green’s functions

1. Introduction

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H of functions on a pre-
scribed set, say V , with the property that point-evaluation for functions f ∈H is continu-
ous with respect to the H -norm. They are called kernel spaces, because, for every x ∈ V ,
the point-evaluation for functions f ∈H , f (x) must then be given as a H -inner product
of f and a vector kx, in H ; called the kernel.

The RKHSs have been studied extensively since the pioneering papers by Aronszajn
(1943; 1948). They further play an important role in the theory of partial differential oper-
ators (PDO); for example as Green’s functions of second order elliptic PDOs (Nelson, 1957;
Haeseler et al., 2014). Other applications include engineering, physics, machine-learning
theory (Kulkarni and Harman, 2011; Smale and Zhou, 2009; Cucker and Smale, 2002),
stochastic processes (Alpay and Dym, 1993; Alpay et al., 1993; Alpay and Dym, 1992; Al-
pay et al., 2013, 2014), numerical analysis, and more (Lin and Brown, 2004; Ha Quang et al.,
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2010; Zhang et al., 2012; Lata and Paulsen, 2011; Vuletić, 2013; Schramm and Sheffield,
2013; Hedenmalm and Nieminen, 2014; Shawe-Taylor and Cristianini, 2004; Schlkopf and
Smola, 2001). But the literature so far has focused on the theory of kernel functions defined
on continuous domains, either domains in Euclidean space, or complex domains in one or
more variables. For these cases, the Dirac δx distributions do not have finite H -norm. But
for RKHSs over discrete point distributions, it is reasonable to expect that the Dirac δx
functions will in fact have finite H -norm.

An illustration from neural networks: An Extreme Learning Machine (ELM) is a neural
network configuration in which a hidden layer of weights are randomly sampled (Rasmussen
and Williams, 2006), and the object is then to determine analytically resulting output layer
weights. Hence ELM may be thought of as an approximation to a network with infinite
number of hidden units.

Here we consider the discrete case, i.e., RKHSs of functions defined on a prescribed
countable infinite discrete set V . We are concerned with a characterization of those RKHSs
H which contain the Dirac masses δx for all points x ∈ V . Of the examples and applications
where this question plays an important role, we emphasize three: (i) discrete Brownian
motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii)
energy-Hilbert spaces corresponding to graph-Laplacians; and finally (iii) RKHSs generated
by binomial coefficients. We show that the point-masses have finite H -norm in cases (i)
and (ii), but not in case (iii).

Our setting is a given positive definite function k on V × V , where V is discrete. We
study the corresponding RKHS H (= H (k)) in detail. Our main results are Theorems 1,
2, and 3 which give explicit answers to the question of which point-masses from V are in
H . Applications include Corollaries 29, 41, 46, 48, 52, and 53.

The paper is organized as follows: Section 2 leads up to our characterization (Theorem
1) of point-masses which have finite H -norm. It is applied in Sections 3 and 4 to a variety
of classes of discrete RKHSs. Section 3 deals with samples from Brownian motion, and
from the Brownian bridge process, and binomial kernels, and with kernels on sets V × V
which arise as restrictions to sample-points. Section 4 covers the case of infinite network
of resistors. By this we mean an infinite graph with assigned resistors on its edges. In
this family of examples, the associated RKHSs vary with the assignment of resistors on the
edges in G, and are computed explicitly from a resulting energy form. Our result Corollary
46 states that, for the network models, all point-masses have finite energy. Furthermore, we
compute the value, and we study V as a metric space w.r.t. the corresponding resistance
metric. These results, in turn, have direct implications (Corollaries 48, 52 and 55) for the
family of Gaussian free fields associated with our infinite network models.

A positive definite kernel k is said to be universal (Steinwart, 2002; Caponnetto et al.,
2008) if, every continuous function, on a compact subset of the input space, can be uniformly
approximated by sections of the kernel, i.e., by continuous functions in the RKHS. In
Theorem 3 we show that for the RKHSs from kernels kc in electrical network G of resistors,
this universality holds. The metric in this case is the resistance metric on the vertices of G,
determined by the assignment of a conductance function c on the edges in G.

Infinite vs finite graphs. We study “large weighted graphs” (vertices V , edges E, and
weights as functions assigned on the edges E), and our motivation derives from learning
where “learning” is understood broadly to include (machine) learning of suitable probability
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distribution, i.e., meaning learning from samples of training data. Other applications of an
analysis of weighted graphs include statistical mechanics, such as infinite spin models, and
large digital networks. It is natural to ask then how one best approaches analysis on “large”
systems. We propose an analysis via infinite weighted graphs. This is so even if some of
the questions in learning theory may in fact refer to only “large” finite graphs.

One reason for this (among others) is that statistical features in such an analysis are
best predicted by consideration of probability spaces corresponding to measures on infinite
sample spaces. Moreover the latter are best designed from consideration of infinite weighted
graphs, as opposed to their finite counterparts. Examples of statistical features which are
relevant even for finite samples is long-range order; i.e., the study of correlations between
distant sites (vertices), and related phase-transitions, e.g., sign-flips at distant sites. In
designing efficient learning models, it is important to understand the possible occurrence
of unexpected long-range correlations; e.g., correlations between distant sites in a finite
sample.

A second reason for the use of infinite sample-spaces is their use in designing efficient
sampling procedures. The interesting solutions will often occur first as vectors in an infinite-
dimensional reproducing-kernel Hilbert space RKHS. Indeed, such RKHSs serve as powerful
tools in the solution of a kernel-optimization problems with penalty terms. Once an optimal
solution is obtained in infinite dimensions, one may then proceed to study its restrictions
to suitably chosen finite subgraphs.

In general when reproducing kernels and their Hilbert spaces are used, one ends up with
functions on a suitable set, and so far we feel that the dichotomy discrete vs continuous
has not yet received sufficient attention. After all, a choice of sampling points in relevant
optimization models based on kernel theory suggests the need for a better understanding
of point masses as they are accounted for in the RKHS at hand. In broad outline, this is a
leading theme in our paper.

2. Discrete RKHSs

Definition 1 Let V be a countable and infinite set, and F (V ) the set of all finite subsets
of V . A function k : V × V → C is said to be positive definite, if∑∑

(x,y)∈F×F

k (x, y) cxcy ≥ 0 (1)

holds for all coefficients {cx}x∈F ⊂ C, and all F ∈ F (V ).

Definition 2 Fix a set V , countable infinite.

1. For all x ∈ V , set
kx := k (·, x) : V → C (2)

as a function on V .

2. Let H := H (k) be the Hilbert-completion of the span {kx : x ∈ V }, with respect to
the inner product 〈∑

cxkx,
∑

dyky

〉
H

:=
∑∑

cxdyk (x, y) (3)
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modulo the subspace of functions of zero H -norm. H is then a reproducing kernel
Hilbert space (HKRS), with the reproducing property:

〈kx, ϕ〉H = ϕ (x) , ∀x ∈ V, ∀ϕ ∈H . (4)

Note. The summations in (3) are all finite. Starting with finitely supported summa-
tions in (3), the RKHS H = H (k) is then obtained by Hilbert space completion. We
use physicists’ convention, so that the inner product is conjugate linear in the first
variable, and linear in the second variable.

3. If F ∈ F (V ), set HF = closed span{kx}x∈F ⊂ H , (closed is automatic if F is
finite.) And set

PF := the orthogonal projection onto HF . (5)

4. For F ∈ F (V ), set
KF := (k (x, y))(x,y)∈F×F (6)

as a #F ×#F matrix.

Remark 3 It follows from the above that reproducing kernel Hilbert spaces (RKHS) arise
from a given positive definite kernel k, a corresponding pre-Hilbert form; and then a Hilbert-
completion. The question arises: “What are the functions in the completion?” Now, before
completion, the functions are as specified in Definition 2, but the Hilbert space completions
are subtle; they are classical Hilbert spaces of functions, not always transparent from the
naked kernel k itself. Examples of classical RKHSs: Hardy spaces or Bergman spaces (for
complex domains), Sobolev spaces and Dirichlet spaces (Okoudjou et al., 2013; Strichartz
and Teplyaev, 2012; Strichartz, 2010) (for real domains, or for fractals), band-limited L2

functions (from signal analysis), and Cameron-Martin Hilbert spaces from Gaussian pro-
cesses (in continuous time domain).

Our focus here is on discrete analogues of the classical RKHSs from real or complex
analysis. These discrete RKHSs in turn are dictated by applications, and their features are
quite different from those of their continuous counterparts.

Definition 4 The RKHS H = H (k) is said to have the discrete mass property (H is

called a discrete RKHS), if δx ∈ H , for all x ∈ V . Here, δx (y) =

{
1 if x = y

0 if x 6= y
, i.e., the

Dirac mass at x ∈ V .

Lemma 5 Let F ∈ F (V ), x1 ∈ F . Assume δx1 ∈H . Then

PF (δx1) (·) =
∑
y∈F

(
K−1
F δx1

)
(y) ky (·) . (7)

Proof Show that
δx1 −

∑
y∈F

(
K−1
F δx1

)
(y) ky (·) ∈H ⊥

F . (8)

The remaining part follows easily from this.
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(The notation (HF )⊥ stands for orthogonal complement, also denoted H 	 HF ={
ϕ ∈H

∣∣ 〈f, ϕ〉H = 0, ∀f ∈HF

}
.)

Lemma 6 Using Dirac’s bra-ket, and ket-bra notation (for rank-one operators), the orthog-
onal projection onto HF is

PF =
∑
y∈F

∣∣ky 〉〈 k∗y∣∣ ; (9)

where

k∗x :=
∑
y∈F

(
K−1
F

)
yx
ky (10)

is the dual vector to kx, for all x ∈ V .

Proof Let k∗x be specified as in (10), then

〈k∗x, kz〉H =
∑
y∈F

〈(
K−1
F

)
yx
ky, kz

〉
H

=
∑
y∈F

(
K−1
F

)
xy
〈ky, kz〉H

=
∑
y∈F

(
K−1
F

)
xy

(KF )yz = δx,z,

i.e., k∗x is the dual vector to kx, for all x ∈ V .

For f ∈H , and F ∈ F (V ), we have∑
y∈F

∣∣ky 〉〈 k∗y∣∣ f =
∑
y∈F

〈
k∗y, f

〉
H
ky

=
∑∑

(y,z)∈F×F

(
K−1
F

)
z,y
〈kz, f〉H

= PF f.

This yields the orthogonal projection realized as stated in (9).

Now, applying (9) to δx1 , we get

PF (δx1) =
∑
y∈F

〈
k∗y, δx1

〉
H
ky

=
∑
y∈F

(∑
z∈F

(
K−1
F

)
yz
〈kz, δx1〉H

)
ky

=
∑
y∈F

(∑
z∈F

(
K−1
F

)
yz
δx1 (z)

)
ky

=
∑
y∈F

(
K−1
F δx1

)
(y) ky,
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where (
K−1
F δx1

)
(y) :=

∑
z∈F

(
K−1
F

)
yz
δx1 (z) .

This verifies (7).

Remark 7 Note a slight abuse of notations: We make formally sense of the expressions for
PF (δx) in (7) even in the case when δx might not be in H . For all finite F , we showed that
PF (δx) ∈ H . But for δx be in H , we must have the additional boundedness assumption
(18) satisfied; see Theorem 1.

Lemma 8 Let F ∈ F (V ), x1 ∈ F , then(
K−1
F δx1

)
(x1) = ‖PF δx1‖

2
H . (11)

Proof Setting ζ(F ) := K−1
F (δx1), we have

PF (δx1) =
∑
y∈F

ζ(F ) (y) kF (·, y)

and for all z ∈ F ,∑
z∈F

ζ(F ) (z)PF (δx1) (z)︸ ︷︷ ︸
ζ(F )(x1)

=
∑
F

∑
F

ζ(F ) (z) ζ(F ) (y) kF (z, y) (12)

= ‖PF δx1‖
2
H .

By Lemma 6, the LHS of (12) is given by

‖PF δx1‖
2
H = 〈PF δx1 , δx1〉H

=
∑
y∈F

(
K−1
F δx1

)
(y) 〈ky, δx1〉H

=
(
K−1
F δx1

)
(x1) = K−1

F (x1, x1) .

Corollary 9 If δx1 ∈H (see Theorem 1), then

sup
F∈F (V )

(
K−1
F δx1

)
(x1) = ‖δx1‖

2
H . (13)

The following condition is satisfied in some examples, but not all:

Corollary 10 ∃F ∈ F (V ) s.t. δx1 ∈HF ⇐⇒

K−1
F ′ (δx1) (x1) = K−1

F (δx1) (x1)

for all F ′ ⊃ F .

3084



Discrete Reproducing Kernel Hilbert Spaces

Corollary 11 (Monotonicity) If F and F ′ are in F (V ) and F ⊂ F ′, then(
K−1
F δx1

)
(x1) ≤

(
K−1
F ′ δx1

)
(x1) (14)

and

lim
F↗V

(
K−1
F δx1

)
(x1) = ‖δx1‖

2
H . (15)

Proof By (11), (
K−1
F δx1

)
(x1) = ‖PF δx1‖

2
H .

Since HF ⊂HF ′ , we have PFPF ′ = PF , so

‖PF δx1‖
2
H = ‖PFPF ′δx1‖

2
H ≤ ‖PF ′δx1‖

2
H

i.e., (
K−1
F δx1

)
(x1) ≤

(
K−1
F ′ δx1

)
(x1) .

So (14) follows; and the limit in (15) is monotone.

Theorem 1 Given V , k : V × V → R positive definite (p.d.). Let H = H (k) be the cor-
responding RKHS. Assume V is countable and infinite. Then the following three conditions
(i)-(iii) are equivalent; x1 ∈ V is fixed:

(i) δx1 ∈H ;

(ii) ∃Cx1 <∞ such that for all F ∈ F (V ), the following estimate holds:

|ξ (x1)|2 ≤ Cx1
∑∑
F×F

ξ (x)ξ (y) k (x, y) (16)

(iii) For F ∈ F (V ), set

KF = (k (x, y))(x,y)∈F×F (17)

as a #F ×#F matrix. Then

sup
F∈F (V )

(
K−1
F δx1

)
(x1) <∞. (18)

Proof (i)⇒(ii) For ξ ∈ l2 (F ), set

hξ =
∑
y∈F

ξ (y) ky (·) ∈HF .

Then 〈δx1 , hξ〉H = ξ (x1) for all ξ.
Since δx1 ∈H , then by Schwarz:∣∣〈δx1 , hξ〉H ∣∣2 ≤ ‖δx1‖2H ∑∑

F×F
ξ (x)ξ (y) k (x, y) . (19)
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But 〈δx1 , ky〉H = δx1,y =

{
1 y = x1

0 y 6= x1

; hence 〈δx1 , hξ〉H = ξ (x1), and so (19) implies (16).

(ii)⇒(iii) Recall the matrix

KF := (〈kx, ky〉)(x,y)∈F×F

as a linear operator l2 (F )→ l2 (F ), where

(KFϕ) (x) =
∑
y∈F

KF (x, y)ϕ (y) , ϕ ∈ l2 (F ) . (20)

By (16), we have

ker (KF ) ⊂
{
ϕ ∈ l2 (F ) : ϕ (x1) = 0

}
. (21)

Equivalently,

ker (KF ) ⊂ {δx1}
⊥ (22)

and so δx1

∣∣∣
F
∈ ker (KF )⊥ = ran (KF ), and ∃ ζ(F ) ∈ l2 (F ) s.t.

δx1

∣∣∣
F

=
∑
y∈F

ζ(F ) (y) k (·, y)︸ ︷︷ ︸
=:hF

. (23)

Claim. PF (δx1) = hF , where PF = projection onto HF ; see (5) and Lemma 5. (See Figure
1.) Indeed, we only need to prove that δx1 − hF ∈H 	HF , i.e.,

〈δx1 − hF , kz〉H = 0, ∀z ∈ F. (24)

But, by (23),

LHS(24) = δx1,z −
∑
y∈F

k (z, y) ζ(F ) (y) = 0.

This proves the claim.

If F ⊂ F ′, F, F ′ ∈ F (V ), then HF ⊂ HF ′ , and PFPF ′ = PF by easy facts for
projections. Hence

‖PF δx1‖
2
H ≤ ‖PF ′δx1‖

2
H , hF := PF (δx1)

and

lim
F↗V

‖δx1 − hF ‖H = 0.

(iii)⇒(i) Follows from Lemma 8 and Corollary 9.

Corollary 12 The numbers
(
ζ(F ) (y)

)
y∈F in (23) satisfies

ζ(F ) (x1) =
∑∑

(y,z)∈F×F

ζ(F ) (y) ζ(F ) (z) k (y, z) . (25)
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0

δx1

hF
ℋF

Figure 1: hF := PF (δx1)

Proof Multiply (23) by ζ(F ) (z) and carry out the summation.

Remark 13 To see that (23) is a solution to a linear algebra problem, with F = {xi}ni=1,
note that (23) ⇐⇒

k (x1, x1) k (x1, x2) · · · k (x1, xn)
k (x2, x1) k (x2, x2) · · · k (x2, xn)

...
. . .

. . .
...

...
. . .

. . .
...

k (xn, x1) k (xn, x2) · · · k (xn, xn)




ζ(F ) (x1)

ζ(F ) (x2)
...

ζ(F ) (xn−1)

ζ(F ) (xn)

 =


1
0
...
0
0

 (26)

We now resume the general case of k given and positive definite on V × V .

Corollary 14 We have
ζ(F ) (x1) = ‖PF (δx1)‖2H (27)

where
PF (δx1) =

∑
y∈F

ζ(F ) (y) ky (·) (28)

and
ζ(F ) = K−1

N (δx1) , N := #F. (29)

Proof It follows from (26) that∑
j

k (xi, xj) ζ
(F ) (xj) = δ1,i

and so multiplying by ζ(F ) (i), and summing over i, gives∑
i

∑
j

k (xi, xj) ζ
(F ) (xi) ζ

(F ) (xj)︸ ︷︷ ︸
=‖PF (δx1)‖2

H

= ζ(F ) (x1) .
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Corollary 15 We have

(i)

PF (δx1) = ζ(F ) (x1) kx1 +
∑

y∈F\{x1}

ζ(F ) (y) ky (30)

where ζF solves (26), for all F ∈ F (V );

(ii)

‖PF (δx1)‖2H = ζ(F ) (x1) (31)

and so in particular:

(iii)

0 < ζ(F ) (x1) ≤ ‖δx1‖
2
H (32)

Proof Formula (31) follows from the definition of ζ(F ) as a solution to the matrix problem
KNζ

(F ) = δx1 , but we may also prove (31) directly from

PF (δx1) =
∑
y

ζ(F ) (y) ky . (33)

Apply 〈·, δx1〉H to both sides in (33), we get

〈δx1 , PF (δx1)〉H︸ ︷︷ ︸
‖PF (δx1)‖2

H

= ζ(F ) (x1)

since PF = P ∗F = P 2
F ; i.e., a projection in the RKHS H = HV of k.

Example 1 (#F = 2) Let F = {x1, x2}, KF = (kij)
2
i,j=1, where kij := k (xi, xj). Then

(26) reads [
k11 k12

k21 k22

] [
ζF (x1)
ζF (x2)

]
=

[
1
0

]
. (34)

Set D := det (KF ) = k11k22 − k12k21, then:

ζF (x1) =
k22

D
, ζF (x2) = −k21

D
.

Example 2 Let V = {x1, x2, . . .} be an ordered set. Set Fn := {x1, . . . , xn}. Note that with

Dn = det (KFn) = det
(

(k (xi, xj))
n
i,j=1

)
, and (35)

D′n−1 = (1, 1) minor of KFn = det
(

(k (xi, xj))
n
i,j=2

)
; (36)

then

ζ(Fn) (x1) =
D′n−1

Dn
=
(
K−1
Fn
δx1
)

(x1) . (37)
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Corollary 16 We have

1

k (x1, x1)
≤ k (x2, x2)

D2
≤ · · · ≤

D′n−1

Dn
≤ · · · ≤ ‖δx1‖

2
H .

Proof Follows from (37), and if F ⊂ F ′ are two finite subsets, then

‖PF (δx1)‖2H ≤ ‖PF ′ (δx1)‖2H ≤ ‖δx1‖
2
H .

Let k : V × V → R be as specified above. Let H = H (k) be the RKHS. We set F (V ):=
all finite subsets of V ; and if x ∈ V is fixed, Fx (V ) := {F ∈ F (V ) | x ∈ F}.

For F ∈ F (V ), let KF be the #F ×#F matrix given by (k (x, y))(x,y)∈F×F . Following
Karlin and Ziegler (1996), we say that k is strictly positive iff detKF > 0 for all F ∈ F (V ).

Set DF := detKF . If x ∈ V , and F ∈ Fx (V ), set K ′F := the minor in KF obtained by
omitting row x and column x, see Figure 2.

x

x

x

x

Figure 2: The (x, x) minors, KF → K ′F .

Corollary 17 Suppose k : V × V → R is strictly positive. Let x ∈ V . Then

δx ∈H ⇐⇒ sup
F∈Fx(V )

D′F
DF

<∞. (38)

2.1 Unbounded Containment in RKHSs

Definition 18 Let K and H be two Hilbert spaces. We say that K is unboundedly
contained in H if there is a dense subspace K0 ⊂ K such that K0 ⊂H ; and the inclusion
operator, with K0 as its dense domain, is closed, i.e.,

K
incl
↪→ H , dom (incl) = K0.

Let k : V ×V → R be a p.d. kernel, and let H be the corresponding RKHS. Set K = l2 (V ),
and

K0 = span {δx | x ∈ V } . (39)
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Proposition 19 If δx ∈H for ∀x ∈ V , then l2 (V ) is unboundedly contained in H .

Proof Recall that H is the RKHS defined for a fixed p.d. kernel k : V × V → R. Let kx
be the vector in H , given by kx (y) = k (x, y), s.t.

f (x) = 〈kx, f〉H , ∀f ∈H . (40)

To finish the proof we will need:

Lemma 20 The following equation

〈δx, ky〉H = δx,y (41)

holds if δx ∈H for ∀x ∈ V .

Proof (41) is immediate from (40).

Lemma 21 On
span {kx | x ∈ V } ⊂H (42)

define Mkx := δx, then by Lemma 20, M extends to be a well defined operator M : H →
l2 (V ) with dense domain (42). We have

〈k,Mf〉l2(V ) = 〈k, f〉H , ∀k ∈ span {δx} , ∀f ∈ dom (M) . (43)

Proof By linearity, it is enough to prove that

〈δx, δy〉l2 = 〈δx, ky〉H (44)

holds for ∀x, y ∈ V . But (44) follows immediate from Lemma 20.

Corollary 22 If L : l2 (V )→H denotes the inclusion mapping with

dom (L) = span {δx : x ∈ V } ,

then we conclude that
L ⊂M∗, and M ⊂ L∗. (45)

Since dom (M) is dense in H , it follows that L∗ has dense domain; and that therefore L
is closable.

Remark 23 This also completes the proof of Proposition 19.

Corollary 24 Suppose k : V ×V → R is as given, and that H = RKHS (k). Let L be the
densely defined inclusion mapping l2 (V )→H . Then L∗L is selfadjoint with dense domain
in l2 (V ); and LL∗ is selfadjoint with dense domain in H . Moreover, the following polar
decomposition holds:

L = U (L∗L)1/2 = (LL∗)1/2 U (46)

where U is a partial isometry l2 (V )→H .
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3. Point-masses in Concrete Models

Suppose V ⊂ D ⊂ Rd where V is countable and discrete, but D is open. In this case, we
get two kernels: k on D × D, and kV := k

∣∣
V×V on V × V by restriction. If x ∈ V , then

k
(V )
x (·) = k (·, x) is a function on V , while kx (·) = k (·, x) is a function on D.

This means that the corresponding RKHSs are different, HV vs H , where HV = a
RKHS of functions on V , and H = a RKHS of functions on D.

Lemma 25 HV is isometrically contained in H via k
(V )
x 7−→ kx, x ∈ V .

Proof If F ⊂ V is a finite subset, and ξ = ξF is a function on F , then∥∥∥∑
x∈F

ξ (x) k(V )
x

∥∥∥
HV

=
∥∥∥∑

x∈F
ξ (x) kx

∥∥∥
H
.

The desired result follows from this.

We are concerned with cases of kernels k : D ×D → R with restriction kV : V × V → R,
where V is a countable discrete subset of D. Typically, for x ∈ V , we may have (restriction)
δx
∣∣
V
∈HV , but δx /∈H ; indeed this happens for the kernel k of standard Brownian motion:

D = R+;
V = an ordered subset 0 < x1 < x2 < · · · < xi < xi+1 < · · · , V = {xi}∞i=1.
In this case, we compute HV , and we show that δxi

∣∣
V
∈ HV ; while for Hm = the

Cameron-Martin Hilbert space, we have δxi /∈Hm.
Also note that δx1 has a different meaning with reference to HV vs Hm. In the first case,

it is simply δx1 (y) =

{
1 y = x1

0 y ∈ V \ {x1}
. In the second case, δx1 is a Schwartz distribution.

We shall abuse notation, writing δx in both cases.
In the following, we will consider restriction to V ×V of a special continuous p.d. kernel

k on R+ × R+. It is k (s, t) = s ∧ t = min (s, t). Before we restrict, note that the RKHS of
this k is the Cameron-Martin Hilbert space of function f on R+ with distribution derivative
f ′ ∈ L2 (R+), and

‖f‖2H :=

∫ ∞
0

∣∣f ′ (t)∣∣2 dt <∞. (47)

For details, see below.

Remark 26 (Application) The Hilbert space given by ‖·‖2H in (47) is called the Cameron-
Martin Hilbert space, and, as noted, it is the RKHS of k : R+ × R+ → R : k (s, t) := s ∧ t.
Now pick a discrete subset V ⊂ R+; then Lemma 25 states that the RKHS of the V × V
restricted kernel, k(V ) is isometrically embedded into H , i.e., setting

J (V )
(
k(V )
x

)
= kx, ∀x ∈ V ; (48)

J (V ) extends by “closed span” to an isometry HV
J(V )

−−−→ H . It further follows from the
lemma, that the range of J (V ) may have infinite co-dimension.

Note that PV := J (V )
(
J (V )

)∗
is the projection onto the range of J (V ). The ortho-

complement is as follow:

H 	HV =
{
ψ ∈H

∣∣ ψ (x) = 0, ∀x ∈ V
}
. (49)
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Example 3 Let k and k(V ) be as in (48), and set V := πZ+, i.e., integer multiples of π.
Then easy generators of wavelet functions (Bratteli and Jorgensen, 2002) yield non-zero
functions ψ on R+ such that

ψ ∈H 	HV . (50)

More precisely,

0 <

∫ ∞
0

∣∣ψ′ (t)∣∣2 dt <∞, (51)

where ψ′ is the distribution (weak) derivative; and

ψ (nπ) = 0, ∀n ∈ Z+. (52)

An explicit solution to (50)-(52) is

ψ (t) =

∞∏
n=1

cos

(
t

2n

)
=

sin t

t
, ∀t ∈ R. (53)

From this, one easily generates an infinite-dimensional set of solutions.

3.1 Brownian Motion

Consider the covariance function of standard Brownian motion Bt, t ∈ [0,∞), i.e., a Gaus-
sian process {Bt} with mean zero and covariance function

E (BsBt) = s ∧ t = min (s, t) . (54)

We now show that the restriction of (54) to V × V for an ordered subset (we fix such a set
V ):

V : 0 < x1 < x2 < · · · < xi < xi+1 < · · · (55)

has the discrete mass property (Definition 4).
Set HV = RKHS(k

∣∣
V×V ),

kV (xi, xj) = xi ∧ xj . (56)

We consider the set Fn = {x1, x2, . . . , xn} of finite subsets of V , and

Kn = k(Fn) =


x1 x1 x1 · · · x1

x1 x2 x2 · · · x2

x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn

 = (xi ∧ xj)ni,j=1 . (57)

We will show that condition (iii) in Theorem 1 holds for kV . For this, we must compute all
the determinants, Dn = det (KF ) etc. (n = #F ), see Corollary 17.

Lemma 27

Dn = det
(

(xi ∧ xj)ni,j=1

)
= x1 (x2 − x1) (x3 − x2) · · · (xn − xn−1) . (58)
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Proof Induction. In fact,
x1 x1 x1 · · · x1

x1 x2 x2 · · · x2

x1 x2 x3 · · · x3
...

...
...

...
...

x1 x2 x3 · · · xn

 ∼

x1 0 0 · · · 0
0 x2 − x1 0 · · · 0
0 0 x3 − x2 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · xn − xn−1

 ,

unitary equivalence in finite dimensions.

Lemma 28 Let

ζ(n) := K−1
n (δx1) (·) (59)

be as in (11), so that

‖PFn (δx1)‖2HV
= ζ(n) (x1) . (60)

Then,

ζ(1) (x1) =
1

x1

ζ(n) (x1) =
x2

x1 (x2 − x1)
, for n = 2, 3, . . . ,

and

‖δx1‖
2
HV

=
x2

x1 (x2 − x1)
.

Proof A direct computation shows the (1, 1) minor of the matrix K−1
n is

D′n−1 = det
(

(xi ∧ xj)ni,j=2

)
= x2 (x3 − x2) (x4 − x3) · · · (xn − xn−1) (61)

and so

ζ(1) (x1) =
1

x1
, and

ζ(2) (x1) =
x2

x1 (x2 − x1)

ζ(3) (x1) =
x2 (x3 − x2)

x1 (x2 − x1) (x3 − x2)
=

x2

x1 (x2 − x1)

ζ(4) (x1) =
x2 (x3 − x2) (x4 − x3)

x1 (x2 − x1) (x3 − x2) (x4 − x3)
=

x2

x1 (x2 − x1)

...

The result follows from this, and from Corollary 9.
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Corollary 29 PFn (δx1) = PF2 (δx1), ∀n ≥ 2. Therefore,

δx1 ∈H
(F2)
V := span{k(V )

x1 , k
(V )
x2 } (62)

and

δx1 = ζ(2) (x1) k(V )
x1 + ζ(2) (x2) k(V )

x2 (63)

where

ζ(2) (xi) = K−1
2 (δx1) (xi) , i = 1, 2.

Specifically,

ζ(2) (x1) =
x2

x1 (x2 − x1)
(64)

ζ(2) (x2) =
−1

x2 − x1
; (65)

and

‖δx1‖
2
HV

=
x2

x1 (x2 − x1)
. (66)

Proof Follows from the lemma. Note that

ζn (x1) = ‖PFn (δx1)‖2H

and ζ(1) (x1) ≤ ζ(2) (x1) ≤ · · · , since Fn = {x1, x2, . . . , xn}. In particular, 1
x1
≤ x2

x1(x2−x1) ,

which yields (66).

Remark 30 We showed that δx1 ∈ HV , V = {x1 < x2 < · · · } ⊂ R+, with the restriction
of s ∧ t = the covariance kernel of Brownian motion.

The same argument also shows that δxi ∈HV when i > 1. We only need to modify the
index notation from the case of the proof for δx1 ∈HV . The details are sketched below.

Fix V = {xi}∞i=1, x1 < x2 < · · · , then

PFn (δxi) =

{
0 if n < i− 1∑n

s=1

(
K−1
Fn
δxi
)

(xs) kxs if n ≥ i

and

‖PFn (δxi)‖
2
H =


0 if n < i− 1

1
xi−xi−1

if n = i
xi+1−xi−1

(xi−xi−1)(xi+1−xi) if n > i

Conclusion.

δxi ∈ span
{
k(V )
xi−1

, k(V )
xi , k

(V )
xi+1

}
, and (67)

‖δxi‖
2
H =

xi+1 − xi−1

(xi − xi−1) (xi+1 − xi)
. (68)
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Corollary 31 Let V ⊂ R+ be countable. If xa ∈ V is an accumulation point (from V ),
then ‖δa‖HV

=∞.

Remark 32 This computation will be revisited in Section 4, in a much wider context.

Example 4 An illustration for 0 < x1 < x2 < x3 < x4:

PF (δx3) =
∑
y∈F

ζ(F ) (y) ky (·)

ζ(F ) = K−1
F δx3 .

That is, 
x1 x1 x1 x1

x1 x2 x2 x2

x1 x2 x3 x3

x1 x2 x3 x4


︸ ︷︷ ︸

(KF (xi,xj))4i,j=1


ζ(F ) (x1)

ζ(F ) (x2)

ζ(F ) (x3)

ζ(F ) (x4)

 =


0
0
1
0



and

ζ(F ) (x3) =
x1 (x2 − x1) (x4 − x2)

x1 (x2 − x1) (x3 − x2) (x4 − x3)

=
x4 − x2

(x3 − x2) (x4 − x3)
= ‖δx3‖

2
H .

Example 5 (Sparse sample-points) Let V = {xi}∞i=1, where

xi =
i (i− 1)

2
, i ∈ N.

It follows that xi+1 − xi = i, and so

‖δxi‖
2
H =

xi+1 − xi
(xi − xi−1) (xi+1 − xi)

=
2i− 1

(i− 1) i
−−−→
i→∞

0.

We conclude that ‖δxi‖H −−−→i→∞
0 if the set V = {xi}∞i=1 ⊂ R+ is sparse.

Now, some general facts:

Lemma 33 Let k : V × V → C be p.d., and let H be the corresponding RKHS. If x1 ∈ V ,
and if δx1 has a representation as follows:

δx1 =
∑
y∈V

ζ(x1) (y) ky , (69)

then

‖δx1‖
2
H = ζ(x1) (x1) . (70)
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Proof Substitute both sides of (69) into 〈δx1 , ·〉H where 〈·, ·〉H denotes the inner product
in H .

Example 6 (Application) Suppose V = ∪nFn, Fn ⊂ Fn+1, where each Fn ∈ F (V ), then
if x1 ∈ Fn, we have

PFn (δx1) =
∑
y∈Fn

〈
x1,K

−1
Fn
y
〉
l2
ky (71)

and

‖PFn (δx1)‖2H =
〈
x1,K

−1
Fn
x1

〉
l2

=
(
K−1
Fn
δx1
)

(x1) (72)

and the expression ‖PFn (δx1)‖2H is monotone in n, i.e.,

‖PFn (δx1)‖2H ≤
∥∥PFn+1 (δx1)

∥∥2

H
≤ · · · ≤ ‖δx1‖

2
H

with

sup
n∈N
‖PFn (δx1)‖2H = lim

n→∞
‖PFn (δx1)‖2H = ‖δx1‖

2
H .

Question 34 Let k : Rd × Rd → R be positive definite, and let V ⊂ Rd be a countable
discrete subset, e.g., V = Zd. When does k

∣∣
V×V have the discrete mass property?

Examples of the affirmative, or not, will be discussed below.

3.2 Discrete RKHS from Restrictions

Let D := [0,∞), and k : D ×D → R, with

k (x, y) = x ∧ y = min (x, y) .

Restrict to V := {0} ∪ Z+ ⊂ D, i.e., consider

k(V ) = k
∣∣
V×V .

H (k): Cameron-Martin Hilbert space, consisting of functions f ∈ L2 (R) s.t.∫ ∞
0

∣∣f ′ (x)
∣∣2 dx <∞, f (0) = 0.

HV := H (kV ). Note that

f ∈H (kV )⇐⇒
∑
n

|f (n)− f (n+ 1)|2 <∞.

Lemma 35 We have δn = 2kn − kn+1 − kn−1.
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Proof Introduce the discrete Laplacian ∆, where

(∆f) (n) = 2f (n)− f (n− 1)− f (n+ 1) ,

then ∆kn = δn, and

〈2kn − kn+1 − kn−1, km〉HV
= 〈δn, km〉HV

= δn,m.

Remark 36 The same argument as in the proof of the lemma shows ( mutatis mutandis)
that any ordered discrete countable infinite subset V ⊂ [0,∞) yields

HV := H
(
k
∣∣
V×V

)
as a RKHS which is discrete in that (Definition 4) if V = {xi}∞i=1, xi ∈ R+, then δxi ∈HV ,
∀i ∈ N.

Proof Fix vertices V = {xi}∞i=1,

0 < x1 < x2 < · · · < xi < xi+1 <∞, xi →∞. (73)

Assign conductance

ci,i+1 = ci+1,i =
1

xi+1 − xi

(
=

1

dist

)
(74)

Let

(∆f) (xi) =

(
1

xi+1 − xi
+

1

xi − xi−1

)
f (xi)

− 1

xi − xi−1
f (xi−1)− 1

xi+1 − xi
f (xi+1) (75)

Equivalently,

(∆f) (xi) = (ci,i+1 + ci,i−1) f (xi)− ci,i−1f (xi−1)− ci,i+1f (xi+1) . (76)

Remark 37 The most general graph-Laplacians will be discussed in detail in Section 4
below.

Then, with (76) we have:
∆kxi = δxi

where k (·, ·) = restriction of s ∧ t from [0,∞)× [0,∞) to V × V ; and therefore

δxi = (ci,i+1 + ci,i−1) kxi − ci,i+1kxi+1 − ci,i−1kxi−1 ∈HV (77)

as the right-side in the last equation is a finite sum. Note that now the RKHS is

HV =

{
f : V → C

∣∣ ∞∑
i=1

ci,i+1 |f (xi+1)− f (xi)|2 <∞

}
.
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3.3 Brownian Bridge

Let D := (0, 1) = the open interval 0 < t < 1, and set

kbridge (s, t) := s ∧ t− st; (78)

then (78) is the covariance function for the Brownian bridge Bbri (t), i.e.,

Bbri (0) = Bbri (1) = 0 (79)

0.2 0.4 0.6 0.8 1.0

-0.05

0.05

0.10

Figure 3: Brownian bridge Bbri (t), a simulation of three sample paths of the Brownian
bridge.

Bbri (t) = (1− t)B
(

t

1− t

)
, 0 < t < 1; (80)

where B (t) is Brownian motion; see Lemma 25.
The corresponding Cameron-Martin space is now

Hbri =
{
f on [0, 1] ; f ′ ∈ L2 (0, 1) , f (0) = f (1) = 0

}
(81)

with

‖f‖2Hbri
:=

∫ 1

0

∣∣f ′ (s)∣∣2 ds <∞. (82)

If V = {xi}∞i=1, x1 < x2 < · · · < 1, is the discrete subset of D, then we have for
Fn ∈ F (V ), Fn = {x1, x2, · · · , xn},

KFn = (kbridge (xi, xj))
n
i,j=1 , (83)

see (78), and
detKFn = x1 (x2 − x1) · · · (xn − xn−1) (1− xn) . (84)

As a result, we get δxi ∈H
(bri)
V for all i, and

‖δxi‖
2

H
(bri)
V

=
xi+1 − xi−1

(xi+1 − xi) (xi − xi−1)
.

Note limxi→1 ‖δxi‖
2

H
(bri)
V

=∞.
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3.4 Binomial RKHS

Definition 38 Let V = Z+ ∪ {0}; and

kb (x, y) :=

x∧y∑
n=0

(
x

n

)(
y

n

)
, (x, y) ∈ V × V.

where
(
x
n

)
= x(x−1)···(x−n+1)

n! denotes the standard binomial coefficient from the binomial
expansion.

Let H = H (kb) be the corresponding RKHS. Set

en (x) =

{(
x
n

)
if n ≤ x

0 if n > x.
(85)

Lemma 39 (Alpay and Jorgensen, 2015)

(i) en (·) ∈H , n ∈ V ;

(ii) {en}n∈V is an orthonormal basis (ONB) in the Hilbert space H .

(iii) Set Fn = {0, 1, 2, . . . , n}, and

PFn =
n∑
k=0

|ek 〉〈 ek| (86)

or equivalently

PFnf =

n∑
k=0

〈ek, f〉H ek . (87)

then,

(iv) Formula (87) is well defined for all functions f : V → C, f ∈ Func (V ).

(v) Given f ∈ Func (V ); then

f ∈H ⇐⇒
∞∑
k=0

|〈ek, f〉H |
2 <∞; (88)

and, in this case,

‖f‖2H =
∞∑
k=0

|〈ek, f〉H |
2 .

Fix x1 ∈ V , then we shall apply Lemma 39 to the function f1 = δx1 (in Func (V )),

f1 (y) =

{
1 if y = x1

0 if y 6= x1.
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Theorem 2 We have

‖PFn (δx1)‖2H =
n∑

k=x1

(
k

x1

)2

.

The proof of the theorem will be subdivided in steps; see below.

Lemma 40 (Alpay and Jorgensen, 2015)

(i) For ∀m,n ∈ V , such that m ≤ n, we have

δm,n =

n∑
j=m

(−1)m+j

(
n

j

)(
j

m

)
. (89)

(ii) For all n ∈ Z+, the inverse of the following lower triangle matrix is this: With (see
Figure 4)

L(n)
xy =

{(
x
y

)
if y ≤ x ≤ n

0 if x < y
(90)

we have: (
L(n)

)−1

xy
=

{
(−1)x−y

(
x
y

)
if y ≤ x ≤ n

0 if x < y.
(91)

Notation: The numbers in (91) are the entries of the matrix
(
L(n)

)−1
.

Proof In rough outline, (ii) follows from (i).

L(n) =



1 0 0 0 · · · · · · 0 · · · 0 0
1 1 0 0 · · · · · · 0 · · · 0 0

1 2 1 0
...

...
...

1 3 3 1
. . .

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

... 1 0
...

...

1 · · ·
(
x
y

) (
x
y+1

)
· · · ∗ 1

. . .
...

...
...

...
...

...
. . . 0

...
...

...
...

... 1 0
1 · · ·

(
n
y

) (
n
y+1

)
· · · · · · · · · · · · n 1



Figure 4: The matrix Ln is simply a truncated Pascal triangle, arranged to fit into a lower
triangular matrix.
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Corollary 41 Let kb, H , and n ∈ Z+ be as above with the lower triangle matrix Ln. Set

Kn (x, y) = kb (x, y) , (x, y) ∈ Fn × Fn, (92)

i.e., an (n+ 1)× (n+ 1) matrix.

(i) Then Kn is invertible with

K−1
n =

(
Ltrn
)−1

(Ln)−1 ; (93)

an (upper triangle)× (lower triangle) factorization.

(ii) For the diagonal entries in the (n+ 1)× (n+ 1) matrix K−1
n , we have:

〈
x,K−1

n x
〉
l2

=

n∑
k=x

(
k

x

)2

Conclusion: Since
‖PFn (δx1)‖2H =

〈
x1,K

−1
n x1

〉
H

(94)

for all x1 ∈ Fn, we get

‖PFn (δx1)‖2H =
n∑

k=x1

(
k

x1

)2

= 1 +

(
x1 + 1

x1

)2

+

(
x1 + 2

x1

)2

+ · · ·+
(
n

x1

)2

; (95)

and therefore,

‖δx1‖
2
H =

∞∑
k=x1

(
k

x1

)2

=∞.

In other words, no δx is in H .

4. Infinite Network of Resistors

Here we introduce a family of positive definite kernels k : V × V → R, defined on infinite
sets V of vertices for a given graph G = (V,E) with edges E ⊂ V × V \(diagonal).

There is a large literature dealing with analysis on infinite graphs (Jorgensen and Pearse,
2010, 2011, 2013; Okoudjou and Strichartz, 2005; Boyle et al., 2007; Cho and Jorgensen,
2011).

Our main purpose here is to point out that every assignment of resistors on the edges
E in G yields a p.d. kernel k, and an associated RKHS H = H (k) such that

δx ∈H , for all x ∈ V . (96)

Definition 42 Let G = (V,E) be as above. Assume

1. (x, y) ∈ E ⇐⇒ (y, x) ∈ E;
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2. ∃c : E → R+ (a conductance function = 1 / resistance) such that

(i) c(xy) = c(yx), ∀ (xy) ∈ E;

(ii) for all x ∈ V , #
{
y ∈ V | c(xy) > 0

}
<∞; and

(iii) ∃o ∈ V s.t. for ∀x ∈ V \ {o}, ∃ edges (xi, xi+1)n−1
0 ∈ E s.t. xo = 0, and xn = x;

called connectedness.

Given G = (V,E), and a fixed conductance function c : E → R+ as specified above, we
now define a corresponding Laplace operator ∆ = ∆(c) acting on functions on V , i.e., on
Func (V ) by

(∆f) (x) =
∑
y∼x

cxy (f (x)− f (y)) . (97)

Let H be the Hilbert space defined as follows: A function f on V is in H iff f (o) = 0,
and

‖f‖2H :=
1

2

∑∑
(x,y)∈E
⊂V×V

cxy |f (x)− f (y)|2 <∞. (98)

Lemma 43 (Jorgensen and Pearse, 2010) For all x ∈ V \ {o}, ∃vx ∈H s.t.

f (x)− f (o) = 〈vx, f〉H , ∀f ∈H (99)

where

〈h, f〉H =
1

2

∑∑
(x,y)∈E

cxy

(
h (x)− h (y)

)
(f (x)− f (y)) , ∀h, f ∈H . (100)

(The system {vx} is called a system of dipoles.)

Proof Let x ∈ V \ {o}, and use (97) together with the Schwarz-inequality to show that

|f (x)− f (o)|2 ≤
∑
i

1

cxixi+1

∑
i

cxixi+1 |f (xi)− f (xi+1)|2 .

An application of Riesz’ lemma then yields the desired conclusion.

Note that vx = v
(c)
x depends on the choice of base point o ∈ V , and on conductance

function c; see (i)-(ii) and (98).

Now set

k(c) (x, y) = 〈vx, vy〉H , ∀ (xy) ∈ (V \ {o})× (V \ {o}) . (101)

It follows from a theorem that k(c) is a Green’s function for the Laplacian ∆(c) in the sense
that

∆(c)k(c) (x, ·) = δx (102)

where the dot in (102) is the dummy-variable in the action. Note that the solution to (102)
is not unique.
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Lemma 44 (Jorgensen and Pearse, 2011) Let G = (V,E), and conductance function
c : E → R+ be a s specified above; then k(c) in (101) is positive definite, and the cor-
responding RKHS H

(
k(c)
)

is the Hilbert space introduced in (98) and (100), called the
energy-Hilbert space.

Proof See Jorgensen et al. (2010; 2011; 2013).

Proposition 45 Let x ∈ V \ {o}, and let c : E → R+ be specified as above. Let H =
H (kc) be the corresponding RKHS. Then δx ∈H , and

‖δx‖2H =
∑
y∼x

c(xy) =: c (x) . (103)

Proof We study the finite matrices, defined for ∀F ∈ F (V ), by

KF (x, y) = kc (x, y) , (x, y) ∈ F × F. (104)

Fix x ∈ V \ {o}, and pick F ∈ F (V ) such that

{x} ∪ {y ∈ V | y ∼ x} ⊂ F, (105)

see Figure 5; an interior point:

x

y1

����

��

��

F
F

Figure 5: Neighborhood of x, see Definition 42 (ii). An interior point x.

Let F ∈ F (V ) be as in (104) and in Figure 5, and let ∆ = ∆(c) be the Laplace operator
(97), then for all (x, y) ∈ F × F , we have:〈

x,K−1
F y

〉
l2

= 〈δx,∆δy〉l2
= (∆δy) (x)

=


c (x) if y = x; see (103)

−c(xy) if y ∼ x
0 for all other values of y

(106)
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In particular,

sup
F∈F (V )

(KF δx) (x) <∞;

and in fact,

‖δx‖2H = c (x) , for all x ∈ V \ {o},

as claimed in the Proposition.

The last step in the present proof uses the equivalence (i)⇔(ii)⇔(iii) from Theorem 1
above.

Finally, we note that the assertion in (106) follows from

∆vx = δx − δo, ∀x ∈ V \ {o} . (107)

And (107) in turn follows from (99), (97) and a straightforward computation.

Corollary 46 Let G = (V,E) and conductance c : E → R+ be as specified above. Let
∆ = ∆(c) be the corresponding Laplace operator. Let H = H (kc) be the RKHS. Then

〈δx, f〉H = (∆f) (x) (108)

and

δx = c (x) vx −
∑
y∼x

cxyvy (109)

holds for all x ∈ V .

Proof Since the system {vx} of dipoles in (99) span a dense subspace in H , it is enough
to verify (108) when f = vy for y ∈ V \ {o}. But in this case, (108) follows from (102) and
(106).

Corollary 47 Let G = (V,E), and conductance c : E → R+ be as before; let ∆(c) be

the Laplace operator, and H
(c)
E the energy-Hilbert space in Definition 42 (Equation (98)).

Let k(c) (x, y) = 〈vx, vy〉HE
be the kernel from (101), i.e., the Green’s function of ∆(c).

Then the two Hilbert spaces HE, and H
(
k(c)
)

= RKHS
(
k(c)
)
, are naturally isometrically

isomorphic via vx 7−→ k
(c)
x where k

(c)
x = k(c) (x, ·) for all x ∈ V .

Proof Let F ∈ F (V ), and let ξ be a function on F ; then∥∥∥∑
x∈F

ξ (x) k(c)
x

∥∥∥2

H (k(c))
=

∑∑
F×F

ξ (x)ξ (y) k(c) (x, y)

=
(101)

∑∑
F×F

ξ (x)ξ (y) 〈vx, vy〉HE

=
∥∥∥∑

x∈F
ξ (x) vx

∥∥∥2

HE

.
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The remaining steps in the proof of the Corollary now follows from the standard com-
pletion from dense subspaces in the respective two Hilbert spaces HE and H

(
k(c)
)
.

In the following we show how the kernels k(c) : V × V → R from (101) in Lemma 43 are
related to metrics on V ; so called resistance metrics (Jorgensen and Pearse, 2010; Alpay
et al., 2013).

Corollary 48 Let G = (V,E), and conductance c : E → R+ be as above; and let k(c) (x, y) :=
〈vx, vy〉HE

be the corresponding Green’s function for the graph Laplacian ∆(c).

Then there is a metric R
(
= R(c) = the resistance metric

)
, such that

k(c) (x, y) =
R(c) (o, x) +R(c) (o, y)−R(c) (x, y)

2
(110)

holds on V × V . Here the base-point o ∈ V is chosen and fixed s.t.

〈Vx, f〉HE
= f (x)− f (o) , ∀f ∈HE , ∀x ∈ V. (111)

Proof Set
R(c) (x, y) = ‖vx − vy‖2HE

. (112)

We proved (Jorgensen and Pearse, 2010) that R(c) (x, y) in (112) indeed defines a metric on
V ; the so called resistance metric. It represents the voltage-drop from x to y when 1 Amp
is fed into (G, c) at the point x, and then extracted at y.

The verification of (110) is now an easy computation, as follows:

R(c) (o, x) +R(c) (o, y)−R(c) (x, y)

2

=
‖vx‖2HE

+ ‖vy‖2HE
− ‖vx − vy‖2HE

2
= 〈vx, vy〉HE

= k(c) (x, y) by (101).

Proposition 49 In the two cases: (i) B (t), Brownian motion on 0 < t <∞; and (ii) the
Brownian bridge Bbri (t), 0 < t < 1, from Section 3 (Figure 3), the corresponding resistance
metric R is as follows:

(i) If V = {xi}∞i=1 ⊂ (0,∞), x1 < x2 < · · · , then

R
(V )
B (xi, xj) = |xi − xj | . (113)

(ii) If W = {xi}∞i=1 ⊂ (0, 1), 0 < x1 < x2 < · · · < 1, then

R
(W )
bridge (xi, xj) = |xi − xj | · (1− |xi − xj |) . (114)

In the completion w.r.t. the resistance metric R
(W )
bridge, the two endpoints x = 0 and

x = 1 are identified.
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4.1 Gaussian Processes

Definition 50 A Gaussian realization of an infinite graph-network G = (V,E), with pre-
scribed conductance function c : E → R+, and dipoles (vcx)x∈V \{o}, is a Gaussian process
(Xx)x∈V on a probability space (Ω,F ,P), where Ω is a sample space; F a sigma-algebra of
events, and P a probability measure s.t., for ∀F ∈ F (V ), the random variables (Xx)x∈F ,
are jointly Gaussian with

E (Xx) =

∫
Ω
XxdP = 0 (115)

and covariance

E (XxXy) = k(c) (x, y) =
〈
v(c)
x , v(c)

y

〉
HE

; (116)

i.e., the covariance matrix (E (XxXy))(x,y)∈F×F is

KF (x, y) := k(c) (x, y) on F × F. (117)

Lemma 51 (Jorgensen and Pearse, 2010) For all G = (V,E), and c : E → R+, as
specified, Gaussian realizations exist; they are called Gaussian free fields.

Corollary 52 Let G = (V,E), c : E → R+ be as above; and let (Xx)x∈V be an associated
Gaussian free field. Then the point Dirac-masses (δx)x∈V have Gaussian realizations

δ̃x = c (x)Xx −
∑
y∼x

cxyXy, ∀x ∈ V. (118)

Corollary 53 Let G = (V,E), and c : E → R+ be as above. Let {Xx}x∈V be the corre-
sponding Gaussian free field, i.e., with correlation

E (XxXy) = k(c) (x, y) =
〈
v(c)
x , v(c)

y

〉
HE

(119)

where the dipoles {v(c)
x } ⊂HE are computed w.r.t. a chosen (and fixed) based-point o ∈ V ,

i.e., 〈
v(c)
x , f

〉
HE

= f (x)− f (o) , ∀f ∈HE , x ∈ V. (120)

Finally, let R(c) (x, y) be the corresponding resistance metric on V . Then

E (XxXz) + E (XzXy) ≤ E (XxXy) +R(c) (o, z) (121)

holds for all vertices x, y, z ∈ V ; see Figure 6.

Proof Use Corollary 48, and (112). We have

‖vx − vy‖2H ≤ ‖vx − vz‖
2
H + ‖vz − vy‖2H ,

and (121) now follows from (116).
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x

z

o

y

Figure 6: Covariance vs resistance distance R(c) (o, z) for three vertices x, y, z ∈ V .

4.2 Metric Completion

The next theorem illustrates a connection between the universal property of a kernel in a
RKHS H , on the one hand, and the distribution of the Dirac point-masses δx, on the other.
We make “distribution” precise by the quantity E (x) := ‖δx‖2H , the energy of the point-
mass at the vertex point x. We introduce a metric completion M , and the universal property
of the RKHS H asserts that the functions from H are continuous and 1/2-Lipschitz on M ,
and that they approximate every continuous function on M in the uniform norm. Recall,
the vertex set V is equipped with its resistance metric. The universal property here refers to
the corresponding metric completion M of the discrete vertex set. In the interesting cases
(see e.g., Example 7), M is a continuum; in the case of the example below, the boundary
of V is a Cantor set. One expects the value of E (x) to go to infinity as x approaches the
boundary M , and this is illustrated in the example; with an explicit formula for E (x).

Of special interest is the class of networks (V,E) where the resistance metric R (on the
given vertex vertex-set V ) is bounded; see (ii) in Theorem 3 below. This class of networks,
for which the diameter of V measured in the resistance metric R is bounded, includes
networks having lots of edges with resistors occurring in parallel (Jorgensen and Pearse,
2011).

Theorem 3 Let G = (V,E), c : E → R+ be as above, and let R(c) : V × V → R+ be the
resistance-metric in (112). Let M be the metric completion of

(
V,R(c)

)
. Then:

(i) For every f ∈H , the function

V 3 x 7−→ f (x) ∈ C (122)

extends by closure to a uniformly continuous function f̃ : M 7→ C.

(ii) If R(c) is assumed bounded, then the RKHS H is an algebra under point-wise product:

(f1f2) (x) = f1 (x) f2 (x) , fi ∈H , i = 1, 2, x ∈ V. (123)

(iii) If M is compact, then {f̃ | f ∈H } is dense in C (M) in the uniform norm.
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Proof The assertions in (i) follow from the following two estimates:

Let f ∈H , then

|f (x)− f (y)|2 ≤ ‖f‖2H R(c) (x, y) , ∀x, y ∈ V ; (124)

and

|f (x)| ≤ |f (o)|+R(c) (o, x)
1
2 . (125)

The estimates in (124)-(125), in turn, follow from Corollaries 47 and 48.

To prove (ii), we compute the energy-norm of the product f1 ·f2 where fi ∈H , i = 1, 2;
and we use Corollary 47:∑

x

∑
y

cxy |f1 (x) f2 (x)− f1 (y) f2 (y)|2

=
∑
x

∑
y

cxy |(f1 (x)− f1 (y)) f2 (x) + f1 (y) (f2 (x)− f2 (y))|2

≤
∑
x

∑
y

cxy

(
|f1 (x)− f1 (y)|2 + |f2 (x)− f2 (y)|2

)
·
(
|f2 (x)|2 + |f1 (y)|2

)
(by Schwarz inside)

≤
(
‖f1‖2∞ + ‖f2‖2∞

)
·
(
‖f1‖2H + ‖f2‖2H

)
;

and we note that the right-side is finite subject to the assumption in (ii).

Proof of (iii): We are assuming here that M is compact, and we shall apply the Stone-
Weierstrass theorem to the subalgebra{

f̃
∣∣ f ∈H

}
⊂ C (M) . (126)

Indeed, the conditions for Stone-Weierstrass are satisfied: The functions on LHS in (126)
form an algebra, by (ii), closed under complex conjugation; and it separates points in M
by Corollary 48.

Example 7 (The binary tree) Let A = {0, 1}, and M :=
∏

NA the infinite Cartesian
product, as a Cantor space. Set V := all finite words:

V =
⋃
n∈N

{
(α1, α2, · · · , αn)

∣∣ αi ∈ {0, 1}} ; (127)

and set l ((α1, α2, · · · , αn)) =: n.

For ω = (ωk)
∞
1 ∈M , set

ω
∣∣
n

:= (ω1, ω2, · · · , ωn) ∈ V. (128)

For two points ω, ω′ ∈M , we shall need the number

l
(
ω ∩ ω′

)
= sup

{
n : ω

∣∣
n

= ω′
∣∣
n

}
. (129)
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Let r : N→ R+ be given such that

r (∅) = 0,
∑
n∈N

r (n) <∞. (130)

For conductance function c : E → R+, set

cα,(αt) =
1

r (l (α))
, ∀α ∈ V, t ∈ {0, 1} . (131)

One checks that, when (130) holds, then

lim
n,m→∞

R(c)
(
ω
∣∣
n
, ω
∣∣
m

)
= 0.

Consider the graph G2 = (V,E) where the edges are “lines” between α and (αt), where
t ∈ {0, 1}. See Figure 7.

Lemma 54 With the settings above, the metric completion R̃(c) w.r.t. the resistance metric
on V is as follows: For ω, ω′ ∈M (see Figure 9),

R̃(c)
(
ω, ω′

)
= 2

∞∑
n=l(ω∩ω′)

r (n) . (132)

Let H be the corresponding energy-Hilbert space ' the RKHS of kc. For α ∈ V , let δα be
the Dirac-mass at the vertex point α. Then

‖δα‖2H =
2

r (l (α))
+

1

r (l (α)− 1)
. (133)

(See Figure 8.)

Proof To see this, note that α has the three neighbors sketched in Figure 7, i.e., α∗, (α0),
and (α1), where α∗ is the one-truncated word,

R̃(c)
(
ω, ω′

)
= 2

∞∑
n=l(ω∩ω′)

r (n) . (134)

One checks that when (130) is assumed, then the conditions in point (iii) of the theorem
are satisfied.

Corollary 55 Now return to the discrete restriction of Brownian motion in Section 3.1.
Set V = {x1, x2, x3, · · · } where the points {xi}∞i=1 are prescribed such that x1 < x2 < · · · <
xi < xi+1 < · · · . We turn V into a weighted graph G as follows: The edges E in G are
nearest neighbors; and we define a conductance function c : E → R+ by setting

cxixi+1 :=
1

xi+1 − xi
, (135)
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α*

α

(α0)

(α1)

Figure 7: Edges in G2.
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M
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δ ρ

δαℋ
2

δβℋ

2 δγℋ

2
δδℋ

2

δρℋ

2

(a)

α β
γ

δ ρ

δα
2
ℋ

δβ
2
ℋ

δγ
2
ℋ

δδ
2
ℋ

δρ
2
ℋ

(b)

Figure 8: Histogram for ‖δα‖2H as vertices α ∈ V approach the boundary. See (133), and
note ‖δα‖2H →∞ as α→M .
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ϕ

V M

ω⋂ω ' ω

ω '

0 2 3 4 n

Figure 9: The binary tree and its boundary, the Cantor-set.

and Laplace operator,

(∆f) (xi) =
1

xi+1 − xi
(f (xi)− f (xi+1)) +

1

xi − xi−1
(f (xi)− f (xi−1)) . (136)

Then the RKHS associated with the Green’s function of ∆ in (136) agrees with that from
the kernel construction in Section 3.1, i.e., the discrete Cameron-Martin Hilbert space.

Proof Immediate from the previous Proposition and its corollaries.
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