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Abstract

According to a recently stated ‘independence postulate’, the distribution Pcause contains
no information about the conditional Peffect|cause while Peffect may contain information
about Pcause|effect. Since semi-supervised learning (SSL) attempts to exploit information
from PX to assist in predicting Y from X, it should only work in anticausal direction,
i.e., when Y is the cause and X is the effect. In causal direction, when X is the cause
and Y the effect, unlabelled x-values should be useless. To shed light on this asymmetry,
we study a deterministic causal relation Y = f(X) as recently assayed in Information-
Geometric Causal Inference (IGCI). Within this model, we discuss two options to formalize
the independence of PX and f as an orthogonality of vectors in appropriate inner product
spaces. We prove that unlabelled data help for the problem of interpolating a monotonically
increasing function if and only if the orthogonality conditions are violated – which we only
expect for the anticausal direction. Here, performance of SSL and its supervised baseline
analogue is measured in terms of two different loss functions: first, the mean squared error
and second the surprise in a Bayesian prediction scenario.

Keywords: semi-supervised learning, anticausal learning, independence of cause and
mechanism, information geometry, causality

1. Introduction

Semi-supervised learning (SSL) has received increasing attention during the past decade
(Darnstädt et al., 2013; Ben-David et al., 2008; Yuanyuan et al., 2010; Chapelle et al.,
2006). In contrast to supervised learning, where the prediction of a variable Y from another
variable X is based on pairs (x1, y1), . . . , (xn, yn), semi-supervised learning uses additional
x-values xn+1, . . . , xn+m to improve the prediction. Motivated by the fact that the y-values
are often discrete variables, that is, ‘labels’, one often talks about the pairs as labelled
instances and the unpaired x-values as unlabelled ones.

One can easily imagine scenarios where labelled instances are rare and unlabelled ones
are easily available: consider, for example, the task of text classification, where labelling
has to be done by humans while unlabelled instances can be retrieved from the internet
automatically. Hence, SSL is useful provided that the unlabelled x-values indeed contain
information about the relation between X and Y . Given the standard scenario where the
pairs are i.i.d. drawn from PXY and the unlabelled x-values from the corresponding marginal
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distribution PX , the essential question is the following. Predicting Y from X amounts to
knowing properties of PY |X , while the unlabelled x-values only tell us something about PX .
Why should PX contain information about PY |X?

Some recent approaches to distinguish cause and effect in causal structure learning (Janz-
ing and Schölkopf, 2010; Daniusis et al., 2010; Janzing et al., 2012; Sgouritsa et al., 2015)
were motivated by an informal ‘independence’ postulate stating that Pcause and Peffect|cause

contain no information about each other. On the other hand, Peffect and Pcause|effect may con-
tain information about each other. This has been shown by means of several toy examples
(Janzing and Schölkopf, 2010; Daniusis et al., 2010; Janzing et al., 2012) using appropriate
formalizations of the independence postulate. In the same spirit, Schölkopf et al. (2012,
2013) argue that under the independence postulate, SSL cannot work in the causal setting,
that is, if X is the cause and Y the effect (provided that there is no common cause of both),
while it may work in anticausal setting, i.e., when the cause is predicted from the effect.
In a typical scenario of SSL that often appears in the literature (Chapelle et al., 2006), Y
attains few values {1, . . . , k} only (Zhang and Oles, 2000) and X ∈ Rd is a high-dimensional
vector. Then different labels j may correspond to different clusters in Rd. If they are suf-
ficiently apart, the modes of PX tell us the centers of the clusters, which helps in learning
PY |X from fewer data. Distributions that satisfy this (loose) condition are said to follow
the cluster assumption, a case for which SSL can plausibly be justified (Chapelle et al.,
2006): as long as each cluster contains some labelled data points, we can propagate the
labels to the other points in the same cluster, and thus convert the semi-supervised learning
problem to a supervised one. In our terminology, this assumption implies that points in the
same cluster have the same label, i.e., certain properties of PX imply properties of PY |X . A
related assumption states that the separating boundary should lie in a region of low density
of PX (Chapelle et al., 2006) – again, an assumption relating PX and PY |X .

The goal of this paper is to provide a mathematical understanding of why the perfor-
mance of SSL is related to the causal direction. Previous work remains vague regarding the
question in what sense Peffect may contain information about Pcause|effect and which mathe-
matical postulates about asymmetries between cause and effect are needed for this claim.
Here we present a model in which a well-defined independence assumption between Pcause

and Peffect|cause ensures that unlabelled data from the effect help in the sense of quantita-
tively improving the prediction of the cause from the effect with respect to a natural loss
function, while it does not help in causal direction. To this end, we have chosen a model
where X and Y have the same range. The more popular case where X is high-dimensional
and Y of lower dimension or even a discrete label could be misleading for our purposes: dif-
ferent ranges define an asymmetry between X and Y that could erroneously be attributed
to the fact that one is the cause and the other the effect.

We study the following simple interpolation problem: Let X and Y be random
variables attaining values in [0, 1], deterministically related by Y = f(X), where f is
an unknown bijective strictly monotonically increasing map. We are given n − 1 points
(x1, y1), . . . , (xn−1, yn−1). For some additional x-value xn, we seek to infer the correspond-
ing y-value yn = f(xn).

We will analyze why knowing PX enables a better estimation (which implies that PX
and PY |X are somehow dependent), given that a certain independence between PY and
PX|Y holds.
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The paper is structured as follows. Section 2 introduces a toy model of a bijective
deterministic relation between X and Y and formalizes independence between Pcause and
Peffect|cause in two different ways. We explain why this independence implies dependence
between Peffect and Pcause|effect with respect to both formalizations. Section 3 describes
the interpolation problem in the supervised scenario (i.e., with no unlabelled points) and
presents a straightforward solution via linear interpolation, which will be the baseline our
SSL method is later compared to.

Section 4 describes a semi-supervised modification and shows that the advantage can
be quantified in terms of the dependence measures introduced in Section 2. The main
contribution of this paper is to describe the relation between the performance of SSL to
a mathematically well-defined notion of dependence between PX and PY |X . Although our
toy scenario is certainly an oversimplification compared to real SSL scenarios, the value of
this work lies in providing the first link between causal direction and applicability of SSL
that can be proven, subject to an assumption that links causality to statistics.

2. Asymmetries Between Cause and Effect for Deterministic Relations

Our restriction to monotonically increasing bijections of [0, 1] coincides with the typical
toy scenario used by Daniusis et al. (2010); Janzing et al. (2012) to explain Information-
Geometric Causal Inference (IGCI) although the formalism of IGCI introduced therein is
actually more general.

We are given two random variables C,E (‘cause’ and ’effect’) attaining values in [0, 1].
We assume that their distributions PC and PE have strictly positive densities pC and pE
with respect to Lebesgue measure. We will often use p(c) as short hand for pC(c), for
instance. Assume we observe that C and E are deterministically related by

E = g(C) and C = g−1(E) ,

for some strictly monotonically increasing diffeomorphism1 g of [0, 1].
So far, the assumptions are symmetric with respect to C and E and there is no reason

why observing the joint distribution of E and C should enable one to infer which variable
is the cause and which the effect, assuming that exactly one of the alternatives is true. The
problem of distinguishing cause and effect gets solvable only after introducing an assumption
that links the causal direction to an observable implication. The essential idea is that g
(which uniquely determines PE|C) and pC do not contain information about each other.
Subsections 2.1 and 2.2 will describe two different formalizations of this idea which are the
basis for two different SSL methods presented in Subsections 4.1 and 4.2, respectively.

2.1 Uncorrelatedness Between pC and Slope

To formalize the idea of independence between g and pC , Daniusis et al. (2010); Janzing
et al. (2012, 2015) postulate uncorrelatedness between pC and the logarithm of the derivative
of g, which will be explained in Subsection 2.2. Here we state an assumption that simplifies
the former by dropping the logarithm:

1. The ‘diffeomorphism’ assumption is convenient for the theory although it can be significantly weakened.
The example in Figure 1(a) uses functions g and g−1 that are almost everywhere differentiable, which is
also sufficient.
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Independence Assumption 1 (with slope) If C causes E with E = g(C) then

Cov[g′, pC ] = 0 . (1)

Here, both functions g′ and pC are considered as random variables on the probability space
[0, 1] with Lebesgue measure. Their covariance, i.e., the left hand side of (1), equals∫ 1

0
g′(c)p(c)dc−

∫ 1

0
g′(c)dc

∫ 1

0
p(c)dc =

∫ 1

0
g′(c)p(c)dc− 1 . (2)

It turns out that Independence Assumption 1 implies that PE contains information about
g−1 (and thus about PC|E):

Lemma 1 (pE correlates with slope) Let g 6= id and (1) hold. Then the derivative of
g−1, denoted by g−1′, is positively correlated with pE:

Cov[g−1′ , pE ] > 0 . (3)

Proof By substitution of variables, (2) implies∫ 1

0
p(e)

1

g−1′(e)
de = 1 . (4)

We then conclude∫ 1

0
p(e)g−1′(e)de =

∫ 1

0
p(e)g−1′(e)de ·

∫ 1

0
p(e)

1

g−1′(e)
de

=

∫ 1

0
p(e)

(√
g−1′(e)

)2

de ·
∫ 1

0
p(e)

(
1√

g−1′(e)

)2

de

≥

(∫ 1

0
p(e)

√
g−1′(e)

1√
g−1′(e)

de

)2

= 1 ,

where we have applied the Cauchy-Schwarz inequality to the inner product 〈·, ·〉 =
∫
p(e)··de

(note that it is strictly positive because pE is strictly positive). Therefore we only have
equality if

√
g−1′ and 1/

√
g−1′ are linearly dependent, i.e., g′ is constant and thus g is the

identity due to g(0) = 0 and g(1) = 1.

Figure 1(a) provides a first intuition about Lemma 1: whenever the slope of g has been
chosen independently of pE , the density pC tends to be high in regions where g is flat and g−1

is steep. Figures. 2(a) and 2(b) visualize the geometric content of Lemma 1 in the following
sense. The covariance defines an inner product in the space of square integrable random
variables if variables are identified up to constants. Then we have postulated orthogonality
of g′ and pC and concluded non-orthogonality of g−1 and pE . Therefore, the projection v of
g−1 onto the line (0, pE) is closer to g−1 than 0. Within our setting, this point v will later
play a crucial role for constructing the optimal prediction of g−1 that can be obtained from
pE .
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Figure 1: (a) If g has been designed independently of pC , then the density pE tends to be
high in regions where g is flat. Source: Janzing et al. (2012). (b) The piecewise
linear function f2 interpolating the observations (x1, y1), (x2, y2) is used for pre-
dicting y3. f3 accounts also for the point (x3, y3) and is later used to predict y4

once x4 is provided.
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Figure 2: Orthogonality of the random variables pC and g′ (in the sense of vanishing co-
variance) in Figure (a) implies non-orthogonality of pE and g−1′ in Figure (b).
In Subsection 4.1, the squared distance of v and 0 will be the amount by which
SSL can improve the performance of the interpolation.
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2.2 Uncorrelatedness Between pC and Logarithmic Slope

To phrase independence of g and pC as uncorrelatedness of pC and the derivative of g is
certainly only one simple choice out of many options. Instead, Daniusis et al. (2010); Janzing
et al. (2012) postulate uncorrelatedness between pC and the logarithm of the derivative of
g:

Independence Assumption 2 (with logarithmic slope) If C causes E with E = g(C)
then

Cov[log g′, pC ] = 0 . (5)

Here, both functions log g′ and pC are considered as random variables on the probability
space [0, 1]. Again, their covariance is then computed with respect to the Lebesgue measure,
i.e., the left hand side of (5) is short hand for∫ 1

0
log g′(c)p(c)dc−

∫ 1

0
log g′(c)dc

∫ 1

0
p(c)dc =

∫ 1

0
log g′(c)p(c)dc−

∫ 1

0
log g′(c)dc .

Assumption 2 admits several information theoretic interpretations (Daniusis et al., 2010;
Janzing et al., 2012, 2015) of which we only explain the ones that are required for our
analysis.

It turns out (Daniusis et al., 2010, Section 2) that Assumption 2 implies that PE contains
information about g−1 (and thus about PC|E):

Lemma 2 (pE correlates with logarithmic slope) Let g 6= id and (5) hold. Then the
logarithm of the derivative of g−1, denoted by g−1′, is positively correlated with pE:

Cov[log g−1′ , pE ] > 0 . (6)

Our algorithm and the performance analysis will be based on the following information
geometric rephrasing of the above.

Lemma 3 (covariance as difference of relative entropies) Let

D(q‖r) :=

∫ 1

0
q(w) log

q(w)

r(w)
dw

denote the relative entropy distance between the probability densities q and r. Then,

Cov[log g′, pC ] = −D(pC‖g′) +D(pC‖u) +D(u‖g′) ,

where u denotes the uniform density. Here we have interpreted g′ as probability density
which is possible due to g′ > 0 and

∫
g′(c)dc = 1.

The following conclusion is immediate:

Corollary 1 (independence as orthogonality in information space) (5) is equiva-
lent to

D(pC‖g′) = D(pC‖u) +D(u‖g′) . (7)

Likewise, (6) is equivalent to

D(pE‖g−1′) < D(pE‖u) +D(u‖g−1′) . (8)
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Figure 3: (a) Independence Assumption 2 for PC and PE|C implies that (pC , u, g
′) is a

Pythagorean triple, i.e., there is a rectangle at u. (b) Since bijections preserve
relative entropy, the right angle for the backward direction occurs at g−1′ instead
of u, as would be required by the corresponding independence assumption for PE
and PC|E . The point wa obtained by projecting g−1′ onto the line u, pE will later
play a crucial role for our SSL method and the distance D(wa‖u) will quantify
the amount by which SSL improves the interpolation.

Without going to the details of information geometry Amari and Nagaoka (1993), we use
some of its terminology and mention that due to (7), (pC , u, g

′) is called a Pythagorean triple.
This is visualized by drawing a right angle at u, see Figure 3(a). The idea is that square
distance in Euclidean geometry is replaced with relative entropy in information geometry
and therefore (7) replaces the usual Pythagorean theorem.2 This way, Assumptions 1 and
2 both amount to orthogonality conditions in appropriate spaces.

Since relative entropy is preserved under bijections, we also have:

Lemma 4 (right angle at g−1′) Eq. (5) is equivalent to

D(pE‖u) = D(pE‖g−1′) +D(g−1′‖u) . (9)

Geometrically, this means that the right angle now occurs at g−1′ , as visualized by Fig-
ure 3(b), whereas independence between pE and g−1′ would require it to occur at u. In
other words, by formalizing independence between input distribution and function as a
certain orthogonality in information space, independence in causal direction implies depen-
dence in anticausal direction. IGCI uses this asymmetry for inferring which of the two
variables is the cause.

The goal of this paper is to answer the question why PX is helpful for the interpolation
problem stated in Section 1 when X = E and Y = C, while it is useless when X = C

2. Then, the m-geodesic connecting pC and u (given by the line λpC + (1 − λ)u) is orthogonal to the
e-geodesic connecting u and g′ which is given by an affine combination on the logarithmic scale, that is,
by λ log u+ (1− λ) log g′.
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and Y = E. Some thoughts on this can be found in Janzing et al. (2015, Section 4), but
here we will describe a learning scenario where the information of PX on f amounts to
reducing the loss with respect to some natural loss function. To this end, we first describe
a baseline method for the interpolation problem in Section 3 and analyze its performance
with respect to two different loss functions. In Section 4 it will turn out that our two
different formalizations of dependence vs. independence in Subsections 2.1 and 2.2 yield
two different algorithms each of which improves the performance with respect to one of
these loss functions.

3. Baseline Solutions of the Interpolation Problem

To analyze the performance of our interpolation methods (baseline and SSL) we consider a
game consisting of infinitely many steps: In the nth step, we are given (n− 1) pairs

(x1, y1), . . . , (xn−1, yn−1)

obtained by i.i.d. sampling from PXY . After observing the next x-value xn, we are supposed
to infer the corresponding value yn. Having inferred it, we are told the true value yn and the
next x-value xn+1. The reason why we define this game is that our theory will not provide
a performance statement for any specific n. Instead, we will show that SSL outperforms
the baseline method on average over all n until some nmax if nmax tends to infinity. Note,
however, that the first step n = 1 would be usually called ‘unsupervised learning’, which
we include as special case of SSL in our analysis.

Note, moreover, that ‘inferring yn’ can mean two different things: either one infers one
specific value ŷn. Then the performance is evaluated by some distance measure between the
estimated value ŷn and the true value yn. The other sense of ‘inferring’ is to define some
conditional probability density3

pr(yn|x1, . . . , xn, y1, . . . , yn−1) (10)

expressing one’s belief about yn. Then it is natural to evaluate the performance of the
prediction by the ‘surprise’ given by the negative logarithm of (10). Subsections 3.1 and
3.2 describe the supervised baseline scenarios for the two different settings.

3.1 Predicting One Specific Value by Linear Interpolation

As baseline method we consider interpolation by piecewise linear functions:

Definition 1 (linear interpolation) For some (n− 1)-tuple of points

(x1, y1), . . . , (xn−1, yn−1) , with n ≥ 1 ,

let fn denote the function that linearly interpolates between these points (see Figure 1(a),
right). Explicitly, it is given by first ordering the x-values x◦1 < · · · < x◦n−1, which also

3. We use the notation pr to indicate that it is not connected to the probability densities pX and pY . In
a fully Bayesian scenario we would parameterize the set of distributions Pcause and the set of functions
g and then define a prior on both parameter spaces. Here, pr expresses a belief on yn that will later be
based on some naive smoothness assumption formalized by the Dirichlet prior without accounting for
any explicit generating model.
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orders the y-values y′1 < · · · < y′n−1. Then fn−1 is the piecewise linear function that linearly
connects (x◦j , y

◦
j ) with (x◦j+1, y

◦
j+1) for j = 0, . . . , n − 1 after we have set x◦0 = y◦0 = 0 and

x◦n = y◦n = 1. Hence, f0 is the identity.

Although the interpolating function fn depends on the whole (n− 1)-tuple of points, it will
be convenient to have only the index n since we refer to a fixed list of observations (obtained
by i.i.d sampling from PXY ) of which we only know the first n− 1. We set

ŷn := fn−1(xn) ,

with fn−1 as in Definition 1, see also Figure 1(a), right. Here and throughout the paper i will
denote the index for which xn lies in the interval (x◦i , x

◦
i+1) (see the notation of Definition 1).

Then the estimated value is explicitly given by

ŷn =
xn − x◦i
x◦i+1 − x◦i

(y◦i+1 − y◦i ) + y◦i . (11)

To analyze the performance of the SSL version versus standard liner interpolation, it would
be natural to measure the deviation of ŷn from yn via the usual squared loss (ŷn − yn)2.
Here we modify this term as follows:

Definition 2 (modified squared loss) The deviation between the estimated value ŷn and
the true value yn in step n is measured by the loss

Ln(yn, ŷn) :=

(
1

xn − x◦i
+

1

x◦i+1 − xn

)
(ŷn − yn)2 , (12)

where i again denotes the index for which xn ∈ (x◦i , x
◦
i+1).

The additional weighting factor amounts to stronger penalizing the deviation for those cases
where xn is close to the neighbors x◦i and x◦i+1. This can be justified by the idea that these
errors should count stronger because one should actually be able to infer yn more accurately
when labelled points are close. The main reason, however, for the weighting factor is that it
is necessary to link the performance of linear interpolation to Independence Assumption 1.
The following reinterpretation will later be the reason why the loss (12) is convenient for
our purposes:

Lemma 5 (squared loss as distance of derivatives) Let f̂n and fn be the piecewise
linear functions (linear on our n intervals) that interpolate the points (xn, ŷn) and (xn, yn),
respectively, in addition to the points (xi, yi) for i = 1, . . . , n− 1. Then,

Ln(yn, ŷn) =

∫ 1

0
(f ′n(x)− f̂ ′n(x))2dx . (13)

Proof:∫ 1

0
(f ′n(x)− f̂ ′n(x))2dx =

(
yn − y◦i
xn − x◦i

− ŷn − y◦i
xn − x◦i

)2

(xn − x◦i )+(
y◦i+1 − yn
x◦i+1 − xn

−
y◦i+1 − ŷn
x◦i+1 − xn

)2

(x◦i+1 − xn) = (yn − ŷn)2

(
1

xn − x◦i
+

1

x◦i+1 − xn

)
= Ln(yn, ŷn) .

1931



Janzing and Schölkopf

We now show that the loss until step nmax and the total loss over infinitely many steps can
be given in a concise form. The proofs will be skipped because the corresponding results
for the SSL scenario (Lemma 16 and Theorem 2) contain the statements below as special
cases.

Lemma 6 (total loss until step nmax) The sum over all modified quadratic errors reads:

nmax∑
n=1

Ln(yn, ŷn) =

∫ 1

0
(f ′nmax

(x)− 1)2dx .

Therefore, the asymptotic loss reads:

Lemma 7 (total loss) The sum over all modified quadratic errors reads:

∞∑
n=1

Ln(yn, ŷn) =

∫ 1

0
(f ′(x)− 1)2dx = Var(f ′) ,

where we consider f ′ as random variable on the probability space [0, 1] with respect to the
Lebesgue measure.

Recall that we have already considered derivatives of functions as random variables in
Subsection 2.1. It is intuitively plausible that the complexity of the interpolation problem
depends on the non-linearity of f , which can be quantified by the variance of f ′. Note that
this variance is also the squared length of the vectors g′ and g−1′ in Figure 2(a). Hence,
we have linked the modified quadratic errors to Euclidean geometry in the space of random
variables of Subsection 2.1. Accordingly, the non-orthogonality of pE and g−1′ in this space
will be employed to construct an SSL algorithm that outperforms linear interpolation with
respect to the modified quadratic errors.

3.2 Interpolation via a Dirichlet Process

To obtain a probability distribution that expresses our belief about yn, given x1, . . . , xn and
y1, . . . , yn−1, we define a prior over the monotonically increasing functions. An arbitrary
monotonic function f on [0, 1] with f(0) = 0 and f(1) = 1 can be interpreted as cumulative
distribution function of a probability distribution on [0, 1]. Since Dirichlet distributions
can be used as priors for probability distributions, it is therefore also natural to use them
as priors for increasing functions. We first introduce Dirichlet distributions of finite order
(Balakrishnan and V., 2003):

Definition 3 (Dirichlet distribution) The Dirichlet distribution Dir(α) of order k and
parameter vector α = (α1, . . . , αk) with αj > 0 is defined as the density on the simplexθ ∈ Rk

∣∣∣∣∣∣θj > 0,

k∑
j=1

θj = 1

 ,
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given by

pr(θ) :=
1

B(α)

k∏
j=1

θ
αj−1
j , (14)

where B(α) is the normalization constant

B(α) :=

∏k
j=1 Γ(αj)

Γ(
∑k

j=1 αj)
,

and Γ denotes the gamma function.

The following known result shows how the αj control the expectations:

Lemma 8 (expectation of Dirichlet distribution) The expectation of each θj is given
by

E[θj ] =
αj∑k
j=1 αj

.

The sum over all αj then controls to what extent the distribution is concentrated around
its mean. The following well-known property will be crucial below:

Lemma 9 (aggregation property of Dirichlet) If (θ1, . . . , θk) is a random vector dis-
tributed according to Dir(α1, . . . , αk) then (θ1, . . . , θk−2, θk−1 + θk) is distributed according
to
Dir(α1, . . . , αk−2, αk−1 + αk).

When a Dirichlet distribution is used to describe a distribution over distributions, then θ is
the probability vector of k events. If we define ∆Y

j with j = 0, . . . , n as the gaps obtained by

ordering all values y1, . . . , yn, then
∑n

j=0 ∆Y
j = 1 and thus the Dirichlet distribution of order

n+ 1 defines a distribution over the set of possible difference vectors ∆Y := (∆Y
0 , . . . ,∆

Y
n ).

However, we have to define distributions of order n for arbitrary n and need to ensure that
the distributions defined for different n are consistent in the sense that marginalizing the
distribution of y1, . . . , yn over yn coincides with the distribution of y1, . . . , yn−1 we define
for ñ = n − 1. To this end, we use a Dirichlet process, which is the generalization of a
Dirichlet distribution to infinite order:

Definition 4 (prediction via Dirichlet process) Given the values x1, . . . , xn, we de-
fine the probability density for the corresponding y-values by

pr(y1, . . . , yn|x1, . . . , xn) =
1

B(α)

n∏
j=0

(∆Y
j )αj−1 , (15)

where the parameters are defined via the gaps of the corresponding x-values:

αj := λ∆X
j j = 0, . . . , n , (16)

where ∆X
j are defined in analogy to ∆Y

j . Here, λ > 0 is a parameter that controls to what

extent we prefer linear function4

4. It should be noted that functions obtained by a Dirichlet process are almost surely discontinuous (Black-
well, 1973) although we have assumed the true function f to be differentiable. Yet, the process defines
a reasonable prior for our ‘naive’ prediction scheme of finitely many y-values. Later, we will let λ go to
infinity (which renders the discontinuities arbitrarily small) before we consider n→∞.

1933



Janzing and Schölkopf

To understand this Definition, we need a few remarks. First note that actually ∆Y is Dirich-
let distributed, but the same probability density can be used for y := (y1, . . . , yn) since the
Jacobian of the transformation from ∆Y to y is 1. This shows that the normalization of (14)
still remains correct. To choose the parameters αj proportional to the gaps in x-direction
(16) amounts to taking the uniform distribution as ‘base measure’ according to standard
terminology of Dirichlet processes. We will later see that changing the base measure pro-
vides a simple way to define an SSL version of the above prediction. Lemma 8 shows the
implication of this choice: the expectation of each ∆Y

j is given by the corresponding gap

∆X
j . In this sense, the Dirichlet process a priori favors the linear function. For our further

analysis it is also important to note that Lemma 9 implies

pr(y1, . . . , yn−1|x1, . . . , xn) = pr(y1, . . . , yn−1|x1, . . . , xn−1) . (17)

Hence, using (14) for n points and marginalizing over yn is the same as applying it to
ñ := n − 1 points only, which is the sense of consistency we have demanded above. In
other words, the unlabelled value xn is irrelevant for the prediction of the remaining (n−1)
y-values.

After having seen (n− 1) points, we interpolate via the prediction rule

pr(yn|x1, . . . , xn, y1, . . . , yn−1) =
pr(y1, . . . , yn−1, yn|x1, . . . , xn)

pr(y1, . . . , yn−1|x1, . . . , xn)
. (18)

Although our performance analysis does not require the explicit form of the left hand side of
(18), the following result (which is shown in Appendix A) provides a better understanding
about what it does:

Lemma 10 (interpolation by Dirichlet of order 2) Eq. (15) yields

pr(yn|x1, . . . , xn, y1, . . . , yn−1) =
1

(y◦i+1 − y◦i )B(α)

2∏
l=1

(θl)
αl−1 ,

with θ1 := (yn − y◦i )/(y◦i+1 − y◦i ) and θ2 := 1− θ1. The parameter vector reads

α := λ((xn − x◦i ), (x◦i+1 − xn)) .

Note that we need the additional normalization factor (y◦i+1−y◦i ) compared to (14) because
the Dirichlet distribution is actually a normalized probability density for θ1 ∈ (0, 1) which we
have transformed into a density for yn ∈ (y◦i+1, y

◦
i ). Due to Lemma 8 the expectation of the

ratio θ1 = (yn−y◦i )/(y◦i+1−y◦i ) is thus given by the corresponding ratio (xn−x◦i )/(x◦i+1−x◦i ).
Hence, (18) favors piecewise linear interpolation as defined in Subsection 3.1. Note that
the probability density of Dir(α1, α2) diverges at the boundaries θ1 = 0, 1 if αj < 1. To
ensure that our interpolation uses a density that favours values yn that are closer to the
expectation instead of favouring those that are close to the bounds y◦i and y◦i+1, we choose
λ � nmax because this yields λ(x◦j − x◦j+1) > 1 with high probability. Therefore, we will
later consider the limit λ→∞.

We now define the loss in each step as the Bayesian surprise:
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Definition 5 (Bayesian loss function) The loss in step n is defined by

Lλn(yn) := − log pr(yn|x1, . . . , xn, y1, . . . , yn−1) ,

where the superscript λ reminds us that pr already depends on λ.

Due to

pr(y1, . . . , yn|x1, . . . , xn) =
n∏
j=1

pr(yj |x1, . . . , xj , y1, . . . , yj−1)

(just apply (17) for each j) we obtain:

Lemma 11 (loss until step nmax) The total loss for steps 1, . . . , nmax in the prediction
game reads:

nmax∑
n=1

Lλn(yn) = − log pr(y1, . . . , ynmax |x1, . . . , xnmax)

The asymptotic for large λ of the total loss can be nicely described in terms of relative
entropies:

Theorem 1 (asymptotic total loss)

lim
λ→∞

1

λ

nmax∑
n=1

Lλn(yn) = D(u‖f ′nmax
) . (19)

Hence,

lim
nmax→∞

[
lim
λ→∞

1

λ

nmax∑
n=1

Lλn(yn)

]
= D(u‖f ′) . (20)

Proof: To shorten notation, we write n and j for nmax and n, respectively. Taking the
logarithm of (15) yields:

log pr(y1, . . . , yn|x1, . . . , xn) =
n∑
j=0

(λ∆X
j − 1) log ∆Y

j + log Γ(λ)−
n∑
j=0

log Γ(λ∆X
j ) . (21)

We now use the Stirling approximation

log Γ(z) = z log z − z log e+O(log z) .

Thus,

−
n∑
j=0

log Γ(λ∆X
j ) + log Γ(λ) = −λ

n∑
j=0

∆X
j log ∆X

j −O(log λ) .

Therefore,

lim
λ→∞

1

λ
log pr(y1, . . . , yn|x1, . . . , xn) =

n∑
j=1

∆X
j log ∆Y

j /∆
X
j = −D(u‖f ′n) .
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The second part of the statement holds because

lim
n→∞

∫ 1

0
log f ′n(x)dx =

∫ 1

0
lim
n→∞

log f ′n(x)dx ,

due to the bounded convergence theorem (the sequence (log f ′n)n∈N is uniformly bounded
because minx{f ′(x)} ≤ f ′n ≤ maxx{f ′(x)} by the mean value theorem).

We have seen that the complexity of the interpolation problem has turned out to depend on
D(u‖f ′) (for an appropriate limit, namely λ → ∞). Since information geometry considers
relative entropy as an analog of squared length in Euclidean geometry (Amari and Nagaoka,
1993), the total loss again depends on the squared length of the vector (u, g′) or (u, g−1′)
in Figures 3(a) or 3(b), respectively, in analogy to Subsection 3.1 where it was given by
Var(f ′) (i.e., the squared length of the vector g′ or g−1′ in Figures 2(a) or 2(b)).

4. Semi-Supervised Interpolation

In addition to the n − 1 labelled points (x1, y1), . . . , (xn−1, yn−1) and the unlabelled value
xn, we are now given the density pX . For the anticausal scenario, i.e., if X = E and Y = C,
Lemmas 1 and 2 state positive correlation between pX and f ′ or log f ′, respectively. Hence,
large density p(x) tends to correspond to large slope. Qualitatively, this already provides
a guideline on how to modify the linear interpolation: the value xn defines a partition of
(x◦i , x

◦
i+1) into two intervals. We first compare the average probability density in the left

interval with the one in the right one. Whenever it is larger in the left one than in the right
one, we slightly increase ŷn because we expect the slope of f to be larger on the left interval.
This, however, is just a rough intuition. The precise method of employing our knowledge
on pX depends on whether we use the correlations between f ′ and pX or between log f ′ and
pX . We start with the former because the performance analysis of the corresponding SSL
method uses a loss function that is closer to standard loss functions in machine learning.

4.1 SSL Using Correlations Between Slope and Density

In our SSL version, the estimation reads:

Definition 6 (additive SSL interpolation) Let F denote the cumulative distribution of
X and s > 0 be a parameter that controls how strongly the interpolation accounts for the
distribution pX . Then additive SSL interpolation is given by

ŷsn := ŷn + s
(x◦i+1 − xn)(x◦i − xn)

x◦i+1 − x◦i

[
F (xn)− F (x◦i )

xn − x◦i
−
F (x◦i+1)− F (xn)

x◦i+1 − xn

]
,

where ŷn is defined as in (11). Note that s must be admissible in the sense that it is small
enough to ensure that ŷsn remains inside the interval (y◦i , y

◦
i+1).

To intuitively understand this interpolation, note that the term in the bracket is the differ-
ence between the average densities of the left and the right interval. Hence ŷsn is increased
compared to the standard interpolation whenever the left interval contains higher density.
Further understanding of why we define our SSL interpolation precisely in such a way will
be provided below in the proof of Theorem 2. We first state our main result proved below:
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Theorem 2 (total loss in terms of (co)-variances) The total loss in the infinite inter-
polation game using ŷsn in Definition 6 reads:

∞∑
n=1

Ln(yn, ŷ
s
n) = Var(f ′ − s pX) = Var(f ′)− 2sCov[f ′, pX ] + s2 Var(pX) .

In causal direction we have Cov[f ′, pX ] = 0 and the additional term s2 Var(pX) makes the
performance worse than the baseline. In anticausal direction we have Cov[f ′, pX ] > 0. Then
standard linear regression tells us that the optimal improvement is reached for

s =
Cov[f ′, pX ]

Var(pX)
,

if this value is admissible (otherwise one chooses a smaller one). Then the remaining loss
reads:

Var(f ′ − spX) = Var(f ′)− (Cov[f ′, pX ])2

Var(pX)
,

which is exactly the squared distance between v and g−1 in Figure 2(b). By Pythagoras,
the squared length of (v, 0) is the amount by which SSL improves the prediction for the
optimal choice of s. We conclude:

Corollary 2 (Anticausal SSL works, causal SSL doesn’t) If X = E and Y = C,
SSL interpolation outperforms its supervised baseline version for sufficiently small s in the
sense that

∞∑
n=1

[Ln(yn, ŷ
s
n)− Ln(yn, ŷn)] < 0 .

If X = C and Y = E, SSL increases the total loss for all admissible s.

Finding the right value s needs to be a non-trivial problem for the following reason. pE
deviates from the uniform distribution for two reasons: first, because the function g is non-
linear and second, because pC is not uniform. In other words, we do not know which part
of the structure of pE is due to the structure of g and which part due to the structure of
pC . This is also shown by the two extreme cases (1) where g is the identity and pC and
pE are identical densities and (2) pC is uniform and pE = g−1′ . The optimal way to use
pE for better predicting g−1 will typically be a compromise that neither assumes that pC is
uniform nor that g is linear. The two extreme cases nicely correspond to a degeneration of
the triangles in Figures 3(a) and 2(a): For linear g, the derivative g−1′ is constant and thus
coincides with the trivial random variable 0 and the trivial density u. On the other hand,
for uniform pC , g−1′ and pE coincide. For the generic case, the projection of g−1′ onto the
line from pE to u is an interior point. Finding the right balance between attributing the
structure of pE entirely to the structure of g or entirely to the structure of pC amounts to
finding the projection points v and wa that correspond to an optimal performance of our
SSL methods in Subsections 4.1 and in Subsection 4.2, respectively. Since we do not know
g−1, we do not know the projection points v and wa beforehand. Therefore, we have to
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work with the following heuristics: in step n, we choose the value sn−1 that minimizes the
total loss until step n− 1, which is easy to compute using Corollary 4 below.

The remainder of this subsection is devoted to the proof of Theorem 2 with some ad-
ditional intuitive explanations at the end. To quantitatively analyze the loss, it is helpful
to describe the estimation process as an estimation of the slope f ′n (which is equivalent)
instead of an estimation of yn. Let us define f̂n as the function passing through (xn, ŷn)
in addition to the points (x1, y1), . . . , (xn−1, yn−1). Standard linear interpolation obviously
amounts to setting

f̂ ′n := f ′n−1 .

Note that f ′n−1 indicates the average slope for each open interval (x◦j , x
◦
j+1) and is undefined

for each x◦j with j = 0, . . . , n. It is therefore convenient to consider f ′n as the following
conditional expectation:

Lemma 12 (f ′n as conditional expectation of f ′) Let Jn : [0, 1] → {0, . . . , n} be the
random variable such that for each x the value Jn(x) indicates the subinterval in which x
lies (defined by the n observed x-values x◦1, x

◦
i , xn, x

◦
i+1 . . . , x

◦
n−1). Then,

f ′n = E[f ′|Jn] .

The proof is immediate via the mean value theorem. Similarly, we now introduce average
densities:

Definition 7 (average density as conditional expectation) Let Jn be defined as in
Lemma 12. Then the average density (corresponding to the partition of [0, 1] defined by the
first n x-values) is the function on [0, 1] given by

pn := E[pX |Jn] ,

which is defined only in the interior of all n+ 1 intervals.

For x ∈ (x◦j , x
◦
j+1) with j 6= i we have, for instance:

pn(x) =
F (x◦j+1)− F (x◦j )

x◦j+1 − x◦j
. (22)

Using these conditional expectations, our SSL interpolation can be written in a concise
form:

Lemma 13 (additive SSL interpolation in terms of conditional expectations) The
interpolation in Definition 6 amounts to setting

(f̂ s)′n = f ′n−1 + s(pn − pn−1) . (23)

Proof: We only need to show that integrating (23) from x◦i to xn yields the correct value
for ŷsn. On all intervals other than (x◦i , x

◦
i+1) (23) is certainly true because f̂sn coincides with

fn−1 and pn − pn−1 is zero. On the interval (x◦i , xn) the average densities pn−1 and pn are
given by

pn−1 =
F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
and pn =

F (xn)− F (x◦i )

xn − x◦i
.
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Inserting this into (23) and integrating it from x◦i to xn yields:

ŷsn = ŷn + s

[
F (xn)− F (x◦i )−

F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
(xn − x◦i )

]
= ŷn + s

[
F (xn)− F (x◦i )

x◦i+1 − x◦i
(x◦i+1 − x◦i )−

F (x◦i+1)− F (x◦i )

x◦i+1 − x◦i
(xn − x◦i )

]
= ŷn +

s

x◦i+1 − x◦i

[
−(xn − x◦i )F (x◦i+1) + (x◦i+1 − x◦i )F (xn)− (x◦i+1 − xn)F (x◦i )

]
= ŷn + s

(x◦i+1 − xn)(x◦i − xn)

x◦i+1 − x◦i

[
F (xn)− F (x◦i )

xn − x◦i
−
F (x◦i+1)− F (xn)

x◦i+1 − xn

]
.

Using Lemma 5 we are now able to phrase the loss in step n using our conditional expec-
tations:

Corollary 3 (difference between interpolating functions) The loss of the SSL ver-
sion in step n reads

Ln(yn, ŷ
s
n) =

∫ 1

0

[
(f ′n − f ′n−1)− s(pn − pn−1)

]2
dx (24)

=

∫ 1

0
[(f ′n − spn)− (f ′n−1 − spn−1)]2dx . (25)

To derive a closed form for the total loss until step n we observe that f ′n−1 and pn−1 can
also be seen as conditional expectations of f ′n and pn, respectively:

Lemma 14 (concatenating conditional expectations)

E[f ′|Jn−1] = E[f ′n|Jn−1] and E[pX |Jn−1] = E[pn|Jn−1] .

Proof: Applying the law of total expectation E[E[A|B]] = E[A] to each value of Jn−1

yields E[E[f ′|Jn]|Jn−1 = j] = E[f ′|Jn−1 = j] . Hence, E[E[f ′|Jn]|Jn−1] = E[f ′|Jn−1] . The
proof for pX is similar.

Since we want to show that the total loss until step n can be written as a variance, we first
need to rewrite the loss in each step as variance:

Lemma 15 (loss as variance of conditional expectation)

Ln(yn, ŷ
s
n) = E[Var(f ′n − spn|Jn−1)] .

Proof: The right-hand side of (24) can be written as∫ 1

0
((f ′n − spn)− (f ′n−1 − spn−1))2dx =

∫ 1

0
(f ′n − spn −E[f ′ − spX |Jn−1])2dx

=

∫ 1

0
(f ′n − spn −E[f ′n − spn|Jn−1])2dx = E[Var(f ′n − spn|Jn−1)] .

We can now express the total loss after n steps as a variance:
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Lemma 16 (total loss after n steps)

n∑
j=1

Lj(yj , ŷ
s
j ) = Var(f ′n − spn) , (26)

where the variance is again meant with respect to the Lebesgue measure.

Proof: By induction over n. Let (26) hold for n. Using the law of total variance we have

Var(f ′n − spn) = E[Var(f ′n − spn|Jn−1)] + Var(E[f ′n − spn|Jn−1])

= Ln(ŷsn, yn) + Var(f ′n−1 − spn−1) ,

where we have used Lemma 15.

As a simple conclusion we find:

Corollary 4 (optimal value sn) The total loss
∑n

j=1 Lj(yj , ŷ
s
j ) until step n is minimized

for

sn :=
Cov[f ′n, pn]

Var(pn)
.

Moreover, sn converges to the value s optimizing the total loss for infinitely many steps.

The limit n→∞ now proves Theorem 2:

lim
n→∞

Var(f ′n − spn) = lim
n→∞

∫ 1

0
(f ′n − spn)− (1− s))2dx

=

∫ 1

0
((f ′ − spX)− (1− s))2dx = Var(f ′ − spX) .

Theorem 2 only states an improvement of the total loss over the infinite number of steps
without stating for which n we get an improvement. The following remarks provide an
intuition about in which steps SSL is effective. The term Cov[f ′n, pn] quantifies to what
extent the covariance of f ′ and pX is apparent on the level of coarse-graining defined by the
observations available in step n. For n→∞, it converges to Cov[f ′, pX ], which is positive
in the anticausal scenario. The difference

Cov[f ′n, pn]− Cov[f ′n−1, pn−1] (27)

measures to what extent the correlations between f ′ and pX get better visible when the
coarse-graining is made finer by going from n− 1 to n intervals. One can easily show that
(27) can be rewritten as Cov[f ′n− f ′n−1, pn− pn−1], which is positive whenever either (1) yn
is greater than the value ŷn obtained by linear interpolation ŷn := fn−1(xn) and the average
probability density is larger on the left interval (x◦i , xn) than on the right interval (xn, x

◦
i+1)

or (2) yn is smaller than ŷn and the density is larger on the right interval. Hence, (27) is
positive whenever our SSL method corrects ŷn in the correct direction. In other words, SSL
does the right thing in step n whenever n defines a level of coarse-graining for which the
covariance of f ′ and pX gets better visible than in the previous step.
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4.2 SSL Using Correlations Between Log Slope and Density

As in Subsection 4.1 we modify the interpolation in a way that favors functions that have
higher derivative in regions where pX is large. To do so, we use the Dirichlet process
in Definition 4 with respect to a coordinate system that makes pX more uniform: if we
reparameterize X such that the differences ∆X

j get larger in regions with high density,

the interpolation with respect to the new coordinates infers the corresponding ∆Y
j to be

larger. To analyze the total loss for such a ‘deformed interpolation’ does not require to redo
the computations in Subsection 3.2. Instead, we observe that applying the transformation
xj 7→ x̃j = b(xj) with some diffeomorphism b and performing interpolation in the new
coordinate system amounts to interpolating f̃ := f ◦ b−1. We thus conclude that the term
on the right hand side of (20) is replaced with D(u‖(f ◦ b−1)′). As an aside, we should
mention that interpolation in the new coordinates amounts to using a Dirichlet process
with a different base measure, namely the density that is uniform in the new coordinates.
We conclude:

Lemma 17 (loss of deformed interpolation) The asymptotic of the loss with respect
to the above ‘b-deformed interpolation’ (denoted by L̃) reads:

lim
nmax→∞

[
lim
λ→∞

nmax∑
n=1

L̃λn(yn)

]
= D(ũ‖f ′), (28)

where ũ := b′ denotes the density that is the image of the uniform under b−1.

Proof: Since the density f ′ is the image of the uniform distribution under f−1, the density
(f ◦b−1)′ is the image of the uniform distribution under b◦f−1. Relative entropy is preserved
under bijections, we can thus apply b−1 to the left argument u of D(.‖.) (which generates
the density b′) instead of applying b to the right one.

We can now easily compare the performance of interpolations with respect to different
coordinate systems:

Lemma 18 (comparing Dirichlet interpolations)

lim
nmax→∞

[
lim
λ→∞

nmax∑
n=1

(Lλn(yn)− L̃λn(yn))

]
= D(u‖f ′)−D(ũ‖f ′) .

Given the relation between performance and the relative entropy stated by Lemma 18 we
conclude:

Corollary 5 (benefit of changing the coordinate system) The deformed interpolation
with respect to a transformation that turns ũ into the uniform distribution on [0, 1] asymp-
totically outperforms the standard interpolation for n→∞ if and only if

D(ũ‖f ′) < D(u‖f ′) .

We now define the density that generates our SSL interpolation:
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Definition 8 (SSL interpolation) Let ws be the mixture of pX with the uniform distri-
bution, i.e.,

ws = spX + (1− s) .

Apply the coordinate transformation that transforms ws into the uniform distribution, i.e.,

Ws(x) := sF (x) + (1− s)x . (29)

Then the deformed interpolation is our usual Dirichlet interpolation from Subsection 2.2
applied to the values x̃j := Ws(xj).

We then state our main result regarding the performance of SSL by Dirichlet process in the
modified coordinate system:

Theorem 3 (improvement of performace by SSL) Predicting yn via the Dirichlet pro-
cess in the coordinate system Ws, as defined by (29), improves the performance by the
amount D(u‖ws) .

To further understand our deformed interpolation one may wonder whether the expectation
of yn coincides with the value ŷsn in Subsection 4.1. Remarkably, this is not the case. Instead,
it turns out that the SSL method in this subsection modifies the slope by a multiplicative
factor that accounts for pX while the SSL method in Subsection 4.1 corrects the slope by
an additive summand. This nicely corresponds to the fact that Subsection 4.1 employs
correlations between pX and f ′ while this Subsection employs correlations between pX and
log f ′. This difference is made more explicit in Appendix D.

We now state our main result:

Theorem 4 (anticausal SSL works, causal SSL doesn’t) Let cause C and effect E
satisfy Assumption 2. For X := E and Y := C and f := g−1 there is an s > 0 for
which the deformed interpolation outperforms standard linear interpolation. For X := C
and Y := E and f := g, there is no such s.

Proof In the terminology of information geometry (Amari and Nagaoka, 1993; Amari,
2001), M := {ws}s∈I is an m-manifold. There is therefore a unique minimizer wa of the
distance D(ws‖f ′) (called the ‘projection’ of f ′ onto M) satisfying the orthogonality, see
Eq. (60) in (Amari, 2001),

D(u‖f ′) = D(u‖wa) +D(wa‖f ′) . (30)

For X = C and Y = E, we have wa = u. Therefore, M cannot contain any ws for which
D(ws‖f ′) < D(u‖f ′).

For the causal scenario X = E and Y = C, we consider the function

h(s) := D(ws‖f ′) =

∫ 1

0
(sp(x)− (1− s)) log

sp(x)− (1− s)
f ′(x)

dx . (31)

Its derivative reads

h′(s) =

∫ 1

0
(p(x)− 1) log

ws(x)

f ′(x)
dx . (32)
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We observe

h′(0) =

∫ 1

0
(p(x)− 1) log

1

f ′(x)
dx = −Cov[pX , log f ′] .

Using (6), we thus have h′(0) < 0. Therefore, the unique minimum a of h satisfies a > 0.

Remark 1 We show in Appendix C that a ≤ 1 holds in addition to a > 0 whenever one
assumes the additional independence postulate

Cov[g′, log pE ] = 0 ,

which has not been described in the literature yet.5 Then wa is a mixture of u and pX .

In strong analogy to Subsection 4.1, the theory does not tell us how to find the optimal value
s = a. We know that wa is geometrically given by projecting f ′ onto the line connecting u
and pX , see Figure 3(b), but since we don’t know f ′, it is not even clear how to find any
ws that is closer to f ′ than u is. In Subsection 4.1 we have provided intuitive arguments
why this needs to be a non-trivial problem: The free parameter s defines a prior decision
to what extent we attribute the non-uniformness of pX to pY and to what extent to the
non-linearity of f . Again, we propose the following heuristic procedure to iteratively adapt
s during the SSL procedure: in each step n, we already know which value an−1 minimizes
D(ws‖f ′n−1). In other words, among all possible deformations given by ws, we can choose
the one that yields the best prediction for the piecewise linear function f ′n−1 interpolating
the known values. Then, an converges to the optimal value a as shown by the following
result which is proved in Appendix B:

Lemma 19 (continuity of projections) Let f ′ be continuous and pX be bounded from
above. Define

an := argmins∈ID(ws‖f ′n) .

Then we have
lim
n→∞

an = argmins∈ID(ws‖f ′) .

5. Conclusions

We have analyzed a semi-supervised interpolation for Y = f(X) for an unknown strictly
monotonically increasing function f . Whenever Y is the cause and X the effect the deriva-
tive of f tends to be high in regions where pX is large – provided that one believes in the
model assumptions of Information-Geometric Causal Inference. We have proposed two dif-
ferent SSL methods, one employs the fact that pX is positively correlated with f ′, while the
other one employs positive correlations between pX and the logarithm of the slope. In both
cases, the SSL method changes the value ŷn inferred by standard linear interpolation by an
amount that depends on the average probability densities of X in the intervals between xn
and the closest point to the left and to the right. It turns out that such a modified linear

5. It turns out to be equivalent to the dual version of (7) by replacing each relative entropy D(p‖q) with
D(q‖p). It is known in information geometry (Amari, 2001) that many theorems have such a ‘dual’
counterpart.
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interpolation outperforms standard linear interpolation with respect to two substantially
different loss functions: the first one is a squared distance, the second one the Bayesian
surprise.

To the best of our knowledge, this is the first theoretical result that links the performance
of SSL to the causal direction, provided that one accepts the underlying independence
assumption for Pcause and Peffect|cause. SSL-algorithms that employ PX by changing the
geometry of the input space accordingly have been described earlier Chapelle et al. (2006).
For instance, PX may define a notion of smoothness (e.g. via PX -dependent kernels or
graphs) and thus influence the regularization term. Here we have justified an appropriate
change of the geometry based on a postulate that is linked to the causal direction.

Certainly, the notion of (in)dependence of PX and PY |X used throughout this article is
a rather simplistic one. First, the deterministic scenario applies only to very specific causal
relations in real life. Second, even for this case, one would not expect that independence
between Pcause and Peffect|cause always holds in the sense of vanishing correlations as discussed
here. To find notions of (in)dependence that turn out to be related to the causal direction
in realistic learning scenarios has to be left to the future.
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Appendix A. Proof of Lemma 10

Using (17) yields

log pr(yn|x1, . . . , xn, y1, . . . , yn−1)

= pr(y1, . . . , yn|x1, . . . , xn)− log pr(y1, . . . , yn−1|x1, . . . , xn−1) .

We now compare the terms in (21) with those that occur in the same formula for n+ 1: the
term

(λ(x◦i+1 − x◦i )− 1) log(y◦i+1 − y◦i ) (33)

is replaced with

(λ(xn+1 − x◦i )− 1) log(yn+1 − y◦i ) + (λ(x◦i+1 − xn)− 1) log(y◦i+1 − yn) . (34)

Splitting the term (33) into

(λ(xn − x◦i )− 1) log(y◦i+1 − y◦i ) + (λ(xn − x◦i+1)− 1) log(y◦i+1 − y◦i ) + log(y◦i+1 − y◦i ) ,

the difference between (33) and (34) can be written as

λ(xn − x◦i )− 1) log
yn − y◦i
y◦i+1 − y◦i

+ λ(x◦i+1 − xn)− 1) log
y◦i+1 − yn
y◦i+1 − y◦i

− log(y◦i+1 − y◦i ) .

To understand how the normalization factors change from n − 1 to n we observe that the
term

log Γ(λ(x◦i+1 − x◦i ))
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is replaced with
log Γ(λ(xn − x◦i )) + log Γ(λ(x◦i+1 − xn)) .

Then the statement follows.

Appendix B. Proof of Lemma 19

We first consider the affine family of densities qλ := λr1 + (1−λ)r2, where r1, r2 are strictly
positive densities with non-zero lower bound b. We then show that the value s minimizing
D(ws‖qλ) depends continuously on λ. To this end, we introduce the function

`(λ, s) :=
d

ds
D(ws‖qλ) =

∫
(p(x)− 1) log

ws(x)

qλ
dx ,

where the last equality is derived in analogy to (32) by replacing f ′ with qλ in. Then

∂

∂λ
`(λ, s) = −

∫ 1

0

p(x)− 1

λr1(x) + (1− λ)r2(x)
(r1(x)− r2(x))dx

∂

∂s
`(λ, s) =

∫ 1

0

(p(x)− 1)2

ws(x)
dx .

Let b > 0 be a lower bound for r1 and r2 and d > 0 an upper bound for pX . We then obtain∣∣∣∣ ∂∂λ`(λ, s)
∣∣∣∣ ≤ d

b

∫
|r1(x)− r2(x)|dx . (35)

Moreover, ∣∣∣∣ ∂∂s`(λ, s)
∣∣∣∣ ≥ 1

1 + d

∫
(1− p(x))2dx . (36)

Since (36) is non-zero because pX is not the constant function 1 (otherwise it could not
correlate with log f ′), the law of implicit functions states that we can locally find a function
v (around some solution a) by

`(λ, v(λ)) = 0 ,

with

v′(λ) =
∂

∂λ
`(λ, a)

(
∂

∂s
`(λ, a)

)−1

.

The difference between the s-values s1 and s2 for r1 and r2, respectively, can be bounded
from above by

|v(1)− v(0)| ≤ sup
λ∈[0,1]

|v′(λ)| ≤ d(d+ 1)

b

∫
|r1(x)− r2(x)|dx∫

(1− p(x))2dx
, (37)

where the last inequality follows from combining (35) and (36). Since each f ′n is strictly
positive and f ′n converges uniformly to f ′, which is strictly positive on the compact interval
[0, 1], we can find a uniform lower bound b for the functions f ′n. Using (37) with r1 := f ′n
and r2 := r2 yields

|an − a| ≤
d(d+ 1)

b

∫
|f ′n(x)− f ′(x)|dx .

Then the right hand side converges to zero, again due to the uniform convergence of f ′n to
f ′.
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Appendix C. Using the Dual Independence Postulate

Straightforward computation shows that the ‘dual’ independence postulate

Cov[g′, log pE ] = 0

is equivalent to

D(g′‖pC) = D(g′‖u) + (u‖pC) .

Applying the function g to all distributions yields

D(u‖pE) = D(u‖g−1′) +D(g−1′‖pE) . (38)

For the function h defined in (31) we observe that

h′(1) =

∫ 1

0
(p(x)− u(x)) log

p(x)

f ′(x)
dx

= D(pX‖f ′) +D(u‖pX)−D(u‖f ′) .

Using

D(u‖pX) = D(u‖f ′) +D(f ′‖pX) ,

due to (38) yields

h′(1) = D(pX‖f ′) +D(f ′‖pX) ≥ 0 ,

with equality only for f ′ = pX , i.e., if pY is uniform. Therefore the unique minimum a of h
satisfies s ≤ 1 with equality only for uniform input.

Appendix D. Comparing the Two Interpolation Schemes

We now explain why the SSL interpolation in Subsection 4.2 differs from the one in Sub-
section 4.1 not only by the fact that the former infers one specific value ŷsn while the latter
provides a conditional distribution. We now see that the expectation of the conditional of
the SSL version of the Dirichlet process does not coincide with ŷsn in Subsection 4.1. To this
end, we recall that the expectation for the standard linear interpolation in Subsection 3.1
reads

ŷn =
xn − x◦i
x◦i+1 − x◦i

(y◦i+1 − y◦i ) + y◦i .

Now, we just have to replace each x-value by Ws(x) and obtain:

Lemma 20 (expectation of deformed interpolation)

ŷsn =
Ws(xn)−Ws(x

◦
i )

Ws(x◦i+1)−Ws(x◦i )
(y◦i+1 − y◦i ) + y◦i . (39)

To understand (39), we note that it amounts to multiplying the slope of fn with some factor:
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Lemma 21 (deformed interpolation in terms of derivatives)

(f̂sn)′ = f ′n−1

(1− s) + spn
(1− s) + spn−1

= f ′n−1

wsn
wsn−1

, (40)

with wsn := E[ws|Jn].

Proof: Rewrite (39) as

ŷsn − y◦i
xn − x◦i

=
y◦i+1 − y◦i
x◦i+1 − x◦i

Ws(xn)−Ws(x
◦
i )

xn − x◦i

x◦i+1 − x◦i
Ws(x◦i+1)−Ws(x◦i )

.

Then the right hand side can be written as f ′nw
s
n/w

s
n−1 .

To compare (40) to (23) we observe

s(pn − pn−1) = wsn − wsn−1 .

Hence, (23) can also be written as

(f̂sn)′ = f ′n−1 + wsn − wsn−1, .

Therefore the additively deformed interpolation modifies f ′n−1 by adding the difference
wsn − wsn−1 as summand, while the SSL interpolation in Subsection 4.2 is multiplicative in
the sense that it adds the quotient wsn/w

s
n−1 as factor.
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