
Journal of Machine Learning Research 16 (2015) 2589-2609 Submitted 9/14; Revised 3/15; Published 12/15

Counting and Exploring Sizes of Markov Equivalence Classes
of Directed Acyclic Graphs

Yangbo He heyb@pku.edu.cn
Jinzhu Jia jzjia@math.pku.edu.cn
LMAM, School of Mathematical Sciences, LMEQF, and Center for Statistical Science
Peking University, Beijing 100871, China

Bin Yu binyu@stat.berkeley.edu

Departments of Statistics and EECS

University of California at Berkeley, Berkeley, CA 94720

Editor: Isabelle Guyon and Alexander Statnikov

Abstract

When learning a directed acyclic graph (DAG) model via observational data, one gener-
ally cannot identify the underlying DAG, but can potentially obtain a Markov equivalence
class. The size (the number of DAGs) of a Markov equivalence class is crucial to infer
causal effects or to learn the exact causal DAG via further interventions. Given a set of
Markov equivalence classes, the distribution of their sizes is a key consideration in devel-
oping learning methods. However, counting the size of an equivalence class with many
vertices is usually computationally infeasible, and the existing literature reports the size
distributions only for equivalence classes with ten or fewer vertices.

In this paper, we develop a method to compute the size of a Markov equivalence class.
We first show that there are five types of Markov equivalence classes whose sizes can be
formulated as five functions of the number of vertices respectively. Then we introduce a new
concept of a rooted sub-class. The graph representations of rooted subclasses of a Markov
equivalence class are used to partition this class recursively until the sizes of all rooted sub-
classes can be computed via the five functions. The proposed size counting is efficient for
Markov equivalence classes of sparse DAGs with hundreds of vertices. Finally, we explore
the size and edge distributions of Markov equivalence classes and find experimentally that,
in general, (1) most Markov equivalence classes are half completed and their average sizes
are small, and (2) the sizes of sparse classes grow approximately exponentially with the
numbers of vertices.

Keywords: directed acyclic graphs, Markov equivalence class, size distribution, causality

1. Introduction

Graphical models based on directed acyclic graphs (DAGs) are commonly used to derive
the dependent or causal relationships in many fields such as sociology, epidemiology, and
biology (Finegold and Drton, 2011; Friedman, 2004; Heckerman et al., 1999; Jansen et al.,
2003; Maathuis et al., 2009). A DAG can be used to represent causal relationships of
variables, where the directed edges connect the causes and their direct effects. In general,
observational data is not sufficient to distinguish the underlying DAG from its statistically

©2015 Yangbo He, Jinzhu Jia and Bin Yu .



He, Jia and Yu

equivalent DAGs; however, it is possible to learn the Markov equivalence class that contains
these equivalent DAGs (Pearl, 2000; Spirtes et al., 2001). This has led to many works that
try to learn a Markov equivalence class or to learn causality based on a given Markov
equivalence class from observational or experimental data (Castelo and Perlman, 2004;
Chickering, 2002; He and Geng, 2008; Maathuis et al., 2009; Perlman, 2001).

The size of a Markov equivalence class is the number of DAGs in the class. This size
has been used in papers to design causal learning approaches or to evaluate the “complex-
ity” of a Markov equivalence class in causal learning. For example, He and Geng (2008)
proposes several criteria, all of which are defined on the sizes of Markov equivalence classes,
to minimize the number of interventions; this minimization makes helpful but expensive
interventions more efficient. Based on observational data, Maathuis et al. (2009) introduces
a method to estimate the average causal effects of the covariates on the response by consid-
ering the DAGs in the equivalence class; the size of the class determines the complexity of
the estimation. Chickering (2002) shows that causal structure search in the space of Markov
equivalence class models could be substantially more efficient than that in the space of DAG
models if most sizes of Markov equivalence classes are large.

The size of a small Markov equivalence class is usually counted via traversal methods
that list all DAGs in the Markov equivalence class (Gillispie and Perlman, 2002). However,
if the class is large, it may be infeasible to list all DAGs. For example, as we will show later
in our experiments, the size of a Markov equivalence class with 50 vertices and 250 edges
could be greater than 1024. To our knowledge, there are no efficient methods to compute
the size of a large Markov equivalence class; approximate proxies, such as the number of
vertices and the number of spanning trees related to the class, have been used instead of the
exact size in the literature (Chickering, 2002; He and Geng, 2008; Meganck et al., 2006).

Computing the size of a Markov equivalence class is the focus of this article. We first
discuss Markov equivalence classes whose sizes can be calculated just through the numbers
of vertices and edges. Five explicit formulas are given to obtain the sizes for five types of
Markov equivalence classes respectively. Then, we introduce rooted sub-classes of a Markov
equivalence class and discuss the graphical representations of these sub-classes. Finally,
for a general Markov equivalence class, we introduce a counting method by recursively
partitioning the Markov equivalence class into smaller rooted sub-classes until all rooted
sub-classes can be counted with the five explicit formulas.

Next, we also report new results about the size and edge distributions of Markov equiv-
alence classes for sparse graphs with hundreds of vertices. By using the proposed size
counting method in this paper and an MCMC sampling method recently developed by He
et al. (2013a,b), we experimentally explore the size distributions of Markov equivalence
classes with large numbers of vertices and different levels of edge sparsity. In the literature,
the size distributions are studied in detail just for Markov equivalence classes with up to 10
vertices by traversal methods (Gillispie and Perlman, 2002).

The rest of the paper is arranged as follows. In Section 2, we provide a brief review of
the concept of a Markov equivalence class. In Section 3, we propose efficient algorithms to
calculate the size of a Markov equivalence class. In Section 4, we study the sizes of Markov
equivalence classes experimentally. We conclude in Section 5 and finally present all proofs
in the Appendix.

2590



Counting and Exploring Sizes of Markov Equivalence Classes

2. Markov Equivalence Class

A graph G consists of a vertex set V and an edge set E. A graph is directed (undirected) if
all of its edges are directed (undirected). A sequence of edges that connect distinct vertices
in V , say {v1, · · · , vk}, is called a path from v1 to vk if either vi → vi+1 or vi − vi+1 is in E
for i = 1, · · · , k − 1. A path is partially directed if at least one edge in the path is directed.
A path is directed (undirected) if all edges are directed (undirected). A cycle is a path from
a vertex to itself.

A directed acyclic graph (DAG) D is a directed graph without any directed cycle. Let
V be the vertex set of D and τ be a subset of V . The induced subgraph Dτ of D over τ ,
is defined to be the graph whose vertex set is τ and whose edge set contains all of those
edges of D with two end points in τ . A v-structure is a three-vertex induced subgraph of
D like v1 → v2 ← v3. A graph is called a chain graph if it contains no partially directed
cycles. The isolated undirected subgraphs of the chain graph after removing all directed
edges are the chain components of the chain graph. A chord of a cycle is an edge that joins
two nonadjacent vertices in the cycle. An undirected graph is chordal if every cycle with
four or more vertices has a chord.

A graphical model is a probabilistic model for which a DAG denotes the conditional
independencies between random variables. A Markov equivalence class is a set of DAGs
that encode the same set of conditional independencies. Let the skeleton of an arbitrary
graph G be the undirected graph with the same vertices and edges as G, regardless of their
directions. Verma and Pearl (1990) proves that two DAGs are Markov equivalent if and
only if they have the same skeleton and the same v-structures. Moreover, Andersson et al.
(1997) shows that a Markov equivalence class can be represented uniquely by an essential
graph.

Definition 1 (Essential graph) The essential graph of a DAG D, denoted as C, is a
graph that has the same skeleton as D, and an edge is directed in C if and only if it has the
same orientation in every equivalent DAG of D.

It can be seen that the essential graph C of a DAG D has the same skeleton as D and
keeps the v-structures of D. Andersson et al. (1997) also introduces some properties of an
essential graph.

Lemma 2 (Andersson et al. (1997)) Let C be an essential graph of D. Then C is a
chain graph, and each chain component Cτ of C is an undirected and connected chordal
graph, where τ is the vertex set of the chain component Cτ .

Let SizeMEC(C) denote the size of the Markov equivalence class represented by C (size
of C for short). Clearly, SizeMEC(C) = 1 if C is a DAG; otherwise C may contain more than
one chain component, denoted by Cτ1 , · · · , Cτk . From Lemma 2, each chain component is an
undirected and connected chordal graph (UCCG for short); and any UCCG is an essential
graph that represents a Markov equivalence class (Andersson et al., 1997). We can calculate
the size of C by counting the DAGs in Markov equivalence classes represented by its chain
components using the following equation (Gillispie and Perlman, 2002; He and Geng, 2008):

SizeMEC(C) =
k∏
i=1

SizeMEC(Cτi). (1)

2591



He, Jia and Yu

To count the size of Markov equivalence class represented by a UCCG, we can generate
all equivalent DAGs in the class. However, when the number of vertices in the UCCG is
large, the number of DAGs in the corresponding Markov equivalence class may be huge,
and the traversal method proves to be infeasible to count the size. This paper tries to solve
this counting problem for Markov equivalence classes of DAGs with hundred of vertices.

3. The Size of Markov Equivalence Class

In order to obtain the size of a Markov equivalence class, it is sufficient to compute the
size of Markov equivalence classes represented by undirected and connected chordal graph
(UCCGs) according to Lemma 2 and Equation (1). In Section 3.1, we discuss Markov equiv-
alence classes represented by UCCGs whose sizes are functions of the number of vertices.
Then in Section 3.2.1, we provide a method to partition a Markov equivalence class into
smaller subclasses. Using these methods, finally in Section 3.2.2, we propose a recursive
approach to calculate the size of a general Markov equivalence class.

3.1 Size of Markov Equivalence Class Determined by the Number of Vertices

Let Up,n be an undirected and connected chordal graph (UCCG) with p vertices and n
edges. Clearly, the inequality p− 1 ≤ n ≤ p(p− 1)/2 holds for any UCCG Up,n. When Up,n
is a tree, n = p− 1 and when Up,n is a completed graph, n = p(p− 1)/2. Given p and n, in
some special cases, the size of a UCCG Up,n is completely determined by p. For example,
it is well known that a Markov equivalence class represented by a completed UCCG with p
vertices contains p! DAGs. Besides the Markov equivalence classes represented by completed
UCCGs, there are five types of UCCGs whose sizes are also functions of p. We present them
as follows.

Theorem 3 Let Up,n be a UCCG with p vertices and n edges. In the following five cases,
the size of the Markov equivalence class represented by Up,n is determined by p.

1. If n = p− 1, we have SizeMEC(Up,n) = p.

2. If n = p, we have SizeMEC(Up,n) = 2p.

3. If n = p(p− 1)/2− 2, we have SizeMEC(Up,n) = (p2 − p− 4)(p− 3)!.

4. If n = p(p− 1)/2− 1, we have SizeMEC(Up,n) = 2(p− 1)!− (p− 2)!.

5. If n = p(p− 1)/2, we have SizeMEC(Up,n) = p!.

For the UCCGs other than the above five cases, it seems that the sizes of the correspond-
ing Markov equivalence classes cannot be completely determined by the numbers of vertices
and edges; the sizes of these Markov equivalence classes may depend on the exact essential
graphs. Below, we display several classes of this kind for n = p + 1 or n = p(p − 1)/2 − 3
in Example 1.

Example 1. Figure 1 displays four UCCGs. Both U5,6 and U ′5,6 have 6 edges, and
both U5,7 and U ′5,7 have 7 edges. We have that SizeMEC(U5,6) = 13, SizeMEC(U ′5,6) = 12,
SizeMEC(U5,7) = 14 and SizeMEC(U ′5,7) = 30. Clearly, in these cases, the sizes of Markov
equivalence classes are not completely determined by the numbers of vertices and edges.

2592



Counting and Exploring Sizes of Markov Equivalence Classes

qq q
q q

v1

v2 v3

v4 v5

�
�
Q
Q
Q
Q

(U5,6)

qq q
q q

v1

v2 v3

v4 v5

�
�

�
�
�
�

(U ′5,6)

qq q
q q

v1

v2 v3

v4 v5

�
� Q

Q

Q
Q
Q
Q

(U5,7)

qq q
q q

v1

v2 v3

v4 v5

�
�

�
�
�
�Q

Q
Q
Q

(U ′5,7)

Figure 1: Examples that UCCGs with the same number of edges have different sizes.

3.2 Size of a General Markov Equivalence Class

In this section, we introduce a general method to count the size of a Markov equivalence
class. We have shown in Theorem 3 that there are five types of Markov equivalence classes
whose sizes can be calculated with five formulas respectively. For one any other Markov
equivalence class, we will show in this section that it can be partitioned recursively into
smaller subclasses until the sizes of all subclasses can be calculated with the five formulas
above. We first introduce the partition method and the graph representation of each sub-
class in Section 3.2.1. Then provide a size counting algorithm for one arbitrary Markov
equivalence class in Section 3.2.2. The proofs of all results in this section can be found in
the Appendix.

3.2.1 Methods to Partition a Markov Equivalence Class

Let U be a UCCG, τ be the vertex set of U and let D be a DAG in the equivalence class
represented by U . A vertex v is a root of D if all directed edges adjacent to v are out of v,
and D is v-rooted if v is a root of D. To count DAGs in the class represented by U , below,
we show that all DAGs can be divided into different groups according to the roots of the
DAGs and then we calculate the numbers of the DAGs in these groups separately. Each
group is called as a rooted sub-class defined as follows.

Definition 4 (a rooted sub-class) Let U be a UCCG over τ and v ∈ τ . We define the
v-rooted sub-class of U as the set of all v-rooted DAGs in the Markov equivalence class
represented by U .

The following theorem provides a partition of a Markov equivalence class represented
by a UCCG and the proof can be found in Appendix.

Theorem 5 (a rooted partition) Let U be a UCCG over τ = {v1, · · · , vp}. For any
i ∈ {1, · · · , p}, the vi-rooted sub-class is not empty and this set of p sub-classes forms a
disjoint partition of the set of all DAGs represented by U .

Below we describe an efficient graph representation of v-rooted sub-class. One reason
to this graph representation is that for any v ∈ τ , the number of DAGs in the v-rooted
sub-class might be extremely huge and it is computationally infeasible to list all v-rooted
DAGs in this sub-class. Using all DAGs in which v is a root, we construct a rooted essential
graph in Definition 6.

Definition 6 (rooted essential graph) Let U be a UCCG. The v-rooted essential graph
of U , denoted by U (v), is a graph that has the same skeleton as U , and an edge is directed
in U (v) if and only if it has the same orientation in every v-rooted DAG of U .

2593



He, Jia and Yu

From Definition 6, a rooted essential graph has more directed edges than the essential
graph U since the root introduces some directed edges. Algorithm 3 in Appendix shows
how to generate the v-rooted essential graph of a UCCG U . We display the properties of a
rooted essential graph in Theorem 7 and the proof can be found in Appendix.

Theorem 7 Let U be a UCCG and U (v) be a v-rooted essential graph of U defined in
Definition 6. The following three properties hold for U (v):

1. U (v) is a chain graph,

2. every chain component U (v)
τ ′ of U (v) is chordal, and

3. the configuration v1 → v2 − v3 does not occur as an induced subgraph of U (v).

Moreover, there is a one-to-one correspondence between v-rooted sub-classes and v-rooted
essential graphs, so U (v) can be used to represent uniquely the v-rooted sub-class of U .

From Theorem 7, we see that the number of DAGs in a v-rooted essential graph U (v)

can be calculated by Equation (1) which holds for any essential graph. To use Equation
(1), we have to generate all chain components of U (v). Below we introduce an algorithm
called ChainCom(U , v) in Algorithm 1 to generate U (v) and all of its chain components.

Algorithm 1: ChainCom(U , v)

Input: U , a UCCG; v, a vertex of U .
Output: v−rooted essential graph of U and all of its chain components.

1 Set A = {v}, B = τ \ v, G = U and O = ∅
2 while B is not empty do
3 Set T = {w : w in B and adjacent to A} ;
4 Orient all edges between A and T as c→ t in G, where c ∈ A, t ∈ T ;
5 repeat
6 for each edge y − z in the vertex-induced subgraph GT do
7 if x→ y − z in G and x and z are not adjacent in G then
8 Orient y − z to y → z in G

9 until no more undirected edges in the vertex-induced subgraph GT can be
oriented ;

10 Set A = T and B = B \ T ;
11 Append all isolated undirected graphs in GT to O;

12 return G and O

We show that Algorithm 1 can generate rooted essential graph and the chain components
of this essential graph correctly in the following theorem.

Theorem 8 Let U be a UCCG and let v be a vertex in U . Let O and G be the outputs of
Algorithm 1 given U and v. Then G is the v-rooted essential graph G = U (v) of U and O is
the set of all chain components of U (v).

2594



Counting and Exploring Sizes of Markov Equivalence Classes

The following example displays rooted essential graphs of a UCCG and illustrates how
to implement Algorithm 1 to construct a rooted essential graph and how to generate all
DAGS in the corresponding rooted sub-classes.

Example 2. Figure 2 displays an undirected chordal graph U and its rooted essential
graphs. There are five rooted essential graphs {U (vi)}i=1,···,5. We need to construct only
U (v1), U (v2) and U (v3) since U (v4) and U (v5) are symmetrical to U (v1) and U (v3) respectively.
Clearly, they satisfy the conditions shown in Theorem 7. Given U in Figure 2, U (v1) is
constructed according to Algorithm 1 as follows: (1) set T = {v2, v3} in which vertices are
adjacent to v1, orient v1 − v2, v1 − v3 to v1 → v2, v1 → v3 respectively; (2) set T = {v4, v5}
in which vertices are adjacent to {v2, v3}, orient v2 − v4, v2 − v5, v3 − v5 to v2 → v4, v2 →
v5, v3 → v5 respectively; (3) orient v5 − v4 to v5 → v4 because v3 → v5 − v4 occurs but
v3 and v4 are not adjacent. By orientating the undirected edges of the chain components
of a rooted essential graph with the constraint that no new v-structures and directed cycle
occur, we can generate all DAGS in the corresponding sub-class (He and Geng, 2008; Meek,
1995; Verma, 1992). For example, consider U (v1) in Figure 2, we get two v1-rooted DAGs
by orienting v2 − v3 to v2 → v3 or v2 ← v3.qq q

q q
v1

v2 v3

v4 v5

�
� Q

Q

Q
Q
Q
Q

(U)

qq q
q q

v1

v2 v3

v4 v5�

�
�+

Q
Qs

? ?

Q
Q
Q
Qs

(U (v1))

qq q
q q

v1

v2 v3

v4 v5

-�
�3Q

Q

?

Q
Q
Q
Qs

(U (v2))

qq q
q q

v1

v2 v3

v4 v5

�

�

�
� Q

Qk

? ?

Q
Q
Q
Q

(U (v3))

Figure 2: An undirected chordal graph U and its rooted essential graphs: U (v1), U (v2), and
U (v3).

Now we can partition a Markov equivalence class represented by a UCCG into disjoint
sub-classes, each of which can be represented by a rooted essential graph. In the next
section, we will show how to recursively implement these partitions until the sizes of the
subclasses or their essential graphs can be calculated with the five formulas in Theorem 3.

3.2.2 Calculating the Size of a Markov Equivalence Class

Let U be an undirected and connected chordal graph (UCCG) over τ . For any v ∈ τ ,
SizeMEC(U (v)) denotes the number of DAGs in v-rooted sub-class of U . According to
Theorem 5, the size of U can be calculated via the following corollary.

Corollary 9 Let U be a UCCG over τ = {vi}i=1,···,p. We have SizeMEC(U (vi)) > 1 for
i = 1, · · · , p and

SizeMEC(U) =

p∑
i=1

SizeMEC(U (vi)). (2)

This corollary shows that the size of Markov equivalence class represented by U can be
calculated via the sizes of smaller sub-classes represented by {U (vi)}i=1,···,p. The following
example illustrates how to calculate the size of U in Figure 2.

2595



He, Jia and Yu

Example 3. Consider again the undirected chordal graph U in Figure 2, SizeMEC(U)
can be calculated as

∑5
i=1 SizeMEC(U (vi)) according to Corollary 9. The sizes of the five

subclasses represented by U (v1), · · · ,U (v5) are 2, 4, 3, 2, 3 respectively. Therefore, we can get
that SizeMEC(U) = 2 + 4 + 3 + 2 + 3 = 14.

According to Theorem 7, for any i ∈ {1, · · · , p}, the vi-rooted essential graph U (vi)

is a chain graph. If U (vi) is not directed, each of their isolated undirected subgraphs is a
UCCG. Recall that we can calculate the size of a Markov equivalence class through its chain
components using Equation (1), similarly, we can calculate the size of vi-rooted sub-class
of U with its isolated UCCGs as follows.

Corollary 10 Let U (vi) be a vi-rooted equivalent sub-class of U defined in Definition 6 and

{U (vi)
τj }j=1,···,l be the isolated undirected chordal sub-graphs of U (vi) over the vertex set τj for

j = 1, · · · , l. We have

SizeMEC(U (vi)) =
l∏

j=1

SizeMEC(U (vi)
τj ). (3)

Since {U (vi)
τj }j=1,···,l are UCCGs according to Theorem 7, SizeMEC(U (vi)

τj ) can be calcu-
lated again via Equation (2) in Corollary 9 recursively. In this iterative approach, Equation
(2) and Equation (3) are used alternately to calculate the sizes of equivalence classes rep-
resented by an undirected essential graph and a rooted essential graph.

Now in Algorithm 2 we present an enumeration to give SizeMEC (U). Corollary 11
shows that the enumeration returns the size correctly. For any essential graph C, we can
calculate the size of Markov equivalence class represented by C according to Equation (1)
and Algorithm 2.

Algorithm 2: SizeMEC (U)

Input: U : a UCCG.
Output: the size of Markov equivalence classes represented by U

1 Let p and n be the numbers of vertices and edges in U ;
2 switch n do
3 case p− 1 return p;
4 case p return 2p;
5 case p(p− 1)/2− 2 return (p2 − p− 4)(p− 3)!;
6 case p(p− 1)/2− 1 return 2(p− 1)!− (p− 2)!;
7 case p(p− 1)/2 return p!;

8 for j ← 1 to p do
9 {U1, · · · ,Ulj} ← ChainCom(U , vj);

10 sj ←
∏lj
i=1 SizeMEC (Ui)

11 return
∑p

i=1 si

Corollary 11 Let U be a UCCG and SizeMEC(·) be the function defined in Algorithm 2.
The function SizeMEC(U) returns the size of Markov equivalence class represented by U .

2596



Counting and Exploring Sizes of Markov Equivalence Classes

The complexity of calculating SizeMEC(U) via Algorithm 2 depends on the number of
times this recursive function is called. Our experiments in the next section show that when
the number of vertices in U is small, or when the number is large but U is sparse, our
proposed approach is efficient. However, when U is large and dense, the proposed approach
may be computational infeasible since calculating SizeMEC(U) via Algorithm 2 may require
a very deep recursion. In the worst case, the time complexity of Algorithm 2 might be O(p!).
For example, it might be extremely time-consuming to count SizeMEC(U) via Algorithm 2
when U is a UCCG with large p vertices and p(p− 1)/2− 3 edges. Fortunately, according
to the experimental results in He et al. (2013a), the undirected and connected chordal sub-
graphs in sparse essential graphs with hundreds of vertices are mostly small. This implies
that our approach may be valuable for size counting in most situations of causal learning
based on sparse graphical models.

In the next section, we demonstrate our approach experimentally and explore the size
and edge distributions of Markov equivalence classes in sparse graphical models.

4. Experimental Results

We conduct experiments to evaluate the proposed size counting algorithms in Section 4.1,
and then to study sizes of Markov equivalence classes in Section 4.2. The main contributions
of these experiments are as follows.

1. Our proposed approach can calculate the size of classes represented by a UCCG with
a few vertices (p < 15) in seconds on a laptop of 2.7GHz and 8G RAM. When the
number of vertices is large, our approach is also efficient for the graphs with a sparsity
constraint.

2. For the essential graphs with a sparsity constraint, the sizes of the corresponding
Markov equivalence classes are nearly exponential in p. This explains the result in
Chickering (2002) that causal structure search in the space of Markov equivalence
class models could be substantially more efficient than the search in the space of DAG
models for learning sparse graphical models.

3. In the set of all Markov equivalence classes of DAGs with p vertices, most graphs
are half-completed (nearly p2/4 edges exist) and the Markov equivalent classes repre-
sented by these graphs have small average sizes. This is the reason why all Markov
equivalence classes have small average sizes (approximately 3.7 reported by Gillispie
and Perlman (2002)) even though sparse Markov equivalence classes are huge.

4.1 Calculating the Size of Classes Represented by UCCGs

In this section, we experimentally study the time complexity of our proposed counting
algorithms for the UCCGs with a small p or with a large p but also with a sparsity
constraint. All experiments are run on a laptop with Intel 2.7GHz and 8G RAM. Note
that the chain components are mostly small from sparse Markov equivalence classes with
hundreds of vertices (He et al., 2013a). The experimental results show that the proposed
method is efficient to count the sizes of sparse Markov equivalence classes with hundreds of
vertices.

2597



He, Jia and Yu

Let Un∗p be the set of Markov equivalence classes with p vertices and n edges. The
graphs in Un∗p are sparse if n is a small multiple of p. We generate random choral graphs
in Un∗p as follows. First, we construct a tree by connecting two vertices (one is sampled
from the connected vertices and the other from the isolated vertices) sequentially until all
p vertices are connected. Then we randomly insert an edge such that the resulting graph is
chordal, repeatedly until the number of edges reaches n. Repeating this procedure N times,
we obtain N samples from Ui∗p for each i ∈ [p− 1, n].

We first consider the undirected chordal graphs with 5 to 13 vertices. Our experiments
on Un∗p for any n < p(p−1)/2−3 show that it is most time-consuming to calculate the size of
UCCGs when n = p(p−1)/2−3. Based on the samples from Un∗p where n = p(p−1)/2−3,
we report in Table 1 the the maximum, the minimum and the average of the sizes of
Markov equivalence classes and the time to count them. We see that the size is increasing
exponentially in p and the proposed size-counting algorithm is computationally efficient for
undirected chordal graphs with a few vertices.

p 5 6 7 8 9 10 11 12 13

Size
Min 14 60 312 1920 1.36e4 1.11e5 1.00e6 1.02e7 1.12e8

Mean 22 104 658 4508 3.27e4 2.90e5 2.96e6 2.92e7 3.57e8
Max 30 144 828 5616 4.39e4 3.89e5 3.84e6 4.19e7 4.99e8

Time
(sec.)

Min 0 0 1.0e-3 5.0e-3 2.8e-2 1.7e-1 1.3 10.6 95
Mean 1.3e-4 4.3e-4 1.5e-3 6.8e-3 3.6e-2 2.2e-1 1.6 13.6 140
Max 1.0e-3 1.0e-3 4.0e-3 1.3e-2 9.6e-2 6.4e-1 5.1 53.5 476

Table 1: The size of Markov equivalence class and the time to calculate it via Algorithm 2
based on 105 samples from Un∗p , where p ranges from 5 to 13 and n = p(p−1)/2−3
(the worst case for classes with p vertices).

We also study the sets Un∗p that contain UCCGs with tens of vertices. The number of
vertices p is set to 15, 20, · · · , 100 and the edge constraint m is set to rp where r is the ratio
of m to p. For each p, we consider four ratios: 2, 3, 4 and 5. The undirected chordal graphs
in Urp∗p are sparse since r ≤ 5. Based on 105 samples, we report the average size and time in
Table 2. We can see that when r ≤ 4, the algorithm just takes a few seconds even when the
sizes are very huge; when the chordal graphs become denser (r > 4), the algorithm takes
more time.

Here we have to point out that the choral graphs generated in this experiment might
not be uniformly distributed in the space of chordal graphs and that the averages in Table
1 and Table 2 are not accurate estimations of expectations of sizes and time.

4.2 Size and Edge Distributions of Markov Equivalence Classes

In this section, we focus on the size and edge distributions of Markov equivalence classes of
directed acyclic graphs. First, we generate a Markov chain on Markov equivalence classes
of interest and simultaneously obtain the stationary distribution of the chain according to
the methods in He et al. (2013a,b). Then, based on the stationary distribution of the chain,
we reweigh the samples from the chain and further use them to calculate the distribution

2598



Counting and Exploring Sizes of Markov Equivalence Classes

r p 15 20 30 40 50 60 70 80 90 100
2

Size

7363 6.98e4 4.74e6 6.94e8 1.9e10 1.2e12 1.2e14 1.5e15 1.8e17 2.6e19
3 3.0e5 3.3e6 1.1e10 7.1e12 4.4e15 8.6e18 1.3e21 6.1e23 1.4e27 9.1e27
4 2.7e6 5.4e8 6.7e12 2.8e16 3.5e19 5.9e22 5.8e25 1.3e29 1.3e38 1.5e34
5 4.9e7 6.7e9 8.3e14 5.4e18 1.1e24 2.8e26 2.3e30 4.8e33 5.6e40 3.8e40
2

Time
(sec.)

3.2e-3 5.7e-3 1.2e-2 2.3e-2 0.028 0.037 0.059 0.074 0.090 0.15
3 1.7e-2 3.8e-2 8.8e-2 0.15 0.17 0.27 0.42 0.53 0.75 0.86
4 0.19 0.43 0.72 1.37 1.51 2.16 3.35 3.64 6.14 9.03
5 2.89 7.07 7.91 17.49 50.43 82.99 90.37 95.54 127.25 213

Table 2: The average size of Markov equivalence classes and average counting time via
Algorithm 2 are reported based on 105 samples from Upr∗p , where p ranges from
15 to 100.

of Markov equivalence classes of interest. In Section 4.2.1, we study the size and edge
distributions of Markov equivalence classes with tens of vertices, and in Section 4.2.2, we
provide the size distributions of Markov equivalence classes with hundred of vertices under
sparsity constraints.

4.2.1 Size and Edge Distribution of Markov Equivalence Classes

In this section, we discuss the distributions of Markov equivalence classes on their sizes
and number of edges. We use “size distribution” for the distribution on sizes of Markov
equivalence classes, and “edge distribution” for the distribution on the number of edges.
First, we consider the number of edges of Markov equivalence classes with p vertices for
10 ≤ p < 20. Then, we focus on the size and edge distribution of Markov equivalence
classes with 20 vertices. Finally, we explore the size distributions of Markov equivalence
classes with different numbers of edges to show how size distributions change with increasing
numbers of edges.

The numbers of edges in the Markov equivalence classes with p vertices range from 0 to
p(p− 1)/2. Based on a Markov chain with length of 106 for each p, we display in Table 3 the
modes and 99% intervals of edge distributions of Markov equivalence classes with p vertices
for 10 ≤ p < 20. The mode is the number that appears with the maximum probability,
99% interval is the shortest interval that covers more than 99% of Markov equivalence
classes. The ratios that measure the fraction of 99% interval to p(p− 1)/2 + 1 are also
given. For example, consider the edge distribution of Markov equivalence classes with 10
vertices; we see that 99% of Markov equivalence classes have between 17 and 32 edges. The
ratio is 16/46 ≈ 0.348, where the number 16 is the length of the 99% interval [17, 32] and
46 is the length of the edge distribution’s support [0, 45]. From the 99% intervals and the
corresponding ratios, we see that the numbers of edges of Markov equivalence classes are
sharply distributed around p2/4, and these distributions become sharper with increasing of
p. This result is reasonable since the number of skeletons of essential graphs with k edges
is
(p(p−1)/2

k

)
, and the k-combination reaches maximum around k = p2/4.

In Figure 3, we display the proportions of Markov equivalence classes with 20 vertices
according to their sizes and the number of edges. Two scaled marginal distributions in the

2599



He, Jia and Yu

p mode 99% interval ratio p mode 99% interval ratio

10 25 [17,32] 0.348 15 56 [44,68] 0.236
11 30 [22,39] 0.321 16 64 [51,77] 0.223
12 36 [26,45] 0.299 17 73 [59,87] 0.216
13 42 [32,53] 0.278 18 81 [66,96] 0.201
14 49 [38,60] 0.25 19 91 [75,106] 0.180

Table 3: The edge distributions of Markov equivalence classes with p vertices for 10 ≤ p <
20. The mode is the number that appears with the maximum probability, the 99%
interval covers more than 99% of Markov equivalence classes, ratio is the fraction
of the length of the 99% interval to the length of the support of edge distribution.

planes are also shown. The black dashed line is the size distribution and the black solid
line is the edge distribution of Markov equivalence classes. According to the marginal size
distribution, we see that most of the Markov equivalence classes with 20 vertices have small
sizes. For example, 26.89% of Markov equivalence classes are of size one; the proportion
of Markov equivalence classes with size ≤ 10 is greater than 95%. We also see that the
marginal edge distribution of Markov equivalences is concentrated around 100(= 202/4).
The proportion of Markov equivalence classes with 20 vertices and 100 edges is nearly 6%.

To study how the size distribution changes with the number of edges, we consider Markov
equivalence classes with 100 vertices and n edges for different n.

Figure 4 displays the size distribution of Markov equivalence classes with 100 vertices
and n edges for n = 10, 50, 100, 200, 400, 600, 1000, 1500, 2000 and 2500, respectively. We
see that the sizes of Markov equivalence classes are very small when the number of edges
is close to p2/4 = 2500. For example, when n ∈ (1000, 2500), the median of the sizes is no
more than 4. These results shed light on why the Markov equivalence classes have a small
average size (approximately 3.7 reported by Gillispie and Perlman (2002)).

4.2.2 Size Distributions of Markov Equivalence Classes with Sparsity
Constraints

We study Markov equivalence classes with p vertices and n vertices. The number of vertices
p is set to 100, 200, 500 or 1000 and the maximum number of edges n is set to rp where r
is the ratio of n to p. For each p, we consider four ratios: 1.2, 1.5, 3 and 5. The essential
graphs with p vertices and rp edges are sparse since r ≤ 5. In each simulation, given p and
r, a Markov chain with length of 106 Markov equivalence classes is generated.

There are sixteen distributions, each of which is calculated with 106 essential graphs. We
plot the four distributions for r = 1.2 in the main window, and the other 12 distributions for
r = 1.5, 3, 5 in three sub-windows, respectively. In each distribution, the 95% quantiles and
99% quantiles are marked with diamonds and circles, respectively. We see that the sizes of
equivalence classes are extremely large. The medians of size distributions are connected by
a dashed line in Figure 5. It seems that there is a linear relationship between the logarithm
of size and the number of vertices p. In other words, the size grows exponentially with p.

2600



Counting and Exploring Sizes of Markov Equivalence Classes

Sizes

5

10

15

20

Edges

70

80

90

100

110

120

130

P
ro

p
o
rt

io
n
s

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.2689

0.0596

Figure 3: The surface displays the distribution of the Markov equivalence classes with 20
vertices. Two rescaled marginal distributions are shown in the planes. The black
dashed line is the size distribution and the black solid line is the edge distribution
of Markov equivalence classes.

These results suggest that, to learn directed graphical models, a searching among Markov
equivalence classes might be more efficient than that among DAGs since the number of
Markov equivalence classes is much less than the number of DAGs when the graphs of
interest are sparse.

5. Conclusions and Discussions

In this paper, we propose a method to calculate the sizes of Markov equivalence classes. A
rooted sub-class of a Markov equivalence class is introduced and the graph representation
of this sub-class, called rooted essential graph, is proposed. We can partition a Markov
equivalence class into smaller rooted sub-classes recursively until the sizes of all sub-classes
can be obtained via five closed-form formulas. Then we explore the size and edge distribu-
tions of Markov equivalence classes. We study experimentally how size distribution changes
with the number of edges and report the size distributions of Markov equivalence classes
with hundreds of vertices under sparsity constraints. We find that the essential graphs
with around p2/4 edges dominate in the set of all essential graphs with p vertices and the
corresponding Markov equivalence classes have small sizes. This results in a small aver-
age size of all Markov equivalence classes with p vertices. For the sparse essential graphs
with p vertices, we find that the sizes of the corresponding Markov equivalence classes are
super-exponential in p.

2601



He, Jia and Yu

n=10 n=50 n=100 n=200 n=400
0

10

102

103

104

105

106

107
Size of MECs  with 100 vertices

n=600 n=1000 n=1500 n=2000 n=2500
0

2

4

6

8

10

12

14
Size of MECs with 100 vertices

Figure 4: The size distributions of Markov equivalence classes with p vertices and n edges,
where n = 10, 50, 100, 200, 400, 600, 1000, 1500, 2000 and 2500, respectively.

p=100 p=200 p=500 p=1000
0

105

1010

1015

1020

1025

1030

1035

S
iz

e
 o

f 
M

a
rk

o
v
 e

q
u
iv

a
le

n
ce

 c
la

ss
e
s

r=1.2

0

1010

1020

1030
r=1.5

0

1010

1020

1030
r=3

0

104

108

1012

1016

r=5

Figure 5: Size distributions of Markov equivalence classes with p vertices and at most rp
edges. The lines in the boxes and the two circles above the boxes indicate the
medians, the 95th, and the 99th percentiles respectively.

To calculate the sizes of Markov equivalence classes, we provide five closed-form formulas
for UCCGs with p vertices and n = p− 1, p, p(p− 1)/2− 2, p(p− 1)/2− 1, and p(p− 1)/2
edges respectively. As shown in Example 1, for other cases, say n = p(p − 1)/2 − 3, the

2602



Counting and Exploring Sizes of Markov Equivalence Classes

size of a Markov equivalence class is no longer determined by the number of vertices p;
it depends on the structure of the corresponding UCCG and our proposed method might
be inefficient when p is large. For these cases, it is of interest to develop more efficient
algorithm, or formulas, to calculate the size of a general Markov equivalence class in the
future work.

Moreover, we use python to implement algorithms and experiments in this paper and
the python package can be found at pypi.python.org/pypi/MarkovEquClasses.

Acknowledgments

We are very grateful to Adam Bloniarz for his comments that significantly improved the
presentation of our manuscript. We also thank the editors and the reviewers for their
helpful comments and suggestions. This work was supported partially by NSFC (11101008,
11101005, 71271211), DPHEC-20110001120113, US NSF grants DMS-1107000, CDS&E-
MSS 1228246, ARO grant W911NF-11-1-0114, AFOSR Grant FA 9550-14-0016, and the
Center for Science of Information (CSoI, a US NSF Science and Technology Center) under
grant agreement CCF-0939370.

Appendix A. Proofs of Results

In this section, we provide the proofs of the main results of our paper. We place the proof
of Theorem 3 in the end of Appendix because this proof will use the results in Algorithm 1
and Corollary 9.

Proof of Theorem 5:

We first show that τi-rooted sub-class is not empty. For any vertex τi ∈ τ , we just
need to construct a DAG D in which no v-structures occurs and all edges adjacent to v
are oriented out of v. The maximum cardinality search algorithm introduced by Tarjan
and Yannakakis (1984) can be used to construct D. Let p be the number of vertices in U ,
the algorithm labels the vertices from p to 1 in decreasing order. We first label τi with
p. As the next vertex to label, select an unlabeled vertex adjacent to the largest number
of previously labeled vertices. We can obtain a directed acyclic graph D by orienting the
undirected edges of U from higher number to lower number. Tarjan and Yannakakis (1984)
show that no v-structures occur in D if U is chordal. Hence in D, there is no v-structure
and all edges adjacent to v are oriented out of v. We have that D is a τi-rooted equivalent
DAG of U , thus τi-rooted sub-class is not empty.

To prove that the p sub-classes, τi-rooted sub-classes for i = 1, · · · , p, form a disjoint
partition of Markov equivalence class represented by U , we just need to show that every
equivalent DAG of U is in only one of p sub-classes.

For any equivalent DAG of U , denoted by D, since D is a directed acyclic graph, there
exists an order of its vertices such that all edges are oriented from the preceding vertices to
their succeeding ones. Denoted by τi the first vertex of this order, we have that all edges
adjacent to τi are oriented out of τi. Clearly, D is in the τi-rooted sub-class.

2603

pypi.python.org/pypi/MarkovEquClasses


He, Jia and Yu

Below, we show that D is not in any other rooted sub-class. Suppose that D is also
in another τj-rooted sub-class (i 6= j). Clearly, τi and τj are not adjacent. Since U is
connected, we can find a shortest path L = {τi − τk − · · · − τl − τj} from τi to τj with
more than one edge. The DAG D is in both τi-rooted and τj-rooted sub-classes, so we have
that vi → vk and vj → vl are in D. Considering all vertices in L, there must be a head
to head like · → · ← · in D, and the two heads are not adjacent in D since L is shortest
path. Consequently, a v-structure appears in D. This is a contradiction because U is an
undirected chordal graph and D must be a DAG without v-structures. �

Proof of Theorem 7:

Consider the proof of Theorem 6 in He and Geng (2008), we set the intervention variable
to be v. If v is a root, Theorem 7 becomes a special case of Theorem 6 in He and Geng
(2008). �

Proof of Corollary 9:

Theorem 5 shows that for any i ∈ {1, 2, · · · , p}, the τi-rooted sub-class of U is not empty
and these p sub-classes form a disjoint partition of Markov equivalence class represented by
U . This implies Corollary 9 directly. �

Proof of Corollary 10:

Since {U (vi)
τj }j=1,···,l are l isolated undirected chordal sub-graphs of U (vi), the orientations

of the undirected edges in a component is irrelevant to the other undirected components.
This results in Equation (3) follow directly. �

Proof of Theorem 8:

We first introduce the following Algorithm 3 that can construct a rooted essential graph.

Algorithm 3: Find the v-rooted essential graph of U
Input: U : an undirected and connected chordal graph; v: a vertex of U .
Output: the v-rooted essential graph of U

1 Set H = U ;
2 for each edge · − v in U do
3 Orient · − v to · ← v in H.

4 repeat
5 for each edge y − z in H do

Rule 1: if there exists · → y − z in H, and · and z are not adjacent then
Orient y − z to y → z in H

Rule 2: if there exists y → · → z in H then
Orient y − z to y → z in H

6 until no more undirected edges in H can be oriented ;
7 return H

A similar version of Algorithm 3 is used in He and Geng (2008) to construct an essential
graph given some directed edges. From the proof of Theorem 6 in He and Geng (2008),
we have that the output of Algorithm 3, H, is the v-rooted essential graph of U , that is,
H = U (v). Moreover, according to Theorem 7, we have that a v-rooted essential graph is a

2604



Counting and Exploring Sizes of Markov Equivalence Classes

chain graph and its isolated undirected subgraphs are chain components. From Algorithm
1, we know that O contains all isolated undirected subgraphs of G.

To prove that the output G of Algorithm 1 is the v-rooted essential graph U (v) of U and
O is the set of all chain components of U (v), we just need to show that G = H given the
same U and v.

By comparing Algorithm 1 to Algorithm 3, we find that in Algorithm 1, Rule 1 that is
shown in Algorithm 3 is used repeatedly, and in the output G of Algorithm 1, undirected
edges can no longer be oriented by the Rule 1. If we further apply Rule 2 in Algorithm 3
to orient undirected edges in G until no undirected edges satisfy the condition in Rule 2.
Denote the output as G′. Clearly, the output G′ is the same as H obtained from Algorithm
3, that is, G′ = H. Therefore, to show G = H, we just need to show G = H ′, that is, the
condition in Rule 2 does not hold for any undirected edge in G.

In Algorithm 1, we generate a set T in each loop of ”while” and the sequence is denoted
by {T1, · · · , Tn}. Setting T0 = {v}, we have five facts as following

Fact 1 All undirected edges in G occur in the subgraphs over Ti for i = 1, · · · , n.

Fact 2 All edges in G between Ti and Ti+1 are oriented from Ti to Ti+1 for i = 0, · · · , n−1.

Fact 3 There is no edge between Ti and Tj if |i− j| > 1.

Fact 4 There are no v-structures in G.

Fact 5 there is no directed cycle (all edges are directed) in G.

Suppose there exist three vertices x, y and z such that both y → x→ z and y− z occur
in G. Then a contradiction is implied.

Since y − z occurs in G, from Fact 1, there exists a set, denoted as Ti containing both
y and z. Moreover, y → x→ z occurs in G, from Fact 2 and Fact 3, we have that x ∈ Ti.

Next we show that x, y and z have the same parents in Ti−1. First, y and z have the
same parents in Ti−1; otherwise y − z will be oriented to a directed edge. Denote by P1

the same parents of y and z in Ti−1 and by P2 the parents of x in Ti−1. Second, for any
u ∈ P1, if u is not a parent of x, then z−x in U will be oriented to z → x in G according to
Algorithm 1. We have that u is also a parent of x and consequently, P1 ⊆ P2. Third, For
any u ∈ P2, u must be a parent of y according to Fact 4.

We have that P2 ⊆ P1, and finally P2 = P1. We get that neither y → x nor x → z is
oriented by any directed edge u→ y or u→ x with u ∈ Ti−1 since P2 = P1.

Let u1 ∈ Ti and u1 → y be the directed edge that orients y − x in U to y → x in G.
Clearly, u1 → y occurs in G, and u1 and x are not adjacent. Since y − z is not directed in
G, u1 − z must occur in U . Moreover, x → z occurs in G and u1 and x are not adjacent,
we have that u1 − z will be oriented to u1 ← z in G. Clearly, there occurs a directed cycle
u1 → y → x→ z → u1 in G. This is a contradiction according to Fact 5. We have that the
condition of Rule 2 does not hold for any undirected edge in G, and consequently, G = H
holds.

�
Proof of Corollary 11:
According to Corollary 9, Corollary 10, and Theorem 8, the output is the size of Markov

equivalence class represented by U . �

2605



He, Jia and Yu

Proof of Theorem 3:

Proof of (1):

For a UCCG Up,n, if n = p − 1, then the graph Up,n is a tree. For any vertex in Up,n,

we have that U (v)
p,n is a DAG according to Algorithm 1. Thus SizeMEC(U (v)

p,n) = 1. Then,
according to Corollary 9, SizeMEC(Up,n) = p.

Proof of (2):

For a UCCG Up,n, if n = p, then the graph Up,n has one more edge than tree. Be-
cause Up,n is chordal, a triangle occurs in Up,n. For any vertex v in Up,n, we have that

SizeMEC(U (v)
p,n) = 2. Consequently, we have that SizeMEC(U) = 2p according to Corollary

9.

Proof of (3):

Let v1, · · · , vp be the p vertices of Up,n. There are only two pairs of vertices that are
nonadjacent since p(p− 1)/2− 2 edges appear in Up,n. We first prove that these two pairs
have a common vertex. Suppose vi− vj and vk− vl do not occur in Up,n and vi, vj , vk, vl are
distinct vertices. Consider the subgraph induced by vi, vj , vk, vl of Up,n. Clearly, the cycle
vi − vk − vj − vl − vi occurs in the induced graph and Up,n is not a chordal graph. We have
that the missing two edges in Up,n are like v1 − v2 − v3.

According to Corollary 9, we have that

SizeMEC(Up,n) =

p∑
i=1

SizeMEC(U (vi)
p,n ).

We first consider U (v1)
p,n . All edges adjacent to v2 in U (v1)

p,n are oriented to directed edges
whose arrow is v2 according to Algorithm 1 since v2 is a neighbor of all neighbors of v1, and

v1, v2 are not adjacent in U (v1)
p,n . Removing v2 from U (v1)

p,n , we have that the induced graph
over v1, v3, · · · , vp is a completed graph. This implies that the induced graph over v3, · · · , vp
is an undirected completed graph with p−2 vertices. Therefore, we have SizeMEC(U (v1)

p,n ) =
(p− 2)!.

Similarly, we can get that SizeMEC(U (v3)
p,n ) = (p − 2)! since v1 and v3 are symmetric in

Up,n.

Consider U (v2)
p,n , according to Algorithm 1, for any vertex vj other than v1 and v3, we

have that v2 → vj , vj → v1 and vj → v3 occur in U (v2)
p,n , and all other edges in U (v2)

p,n are

undirected. Therefore, there are two isolated chain components in U (v2)
p,n , one contains the

edge x1 − x3 and the other is the subgraph induced by v4, · · · , vp. We have the size of first
chain component is 2 and the second is (p − 3)! since it is a completed graph with p − 3

vertices. According to Corollary 10, SizeMEC(U (v2)
p,n ) = 2(p− 3)!.

We now consider U (v4)
p,n . According to Algorithm 1, to construct U (v4)

p,n , we first orient
the undirected edges adjacent to v4 in Up,n to directed edges out of v4. Since v4 is adjacent
to all other vertices in Up,n, there are no subgraphs like v4 → vi − vj with v4 and vj

nonadjacent. This results in the chain component of U (v4)
p,n being a graph with p− 1 vertices

and (p− 1)(p− 2)/2− 2 edges (only v1− v2− v3 missing). We have that SizeMEC(U (v4)
p,n ) =

SizeMEC (Up−1,(p−1)(p−2)/2−2).

2606



Counting and Exploring Sizes of Markov Equivalence Classes

Similarly, we can get that SizeMEC(U (vi)) = SizeMEC (Up−1,(p−1)(p−2)/2−2) for any i ≥ 4
since exchanging the labels of these vertices will not change U .

Therefore, we have proved the following formula

SizeMEC (Up,n) = (p− 3)SizeMEC (Up−1,(p−1)(p−2)/2−2) + 2(p− 2)! + 2(p− 3)!,

Finally, we show that

SizeMEC (Up,n) = (p2 − p− 4)(p− 3)!

satisfies the formula and initial condition. First, we have SizeMEC (U4,4) = (16−8)∗1 = 8.
Suppose SizeMEC (Up,n) = (p2 − p− 4)(p− 3)! holds for p = j − 1,

SizeMEC (Uj,j(j−1)/2−2)
= (j − 3)SizeMEC (Uj−1,(j−1)(j−2)/2−2) + 2(j − 2)! + 2(j − 3)!

= (j − 3){[(j − 1)2 − (j − 1)− 4][(j − 1)− 3]!}+ 2(j − 2)! + 2(j − 3)!
= [(j − 1)2 − (j − 1)− 4 + 2(j − 2) + 2](j − 3)!
= (j2 − j − 4)!(j − 3)!

As a result, SizeMEC (Up,p(p−1)/2−2) = (p2 − p− 4)(p− 3)! holds for p = j.
Proof of (4):
From the condition, only one pair of vertices, denoted by v and u, is not adjacent in Up,n.

Consider a v-rooted equivalence sub-class, all undirected edges adjacent to u are oriented
to directed edges with arrows pointing to u, and all other edges can be orientated as a

completed undirected graph. We have that SizeMEC(U (v)
p,n) = (p − 2)!. Similarly, we have

that SizeMEC(U (u)
p,n ) = (p − 2)!. For any vertex w other than v and u, consider any DAG

in the w-rooted equivalent sub-class, all edges adjacent to w are oriented away from w, and
all other edges form a new chain component with p − 1 vertices and (p − 1)(p − 2)/2 − 1
edges. Consider SizeMEC(Up,p(p−1)/2−1) as a function of p, denoted by f(p). When p = 3,
we have f(3) = 3. Hence we have following formula:

f(p) = (p− 2)f(p− 1) + 2((p− 2)!).

Now, we show that
f(p) = 2(p− 1)!− (p− 2)!

satisfies the formula and initial condition. First, we have f(3) = 2 ∗ 2 − 1 = 3. Suppose
f(p) = 2(p− 1)!− (p− 2)! holds for p = j − 1,

f(j) = (j − 2)f(j − 1) + 2(j − 2)!
= (j − 2)(2(j − 2)!− (j − 3)!) + 2(j − 2)!
= 2(j − 2)(j − 2)!− (j − 2)! + 2(j − 2)!
= (j − 2)!(2j − 3)
= 2(j − 1)!− (j − 2)!

As a result, f(p) = 2(p− 1)!− (p− 2)! holds for p = j.
Proof of (5):
If U is an undirected and connected graph with p vertices, and p(p − 1)/2 edges, then

the graph is a complete graph. There are p! DAGs in the Markov equivalence class. �

2607



He, Jia and Yu

References

S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. The Annals of Statistics, 25(2):505–541, 1997.

R. Castelo and M. D. Perlman. Learning essential graph Markov models from data. Studies
in Fuzziness and Soft Computing, 146:255–270, 2004.

D. M. Chickering. Learning equivalence classes of Bayesian-network structures. The Journal
of Machine Learning Research, 2:445–498, 2002.

M. Finegold and M. Drton. Robust graphical modeling of gene networks using classical and
alternative t-distributions. The Annals of Applied Statistics, 5(2A):1057–1080, 2011.

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science
Signaling, 303(5659):799, 2004.

S.B. Gillispie and M.D. Perlman. The size distribution for Markov equivalence classes of
acyclic digraph models. Artificial Intelligence, 141(1-2):137–155, 2002.

Yangbo He and Zhi Geng. Active learning of causal networks with intervention experiments
and optimal designs. Journal of Machine Learning Research, 9:2523–2547, 2008.

Yangbo He, Jinzhu Jia, and Bin Yu. Reversible mcmc on markov equivalence classes of
sparse directed acyclic graphs. The Annals of Statistics, 41(4):1742–1779, 2013a.

Yangbo He, Jinzhu Jia, and Bin Yu. Supplement to “reversible mcmc on markov equivalence
classes of sparse directed acyclic graphs”. arXiv preprint arXiv:1303.0632, 2013b.

D. Heckerman, C. Meek, and G. Cooper. A Bayesian approach to causal discovery. Com-
putation, Causation, and Discovery, pages 143–67, 1999.

R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung, A. Emili, M. Snyder,
J.F. Greenblatt, and M. Gerstein. A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science, 302(5644):449, 2003.

M. H. Maathuis, M. Kalisch, and P. Bühlmann. Estimating high-dimensional intervention
effects from observational data. The Annals of Statistics, 37(6A):3133–3164, 2009. ISSN
0090-5364.

C. Meek. Causal inference and causal explanation with background knowledge. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403–410,
1995.

S. Meganck, P. Leray, and B. Manderick. Learning causal bayesian networks from observa-
tions and experiments: A decision theoretic approach. In Modeling Decisions for Artificial
Intelligence, pages 58–69. Springer, 2006.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge Univ Pr, 2000.

2608



Counting and Exploring Sizes of Markov Equivalence Classes

M.D. Perlman. Graphical model search via essential graphs. Contemporary Mathematics,
287:255–266, 2001.

P. Spirtes, C.N. Glymour, and R. Scheines. Causation, Prediction, and Search. The MIT
Press, 2001.

R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal
on Computing, 13:566, 1984.

T. Verma. A linear-time algorithm for finding a consistent expansion of a partially oriented
graph,”. Technical report, Technical Report R-180, UCLA Cognitive Systems Laboratory,
1992.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of
the Sixth Annual Conference on Uncertainty in Artificial Intelligence, page 270. Elsevier
Science Inc., 1990.

2609


	Introduction
	 Markov Equivalence Class
	The Size of Markov Equivalence Class
	Size of Markov Equivalence Class Determined by the Number of Vertices
	Size of a General Markov Equivalence Class
	Methods to Partition a Markov Equivalence Class
	Calculating the Size of a Markov Equivalence Class


	Experimental Results
	Calculating the Size of Classes Represented by UCCGs
	Size and Edge Distributions of Markov Equivalence Classes
	 Size and Edge Distribution of Markov Equivalence Classes
	 Size Distributions of Markov Equivalence Classes with Sparsity Constraints


	Conclusions and Discussions
	Proofs of Results

