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Abstract

In this paper we consider a stochastic multiarmed bandit problem. It is known in this
problem that Deterministic Minimum Empirical Divergence (DMED) policy achieves the
asymptotic theoretical bound for the model where each reward distribution is supported
in a known bounded interval, say [0, 1]. However, the regret bound of DMED is described
in an asymptotic form and the performance in finite time has been unknown. We modify
this policy and derive a finite-time regret bound for the new policy, Indexed Minimum
Empirical Divergence (IMED), by refining large deviation probabilities to a simple non-
asymptotic form. Further, the refined analysis reveals that the finite-time regret bound is
valid even in the case that the reward is not bounded from below. Therefore, our finite-
time result applies to the case that the minimum reward (that is, the maximum loss) is
unknown or unbounded. We also present some simulation results which shows that IMED
much improves DMED and performs competitively to other state-of-the-art policies.

Keywords: stochastic bandit, finite-time regret, large deviation principle

1. Introduction

In the multiarmed bandit problem a gambler pulls arms of a slot machine sequentially so
that the total reward is maximized. There is a tradeoff between exploration and exploitation
since he cannot know the most profitable arm unless pulling all arms infinitely many times.

There are two main formulations for this problem: stochastic and nonstochastic bandits.
In the stochastic setting rewards of each arm follow an unknown distribution (Agrawal,
1995; Gittins, 1989; Vermorel and Mohri, 2005) whereas the rewards are determined by an
adversary in the nonstochastic setting (Auer et al., 2002b). In this paper we consider the
K-armed stochastic bandit, where rewards of arm i ∈ {1, 2, · · · ,K} are i.i.d. sequence from
unknown distribution Fi ∈ F with expectation µi for a model F known to the gambler. For
the maximum expectation µ∗ ≡ maxi µi, we call an arm i optimal if µi = µ∗ and suboptimal
otherwise. If the gambler knows each µi beforehand, it is best to choose optimal arms at
every round. A policy is a strategy of the gambler for choosing arms based on the past results
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of plays. The performance of a policy is usually measured by pseudo-regret, or simply regret
in short. This is the gap of cumulative expectations between the optimal choice and the
actual choice, which is expressed as

R(n) ≡
∑

i:µi<µ∗

(µ∗ − µi)Ti(n) ,

where Ti(n) is the number of plays of arm i through the first n rounds.

1.1 Theoretical Bound and its Achievability

Robbins (1952) first considered this setting and Lai and Robbins (1985) gave a framework
for determining an optimal policy by establishing an asymptotic theoretical bound for the
regret. Later this theoretical bound was extended to multiparameter or nonparametric
models F by Burnetas and Katehakis (1996). It is proved in their paper that under a mild
regularity condition any policy satisfies

E[Ti(n)] ≥ log n

Dinf(Fi, µ∗;F)
− o(log n) (1)

for any suboptimal arm i, where Dinf(F, µ;F) is defined in terms of Kullback-Leibler diver-
gence D(·‖·) by

Dinf(F, µ;F) = inf
G∈F :EG[X]>µ

D(F‖G) .

The most popular model in the nonparametric setting is the family of distributions
with supports contained in a known bounded interval, say [0, 1]. For this model, which
we denote by A0, it is known that fine performance can be obtained by policies called
Upper Confidence Bound (UCB) (Auer et al., 2002a; Audibert et al., 2009; Cappé et al.,
2013). However, although some bounds for regrets of UCB policies have been obtained in
a non-asymptotic form, they do not necessarily achieve the asymptotic theoretical bound.

Recently Honda and Takemura (2010) proposed Deterministic Minimum Empirical Di-
vergence (DMED) policy, which chooses arms based on the value ofDinf(F̂i, µ;A0), or simply
written as Dinf(F̂i, µ), for empirical distribution F̂i of arm i. Whereas DMED achieves the
asymptotic theoretical bound, the evaluation heavily depends on an asymptotic analysis
and any finite-time regret bound has been unknown.

In this paper, we consider the family A of distributions on (−∞, 1] instead of the
bounded support model A0. We first show that Dinf(F, µ;A0) = Dinf(F, µ;A) for all
F ∈ A0. Thus, any asymptotically optimal policy for the model A is also asymptoti-
cally optimal for A0, even though the gambler has more candidates for the true distribution
of each arm in the model A than in A0.

We next propose a policy, the IMED (Indexed Minimum Empirical Divergence) algo-
rithm. This is an indexed version of DMED in the sense that IMED simply chooses an
arm which minimizes an index at each round whereas DMED requires to keep a list of
arms to be pulled. We derive a finite-time regret bound of IMED for any distribution in
A such that moment generating function E[eλX ] exists in some neighborhood of λ = 0.
The derived bound coincides with the asymptotic theoretical bound and therefore IMED is
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asymptotically optimal for both A and A0. Since nonstochastic bandits inevitably require
the boundedness of the support, we see that an advantage of assuming stochastic bandits
is that the semi-bounded rewards can be dealt with in this nonparametric setting. Further-
more, we show that the reminder term of the logarithmic regret of IMED is O(1), whereas
they are O((log n)a), 0 < a < 1, in previously known asymptotically optimal regret bounds.

Note that DMED policy can be implemented without knowledge of the lower bound of
the reward and achieves the asymptotic bound if the reward is only bounded from below by
some unknown value. In this sense it is intuitively not surprising that DMED or its variant
achieves the asymptotic the semi-bounded reward. However, the theoretical analysis for
DMED in Honda and Takemura (2010) heavily depends on the boundedness of the support
and its extension is not theoretically obvious.

There has also been some research for the nonparametric stochastic bandit with un-
bounded support distributions (Bubeck et al., 2012; Liu and Zhao, 2011). In particular,
it is shown in Bubeck et al. (2012) that a logarithmic regret can be achieved if, for some
ε > 0, EFi [|X|1+ε] is bounded by a value known to the gambler beforehand. Although our
assumption of the existence of the moment generating function EFi [e

λX ] is more restrictive
than the existence of the moment EFi [|X|1+ε], IMED does not require any knowledge on
the value of EFi [e

λX ] (or EFi [|X|1+ε]). Therefore our assumption is not comparable to that
in Bubeck et al. (2012).

1.2 Motivation for Semi-bounded Support Model

An example such that the lower bound of the reward is unknown or unbounded is the
minimization of the sum of the time-delays in some task such as network routing (Vermorel
and Mohri, 2005; Krishnamurthy et al., 2001), where the agent has many sources to obtain
the same data. In this case, it may take a long time to complete the task and it is natural
to consider that the reward (that is, negative of the time-delay) is not bounded from below.
One may wonder that if some time-limit is fixed then the problem becomes a bounded
bandit and a good finite-time regret has been already achieved by, for example, kl-UCB in
Cappé et al. (2013) (although the regret bound of kl-UCB is not asymptotically optimal for
distributions other than Bernoulli distributions). However, the time-limit (or the maximum
time-delay) is usually set “conservatively”, that is, set to a value much larger than time-
delays in usual tries. In such a case, policies based only on empirical means tend to work
poorly (see also Audibert et al., 2009). For example, kl-UCB achieves a regret near

∑
i:µi<µ∗

µ∗ − µi
D(B(µi)‖B(µ∗))

log n

for reward distributions on [0, 1], where B(µ) denotes the Bernoulli distribution with mean
µ. On the other hand, if the gambler conservatively estimates the lower bound of the reward
by a < 0 instead of 0, he applies the policy after the rescaling from [a, 1] to [0, 1] and the
regret becomes

∑
i:µi<µ∗

µ∗ − µi
D(B((µi − a)/(1− a))‖B((µ∗ − a)/(1− a)))

log n ,
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which goes to infinity as a→ −∞. Audibert et al. (2009) overcame this problem by UCB-
V policy, which uses empirical variances as well as empirical means. However, in turn,
UCB-V does not necessarily perform well for usual Bernoulli distributions as reported in
Cappé et al. (2013). Therefore the IMED policy has an advantage since it always achieves
the optimal regret bound, which does not depend on whether the gambler knows the lower
bound of the reward or not.

1.3 Outline

This paper is organized as follows. In Sect. 2 we give definitions used throughout this paper
and propose the IMED policy as an indexed version of DMED. In Sect. 3, we give the main
results of this paper on the finite-time regret bound of IMED for distributions on (−∞, 1].
We discuss relation between IMED and other policies in Sect. 4 and give some simulation
results of these policies in Sect. 5. The remaining sections and appendices are devoted to
the proof of the main theorems. In Sect. 6, we analyze properties of the function Dinf for
our model. In Sect. 7, we derive a large deviation probability of an empirical distribution
F̂t measured with Dinf in a non-asymptotic form. By using this probability, we derive the
finite-time regret bound of IMED in Sect. 8. We conclude this paper with some discussion
on the regularity condition assumed throughout the paper in Sect. 9. We evaluate constants
used in the finite-time regret bound in Appendix A. We give a proof of a lemma analogous
to the bounded-support model in Appendix B. Finally we prove the asymptotic but refined
regret bound of IMED in Appendix C.

2. Preliminaries

In this section we introduce notation used throughout this paper and propose the IMED
policy.

2.1 Notation

Let Aa, a ∈ (−∞, 1), be the family of probability distributions on [a, 1]. We denote the
family of distributions on (−∞, 1] by A−∞ or simply A. For F ∈ A, the cumulative
distribution at a point x ∈ R is denoted by F̄ (x) ≡ F ((−∞, x]), where F (A), A ⊂ R,
denotes the measure of a set A. EF [·] denotes the expectation under F ∈ A. When we
write, for example, EF [u(X)] for a function u : R→ R, X denotes a random variable with
distribution F . The expectation of F is denoted by E(F ) ≡ EF [X].

Let J(n) ∈ {1, 2, · · · ,K} be the arm pulled at the n-th round. We define Ti(n) as the
number of times that arm i has been pulled through the first n rounds. Then, we have
Ti(n) =

∑n
l=1 11 [J(l) = i] where 11 [·] denotes the indicator function. F̂i,t and µ̂i,t denote the

empirical distribution and the mean of arm i when arm i is pulled t times. F̂i(n) ≡ F̂i,Ti(n)

and µ̂i(n) ≡ µ̂i,Ti(n) denote the empirical distribution and the mean of arm i at the n-th
round. The largest empirical mean after the first n rounds is denoted by µ̂∗(n) ≡ maxi µ̂i(n).

The function Dinf defined as

Dinf(F, µ;Aa) ≡ inf
G∈Aa:E(G)>µ

D(F‖G)
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Algorithm 1 IMED Policy

Initialization: Pull each arm once.
Loop: Choose an arm i minimizing

Ii(n) ≡ Ti(n)Dinf(F̂i(n), µ̂∗(n);A) + log Ti(n) ,

where the tie-breaking rule is arbitrary.

plays a central role in the DMED policy in Honda and Takemura (2010) and the IMED
policy defined below. Let

L(ν;F, µ) ≡ EF [log(1− (X − µ)ν)] ,

Lmax(F, µ) ≡ max
0≤ν≤ 1

1−µ

L(ν;F, µ) . (2)

Functions L and Lmax correspond to the Lagrangian function and the dual problem of
Dinf(F, µ;A), respectively. The following proposition shows that Dinf is equal to Lmax in
the case of the bounded support model A0. In Sect. 3 we prove that the same result holds
for the semi-bounded support model A.

Proposition 1 (Honda and Takemura, 2010, Theorem 5) For all F ∈ A0 and µ < 1
it holds that Dinf(F, µ;A0) = Lmax(F, µ).

2.2 IMED Policy

In the model A0, Honda and Takemura (2010) proposed an asymptotically optimal policy,
DMED, which maintains the list of arms satisfying

Ti(n)Dinf(F̂i(n), µ̂∗(n);A0) + log Ti(n) ≤ log n (3)

where The DMED policy pulls an arm from the list in some order.

In this paper, we use the left-hand side of (3) as the index Ii(n) for choosing an arm.
Our proposed policy, Indexed Minimum Empirical Divergence (IMED) policy, is described
as Algorithm 1. In the index Ii(n), the first term Ti(n)Dinf(F̂i(n), µ̂∗(n)) ≥ 0 corresponds to
the penalty for empirical distributions unlikely to occur from a distribution with expectation
larger than µ̂∗(n) and IMED usually chooses a currently optimal arm i since it satisfies
Dinf(F̂i(n), µ̂∗(n)) = 0. The second term log Ti(n) is the penalty for arms pulled too many
times and corresponds to the exploration function.

Note that here we say that IMED is an index policy in a weaker sense than other index
policies. Although both IMED and well known index policies such as Gittins index (Gittins,
1989) and UCB choose an arm which maximizes or minimizes its index at each round, the
values of Gittins index and UCB score of each arm can be determined only from samples of
the corresponding arm. On the other hand, the index of IMED also requires the maximum
empirical mean over all arms, which depends on statistics of other arms. It may seem
somewhat unnatural to use such an index for choosing an arm but IMED has an advantage
in the computational complexity for this property of the index as discussed in Sect. 4.1.
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3. Main Results

We now state the main results of this paper in Theorems 2, 3 and 5. In Theorem 2, we
show that the theoretical bound does not depend on knowledge of the lower bound of the
support. In Theorem 3, we give a non-asymptotic regret bound of IMED, which shows that
the theoretical bound can be achieved by IMED. We give an asymptotic but refined regret
bound of IMED in Theorem 5.

Theorem 2 Let a ∈ [−∞, 1) and F ∈ Aa be arbitrary. (i) Dinf(F, µ;Aa) = Dinf(F, µ;A).
(ii) If µ < 1 then

Dinf(F, µ;A) = Lmax(F, µ) .

We prove this theorem in Sect. 6. The part (i) of this theorem means that the theoretical
bound does not depend on whether the gambler knows lower bound of the support of
distributions or he has to consider the case that the support is not bounded from below.
Furthermore, from (ii), we can compute Dinf(F, µ;A) by using the expression Lmax(F, µ) as
in the case of A0. In view of this theorem we sometimes write Dinf(F, µ) instead of more
precise Dinf(F, µ;Aa) or Dinf(F, µ;A).

Define

ν∗i ≡ argmax
0≤ν≤ 1

1−µ∗

EFi [log(1− (X − µ∗)ν)] ,

λi,µ ≡ sup

{
λ ∈ R ∪ {∞} : EFi

[(
1−X
1− µ

)λ]
≤ 1

}
, (4)

where we show that ν∗i exists uniquely when E(Fi) < µ∗ in Sect. 6 and show λi,µ > 1 for
µ < µi in Sect. 7. We further define Fenchel-Legendre transforms of cumulant generating
functions of random variables X and log(1− (X − µ∗)ν∗i ) as

Λ∗i (x) ≡ sup
λ
{λx− log EFi [e

λX ]} , (5)

Λ̃∗i (x) ≡ sup
λ

{
λx− log EFi [(1− (X − µ∗)ν∗i )λ]

}
. (6)

Then, for1 ∆i ≡ µ∗ − µi and Iopt ≡ {j : µj = µ∗} ⊂ {1, · · · ,K}, the regret of IMED is
bounded as follows.

Theorem 3 Assume that µ∗ < 1 and EFj [e
λX ] < ∞ in some neighborhood of λ = 0 for

some j ∈ Iopt. Then, for any fixed 0 < δ < mini:µi<µ∗ ∆i/2, the expected number of pulls
of a suboptimal arm i /∈ Iopt is bounded as

E[Ti(n)] ≤ log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ∗ ))

+ min
j∈Iopt

{
6e

(1− 1/λj,µ∗−δ)(1− e−(1−1/λj,µ∗−δ)Λ
∗
j (µ∗−δ))3

}
.

1. We often use the subscript i for a suboptimal arm and use j for an optimal arm.
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Consequently, the expected regret is bounded as

E[R(n)] ≤
∑
i:∆i>0

∆i

(
log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ∗ ))

)

+

(
K∑
i=1

∆i

)
min
j∈Iopt

{
6e

(1− 1/λj,µ∗−δ)(1− e−(1−1/λj,µ∗−δ)Λ
∗
j (µ∗−δ))3

}
.

We prove Theorem 3 in Sect. 8 based on non-asymptotic large deviation probabilities for
Dinf(F̂i(n), µ̂∗(n)) given in Sect. 7. In Appendix A, we discuss simple representations of
(λj,µ, Λ∗i (x), Λ̃∗i (x)) and show that λj,µ∗−δ = 1+O(δ), Λ∗i (µ

∗−δ) = O(δ2) and Λ̃∗i (Dinf(Fi, µ
∗)

− δ/(1− µ∗)) = O(δ2). The following corollary is straightforward from this observation.

Corollary 4 Under the assumption of Theorem 3,

E[R(n)] =
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O((log n)10/11) . (7)

Proof From 1− e−ε = O(ε) and the above observation on (λj,µ, Λ∗i (x), Λ̃∗i (x)),

E[R(n)] ≤
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O(δ log n) + O(δ−2) + O(δ−10) .

We obtain (7) by letting δ = O((log n)−1/11).

From this corollary we see that IMED is asymptotically optimal in view of (1). How-
ever, the reminder term O((log n)10/11) is quite larger than those of known asymptotically
optimal policies for other models although our model, the semi-bounded support model,
is quite complicated. For example, it is shown in Cappé et al. (2013) that the KL-UCB
policy achieves the asymptotic bound with reminder term O(

√
log n) for a subclass of one-

dimensional exponential families and O((log n)4/5 log logn) for the finite support model.
The following theorem shows that the reminder term can be much improved in our model.

Theorem 5 (i) Assume that µ∗ < 1 and EFi [e
λX ] <∞ in some neighborhood of λ = 0 for

all i ∈ {1, 2, · · · ,K}. Then

E[R(n)] =
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
+ O(1) . (8)

(ii) Furthermore, if the distribution of each arm has a bounded support then the reminder
term O(1) in (8) can be replaced with −O(log log n), that is, there exists C > 0 such that
for all sufficiently large n

E [R(n)] ≤
∑

i:µi<µ∗

∆i log n

Dinf(Fi, µ∗)
− C log log n . (9)
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The proof of this theorem is much more complicated than that of Theorem 3 and given in
Appendix C.

Note that a policy asymptotically optimal for the semi-bounded support model is also
asymptotically optimal for the model of finite-support distributions (Honda and Takemura,
2011, Theorem 3). Therefore the regret bound (9) of IMED is asymptotically better than
that of KL-UCB in Cappé et al. (2013) for finite-support distributions, of which the reminder
term is O((log n)4/5 log log n).

To the best of the authors’ knowledge, this is the first result to show that the asymptotic
bound (1) is achievable with a reminder term O(1) instead of o(log n). The key to this
refined bound is to apply a technique for a stopping-time of a stochastic process, which we
evaluate in Lemma 18. The authors think that the regret bounds of other policies can also
be improved by using this novel technique.

4. Relation with Other Policies

In the previous sections we showed that IMED achieves the asymptotic bound for the semi-
bounded support model. In this section we compare IMED with other policies which achieve
a logarithmic regret for some models.

4.1 KL-UCB Policies

Burnetas and Katehakis (1996) proposed a UCB policy for a general class F which chooses
an arm maximizing the index

sup
{
µ : Ti(n)Dinf(F̂i(n), µ;F) ≤ f(n)

}
(10)

for some exploration function f(n). They gave a sufficient condition for the asymptotic
optimality of this policy for general model F and proved that the condition is satisfied
for the finite support model and the normal distribution model with known variances.
Furthermore Cappé et al. (2013) proved its asymptotic optimality with a finite-time regret
bound for the finite support model and a subclass of exponential families. They also proved
that this policy where Dinf(µ;F) is replaced with the Bernoulli divergence

Dinf(F̂i(n), µ;FBer) = µ̂i(n) log
µ̂i(n)

µ
+ (1− µ̂i(n)) log

1− µ̂i(n)

1− µ
(11)

achieves a logarithmic regret for general distributions with supports in [0, 1]. We refer
to this policy for general model F as KL-UCB and the policy with (11) for bounded-
support distributions as kl-UCB after Cappé et al. (2013). We can make the KL-UCB
policy computationally feasible by using Prop. 1 and Theorem 2 for the bounded support
model and the semi-bounded support model, respectively, but the asymptotic optimality
for these models has been currently unknown although the authors believe that it can be
proved as in IMED by using Theorem 2 and large deviation probabilities evaluated in the
next section.

Other than the theoretical guarantee of the asymptotic optimality, the IMED has an
advantage in the computational complexity. In the semi-bounded support model (or the
bounded support model), the computation of Dinf itself involves an optimization and a
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simple representation of (10) has not been known whereas Dinf can be represented as a
univariate convex optimization as shown in Theorem 2.

Furthermore, since Dinf(F, µ) = 0 for E(F ) = µ, IMED does not require the computation
of Dinf(F̂i(n), µ̂∗(n)) for currently optimal arms and the computation of these values for
currently suboptimal arms are sufficient. Since any suboptimal arm is pulled at most
O(log n) times in average, the size of the support of F̂i(n) is O(log n) and the average
complexity of IMED at each round becomes O(log n). On the other hand, KL-UCB also
require the computation of (10) for currently optimal arms and the complexity becomes
O(n) as discussed in Cappé et al. (2013, Sect. 6.2). This advantage of IMED justifies to
some extent the use of a somewhat unnatural index which depends on statistics of other
arms.

4.2 Bayesian Policies

There have also been some Bayesian policies which are known to achieve the asymptotic
bound for some model.

The Bayes-UCB policy (Kaufmann et al., 2012a) is a variant of UCB family obtained by
the replacement of Ti(n)Dinf(F̂i(n), µ) in (10) with a quantity associated with a posterior
probability on the true expectation of the arm. The asymptotic optimality of this policy is
proved for the Bernoulli model.

Another Bayesian policy is Thompson sampling (TS) originally proposed in Thompson
(1933), which is a randomized algorithm which chooses an arm according to the posterior
probability that the arm is optimal. TS is proved to be asymptotically optimal for general
one-dimensional exponential families including the Bernoulli model (Kaufmann et al., 2012b;
Agrawal and Goyal, 2013; Korda et al., 2013). It is also reported that TS is easily applicable
to many models with a state-of-the-art performance (Chapelle and Li, 2012; Russo and
Roy, 2013). On the other hand, TS requires random sampling from the posterior which
is difficult for models other than exponential families, particularly in the nonparametric
models. Although it may become tractable for the semi-bounded support model in non-
parametric Bayesian framework, it is not very simple compared to the computation of Dinf

and it remains unknown whether TS works practically for our model.

4.3 Achievability of Logarithmic Regret for Semi-bounded Support Model

Another question is whether or not there exists a simpler policy than IMED which achieves
a (possibly non-optimal) logarithmic regret for the semi-bounded support model. For the
bounded support model a logarithmic regret can be achieved by kl-UCB policy as described
above. The key property of KL-UCB is

D(B(E(F ))‖B(µ)) ≤ Dinf(F, µ)

for F ∈ A0, which means that the Bernoulli divergence can be used as a lower bound of
Dinf(F, µ) when the expectation (that is, the first-order moment) of F is specified. However,
in the derivation of this inequality a convex function on the support [0, 1] is bounded from
above and the lower and upper bounds of the support are explicitly required (see Sect. 6.1 of
Cappé et al. (2013) for detail), which makes difficult to bound Dinf(F, µ) for general F ∈ A.
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A natural idea to bound Dinf(F, µ) is to use higher-order moments of F . DMED-M
(Honda and Takemura, 2012) is a policy based on this idea and obtained by replacing
Dinf(F, µ) = Dinf(F, µ;Aa) for F ∈ Aa, a > −∞, with

D
(d)
inf (M (d), µ;Aa) ≡ inf

G∈Aa:EG[Xm]=EF [Xm],m=1,2,··· ,d
Dinf(G,µ;Aa) ,

where M (d) = (EF [X],EF [X2], · · · ,EF [Xd]). We can compute D
(d)
inf by solving algebraic

equations and it is expressed in an explicit form for d ≤ 4 from the theory of Tchebycheff

system (Karlin and Studden, 1966). The important point is that D
(d)
inf for even d does

not depend on the lower bound a of the support (Honda and Takemura, 2012, Theorem
3). This means that DMED-M for even d achieves a logarithmic regret bound without
knowledge on the lower bound a of the support whereas a policy using Bernoulli divergence

D
(1)
inf (E(F ), µ;Aa) becomes meaningless for a→ −∞ as discussed in Introduction. Therefore

we can expect that DMED-M, or other policies based on D
(d)
inf , also achieves a logarithmic

regret for the semi-bounded support model since the key technique, Tchebycheff system, is
extended to semi-bounded support distributions (Karlin and Studden, 1966, Chap. V).

5. Experiment

In this section we give some simulation results for IMED, DMED, Thompson sampling
(TS) and KL-UCB family. For the KL-UCB family, we use f(n) = log n as an exploration
function for (10) since the asymptotic optimality is shown in Burnetas and Katehakis (1996)
for some models and it is empirically recommended in Cappé et al. (2013) although the latter
paper uses f(n) = log n+ c log logn for some c > 0 in the proof of the optimality. The kl-
UCB+ and KL-UCB+ (Garivier and Cappé, 2011) are empirical improvements of kl-UCB
and KL-UCB, respectively, where f(n) = log n is replaced with f(n) = log(n/Ti(n)). The
optimality analysis of these policies has not been given but a similar version is discussed in
Kaufmann (2014, Proposition 2.4) for some models.

Each plot is an average over 10,000 trials. In the four figures given below, IMED and
KL-UCB+ performed almost the best. Whereas the complexity of IMED is smaller than
KL-UCB family as discussed in Sect. 4.1, the regret of IMED was slightly worse than that
of KL-UCB+.

First, Fig. 1 shows simulation results of IMED, DMED, TS, kl-UCB and kl-UCB+ for
ten-armed bandit with Bernoulli rewards with µ1 = 0.1, µ2 = µ3 = µ4 = 0.05, µ5 = µ6 =
µ7 = 0.02, µ8 = µ9 = µ10 = 0.01, which is the same setting as those in2 Kaufmann et al.
(2012b) and Cappé et al. (2013).

Next, we consider the case that the time-delay X ′i for some task by the i-th agent follows
an exponential distribution with density e−x/µ

′
i/µ′i, x ≥ 0, and the player tries to minimize

the cumulative delay. Since we modeled the reward as a random variable in (−∞, 1], we set

2. The simulation result for DMED in this paper is different from those in these references where DMED
is reported to perform much worse. This is because a policy where (3) is replaced with the condition

Ti(n)Dinf(F̂i(n), µ̂∗(n);A0) ≤ logn

is used as “DMED” in these references although the optimality proof of DMED is given for (3). This
replacement can be interpreted as that of KL-UCB+ with KL-UCB (see also Garivier and Cappé (2011)).
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Figure 1: Average regret for 10-armed
Bernoulli bandit.
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Figure 2: Average regret for 5-armed ban-
dit where the negative reward
follows an exponential distribu-
tion.

the reward asXi = 1−X ′i, that is, Xi has density e−(1−x)/µ′i/µ′i = e−(1−x)/(1−µi)/(1−µi), x ≤
1, with expectation µi = 1 − µ′i. Fig. 2 shows simulation results for 5-armed bandit with
µ′i = 1/5, 1/4, 1/3, 1/2, 1, that is, µi = 4/5, 3/4, 2/3, 1/2, 0. We used IMED, DMED,
KL-UCB, KL-UCB+ for A and KL-UCB for the (shifted) exponential distributions, which
we refer as kl-exp-UCB, where the KL divergence is written as

D(µ̂i‖µ) =
1− µ̂i
1− µ

− 1− log
1− µ̂i
1− µ

.

The kl-exp-UCB policy explicitly assumes the knowledge that 1−Xi follows an exponential
distribution (and under the same assumption TS can also be implemented) whereas the
other policies only uses the knowledge on the upper bound of the reward.

Since kl-exp-UCB is asymptotically optimal for exponential distributions, it is theoreti-
cally assured that it asymptotically outperforms other policies for this setting. Nevertheless,
it seems from the comparison of kl-exp-UCB and KL-UCB that the gap between theoretical
bounds for semi-bounded support model and for exponential distributions is not very large,
which supports the effectiveness of the nonparametric model.

Finally, Figs. 3 and 4 show results of IMED, DMED, KL-UCB and KL-UCB+ for trun-
cated normal distributions on [0, 1] and (−∞, 1], respectively, as examples of multiparameter
models. The cumulative distribution of each reward is given by

F̄i(x) =


0, x < a,
Φ((x−µ′i)/σi)−Φ((a−µ′i)/σi)
Φ((1−µ′i)/σi)−Φ((a−µ′i)/σi)

, a ≤ x < 1,

1, 1 ≤ x,

where a = 0 or −∞, and Φ is the cumulative distribution function of the standard normal
distribution. We also give results of kl-UCB and TS for the Bernoulli bandit for the setting
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Figure 3: Average regret for 5-armed ban-
dit with truncated normal distri-
butions on [0, 1].
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Figure 4: Average regret for 5-armed ban-
dit with truncated normal distri-
butions on (−∞, 1].

of Fig. 3 where the reward is bounded. For each experiment we set expectations and vari-
ances before truncation as µ′i = 0.6, 0.5, 0.5, 0.4, 0.4 and σi = 0.4, 0.2, 0.4, 0.2, 0.4. The
expectation of each arm after truncation is given by µi = 0.519, 0.5, 0.5, 0.465, 0.481 for
support [0, 1] and µi = 0.319, 0.390, 0.265, 0.320, 0.206 for support (−∞, 1]. We see from
Fig. 3 that the policies for the nonparametric model work much better than that for the
Bernoulli model.

6. Properties of Dinf in the Semi-bounded Support Model

In this section we extend some results on Dinf(F, µ;A0) in Honda and Takemura (2010) to
model A = A−∞ and prove Theorem 2.

The minimization function Dinf(F, µ;A) is expressed as

minimize:

∫ (
log

dF

dG

)
dF

subject to: G ∈ A is a positive finite measure on (−∞, 1],∫
dG = 1,

∫
xdG > µ ,

which has an infinite-dimensional variable and finite constraints. An optimization prob-
lem of this form is called a partially-finite convex optimization and many researches have
been conducted (Borwein and Lewis, 1993; Ito et al., 2000). We can prove the relation
Dinf(F, µ;A0) = Lmax(F, µ) in Prop. 1 in a generic way for this problem although it is
proved in a problem-specific way in Honda and Takemura (2010, Theorem 5). Nevertheless,
we were not able to find a result straightforwardly applicable to our target Dinf(F, µ;A) for
the reason below and we analyze this problem in a problem-specific way.
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The difficulty in the model A lies in the fact that A is not compact and the operator
x : A → R : G 7→

∫
xdG in the constraint is not continuous under the Lévy metric since

f(x) = x is not a bounded function on (−∞, a]. For this reason it is necessary to evaluate
the effect of tail weights of measures on expectations precisely.

First we consider the function L(ν;F, µ) = EF [log(1 − (X − µ))ν]. The integrand
l(x, ν) ≡ log(1− (x− µ)ν) is differentiable in ν ∈ (0, (1− µ)−1) for all x ∈ (−∞, 1] with

∂l(x, ν)

∂ν
= − x− µ

1− (x− µ)ν
=

1

ν

(
1− 1

1− (x− µ)ν

)
,

∂2l(x, ν)

∂ν2
= − (x− µ)2

(1− (x− µ)ν)2
.

Since they are bounded in x ∈ (−∞, 1], the integral L(ν;F, µ) is differentiable in ν with

L′(ν;F, µ) ≡ ∂L(ν;F, µ)

∂ν
=

1

ν

(
1− EF

[
1

1− (X − µ)ν

])
, (12)

L′′(ν;F, µ) ≡ ∂2L(ν;F, µ)

∂ν2
= −EF

[
(X − µ)2

(1− (X − µ)ν)2

]
. (13)

From these derivatives the optimal solution ν∗ = ν∗(F, µ) = argmax0≤ν≤(1−µ)−1 L(ν;F, µ)
of (2) exists uniquely except for the case X = µ (a.s.) and satisfies the properties in the
following lemmas.

Lemma 6 Assume that E(F ) < µ < 1 holds. If EF [(1 − µ)/(1 − X)] < 1 then ν∗ =
(1 − µ)−1 and therefore EF [1/(1 − (X − µ)ν∗)] < 1. Otherwise, ν∗ ∈ (0, (1 − µ)−1) and
EF [1/(1− (X − µ)ν∗)] = 1.

Lemma 7 Lmax(F, µ) is differentiable in µ < E(F ) with

dLmax(F, µ)

dµ
= ν∗(F, µ) ≤ 1

1− µ
.

Lemma 6 is straightforward from the derivatives (12) and (13). The proof of Lemma 7 is
completely analogous to the proof of Honda and Takemura (2011, Theorems 3 (iii)) where
the same results is derived for distributions on a finite support. We give the proof for
completeness in Appendix B.

Define F(a) ∈ Aa as the distribution obtained by transferring the probability of (−∞, a)
under F to x = a, that is, the cumulative distribution function of F(a) is defined as

F̄(a)(x) ≡

{
0 x < a ,

F̄ (x) x ≥ a .

Recall that Lmax(F, µ) = max0≤ν≤(1−µ)−1 L(ν;F, µ) = max0≤ν≤(1−µ)−1 EF [log(1− (X −
µ))ν]. Now we give the key to extension for the semi-bounded support in the following
lemma, which shows that the effect of the tail weight is bounded uniformly if the expectation
is bounded from below.
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Lemma 8 Fix arbitrary µ, µ̃ < 1 and ε > 0. Then there exists a(ε, µ, µ̃) such that |Lmax(F(a), µ)
− Lmax(F, µ)| ≤ ε for all a ≤ a(ε, µ, µ̃) and all F ∈ A such that E(F ) ≥ µ̃ .

Proof Take sufficiently small a < min{0, µ} and define A = (−∞, a), B = [a, 1]. Note that
F (A) + F (B) = 1. First we have

F (A) ≤ 1− µ̃
1− a

(14)∫
A
xdF (x) ≥ µ̃− 1 + F (A) (15)

from

E(F ) ≤ aF (A) + 1 · F (B) = 1− (1− a)F (A)

E(F ) ≤
∫
A
xdF (x) + 1 · F (B) ,

respectively. Next, Lmax(F, µ) can be written as

Lmax(F, µ) = max
0≤ν≤ 1

1−µ

EF [log(1− (X − µ)ν)]

= max
0≤ν≤ 1

1−µ

{∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x) +

∫
B

log(1− (x− µ)ν)dF(a)(x)

}
. (16)

Since (1− (x−µ)ν)/(1− (a−µ)ν) is increasing in ν for x ≤ a, substituting 0 and (1−µ)−1

into ν, we can bound the first term as

0 ≤
∫
A

log
1− (x− µ)ν

1− (a− µ)ν
dF (x)

≤
∫
A

log
1− x
1− a

dF (x)

≤ F (A)

∫
A

log(1− x)
dF (x)

F (A)
(by a ≤ 0)

≤ F (A) log

(∫
A

(1− x)
dF (x)

F (A)

)
(Jensen’s inequality)

≤ F (A) log
1− µ̃
F (A)

. (by (15))

From limx→0 x log x = 0 and (14), the first term of (16) converges to 0 as a → −∞. The
second term of (16) equals Lmax(F(a), µ) and the proof is completed.

Now we show Theorem 2 based on the preceding lemmas.

Proof of Theorem 2 (i) Recall that G(a) is the distribution such that the weight of G
on (−∞, a) is transported to the point a. Thus, if F ∈ Aa is absolutely continuous with
respect to G then dF/dG ≥ dF/dG(a) holds almost everywhere on the support of F and
we have D(F‖G) ≥ D(F‖G(a)). On the other hand if F is not absolutely continuous then
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D(F‖G) = ∞ and therefore D(F‖G) ≥ D(F‖G(a)) still holds for this case. Combining
them we have

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G)>µ

D(F‖G(a))

≥ inf
G∈A:E(G(a))>µ

D(F‖G(a))
(
by E(G) ≤ E(G(a))

)
= inf

G∈Aa:E(G)>µ
D(F‖G) .

On the other hand it holds from Aa ⊂ A that

inf
G∈A:E(G)>µ

D(F‖G) ≤ inf
G∈Aa:E(G)>µ

D(F‖G)

and we obtain infG∈A:E(G)>µD(F‖G) = infG∈Aa:E(G)>µD(F‖G).
(ii) We show Dinf(F, µ;A) ≤ Lmax(F, µ) and Dinf(F, µ;A) ≥ Lmax(F, µ) separately. To

prove the former inequality, let us consider a measure for any (measurable) set S ⊂ R

G∗(S) ≡

{∫
S

1−µ
1−xdF + (1− EF [ 1−µ

1−X ]) 11[1 ∈ S] , EF [ 1−µ
1−X ] ≤ 1 ,∫

S
1

1−(x−µ)ν∗dF , EF [ 1−µ
1−X ] > 1 .

We can see from Lemma 6 that G∗ is a probability measure such that E(G∗) = µ and
D(F‖G∗) = L(ν∗;F, µ) = Lmax(F, µ). Therefore the mixture distribution (1 − ε)G∗ + εδ1

satisfies E((1− ε)G∗ + εδ1) = (1− ε)µ+ ε > µ for any ε ∈ (0, 1) where δ1 is the point mass
measure at 1. As a result,

Dinf(F, µ;A) ≤ D(F‖(1− ε)G∗ + εδ1)

≤
∫

log
dF

d((1− ε)G∗)
dF

= D(F‖G∗)− log(1− ε)
= Lmax(F, µ)− log(1− ε)

and we obtain Dinf(F, µ;A) ≤ Lmax(F, µ) by letting ε ↓ 0.
Next we show the latter inequality. Let A = (−∞, a] and B = (a, 1], and define

FA and GA as probability measures such that FA(S) = F (S ∩ A)/F (A) and GA(S) =
G(S ∩A)/G(A). Then, for any probability measure G such that F is absolutely continuous
with respect to G, it holds that

D(F‖G) =

∫
A

log
dF

dG
dF +

∫
B

log
dF

dG
dF

= F (A)

∫
A

log
G(A)

F (A)

dFA
dGA

dFA +

∫
B

log
dF

dG
dF

= F (A)

∫
A

log
G(A)

F (A)
dFA + F (A)

∫
A

log
dFA
dGA

dFA +

∫
B

log
dF

dG
dF

= F (A) log
G(A)

F (A)
+ F (A)D(FA‖GA) +

∫
B

log
dF

dG
dF

≥ F (A) log
G(A)

F (A)
+

∫
B

log
dF

dG
dF

= D(F(a)‖G(a))
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and therefore,

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G)>µ

D(F(a)‖G(a))

≥ inf
G∈Aa:E(G(a))>µ

D(F(a)‖G(a)) (by E(G) ≤ E(G(a))) .

Let F ′(a) and G′(a) be the probability distributions of (X − a)/(1 − a) when X follows F(a)

and G(a), respectively. Then, letting ε > 0 be arbitrary and a < µ be sufficiently small, we
obtain from invariance of KL divergence under scale transformation that

inf
G∈A:E(G)>µ

D(F‖G) ≥ inf
G∈A:E(G(a))>µ

D(F(a)‖G(a))

= inf
G∈A:E(G′

(a)
)>µ−a

1−a

D(F ′(a)‖G
′
(a))

= Dinf

(
F ′(a),

µ− a
1− a

;A0

)
= Lmax

(
F ′(a),

µ− a
1− a

)
(by Prop. 1)

= Lmax

(
F(a), µ

)
(by expression of Lmax in (2))

≥ Lmax(F, µ)− ε (by Lemma 8)

and we complete the proof by letting ε ↓ 0.

7. Large Deviation Probabilities for Empirical Distributions Measured
with Dinf

It is essential for evaluation of IMED to derive large deviation probabilities on F̂i,t and µ̂i,t.
In this section we discuss probabilities on the empirical distribution and the mean from a
generic distribution F ∈ A, for which we write (F̂t, µ̂t) by dropping the subscript i from
(F̂i,t, µ̂i,t).

The key to the non-asymptotic evaluation lies in the fact that

Dinf(F̂t, µ) = max
0≤ν≤ 1

1−µ

EF̂t [log(1− (X − µ)ν)]

= max
0≤ν≤ 1

1−µ

{
1

t

t∑
l=1

log(1− (Xl − µ)ν)

}
,

where each Xl follows distribution F . Although it involves a maximization, it is essentially
an empirical mean of one-dimensional random variables log(1 − (Xl − µ)ν). By Cramér’s
theorem below, we can bound the large deviation probability for such an empirical mean in
a non-asymptotic form.

Proposition 9 (Dembo and Zeitouni, 1998, Eqs. (2.2.12) and (2.2.13)) Assume that
the moment generating function EF [eλX ] exists in some neighborhood of λ = 0. Then, for
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any x ∈ R

1

t
logPF [µ̂t ≥ x] ≤ − sup

λ≥0

{
λx− log EF [eλX ]

}
.

Also, if x < E(F ) then

1

t
logPF [µ̂t ≤ x] ≤ −Λ∗(x) (17)

and if x > E(F ) then

1

t
logPF [µ̂t ≥ x] ≤ −Λ∗(x) (18)

where Λ∗(x) = supλ{λx− log EF [eλX ]}.

We prove Props. 10–12 given below by Cramér’s theorem.

Proposition 10 For any F ∈ A,µ > E(F ) and u < Dinf(F, µ),

PF [Dinf(F̂t, µ) ≤ u] ≤ e−tΛ̃
∗(u) ,

where Λ̃∗(x) = supλ{λx − EF [(1 − (X − µ)ν∗)λ]} for ν∗ = argmax0≤ν≤(1−µ)−1 EF [log(1 −
(X − µ)ν)].

Proof For ν∗ = argmax0≤ν≤(1−µ)−1 EF [log(1− (X − µ)ν)] we have

PF [Dinf(F̂t, µ) ≤ u] = PF

[
max

0≤ν≤(1−µ)−1
EF̂t [log(1− (X − µ)ν)] ≤ u

]
≤ PF

[
EF̂t [log(1− (X − µ)ν∗)] ≤ u

]
.

For X1, X2, · · · following distribution F , we can regard EF̂t [log(1− (X − µ)ν∗)] as the em-
pirical mean of Yi = log(1 − (Xi − µ)ν∗), i = 1, · · · , t, which has expectation Dinf(F, µ).
Then the theorem follows immediately from (17) of Prop. 9.

Proposition 11 Fix any F ∈ A and µ < E(F ) and assume that the moment generating
function EF [eλX ] of F exists in some neighborhood of λ = 0. (i) For λµ = sup{λ ∈
R ∪ {+∞} : EF [((1−X)/(1− µ))λ] ≤ 1}, we have λµ > 1. (ii) For any u ∈ R,

PF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] ≤

{
e−tΛ

∗(µ), if u ≤ Λ∗(µ)/λµ ,

2e(1 + λµt)e
−tλµu, otherwise.

where Λ∗(x) = supλ{λx− log EF [eλX ]} and we define λe−λ = 0 for λ = +∞.
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Remark 1 Since Dinf(F̂t, µ) ≥ u implies

D(F̂t‖F ) ≥ Dinf(F̂t,E(F ))

≥ Dinf(F̂t, µ)

≥ u ,

it is easy to prove from Sanov’s theorem (Dembo and Zeitouni, 1998, Chap. 6.2) that

lim sup
t→∞

1

t
logPF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] ≤ −u ,

that is, PF [Dinf(F̂t, µ) ≥ u, µ̂t ≤ µ] is roughly bounded by e−tu. Prop. 11 shows that this
bound can be refined to e−tλµu for large u and its coefficient is explicitly bounded by a
polynomial 2e(1 + λµt).

Proof of Proposition 11 (i) Since we assume E[eλX ] < ∞ in some neighborhood of
λ = 0,

EF

[(
1−X
1− µ

)λ]
=

EF [(1−X)λ]

(1− µ)λ

is finite and continuous in λ ≥ 0. We obtain λµ > 1 from

EF

[(
1−X
1− µ

)1
]

=
1− E(F )

1− µ
< 1 .

(ii) Fix an arbitrary δ > 0 and let Mδ = d1/(2δ(1 − µ))e. Define ν(m) for m =
−Mδ,−Mδ + 1, · · · , 0, · · · ,Mδ by

ν(m) =
1 + m

Mδ

2(1− µ)
.

Then {[ν(m), ν(m+1)]}m=−Mδ,··· ,Mδ−1 partitions [0, (1 − µ)−1] into intervals with length at

most δ. Therefore the event {Dinf(F̂t, µ) ≥ u} can be expressed as

{Dinf(F̂t, µ) ≥ u} =
{
∃ν ∈

[
0, 1

1−µ
]
, L(ν; F̂t, µ) ≥ u

}
=

−1⋃
m=−Mδ

{
∃ν ∈

[
ν(m), ν(m+1)

]
, L(ν; F̂t, µ) ≥ u

}

∪
Mδ⋃
m=1

{
∃ν ∈

[
ν(m−1), ν(m)

]
, L(ν; F̂t, µ) ≥ u

}
. (19)

Since |ν(m+1) − ν(m)| ≤ δ and L(ν; F̂t, µ) is concave in ν, it holds for m ≤ −1 that{
∃ν ∈

[
ν(m), ν(m+1)

]
, L(ν; F̂t, µ) ≥ u

}
⊂
{
L(ν(m+1); F̂t, µ)− δmin{0, L′(ν(m+1); F̂t, µ)} ≥ u

}
⊂
{
L(ν(m+1); F̂t, µ)− δmin{0, L′(ν(0); F̂t, µ)} ≥ u

}
. (20)
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Similarly it holds for m ≥ 1 that{
∃ν ∈

[
ν(m−1), ν(m)

]
, L(ν; F̂t, µ) ≥ u

}
⊂
{
L(ν(m−1); F̂t, µ) + δmax{0, L′(ν(0); F̂t, µ)} ≥ u

}
. (21)

Here the derivative L′ is expressed from (12) as

L′(ν; F̂t, µ) =
1

ν
− 1

ν
EF̂t

[
1

1− (X − µ)ν

]
.

Since 1/(1− (x− µ)ν) is positive and increasing in x ≤ 1, it is bounded as

1

ν
≥ L′(ν; F̂t, µ) ≥ 1

ν
− 1

ν

1

1− (1− µ)ν
= − 1− µ

1− (1− µ)ν
.

Thus L′(ν(0); F̂t, µ) = L′(1/(2(1− µ)); F̂t, µ) is bounded as

2(1− µ) ≥ L′(ν(0); F̂t, µ) ≥ −2(1− µ) .

Combining this with (19), (20) and (21) we obtain

PF [Dinf(F̂t, µ) ≥ u] ≤
∑
m 6=0:

−Mδ≤m≤Mδ

PF

[
L(ν(m); F̂t, µ) ≥ u− 2(1− µ)δ

]
. (22)

Now recall that

λµ = sup

{
λ : EF

[(
1−X
1− µ

)λ]
≤ 1

}
> 1 .

Then, by Prop. 9,

PF

[
L(ν(m); F̂t, µ) ≥ u− 2(1− µ)δ

]
≤ exp

(
−t sup

λ≥0

{
λ(u− 2(1− µ)δ)− log EF [eλ log(1−(X−µ)ν(m))]

})

≤ exp

(
− t sup

λ≥1

{
λ(u− 2(1− µ)δ)

− log
(

EF [eλ log(1−(X−µ)·0)] ∨ EF [eλ log(1−(X−µ)·(1−µ)−1)]
)})

(23)

= exp

(
−t sup

λ≥1

{
λ(u− 2(1− µ)δ)− log

(
1 ∨ EF

[(
1−X
1− µ

)λ])})
≤ exp (−tλµ(u− 2(1− µ)δ)) , (24)

where (23) follows from 0 ≤ ν(m) ≤ (1 − µ)−1 and the convexity of EF [eλ log(1−(X−µ)ν)] in
ν ∈ [0, (1− µ)−1] for λ ≥ 1. Therefore we obtain from (22) and (24) that

PF [Dinf(F̂t, µ) ≥ u] ≤ 2Mδ exp (−tλµ(u− 2(1− µ)δ))

≤ 2

(
1 +

1

2(1− µ)δ

)
exp (−tλµ(u− 2(1− µ)δ))
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and we complete the proof by letting δ = 1/(2tλµ(1− µ)) and combining it with (17).

We prove Theorem 3 by the above two propositions. We also use the following proposition
on the large deviation probability of Dinf(F̂t, µ) under a more general setting for the proof
of Theorem 5.

Proposition 12 Fix any u, µ ∈ R and F ∈ A such that E(F ) < µ < 1. Then

PF [Dinf(F̂t, µ) ≥ u] ≤ 2e(1 + t) exp

(
−t
(
u− log

1− E(F )

1− µ

))
.

Proof Since (22) and (23) also hold for the case of this theorem, we obtain the theorem
by letting λ = 1 and δ = 1/(2t(1− µ)).

8. Regret Analysis for IMED

In this section we prove Theorem 3 by using a technique similar to that for UCB policies.
First we prove Lemma 13 below as a fundamental property of the IMED policy on the
minimum index I∗(l) ≡ mini∈{1,2,··· ,K} Ii(l).

Lemma 13 For any x > 0 and arm i,

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i] ≤ ex .

Proof This is straightforward from

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i] =
∞∑
t=1

∞∑
l=1

11 [I∗(l) ≤ x, J(l) = i, Ti(l) = t]

≤
∞∑
t=1

∞∑
l=1

11 [log t ≤ x, J(l) = i, Ti(l) = t]

(J(l) = i implies I∗(l) = Ii(l) ≥ log Ti(l))

=

bexc∑
t=1

∞∑
l=1

11 [J(l) = i, Ti(l) = t]

≤
bexc∑
t=1

1 ({J(l) = i, Ti(l) = t} occurs for at most one l)

≤ ex .

We prove Theorem 3 by Lemma 14 below.

Lemma 14 It holds for any µ < µ∗ and arm i that

E

[ ∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i]

]
≤ inf

j∈Iopt

{
6e

(1− 1/λj,µ)(1− e−(1−1/λj,µ)Λ∗j (µ))3

}
.
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Proof Let j be any optimal arm, that is, j such that ∆j = 0. We will bound the RHS of

∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i] =
∞∑
l=1

11 [µ̂j(l) ≤ µ̂∗(l) ≤ µ, J(l) = i]

≤
∞∑
t=1

∞∑
l=1

11 [µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t, J(l) = i] . (25)

Since {µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t} implies

I∗(l) = min
i
Ii(l)

≤ Ij(l)
= tDinf(F̂j,t, µ̂

∗(l)) + log t

≤ tDinf(F̂j,t, µ) + log t ,

we see from Lemma 13 that {µ̂j,t ≤ µ̂∗(l) ≤ µ, Tj(l) = t, J(l) = i} occurs for at most

tetDinf(F̂j,t,µ) rounds. Therefore from (25) we obtain

∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i] ≤
∞∑
t=1

11 [µ̂j,t ≤ µ] tetDinf(F̂j,t,µ) . (26)

Let P (u) ≡ PFj [Dinf(F̂j,t, µ) > u, µ̂j,t ≤ µ]. Simply writing λj and Λ∗j for λj,µ and Λ∗j (µ)
in (4) and (5), respectively, we have from Prop. 11 that

E
[

11 [µ̂j,t ≤ µ] tetDinf(F̂j,t,µ)
]

=

∫ ∞
0

tetu(−dP (u))

=
[
tetu(−P (u))

]∞
0

+

∫ ∞
0

t2etuP (u)du (integration by parts)

≤ te−tΛ
∗
j +

∫ Λ∗j/λj

0
t2etu · e−tΛ

∗
jdu+

∫ ∞
Λ∗j/λj

t2etu · 2e(1 + λjt)e
−tλjudu

= te−tΛ
∗
j + t

[
et(u−Λ∗j )

]Λ∗j/λj

0
− 2et(1 + λjt)

[
e−t(λj−1)u

λj − 1

]∞
Λ∗j/λj

= te−t(1−1/λj)Λ
∗
j + 2et(1 + λjt)

e−t(1−1/λj)Λ
∗
j

λj − 1

=

(
1− 1/λj + 2e/λj

1− 1/λj

)
· te−t(1−1/λj)Λ

∗
j +

2e

1− 1/λj
· t2e−t(1−1/λj)Λ

∗
j . (27)

From (26), (27) and formulas

∞∑
t=1

te−rt ≤ 1

(1− e−r)2
≤ 1

(1− e−r)3

∞∑
t=1

t2e−rt ≤ 2

(1− e−r)3
,

3741



Honda and Takemura

it holds that

E

[ ∞∑
l=1

11 [µ̂∗(l) ≤ µ, J(l) = i]

]
≤
(

1 + (2e− 1)/λj + 4e

1− 1/λj

)
1

(1− e−t(1−1/λj)Λ∗j )3

≤
(

1 + (2e− 1) + 4e

1− 1/λj

)
1

(1− e−t(1−1/λj)Λ∗j )3

=
6e

(1− 1/λj)(1− e−t(1−1/λj)Λ∗j )3
. (28)

We complete the proof by taking j which minimizes (28) over the optimal arms j ∈ Iopt.

Proof of Theorem 3 First we decompose Ti(n) as

Ti(n) =

n∑
l=1

11 [J(l) = i]

=

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≤ µ∗ − δ] +

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ] . (29)

The summation of the second term of (29) is bounded as

n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ] =
n∑
t=1

11

[
n⋃
l=1

{J(l) = i, Ti(l) = t, µ̂∗(l) ≥ µ∗ − δ}

]

≤
n∑
t=1

11

[
n⋃
l=1

{Ii(l) = I∗(l), Ti(l) = t, µ̂∗(l) ≥ µ∗ − δ}

]
.

Note that I∗(l) ≤ maxi:µ̂i(l)=µ̂∗(l) Ii(l) = maxi:µ̂i(l)=µ̂∗(l) log Ti(l) ≤ log n for all l ≤ n.
Then we have

E

[
n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ]

]

≤ E

[
n∑
t=1

11
[
tDinf(F̂i,t, µ

∗ − δ) ≤ log n
]]

(by I∗(l) = Ii(l) ≥ tDinf(F̂i(l), µ̂
∗(l)))

=
∞∑
t=1

PFi

[
tDinf(F̂i,t, µ

∗ − δ) ≤ log n
]

=
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)−
∫ µ∗

µ∗−δ

dDinf(F̂i,t, µ)

dµ

∣∣∣∣
µ=u

du

)
≤ log n

]

≤
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)−
∫ µ∗

µ∗−δ

du

1− u

)
≤ log n

]
(by Lemma 7)

≤
∞∑
t=1

PFi

[
t

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]
.
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By letting

M =

⌈
log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

⌉
,

we have

E

[
n∑
l=1

11 [J(l) = i, µ̂∗(l) ≥ µ∗ − δ]

]

≤M − 1 +

∞∑
t=M

PFi

[
t

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]

≤M − 1 +
∞∑
t=M

PFi

[
M

(
Dinf(F̂i,t, µ

∗)− δ

1− µ∗

)
≤ log n

]

≤M − 1 +
∞∑
t=M

PFi

[
Dinf(F̂i,t, µ

∗) ≤ Dinf(Fi, µ
∗)− δ

1− µ∗

]

≤M − 1 +

∞∑
t=M

e
−tΛ̃(Dinf(Fi,µ

∗)− δ
1−µ∗ )

(by Prop. 10)

≤ log n

Dinf(Fi, µ∗)− 2δ
1−µ∗

+
1

1− e
−Λ̃∗i (Dinf(Fi,µ∗)− δ

1−µ )
.

On the other hand, we can bound the expectation of the first term of (29) by Lemma
14 with µ := µ∗ − δ, which completes the proof of the theorem.

9. Concluding Remarks and Discussion

We considered a nonparametric stochastic bandit where only the upper bound of the reward
is known. We proved that the theoretical bound does not depend on the knowledge of the
lower bound of the reward. We also showed that the bound can be achieved by the IMED
policy, an indexed version of the DMED policy.

A future work is to examine whether the assumption on existence of moment gen-
erating functions EFi [e

λX ] can be weakened to existence of moments EFi [X
m]. In the

analysis of IMED it is important to evaluate tail probabilities of µ̂i,t and Dinf(F̂i,t, µ) =
max0≤ν≤(1−µ)−1 EF̂i,t [log(1 − (X − µ)ν)]. Although the latter one is more essential in the

behavior of IMED, this only requires the existence of the moment E[eλ log(1−(X−µ)ν)] =
E[(1− (X −µ)ν)λ] and we assumed the existence of EFi [e

λX ] only for the evaluation of µ̂i,t.
Furthermore, in the most part of evaluations involving µ̂i,t it suffices to show that

∞∑
t=1

tp Pr[|µ̂i,t − µi| > δ] <∞ (30)

for some p ≥ 0, which we can assure to hold only by assuming EFi [X
2+p] < ∞ (Chow

and Lai, 1975). From these reasons we conjecture that the assumption E[eλX ] <∞ can be
weakened by using (30) but it remains as an open problem.
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Appendix A. Representations of Constants for Large Deviation
Probabilities

In Theorem 3, λi,µ, Λ∗i (x) and Λ̃∗i (x) in (4)–(6) are used in the constant term of the regret.
We discuss explicit representations of them in this appendix.

First we evaluate Λ∗i (x) and Λ̃∗i (x), which are Legendre-Fenchel transforms of cumulant
generating functions of random variables X and Y = log(1−(X−µ∗)ν∗i ), respectively, where
X follows Fi. If the support of Fi is bounded from below by a > −∞ then by Hoeffding’s
inequality (Hoeffding, 1963) we have

Λ∗i (µi + δ) ≥ 2δ2

(1 + a)2
.

Similarly, from Y ∈ [log(1− (1− µ∗)ν∗i ), log(1− (a− µ∗)ν∗i )]

Λ̃∗i (Dinf(Fi, µ
∗)− δ) ≥ 2δ2(

log
1−(a−µ∗)ν∗i
1−(1−µ∗)ν∗i

)2 .

Furthermore, we can evaluate Λ∗i (µi+δ) and Λ̃∗i (Dinf(Fi, µ
∗)−δ) for general cases including

a = −∞ by the following lemma.

Lemma 15 For sufficiently small δ > 0,

Λ∗i (µi + δ) ≥ δ2

2σ2
i

+ o(δ2) , (31)

Λ̃∗i (Dinf(Fi, µ
∗)− δ) ≥ (1− µ∗)δ2

4(1− µi)
+ o(δ2) , (32)

where σ2
i = EFi [(X − µi)2] is the variance of Fi.

Proof Since the cumulant generating function of Fi is expressed as

log EFi [e
λX ] = µiλ+

σ2
i λ

2

2
+ o(λ2) ,

we obtain (31) from

Λ∗i (µi + δ) = sup
λ

{
(µi + δ)λ− log EFi [e

λX ]
}

= sup
λ

{
δλ− σ2

i λ
2

2
+ o(λ2)

}
≥ δ2

2σ2
i

+ o(δ2) .
(
by letting λ := δ/σ2

i

)
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Similarly, from EFi [Y ] = Dinf(Fi, µ
∗) we have

Λ̃∗i (Dinf(Fi, µ
∗)− δ) = sup

λ

{
(Dinf(Fi, µ

∗)− δ)λ− log EFi [e
λY ]
}

≥ δ2

2σ̃2
i

+ o(δ2) , (33)

where σ̃2
i is the variance of Y = log(1 − (X − µ∗)ν∗i ). Since Y has expectation EFi [Y ] =

Dinf(Fi, µ
∗), the variance σ̃2

i is expressed as

σ̃2
i = EFi [(Y −Dinf(Fi, µ

∗))2]

= EFi

[(
log

eY

eDinf(Fi,µ∗)

)2
]
.

Note that (log z)2 is smaller than z−1 for z → +0 and smaller than z for z → ∞. Thus
there exists c0 > 0 such that (log z)2 ≤ c0(z + z−1) for all z > 0. In fact, this inequality
holds for c0 ≥ 0.533 (and thus, for c0 = 1). Therefore

σ̃2
i ≤ EFi

[
eY

eDinf(Fi,µ∗)
+

eDinf(Fi,µ
∗)

eY

]
≤ EFi [e

Y ] + eDinf(Fi,µ
∗)EFi [e

−Y ] (by Dinf(Fi, µ
∗) ≥ 0)

= EFi [e
Y ] + eEFi [Y ]EFi [e

−Y ]

≤ EFi [e
Y ] + EFi [e

Y ]EFi [e
−Y ] (by Jensen’s inequality)

= (1− (µi − µ∗)ν∗i ) ·
(

1 + EFi

[
1

1− (X − µ∗)ν∗i

])
≤
(

1− µi − µ∗

1− µ∗

)
· (1 + 1) (by Lemma 6)

=
2(1− µi)

1− µ∗
. (34)

We obtain (32) by combining (34) with (33).

Next we bound λi,µ with an explicit form in the following lemma and we see that
λi,µi−δ ≥ 1 + (1− µi)δ/σ2

i + o(δ).

Lemma 16 If µ < µi < 1 then

λi,µ ≥

{
1 + (1−µ)(µi−µ)

σ2
i−(1−µi)(µi−µ)

, if σ2
i ≥ (µi − µ)(2− µi − µ),

2, otherwise.
(35)
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Proof Since xλ is convex in λ, we have

λi,µ = sup

{
λ : EFi

[(
1−X
1− µ

)λ]
≤ 1

}

≥ sup

{
λ ∈ [1, 2] : EFi

[(
1−X
1− µ

)λ]
≤ 1

}

≥ sup

{
λ ∈ [1, 2] : EFi

[
(2− λ)

(
1−X
1− µ

)1

+ (λ− 1)

(
1−X
1− µ

)2
]
≤ 1

}

= sup

{
λ ∈ [1, 2] : (2− λ)

1− µi
1− µ

+ (λ− 1)
σ2
i + (1− µi)2

(1− µ)2
≤ 1

}
. (36)

If (σ2
i + (1− µi)2)(1− µ)−2 ≥ 1, that is, if σ2

i ≥ (µi − µ)(2− µi − µ) then λ satisfying

(2− λ)
1− µi
1− µ

+ (λ− 1)
σ2
i + (1− µi)2

(1− µ)2
= 1

is contained in [1, 2]. Therefore we obtain (35) for this case by solving this equality. In the
other case, the condition in (36) is satisfied by λ = 2 and we have λi,µ ≥ 2.

Appendix B. Proof of Lemma 7

We prove this lemma by the technique known as sensitivity analysis for optimization prob-
lems given below.

Proposition 17 (Fiacco, 1983, Corollary 3.4.3) For a function f(x, y) : Rm×Rn → R,
let f∗(y) be a local minimum of f(x, y) in some neighborhood of x. Assume that there exists
a point x∗ such that

• f(x, y) is twice continuously differentiable in some neighborhood of (x∗, 0),

• ∆xf(x, 0)|x=x∗ = 0, and

• ∆2
xf(x, 0)|x=x∗ is positive definite.

Then ∆yf
∗(y) = ∆yf(x, y)|x=x∗.

Proof From Lemma 6, for the case EF [(1 − µ)/(1 − X)] < 1 we have Lmax(F, µ) =
EF [log((1−X)/(1− µ))]. Therefore,

∂

∂µ
Lmax(F, ν) =

1

1− µ
= ν∗(F, µ)

for EF [(1− µ)/(1−X)] < 1 and

lim
ε↓0

Lmax(F, µ+ ε)− Lmax(F, µ)

ε
=

1

1− µ
= ν∗(F, µ)
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for EF [(1− µ)/(1−X)] = 1.
Now consider the case EF [(1−µ)/(1−X)] ≥ 1. In this case, Lmax(F, µ) = max0≤ν≤(1−µ)−1

L(ν;F, µ) = maxν L(ν;F, µ) from L′(0;F, µ) = 0, L′((1− µ)−1;F, µ) ≤ 0 and the convexity
of L(ν;F, µ). For this unconstrained optimization problem it holds from Prop. 17 that

d(maxν L(ν;F, µ))

dµ
=

dL(ν;F, µ)

dµ

∣∣∣∣
ν=ν∗

= ν∗(F, µ) .

Therefore, we obtain

∂

∂µ
Lmax(F, µ) = ν∗(F, µ)

for EF [(1− µ)/(1−X)] > 1 and

lim
ε↑0

Lmax(F, µ+ ε)− Lmax(F, µ)

ε
= ν∗(F, µ)

for EF [(1− µ)/(1−X)] = 1.

Appendix C. Proof of Theorem 5

In this appendix we show Theorem 5 on the refined (asymptotic) regret bound of IMED.
We prove the theorem by the following lemma on a stopping time of a stochastic process.

Lemma 18 Let {Yi}i=1,2,··· be i.i.d. random variables such that E[Y1] > 0 and E[eY1 ] <∞.
(i) For St =

∑t
i=1 Yi and sufficiently large M > 0, the stopping time τ = min{t : St > M}

satisfies

E[τ ] ≤ M + logM

E[Y1]
+ O(1) .

(ii) Furthermore, if ess supYi <∞, that is, the support of the distribution of Yi is bounded
from above then

E[τ ] ≤ M

E[Y1]
+ O(1) .

Proof (i) For any A > 0, define Y ′i = Yi ∧ A and S′t =
∑t

i=1 Y
′
i . For simplicity we also

define S′0 = S0 = 0. Since S′t ≤ St always holds, τ ′ = min{t : S′t > M} satisfies τ ≤ τ ′.
Since τ ′n = n ∧ τ ′ is a bounded stopping time, it holds from discrete Dynkin’s formula

(Meyn and Tweedie, 1992, Sect. 4.2) that

E[S′τ ′n ] = E[S′0] + E

 τ ′n∑
i=1

E[S′i|S′1, S′2, · · · , S′i−1]− S′i−1


= E

 τ ′n∑
i=1

E[Y ′i ]


= E[Y ′i ]E

[
τ ′n
]
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and therefore

E[τ ′n] =
E[S′τ ′n ]

E[Y ′1 ]
≤

E[S′τ ′n−1 +A]

E[Y ′1 ]
≤ M +A

E[Y ′1 ]
. (37)

By defining (x)+ = 0 ∨ x, we can bound E[Y ′1 ] by

E[Y ′1 ] = E[Y1 − (Y1 −A)+]

≥ E[Y1]− E[eY ]

eA+1
. (by (y −A)+ ≤ ey−(A+1)) (38)

Combining (37) with (38) and letting A = log((M + 1)E[eY1 ]/E[Y1])− 1, we have

E[τ ′n] ≤ M + 1

M

M + log
(

E[eY1 ]
E[Y1] (M + 1)

)
− 1

E[Y1]

=
M + logM

E[Y1]
+ O(1) .

Finally we complete the proof by

E[τ ] ≤ E[τ ′]

= E
[

lim
n→∞

τ ′n

]
= lim

n→∞
E[τ ′n] (by monotone convergence theorem)

=
M + logM

E[Y1]
+ O(1) .

(ii) In the case of ess supYi < ∞, we can directly evaluate τ instead of τ ′ and (37) is
replaced with

E[τ ] ≤ M + ess supYi
E[Y1]

=
M

E[Y1]
+ O(1) .

Proof of Theorem 5 For simplicity we consider the case K = 2 and assume µ∗ = µ1 > µ2.
We can prove the theorem for the case K > 2 in the same way (see Remark 2 below this
proof).

First we define three constants independent of n by

ξ ≡ 1

2 log 1−µ2
1−µ1

> 0 (39)

ρ ≡ Dinf(F2, µ1)

3
> 0

µ′ ≡ max

{
µ1 − ρ(1− µ1),

µ1 + µ2

2

}
∈ (µ2, µ1) . (40)
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We also define the following six events for sufficiently small δ > 0

Al ≡ {J(l) = 2, T2(l) ≥ ξ log n} ,

B
(1)
l ≡ {µ̂

∗(l) ≤ µ′} ,

B
(2)
l ≡ {µ

′ < µ̂∗(l) ≤ µ1 − δ} ,

B
(3)
l ≡ {µ1 − δ < µ̂∗(l)} ,
Cl ≡ {µ̂2(l) ≤ µ′} ,

Dl ≡
{
Dinf(F̂2(l), µ1) ≥ Dinf(F2, µ1)− ρ

}
.

Since the whole sample space is covered by

Ccl ∪ Dc
l ∪ B

(1)
l ∪ (B

(2)
l ∩ Cl ∩Dl) ∪ (B

(3)
l ∩ Cl) ,

we have

T2(n) =
n∑
l=1

11 [J(l) = 2]

≤ ξ log n+
n∑
l=1

11 [Al]

≤
n∑
l=1

11 [Al ∩ Ccl ] +
n∑
l=1

11 [Al ∩Dc
l ] +

n∑
l=1

11
[
Al ∩B

(1)
l

]
+

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
+

(
ξ log n+

n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

])
. (41)

We bound expectations of these terms in the followings. The essential point is that the only

events involving B
(2)
l and B

(3)
l depend on the small constant δ and the number of rounds

of the other events can be bounded independently of δ. We can derive a tight bound for

events B
(2)
l and B

(3)
l with respect to δ by considering these events under Cl and Dl, that is,

under the condition that statistics µ̂2(l) and Dinf(F̂2(l), µ1) are not very far from the true
expectation.

First we have3

n∑
l=1

11 [Al ∩ Ccl ] ≤
∞∑

t=ξ logn

11

[
n⋃
l=1

{J(l) = 2, µ̂2,t > µ′, T2(l) = t}

]
(42)

3. The summation
∑∞
t=ξ logn in (42) should be

∑∞
t=dξ logne to be precise. However we omit the rounding

operations d·e and b·c in the proof of this theorem for simplicity since these do not affect the asymptotic
analysis.
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and therefore

E

[
n∑
l=1

11 [Al ∩ Ccl ]

]
≤

∞∑
t=ξ logn

PF2 [µ̂2,t > µ′]

≤
∞∑

t=ξ logn

e−tΛ
∗
2(µ′) (by (18) of Prop. 9)

=
e−(ξ logn)Λ∗2(µ′)

1− e−Λ∗2(µ′)

= O(e−O(logn))

= o(1) . (43)

Second, we have

n∑
l=1

11 [Al ∩Dc
l ] ≤

∞∑
t=ξ logn

11

[
n⋃
l=1

{
J(l) = 2, Dinf(F̂2,t, µ1) < Dinf(F2, µ1)− ρ, T2(l) = t

}]
.

From Prop. 10, its expectation is bounded as

E

 n∑
l=ξ logn

11 [Al ∩Dc
l ]

 ≤ ∞∑
t=ξ logn

e−tΛ̃
∗
2(Dinf(F2,µ1)−ρ)

=
e−(ξ logn)Λ̃∗2(Dinf(F2,µ1)−ρ)

1− e−Λ̃∗2(Dinf(F2,µ1)−ρ)

= o(1) . (44)

Third, we have

E

 n∑
l=ξ logn

11
[
Al ∩B

(1)
l

] = O(1) (45)

from Lemma 14 with µ := µ′ since µ′ is a constant independent of δ and n.
Fourth, we have

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
≤

∞∑
t2=ξ logn

∞∑
t1=1

11

[
n⋃
l=1

{J(l) = 2, T1(l) = t1, T2(l) = t2, B
(2)
l ∩ Cl ∩Dl}

]
.

Note that {T2(l) = t2, B
(2)
l ∩Dl} implies

I2(l) ≥ t2Dinf(F̂2(l), µ′)

≥ t2
(
Dinf(F̂2(l), µ1)− ρ

)
(by (40) and Lemma 7)

≥ t2 (Dinf(F2, µ1)− 2ρ) (by definition of Dl)

= t2ρ .
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Furthermore, J(l) = 2 implies I2(l) ≤ I1(l) and {T1(l) = t1, B
(2)
l ∩Cl} implies I1(l) = log t1.

Combining them, we have

n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]
≤

∞∑
t2=ξ logn

∞∑
t1=1

11 [ρt2 ≤ log t1, µ̂1,t1 ≤ µ1 − δ]

=
∞∑

t2=ξ logn

∞∑
t1=eρt2

11 [µ̂1,t1 ≤ µ1 − δ] (46)

and therefore

E

[
n∑
l=1

11
[
Al ∩B

(2)
l ∩ Cl ∩Dl

]]
≤

∞∑
t2=ξ logn

∞∑
t1=eρt2

PF1 [µ̂1,t1 ≤ µ1 − δ]

≤
∞∑

t2=ξ logn

e−eρt2Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)
(by (17) of Prop. 9)

≤
∞∑

t2=ξ logn

e−(
(ρt2)

3

3
+ρt2)Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)

(by ex ≥ x3

3 + x for x ≥ 0)

≤
∞∑

t2=ξ logn

e−(
(ρξ logn)3

3
+ρt2)Λ∗1(µ1−δ)

1− e−Λ∗1(µ1−δ)

=
e−(

(ρξ logn)3

3
+ρξ logn)Λ∗1(µ1−δ)

(1− e−Λ∗1(µ1−δ))(1− e−ρΛ∗1(µ1−δ))

=
e−O(δ2(logn)3)

O(δ4)
. (47)

Finally we evaluate two terms

ξ log n+
n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

]
= ξ log n+

n∑
t=ξ logn

11

[
n⋃
l=1

{J(l) = 2, T2(l) = t, B
(3)
l ∩ Cl}

]

in (41). Here note that {T2(l) = t ≥ ξ log n, B
(3)
l } implies

I2(l) ≥ tDinf(F̂2, µ1 − δ) + log t

≥ t
(
Dinf(F̂2, µ1)− δ

1− µ1

)
+ log(ξ log n) (by Lemma 7)

and {J(l) = 2, B
(3)
l ∩ Cl} implies I2(l) ≤ I1(l) = log T1(l) ≤ log n. As a result, we have

ξ log n+
n∑
l=1

11
[
Al ∩B

(3)
l ∩ Cl

]
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≤ ξ log n+

∞∑
t=ξ logn

11

[
t

(
Dinf(F̂2, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]

=
∞∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]

+

ξ logn∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
> log n− log(ξ log n)

]
. (48)

The expectation of the second term of (48) can be evaluated as

E

[
ξ logn∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
> log n− log(ξ log n)

]]

≤
ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) >

log n− log(ξ log n)

ξ log n

]

=

ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) >

1

ξ
− o(1)

]

=

ξ logn∑
t=1

PF2

[
Dinf(F̂2,t, µ1) > 2 log

1− µ2

1− µ1
− o(1)

]
(by (39))

= O(1) . (by Prop. 12) (49)

Putting (41) and (43)–(49) together, we have

E[T2(n)] ≤ E

[ ∞∑
t=1

11

[
t

(
Dinf(F̂2, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]]

+
e−O(δ2(logn)3)

O(δ4)
+ O(1) . (50)

Let Yt = log(1− (X2,t − µ1)ν∗2)− δ/(1− µ1) and define a stochastic process {St}t=1,2,···
by St =

∑t
l=1 Yl. For a stopping time τ = min{t : St > log n− log(ξ log n)}, the first term

of (50) is bounded by

E

[ ∞∑
t=1

11

[
t

(
Dinf(F̂2,t, µ1)− δ

1− µ1

)
≤ log n− log(ξ log n)

]]

≤ E

[ ∞∑
t=1

11 [St ≤ log n− log(ξ log n)]

]

= E

[
(τ − 1) +

n∑
m=τ+1

11

[
Sτ +

m∑
l=τ+1

Yl ≤ log n− log(ξ log n)

]]

≤ E[τ ] + E

[
n∑

m=τ+1

11

[
m∑

l=τ+1

Yl ≤ 0

]]
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= E[τ ] + E

[
E

[
n∑

m=τ+1

11

[
m∑

l=τ+1

Yl ≤ 0

] ∣∣∣∣∣τ
]]

= E[τ ] + E

[
n∑

m=τ+1

PF2

[
m∑

l=τ+1

Yl ≤ 0

∣∣∣∣∣τ
]]

. (51)

Note that E[Yt] = Dinf(F2, µ1)− δ/(1− µ1) and E[eYt ] = e−δ/(1−µ1)(1− (µ2 − µ1)ν∗i ) <∞.
Then we obtain from (i) of Lemma 18 that

E[τ ] ≤ log n− log(ξ log n) + log(log n− log(ξ log n))

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)
+ O(δ log n) + O(1) . (52)

On the other hand, from Cramér’s theorem we obtain

E

[
n∑

m=τ+1

PF2

[
m∑

l=τ+1

Yl ≤ 0

∣∣∣∣∣τ
]]

= E

[
n∑

m=τ+1

PF2

[
1

m− τ

m∑
l=τ+1

log(1− (X2,l − µ1)ν∗2) ≤ δ

1− µ1

∣∣∣∣∣τ
]]

≤ E

[
n∑

m=τ+1

e
−(m−τ)Λ̃∗2( δ

1−µ1
)

]
(by Prop. 9 and definition of Λ̃∗2 in (6))

≤ 1

1− e
−Λ̃∗2( δ

1−µ1
)

= O(1) . (by Lemma 15) (53)

By combining (51)–(53) with (50) we have

E[T2(n)] ≤ log n

Dinf(F2, µ1)
+ O(δ log n) +

e−O(δ2(logn)3)

O(δ4)
+ O(1) .

We obtain (i) of Theorem 5 by letting δ = O((log n)−1).
In the case that each arm has a bounded support we can apply (ii) of Lemma 18. As a

result, (52) is replaced with

E[τ ] ≤ log n− log(ξ log n)

Dinf(F2, µ1)− δ
1−µ1

+ O(1)

=
log n

Dinf(F2, µ1)
+ O(δ log n)−O(log log n)

and we obtain (ii) of Theorem 5 by this replacement.
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Remark 2 The proof for K > 2 is almost the same as the case K = 2. The only different
point is the evaluation around (46), wherein the pair (T1(l), T2(l)) is considered. For K > 3
we can proceed the evaluation in the same way by taking the summation over contributions
of all pairs (Tj(l), Ti(l)), j ∈ Iopt, i 6= j.
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