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Abstract

This work establishes distribution-free upper and lower bounds on the minimax label com-
plexity of active learning with general hypothesis classes, under various noise models. The
results reveal a number of surprising facts. In particular, under the noise model of Tsy-
bakov (2004), the minimax label complexity of active learning with a VC class is always
asymptotically smaller than that of passive learning, and is typically significantly smaller
than the best previously-published upper bounds in the active learning literature. In high-
noise regimes, it turns out that all active learning problems of a given VC dimension have
roughly the same minimax label complexity, which contrasts with well-known results for
bounded noise. In low-noise regimes, we find that the label complexity is well-characterized
by a simple combinatorial complexity measure we call the star number. Interestingly, we
find that almost all of the complexity measures previously explored in the active learning
literature have worst-case values exactly equal to the star number. We also propose new
active learning strategies that nearly achieve these minimax label complexities.

Keywords: active learning, selective sampling, sequential design, adaptive sampling,
statistical learning theory, margin condition, Tsybakov noise, sample complexity, minimax
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1. Introduction

In many machine learning applications, in the process of training a high-accuracy classifier,
the primary bottleneck in time and effort is often the annotation of the large quantities
of data required for supervised learning. Active learning is a protocol designed to reduce
this cost by allowing the learning algorithm to sequentially identify highly-informative data
points to be annotated. In the specific protocol we study below, called pool-based active
learning, the learning algorithm is initially given access to a large pool of unlabeled data
points, which are considered inexpensive and abundant. It is then able to select any un-
labeled data point from the pool and request its label. Given the label of this point, the
algorithm can then select another unlabeled data point to be labeled, and so on. This inter-
active process continues for some prespecified number of rounds, after which the algorithm
must halt and produce a classifier. This contrasts with passive learning, where the data
points to be labeled are chosen at random. The hope is that, by sequentially selecting the
data points to be labeled, the active learning algorithm can direct the annotation effort to-
ward only the highly-informative data points, given the information already gathered from
previously-labeled data, and thereby reduce the total number of labels required to produce
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a classifier capable of predicting the labels of new instances with a desired level of accuracy.
This active learning protocol has been used in practice for a variety of learning problems,
often with significant reductions in the time and effort required for data annotation (see
Settles, 2012, for a survey of several such applications).

This article studies the theoretical capabilities of active learning, regarding the number
of label requests sufficient to learn a classifier to a desired error rate, known as the label
complexity. There is now a substantial literature on this subject (see Hanneke, 2014, for
a survey of known results), but on the important question of optimal performance in the
general setting, the gaps present in the literature are quite substantial in some cases. In
this work, we address this question by carefully studying the minimax performance. Specif-
ically, we are interested in the minimax label complexity, defined as the smallest (over the
choice of active learning algorithm) worst-case number of label requests sufficient for the
active learning algorithm to produce a classifier of a specified error rate, in the context of
various noise models (e.g., Tsybakov noise, bounded noise, agnostic noise, etc.). We derive
upper and lower bounds on the minimax label complexity for several noise models, which
reveal a variety of interesting and (in some cases) surprising observations. Furthermore,
in establishing the upper bounds, we propose a novel active learning strategy, which often
achieves significantly smaller label complexities than the active learning methods studied
in the prior literature.

1.1 The Prior Literature on the Theory of Active Learning

Before getting into the technical details, we first review some background information about
the prior literature on the theory of active learning. This will also allow us to introduce the
key contributions of the present work.

The literature on the theory of active learning began with studies of the realizable
case, a setting in which the labels are assumed to be consistent with some classifier in a
known hypothesis class, and have no noise (Cohn, Atlas, and Ladner, 1994; Freund, Seung,
Shamir, and Tishby, 1997; Dasgupta, 2004, 2005). In this simple setting, Dasgupta (2005)
supplied the first general analysis of the label complexity of active learning, applicable
to arbitrary hypothesis classes. However, Dasgupta (2005) found that there are a range
of minimax label complexities, depending on the structure of the hypothesis class, so that
even among hypothesis classes of roughly the same minimax sample complexities for passive
learning, there can be widely varying minimax label complexities for active learning. In
particular, he found that some hypothesis classes (e.g., interval classifiers) have minimax
label complexity essentially no better than that of passive learning, while others have a
minimax label complexity exponentially smaller than that of passive learning (e.g., threshold
classifiers). Furthermore, most nontrivial hypothesis classes of interest in learning theory
seem to fall into the former category, with minimax label complexities essentially no better
than passive learning. Fortunately, Dasgupta (2005) also found that in some of these hard
cases, it is still possible to show improvements over passive learning under restrictions on
the data distribution.

Stemming from these observations, much of the literature on active learning in the real-
izable case has focused on describing various special conditions under which the label com-
plexity of active learning is significantly better than that of passive learning: for instance,
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by placing restrictions on the marginal distribution of the unlabeled data (e.g., Dasgupta,
Kalai, and Monteleoni, 2005; Balcan, Broder, and Zhang, 2007; El-Yaniv and Wiener, 2012;
Balcan and Long, 2013; Hanneke, 2014), or abandoning the minimax approach by express-
ing the label complexity with an explicit dependence on the optimal classifier (e.g., Das-
gupta, 2005; Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2009b, 2012). In the general
case, such results have been abstracted into various distribution-dependent (or sometimes
data-dependent) complexity measures, such as the splitting index (Dasgupta, 2005), the
disagreement coefficient (Hanneke, 2007b, 2009b), the extended teaching dimension growth
function (Hanneke, 2007a), and the related version space compression set size (El-Yaniv
and Wiener, 2010, 2012; Wiener, Hanneke, and El-Yaniv, 2015). For each of these, there are
general upper bounds (and in some cases, minimax lower bounds) on the label complexities
achievable by active learning methods in the realizable case, expressed in terms of the com-
plexity measure. By expressing bounds on the label complexity in terms of these quantities,
the analysis of label complexities achievable by active learning in the realizable case has
been effectively reduced to the problem of bounding one of these complexity measures. In
particular, these complexity measures are capable of exhibiting a range of behaviors, corre-
sponding to the range of label complexities achievable by active learning. For certain values
of the complexity measures, the resulting bounds reveal significant improvements over the
minimax sample complexity of passive learning, while for other values, the resulting bounds
are essentially no better than the minimax sample complexity of passive learning.

Moving beyond these initial studies of the realizable case, the more-recent literature
has developed active learning algorithms that are provably robust to label noise. This ad-
vance was initiated by the seminal work of Balcan, Beygelzimer, and Langford (2006, 2009)
on the A2 (Agnostic Active) algorithm, and continued by a number of subsequent works
(e.g., Dasgupta, Hsu, and Monteleoni, 2007; Balcan, Broder, and Zhang, 2007; Castro and
Nowak, 2006, 2008; Hanneke, 2007a, 2009a,b, 2011, 2012; Minsker, 2012; Koltchinskii, 2010;
Beygelzimer, Dasgupta, and Langford, 2009; Beygelzimer, Hsu, Langford, and Zhang, 2010;
Hsu, 2010; Ailon, Begleiter, and Ezra, 2012; Hanneke and Yang, 2012). When moving into
the analysis of label complexity in noisy settings, the literature continues to follow the
same intuition from the realizable case: that is, that there should be some active learning
problems that are inherently hard, sometimes no better than passive learning, while others
are significantly easier, with significant savings compared to passive learning. As such, the
general label complexity bounds proven in noisy settings have tended to follow similar pat-
terns to those found in the realizable case. In some scenarios, the bounds reflect interesting
savings compared to passive learning, while in other scenarios the bounds do not reflect
any improvements at all. However, unlike the realizable case, these upper bounds on the
label complexities of the various proposed methods for noisy settings lacked complementary
minimax lower bounds showing that they were accurately describing the fundamental capa-
bilities of active learning in these settings. For instance, in the setting of Tsybakov noise,
there are essentially only two types of general lower bounds on the minimax label complex-
ity in the prior literature: (1) lower bounds that hold for all nontrivial hypothesis classes of
a given VC dimension, which therefore reflect a kind of best-case scenario (Hanneke, 2011,
2014), and (2) lower bounds inherited from the realizable case (which is a special case of
Tsybakov noise). In particular, both of these lower bounds are always smaller than the
minimax sample complexity of passive learning under Tsybakov noise. Thus, although the
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upper bounds on the label complexity of active learning in the literature are sometimes no
better than the minimax sample complexity of passive learning, the existing lower bounds
are unable to confirm that active learning truly cannot outperform passive learning in these
scenarios. This gap in our understanding of active learning with noise has persisted for a
number of years now, without really receiving a good explanation for why the gap exists
and how it might be closed.

In the present work, we show that there is a very good reason for why better lower
bounds have not been discovered in general for the noisy case. For certain ranges of the
noise parameters (corresponding to the high-noise regime), these simple lower bounds are
actually tight (up to certain constant and logarithmic factors): that is, the upper bounds
can actually be reduced to nearly match these basic lower bounds. Proving this surprising
fact requires the introduction of a new type of active learning strategy, which selects its
queries based on both the structure of the hypothesis class and the estimated variances of the
labels. In particular, in these high-noise regimes, we find that all hypothesis classes of the
same VC dimension have essentially the same minimax label complexities (up to logarithmic
factors), in stark contrast to the well-known differentiation of hypothesis classes observed
in the realizable case by Dasgupta (2005).

For the remaining range of the noise parameters (the low-noise regime), we argue that
the label complexity takes a value sometimes larger than this basic lower bound, yet still
typically smaller than the known upper bounds. In this case, we further argue that the
minimax label complexity is well-characterized by a simple combinatorial complexity mea-
sure, which we call the star number. In particular, these results reveal that for nonextremal
parameter values, the minimax label complexity of active learning under Tsybakov noise
with any VC class is always smaller than that of passive learning, a fact not implied by any
results in the prior literature.

We further find that the star number can be used to characterize the minimax label
complexities for a variety of other noise models. Interestingly, we also show that almost
all of the distribution-dependent or data-dependent complexity measures from the prior
literature on the label complexity of active learning are exactly equal to the star number
when maximized over the choice of distribution or data set (including all of those mentioned
above). Thus, the star number represents a unifying core concept within these disparate
styles of analysis.

1.2 Our Contributions

We summarize a few of the main contributions and interesting implications of this work.

• We develop a general noise-robust active learning strategy, which unlike previously-
proposed general methods, selects its queries based on both the structure of the hy-
pothesis class and the estimated variances of the labels.

• We obtain the first near-matching general distribution-free upper and lower bounds
on the minimax label complexity of active learning, under a variety of noise models.

• In many cases, the upper bounds significantly improve over the best upper bounds
implied by the prior literature.
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• The upper bounds for Tsybakov noise always reflect improvements over the minimax
sample complexity of passive learning (for non-extremal noise parameter values), a
feat not previously known to be possible.

• In high-noise regimes of Tsybakov noise, our results imply that all hypothesis classes
of a given VC dimension have roughly the same minimax label complexity (up to
logarithmic factors), in contrast to well-known results for bounded noise. This fact is
not implied by any results in the prior literature.

• We express our upper and lower bounds on the label complexity in terms of a simple
combinatorial complexity measure, which we refer to as the star number.

• We show that for any hypothesis class, almost every complexity measure proposed to
date in the active learning literature has worst-case value exactly equal to the star
number, thus unifying the disparate styles of analysis in the active learning literature.
We also prove that the doubling dimension is bounded if and only if the star number
is finite.

• For most of the noise models studied here, we exhibit examples of hypothesis classes
spanning the gaps between the upper and lower bounds, thus demonstrating that the
gaps cannot generally be reduced (aside from logarithmic factors) without introducing
additional complexity measures.

• We prove a separation result for Tsybakov noise vs the Bernstein class condition,
establishing that the respective minimax label complexities can be significantly dif-
ferent. This contrasts with passive learning, where they are known to be equivalent
up to a logarithmic factor.

The algorithmic techniques underlying the proofs of the most-interesting of our upper
bounds involve a combination of the disagreement-based strategy of Cohn, Atlas, and Lad-
ner (1994) (and the analysis thereof by Hanneke, 2011, and Wiener, Hanneke, and El-Yaniv,
2015), along with a repeated-querying technique of Kääriäinen (2006), modified to account
for variations in label variances so that the algorithm does not waste too many queries
determining the optimal classification of highly-noisy points; this modification represents
the main algorithmic innovation in this work. In a supporting role, we also rely on auxiliary
lemmas on the construction of ε-nets and ε-covers based on random samples, and the use of
these to effectively discretize the instance space. The mathematical techniques underlying
the proofs of the lower bounds are largely taken directly from the literature. Most of the
lower bounds are established by a combination of a technique originating with Kääriäinen
(2006) and refined by Beygelzimer, Dasgupta, and Langford (2009) and Hanneke (2011,
2014), and a technique of Raginsky and Rakhlin (2011) for incorporating a complexity
measure into the lower bounds.

We note that, while the present work focuses on the distribution-free setting, in which
the marginal distribution over the instance space is unrestricted, our results reveal that
low-noise settings can still benefit from distribution-dependent analysis, as expected given
the aforementioned observations by Dasgupta (2005) for the realizable case. For instance,
under Tsybakov noise, it is often possible to obtain stronger upper bounds in low-noise

3491



Hanneke and Yang

regimes under assumptions restricting the distribution of the unlabeled data (see e.g., Bal-
can, Broder, and Zhang, 2007). We leave for future work the important problem of charac-
terizing the minimax label complexity of active learning in the general case for an arbitrary
fixed marginal distribution over the instance space.

1.3 Outline

The rest of this article is organized as follows. Section 2 introduces the formal setting
and basic notation used throughout, followed in Section 3 with the introduction of the
noise models studied in this work. Section 4 defines a combinatorial complexity measure
– the star number – in terms of which we will express the label complexity bounds below.
Section 5 provides statements of the main results of this work: upper and lower bounds on
the minimax label complexities of active learning under each of the noise models defined
in Section 3. That section also includes a discussion of the results, and a brief sketch
of the arguments underlying the most-interesting among them. Section 6 compares the
results from Section 5 to the known results on the minimax sample complexity of passive
learning, revealing which scenarios yield improvements of active over passive. Next, in
Section 7, we go through the various results on the label complexity of active learning
from the literature, along with their corresponding complexity measures (most of which are
distribution-dependent or data-dependent). We argue that all of these complexity measures
are exactly equal to the star number when maximized over the choice of distribution or
data set. This section also relates the star number to the well-known concept of doubling
dimension, in particular showing that the doubling dimension is bounded if and only if the
star number is finite.

We note that the article is written with the intention that it be read in-order; for
instance, while Appendix B contains proofs of the results in Section 5, those proofs refer to
quantities and results introduced in Sections 6 and 7 (which follow Section 5, but precede
Appendix B).

2. Definitions

The rest of this paper makes use of the following formal definitions. There is a space X ,
called the instance space. We suppose X is equipped with a σ-algebra BX , and for simplicity
we will assume {{x} : x ∈ X} ⊆ BX . There is also a set Y = {−1,+1}, known as the label
space. Any measurable function h : X → Y is called a classifier. There is an arbitrary set
C of classifiers, known as the hypothesis class. To focus on nontrivial cases, we suppose
|C| ≥ 3 throughout.

For any probability measure P over X × Y and any x ∈ X , define η(x;P ) = P(Y =
+1|X = x) for (X,Y ) ∼ P , and let f?P (x) = sign(2η(x;P ) − 1) denote the Bayes optimal
classifier,1 where sign(t) = +1 if t ≥ 0, and sign(t) = −1 if t < 0. Define the error rate of
a classifier h with respect to P as erP (h) = P ((x, y) : h(x) 6= y).

1. Since conditional probabilities are only defined up to probability zero differences, there can be multiple
valid functions η(·;P ) and f?P , with any two such functions being equal with probability one. As such,
we will interpret statements such as “f?P ∈ C” to mean that there exists a version of f?P contained in C,
and similarly for other claims and conditions for f?P and η(·;P ).
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In the learning problem, there is a target distribution PXY over X × Y, and a data
sequence (X1, Y1), (X2, Y2), . . ., which are independent PXY -distributed random variables.
However, in the active learning protocol, the Yi values are initially “hidden” until individ-
ually requested by the algorithm (see below). We refer to the sequence X1, X2, . . . as the
unlabeled data sequence.2 We will sometimes denote by P the marginal distribution of PXY
over X : that is, P(·) = PXY (· × Y).

In the pool-based active learning protocol,3 we define an active learning algorithm A as
an algorithm taking as input a budget n ∈ N∪{0}, and proceeding as follows. The algorithm
initially has access to the unlabeled data sequence X1, X2, . . .. If n > 0, the algorithm may
then select an index i1 ∈ N and request to observe the label Yi1 . The algorithm may then
observe the value of Yi1 , and if n ≥ 2, then based on both the unlabeled sequence and
this new observation Yi1 , it may select another index i2 ∈ N and request to observe Yi2 .
This continues for a number of rounds at most n (i.e., it may request at most n labels),
after which the algorithm must halt and produce a classifier ĥn. More formally, an active
learning algorithm is defined by a random sequence {it}∞t=1 in N, a random variable N in
N, and a random classifier ĥn, satisfying the following properties. Each it is conditionally
independent from {(Xi, Yi)}∞i=1 given {ij}t−1

j=1, {Yij}t−1
j=1, and {Xi}∞i=1. The random variable

N always has N ≤ n, and for any k ∈ {0, . . . , n}, 1[N = k] is independent from {(Xi, Yi)}∞i=1

given {ij}kj=1, {Yij}kj=1, and {Xi}∞i=1. Finally, ĥn is independent from {(Xi, Yi)}∞i=1 given

N , {ij}Nj=1, {Yij}Nj=1, and {Xi}∞i=1.
We are now ready for the definition of our primary quantity of study: the minimax label

complexity. In the next section, we define several well-known noise models as specifications
of the set D referenced in this definition.

Definition 1 For a given set D of probability measures on X × Y, ∀ε ≥ 0, ∀δ ∈ [0, 1], the
minimax label complexity (of active learning) under D with respect to C, denoted ΛD(ε, δ),
is the smallest n ∈ N ∪ {0} such that there exists an active learning algorithm A with
the property that, for every PXY ∈ D, the classifier ĥn produced by A(n) based on the
(independent PXY -distributed) data sequence (X1, Y1), (X2, Y2), . . . satisfies

P
(

erPXY

(
ĥn

)
− inf
h∈C

erPXY (h) > ε

)
≤ δ.

If no such n exists, we define ΛD(ε, δ) =∞.

Following Vapnik and Chervonenkis (1971); Anthony and Bartlett (1999), we say a
collection of sets T ⊆ 2X shatters a sequence S ∈ X k (for k ∈ N) if {A ∩ S : A ∈ T } = 2S .

2. Although, in practice, we would expect to have access to only a finite number of unlabeled samples,
we expect this number would often be quite large (as unlabeled samples are considered inexpensive and
abundant in many applications). For simplicity, and to focus the analysis purely on the number of labels
required for learning, we approximate this scenario by supposing an inexhaustible source of unlabeled
samples. We leave open the question of the number of unlabeled samples sufficient to obtain the minimax
label complexity; in particular, we expect the number of such samples used by the methods obtaining
our upper bounds to be quite large indeed.

3. Although technically we study the pool-based active learning protocol, all of our results apply equally
well to the stream-based (selective sampling) model of active learning (in which the algorithm must
decide whether or not to request the label Yi before observing any Xj with j > i or requesting any Yj
with j > i).
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The VC dimension of T is then defined as the largest k ∈ N ∪ {0} such that there exists
S ∈ X k shattered by T ; if no such largest k exists, the VC dimension is defined to be ∞.
Overloading this terminology, the VC dimension of a set H of classifiers is defined as the
VC dimension of the collection of sets {{x : h(x) = +1} : h ∈ H}. Throughout this article,
we denote by d the VC dimension of C. We are particularly interested in the case d < ∞,
in which case C is called a VC class.

For any set H of classifiers, define DIS(H) = {x ∈ X : ∃h, g ∈ H s.t. h(x) 6= g(x)},
the region of disagreement of H. Also, for any classifier h, any r ≥ 0, and any probability
measure P on X , define BP (h, r) = {g∈C :P (x :g(x) 6=h(x))≤r}, the r-ball centered at h.

Before proceeding, we introduce a few additional notational conventions that help to
simplify the theorem statements and proofs. For any R-valued functions f and g, we write
f(x) . g(x) (or equivalently g(x) & f(x)) to express the fact that there is a universal
finite numerical constant c > 0 such that f(x) ≤ cg(x). For any x ∈ [0,∞], we define
Log(x) = max{ln(x), 1}, where ln(0) = −∞ and ln(∞) = ∞. For simplicity, we define
∞

Log(∞) = ∞, but in any other context, we always define 0 · ∞ = 0, and also define a
0 = ∞

for any a > 0. For any function φ : R→ R, we use the notation “limγ→0 φ(γ)” to indicating
taking the limit as γ approaches 0 from above: i.e., γ ↓ 0. For a, b ∈ R, we denote
a ∧ b = min{a, b} and a ∨ b = max{a, b}. Finally, we remark that some of the claims below
technically require additional qualifications to guarantee measurability of certain quantities
(as is typically the case in empirical process theory); see Blumer, Ehrenfeucht, Haussler, and
Warmuth (1989); van der Vaart and Wellner (1996, 2011) for some discussion of this issue.
For simplicity, we do not mention these issues in the analysis below; rather, we implicitly
qualify all of these results with the condition that C is such that all of the random variables
and events arising in the proofs are measurable.

3. Noise Models

We now introduce the noise models under which we will study the minimax label complexity
of active learning. These are defined as sets of probability measures on X×Y, corresponding
to specifications of the set D in Definition 1.

• (Realizable Case) Define RE as the collection of PXY for which f?PXY ∈ C and
2η(·;PXY )− 1 = f?PXY (·) (almost everywhere w.r.t. P).

• (Bounded Noise) For β ∈ [0, 1/2), define BN(β) as the collection of joint distributions
PXY over X × Y such that f?PXY ∈ C and

P (x : |η(x;PXY )− 1/2| ≥ 1/2− β) = 1.

• (Tsybakov Noise) For a ∈ [1,∞) and α ∈ (0, 1), define TN(a, α) as the collection of
joint distributions PXY over X × Y such that f?PXY ∈ C and ∀γ > 0,

P (x : |η(x;PXY )− 1/2| ≤ γ) ≤ a′γα/(1−α),

where a′ = (1− α)(2α)α/(1−α)a1/(1−α).
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• (Bernstein Class Condition) For a ∈ [1,∞) and α ∈ [0, 1], define BC(a, α) as the
collection of joint distributions PXY over X × Y such that, ∃hPXY ∈ C for which
∀h ∈ C,

P(x : h(x) 6= hPXY (x)) ≤ a(erPXY (h)− erPXY (hPXY ))α.

• (Benign Noise) For ν ∈ [0, 1/2], define BE(ν) as the collection of all joint distributions
PXY over X × Y such that f?PXY ∈ C and erPXY (f?PXY ) ≤ ν.

• (Agnostic Noise) For ν ∈ [0, 1], define AG(ν) as the collection of all joint distributions
PXY over X × Y such that infh∈C erPXY (h) ≤ ν.

It is known that RE ⊆ BN(β) ⊆ BC(1/(1 − 2β), 1), and also that RE ⊆ TN(a, α) ⊆
BC(a, α). Furthermore, TN(a, α) is equivalent to the conditions in BC(a, α) being satisfied
for all classifiers h, rather than merely those in C (Mammen and Tsybakov, 1999; Tsy-
bakov, 2004; Boucheron, Bousquet, and Lugosi, 2005). All of RE, BN(β), and TN(a, α) are
contained in

⋃
ν<1/2 BE(ν), and in particular, BN(β) ⊆ BE(β).

The realizable case is the simplest setting studied here, corresponding to the “optimistic
case” of Vapnik (1998) or the PAC model of Valiant (1984). The bounded noise model has
been studied under various names (e.g., Massart and Nédélec, 2006; Giné and Koltchinskii,
2006; Kääriäinen, 2006; Koltchinskii, 2010; Raginsky and Rakhlin, 2011); it is sometimes
referred to as Massart’s noise condition. The Tsybakov noise condition was introduced
by Mammen and Tsybakov (1999) in a slightly stronger form (in the related context of
discrimination analysis) and was distilled into the form stated above by Tsybakov (2004).
There is now a substantial literature on the label complexity under this condition, both for
passive learning and active learning (e.g., Mammen and Tsybakov, 1999; Tsybakov, 2004;
Bartlett, Jordan, and McAuliffe, 2006; Koltchinskii, 2006; Balcan, Broder, and Zhang, 2007;
Hanneke, 2011, 2012, 2014; Hanneke and Yang, 2012). However, in much of this literature,
the results are in fact established under the weaker assumption given by the Bernstein
class condition (Bartlett, Mendelson, and Philips, 2004), which is known to be implied by
the Tsybakov noise condition (Mammen and Tsybakov, 1999; Tsybakov, 2004). For passive
learning, it is known that the minimax sample complexities under Tsybakov noise and under
the Bernstein class condition are equivalent up to a logarithmic factor. Interestingly, our
results below imply that this is not the case for active learning. The benign noise condition
(studied by Hanneke, 2009b) requires only that the Bayes optimal classifier be contained
within the hypothesis class, and that the Bayes error rate be at most the value of the
parameter ν. The agnostic noise condition (sometimes called adversarial noise in related
contexts) is the weakest of the noise assumptions studied here, and admits any distribution
for which the best error rate among classifiers in the hypothesis class is at most the value of
the parameter ν. This model has been widely studied in the literature, for both passive and
active learning (e.g., Vapnik and Chervonenkis, 1971; Vapnik, 1982, 1998; Kearns, Schapire,
and Sellie, 1994; Kalai, Klivans, Mansour, and Servedio, 2005; Balcan, Beygelzimer, and
Langford, 2006; Hanneke, 2007b,a; Awasthi, Balcan, and Long, 2014).

4. A Combinatorial Complexity Measure

There is presently a substantial literature on distribution-dependent bounds on the label
complexities of various active learning algorithms. These bounds are expressed in terms of a
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variety of interesting complexity measures, designed to capture the behavior of each of these
particular algorithms. These measures of complexity include the disagreement coefficient
(Hanneke, 2007b), the reciprocal of the splitting index (Dasgupta, 2005), the extended
teaching dimension growth function (Hanneke, 2007a), and the version space compression
set size (El-Yaniv and Wiener, 2010, 2012). These quantities have been studied and bounded
for a variety of learning problems (see Hanneke, 2014, for a summary). They each have many
interesting properties, and in general can exhibit a wide variety of behaviors, as functions of
the distribution over X (and in some cases, the distribution over X ×Y) and ε, or in some
cases, the data itself. However, something remarkable happens when we maximize each of
these complexity measures over the choice of distribution (or data set): they all become
equal to a simple and easy-to-calculate combinatorial quantity (see Section 7 for proofs of
these equivalences). Specifically, consider the following definition.4

Definition 2 Define the star number s as the largest integer s such that there exist distinct
points x1, . . . , xs ∈ X and classifiers h0, h1, . . . , hs ∈ C with the property that ∀i ∈ {1, . . . , s},
DIS({h0, hi}) ∩ {x1, . . . , xs} = {xi}; if no such largest integer exists, define s =∞.

For any set H of functions X → Y, any t ∈ N, x1, . . . , xt ∈ X , and h0, h1, . . . , ht ∈ H,
we will say {x1, . . . , xt} is a star set for H, witnessed by {h0, h1, . . . , ht}, if ∀i ∈ {1, . . . , t},
DIS({h0, hi}) ∩ {x1, . . . , xt} = {xi}. For brevity, in some instances below, we may sim-
ply say that {x1, . . . , xt} is a star set for H, indicating that ∃h0, h1, . . . , ht ∈ H such
that {x1, . . . , xt} is a star set for H, witnessed by {h0, h1, . . . , ht}. We may also say that
{x1, . . . , xt} is a star set for H centered at h0 ∈ H if ∃h1, . . . , ht ∈ H such that {x1, . . . , xt}
is a star set for H, witnessed by {h0, h1, . . . , ht}. For completeness, we also say that {} (the
empty sequence) is a star set for H (witnessed by {h0} for any h0 ∈ H), for any nonempty
H. In these terms, the star number of C is the maximum possible cardinality of a star set
for C, or ∞ if no such maximum exists.

The star number can equivalently be described as the maximum possible degree in the
data-induced one-inclusion graph for C (see Haussler, Littlestone, and Warmuth, 1994),
where the maximum is over all possible data sets and nodes in the graph.5 To relate this to
the VC dimension, one can show that the VC dimension is the maximum possible degree
of a hypercube in the data-induced one-inclusion graph for C (maximized over all possible
data sets). From this, it is clear that s ≥ d. Indeed, any set {x1, . . . , xk} shatterable by C
is also a star set for C, since some h0 ∈ C classifies all k points −1, and for each xi, some
hi ∈ C has hi(xi) = +1 while hi(xj) = −1 for every j 6= i (where hi is guaranteed to exist
by shatterability of the set). On the other hand, there is no general upper bound on s in
terms of d, and the gap between s and d can generally be infinite.

4. A similar notion previously appeared in a lower-bound argument of Dasgupta (2005), including a kind
of distribution-dependent version of the “star set” idea. Indeed, we explore these connections formally
in Section 7, where we additionally prove this definition is exactly equivalent to a quantity studied
by Hanneke (2007a) (namely, the distribution-free version of the extended teaching dimension growth
function), and has connections to several other complexity measures in the literature.

5. The maximum degree in the one-inclusion graph was recently studied in the context of teaching com-
plexity by Fan (2012). However, using the data-induced one-inclusion graph of Haussler, Littlestone,
and Warmuth (1994) (rather than the graph based on the full space X ) can substantially increase the
maximum degree by omitting certain highly-informative points.
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4.1 Examples

Before continuing, we briefly go through a few simple example calculations of the star
number. For the class of threshold classifiers on R (i.e., C = {x 7→ 21[t,∞)(x)− 1 : t ∈ R}),
we have s = 2, as {x1, x2} is a star set for C centered at 21[t,∞)−1 if and only if x1 < t ≤ x2,
and any set {x1, x2, x3} cannot be a star set for C centered at any given 21[t,∞)−1 since, of
the (at least) two of these points on the same side of t, any threshold classifier disagreeing
with 21[t,∞)−1 on the one further from t must also disagree with 21[t,∞)−1 on the one closer
to t. In contrast, for the class of interval classifiers on R (i.e., C = {x 7→ 21[a,b](x) − 1 :
−∞ < a ≤ b < ∞}), we have s = ∞, since for any distinct points x0, x1, . . . , xs ∈ R,
{x1, . . . , xs} is a star set for C witnessed by {21[x0,x0] − 1, 21[x1,x1] − 1, . . . , 21[xs,xs] − 1}.
It is an easy exercise to verify that we also have s = ∞ for the classes of linear separators
on Rk (k ≥ 2) and axis-aligned rectangles on Rk (k ≥ 1), since the above construction
for interval classifiers can be embedded into these spaces, with the star set lying within a
lower-dimensional manifold in Rk (see Dasgupta, 2004, 2005; Hanneke, 2014).

As an intermediate case, where s has a range of values, consider the class of intervals of
width at least w ∈ (0, 1) (i.e., C = {x 7→ 21[a,b](x)−1 : −∞ < a ≤ b <∞, b−a ≥ w}), for the
space X = [0, 1]. In this case, we can show that b2/wc ≤ s ≤ b2/wc+2, as follows. We may
note that letting k = b2/(w+ε)c+1 (for ε > 0), and taking xi = (w+ε)(i−1)/2 for 1 ≤ i ≤ k,
we have that {x1, . . . , xk} is a star set for C, witnessed by {21[−2w,−w]−1, 21[x1−w/2,x1+w/2]−
1, . . . , 21[xk−w/2,xk+w/2]−1}. Thus, taking ε→ 0 reveals that s ≥ b2/wc. On the other hand,
for any k′ ∈ N with k′ > 2, and points x1, . . . , xk′ ∈ [0, 1], suppose {x1, . . . , xk′} is a star set
for C witnessed by {h0, h1, . . . , hk′}. Without loss of generality, suppose x1 ≤ x2 ≤ · · · ≤ xk′ .
First suppose h0 classifies all of these points −1. Note that, for any i ∈ {3, . . . , k′}, since
the interval corresponding to hi−1 has width at least w and contains xi−1 but not xi−2 or

xi, we have xi − xi−1 > max{0, w − (xi−1 − xi−2)}. Thus, 1 ≥
∑k′

i=2 xi − xi−1 > x2 − x1 +∑k′

i=3 max{0, w − (xi−1 − xi−2)} ≥ (k′ − 2)w −
∑k′−1

i=3 xi − xi−1 = (k′ − 2)w − (xk′−1 − x2),
so that xk′−1 − x2 > (k′ − 2)w − 1. But xk′−1 − x2 ≤ 1, so that k′ < 2/w + 2. Since
k′ is an integer, this implies k′ ≤ b2/wc + 2. For the remaining case, if h0 classifies some
xi as +1, then let xi0 = min{xi : h0(xi) = +1} and xi1 = max{xi : h0(xi) = +1}. Note
that, if i0 > 1, then for any x < xi0−1, any h ∈ C with h(xi0) = h(x) = +1 6= h0(x) must
have h(xi0−1) = +1 6= h0(xi0−1), so that {x, xi0−1} ⊆ DIS({h, h0}). Therefore, @xi < xi0−1

(since otherwise DIS({hi, h0}) ∩ {x1, . . . , xk′} = {xi} would be violated), so that i0 ≤ 2.
Symmetric reasoning implies i1 ≥ k′ − 1. Similarly, if ∃x ∈ (xi0 , xi1), then any h ∈ C with
h(x) = −1 6= h0(x) must have either h(xi0) = −1 6= h0(xi0) or h(xi1) = −1 6= h0(xi1), so
that either {x, xi0} ⊆ DIS({h, h0}) or {x, xi1} ⊆ DIS({h, h0}). Therefore, @xi ∈ (xi0 , xi1)
(since again, DIS({hi, h0})∩{x1, . . . , xk′} = {xi} would be violated), so that i1 ∈ {i0, i0+1}.
Combined, these facts imply k′ ≤ i1 + 1 ≤ i0 + 2 ≤ 4 ≤ b2/wc + 2. Altogether, we have
s ≤ b2/wc+ 2.

5. Main Results

We are now ready to state the main results of this article: upper and lower bounds on
the minimax label complexities under the above noise models. For the sake of making the
theorem statements more concise, we abstract the dependence on logarithmic factors in
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several of the upper bounds into a simple “polylog(x)” factor, meaning a value . Logk(x),
for some k ∈ [1,∞) (in fact, all of these results hold with values of k ≤ 4); the reader is
referred to the proofs for a description of the actual logarithmic factors this polylog function
represents, along with tighter expressions of the upper bounds. The formal proofs of all of
these results are included in Appendix B.

Theorem 3 For any ε ∈ (0, 1/9), δ ∈ (0, 1/3),

max

{
min

{
s,

1

ε

}
, d,Log

(
min

{
1

ε
, |C|

})}
. ΛRE(ε, δ) . min

{
s,
d

ε
,

sd

Log(s)

}
Log

(
1

ε

)
.

Theorem 4 For any β ∈ [0, 1/2), ε ∈ (0, (1− 2β)/24), δ ∈ (0, 1/24],

1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
βLog

(
1

δ

)
, d

}
. ΛBN(β)(ε, δ) .

1

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
polylog

(
d

εδ

)
.

Theorem 5 For any a ∈ [4,∞), α ∈ (0, 1), ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24],
if 0 < α ≤ 1/2,

a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
. ΛTN(a,α)(ε, δ) . a2

(
1

ε

)2−2α

d · polylog

(
d

εδ

)
and if 1/2 < α < 1,

a2

(
1

ε

)2−2α

max

{
min

{
s,

1

a1/αε

}2α−1

Log

(
1

δ

)
, d

}

. ΛTN(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s

d
,

1

a1/αε

}2α−1

d · polylog

(
d

εδ

)
.

Theorem 6 For any a ∈ [4,∞), α ∈ (0, 1), ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24],
if 0 ≤ α ≤ 1/2,

a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
. ΛBC(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}
d·polylog

(
1

εδ

)
,

and if 1/2 < α ≤ 1,

a2

(
1

ε

)2−2α

max

{
min

{
s,

1

a1/αε

}2α−1

Log

(
1

δ

)
, d

}

. ΛBC(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}
d · polylog

(
1

εδ

)
.

Theorem 7 For any ν ∈ [0, 1/2), ε ∈ (0, (1− 2ν)/24), and δ ∈ (0, 1/24],

ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
. ΛBE(ν)(ε, δ) .

(
ν2

ε2
d+ min

{
s,
d

ε

})
polylog

(
d

εδ

)
.
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Theorem 8 For any ν ∈ [0, 1/2), ε ∈ (0, (1− 2ν)/24), and δ ∈ (0, 1/24],

ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
. ΛAG(ν)(ε, δ) . min

{
s,

1

ν + ε

}(
ν2

ε2
+ 1

)
d · polylog

(
1

εδ

)
.

5.1 Remarks on the Main Results

We sketch the main innovations underlying the active learning algorithms achieving these
upper bounds in Section 5.2 below. Sections 6 and 7 then provide detailed and thorough
comparisons of each of these results to those in the prior literature on passive and active
learning. For now, we mention a few noteworthy observations and comments regarding
these theorems.

5.1.1 Comparison to the Previous Best Known Results

Aside from Theorems 6 and 8, each of the above results offers some kind of refinement over
the previous best known results on the label complexity of active learning. Some of these
refinements are relatively mild, such as those for the realizable case and bounded noise.
However, our refinements under Tsybakov noise and benign noise are far more significant.
In particular, perhaps the most surprising and interesting of the above results are the upper
bounds in Theorem 5, which can be considered the primary contribution of this work.

As discussed above, the prior literature on noise-robust active learning is largely rooted
in the intuitions and techniques developed for the realizable case. As indicated by The-
orem 3, there is a wide spread of label complexities for active learning problems in the
realizable case, depending on the structure of the hypothesis class. In particular, when
s <∞, we have O(Log(1/ε)) label complexity in the realizable case, representing a nearly-
exponential improvement over passive learning, which has Θ̃(1/ε) dependence on ε. On the
other hand, when s = ∞, we have Ω(1/ε) minimax label complexity for active learning,
which is the same dependence on ε as known for passive learning (see Section 6). Thus, for
active learning in the realizable case, some hypothesis classes are “easy” (such as thresh-
old classifiers), offering strong improvements over passive learning, while others are “hard”
(such as interval classifiers), offering almost no improvements over passive.

With the realizable case as inspiration, the results in the prior literature on general
noise-robust active learning have all continued to reflect these distinctions, and the label
complexity bounds in those works continue to exhibit this wide spread. In the case of
Tsybakov noise, the best general results in the prior literature (from Hanneke and Yang,

2012; Hanneke, 2014) correspond to an upper bound of roughly a2
(

1
ε

)2−2α
min

{
s, 1
aεα

}
d ·

polylog
(

1
εδ

)
(after converting those complexity measures into the star number via the results

in Section 7 below). When s < ∞, this has dependence Θ̃(ε2α−2) on ε, which reflects a
strong improvement over the Θ̃(εα−2) minimax sample complexity of passive learning for
this problem (see Section 6). On the other hand, when s = ∞, this bound is Θ̃(εα−2), so
that as in the realizable case, the bound is no better than that of passive learning for these
hypothesis classes. Thus, the prior results in the literature continue the trend observed in
the realizable case, in which the “easy” hypothesis classes admit strong improvements over
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passive learning, while the “hard” hypothesis classes have a bound that is no better than
the sample complexity of passive learning.

With this as background, it comes as quite a surprise that the upper bounds in Theo-
rem 5 are always smaller than the corresponding minimax sample complexities of passive
learning, in terms of their asymptotic dependence on ε for 0 < α < 1. Specifically, these
upper bounds reveal a label complexity Õ(ε2α−2) when s <∞, and Õ(ε2α−2 ∨ (1/ε)) when
s = ∞. Comparing to the Θ̃(εα−2) minimax sample complexity of passive learning, the
improvement for active learning is by a factor of Θ̃(ε−α) when s < ∞, and by a factor of
Θ̃(ε−min{α,1−α}) when s = ∞. As a further surprise, when 0 < α ≤ 1/2 (the high-noise
regime), we see that the distinctions between active learning problems of a given VC di-
mension essentially vanish (up to logarithmic factors), so that the familiar spread of label
complexities from the realizable case is no longer present. Indeed, in this latter case, all
hypothesis classes with finite VC dimension exhibit the strong improvements over passive
learning, previously only known to hold for the “easy” hypothesis classes (such as threshold
classifiers): that is, Õ(ε2α−2) label complexity.

Further examining these upper bounds, we see that the spread of label complexities
between “easy” and “hard” hypothesis classes increasingly re-emerges as α approaches 1,
beginning with α = 1/2. This transition point is quite sensible, since this is precisely the
point at which the label complexity has dependence on ε of Θ̃(1/ε), which is roughly the
same as the minimax label complexity of the “hard” hypothesis classes in the realizable
case, which is, after all, included in TN(a, α). Thus, as α increases above 1/2, the “easy”
hypothesis classes (with s <∞) exhibit stronger improvements over passive learning, while
the “hard” hypothesis classes (with s =∞) continue to exhibit precisely this Θ̃

(
1
ε

)
behavior.

In either case, the label complexity exhibits an improvement in dependence on ε compared
to passive learning for the same α value. But since the label complexity of passive learning
decreases to Θ̃

(
1
ε

)
as α→ 1, we naturally have that for the “hard” hypothesis classes, the

gap between the passive and active label complexities shrinks as α approaches 1. In contrast,
the “easy” hypothesis classes exhibit a gap between passive and active label complexities
that becomes more pronounced as α approaches 1 (with a near-exponential improvement
over passive learning exhibited in the limiting case, corresponding to bounded noise).

This same pattern is present, though to a lesser extent, for benign noise. In this case,
the best general results in the prior literature (from Dasgupta, Hsu, and Monteleoni, 2007;

Hanneke, 2007a, 2014) correspond to an upper bound of roughly min
{
s, 1
ν+ε

}(
ν2

ε2
+ 1
)
d ·

polylog
(

1
εδ

)
(again, after converting those complexity measures into the star number via

the results in Section 7 below). When s <∞, the dependence on ν and ε is roughly Θ̃
(
ν2

ε2

)
(aside from logarithmic factors and constants, and for ν > ε). However, when s = ∞, this
dependence becomes roughly Θ̃

(
ν
ε2

)
, which is the same as in the minimax sample complexity

of passive learning (see Section 6). Thus, for these results in the prior literature, we again
see that the “easy” hypothesis classes have a bound reflecting improvements over passive
learning, while the bound for the “hard” hypothesis classes fail to reflect any improvements
over passive learning at all.

In contrast, consider the upper bound in Theorem 7. In this case, when ν ≥
√
ε (again,

the high-noise regime), for all hypothesis classes with finite VC dimension, the dependence

on ν and ε is roughly Θ̃
(
ν2

ε2

)
. Again, this makes almost no distinction between “easy”
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hypothesis classes (with s < ∞) and “hard” hypothesis classes (with s = ∞), and instead
always exhibits the strongest possible improvements (up to logarithmic factors), previously
only known to hold for the “easy” classes (such as threshold classifiers): namely, reduction in
label complexity by roughly a factor of 1/ν compared to passive learning. The improvements
in this case are typically milder than we found in Theorem 5, but noteworthy nonetheless.
Again, as ν decreases below

√
ε, the distinction between “easy” and “hard” hypothesis

classes begins to re-emerge, with the harder classes maintaining a Θ̃
(

1
ε

)
dependence (roughly

equivalent to the realizable-case label complexity for these classes), while the easier classes

continue to exhibit the Θ̃
(
ν2

ε2

)
behavior, approaching O

(
polylog

(
1
ε

))
as ν shrinks.

5.1.2 The Dependence on δ

One remarkable fact about ΛRE(ε, δ) is that there is no significant dependence on δ in
the optimal label complexity for the given range of δ.6 Note that this is not the case in
noisy settings, where the lower bounds have an explicit dependence on δ. In the proofs,
this dependence on δ is introduced via randomness of the labels. However, as argued by
Kääriäinen (2006), a dependence on δ is sometimes still required in ΛD(ε, δ), even if we
restrict D to those PXY ∈ AG(ν) inducing deterministic labels: that is, η(x;PXY ) ∈ {0, 1}
for all x.

5.1.3 Spanning the Gaps

All of these results have gaps between the lower and upper bounds. It is interesting to note
that one can construct examples of hypothesis classes spanning these gaps, for Theorems
3, 4, 5, and 7 (up to logarithmic factors). For instance, for sufficiently large d and s and
sufficiently small ε and δ, these upper bounds are tight (up to logarithmic factors) in the case
where C = {x 7→ 21S(x)− 1 : S ⊆ {1, . . . , s}, |S| ≤ d}, for X = N (taking inspiration from
a suggested modification by Hanneke, 2014, of the proof of a related result of Raginsky and
Rakhlin, 2011). Likewise, these lower bounds are tight (up to logarithmic factors) in the case
that X = N and C = {x 7→ 21S(x)− 1 : S ∈ 2{1,...,d} ∪ {{i} : d+ 1 ≤ i ≤ s}}.7 Thus, these
upper and lower bounds cannot be significantly refined (without loss of generality) without
introducing additional complexity measures to distinguish these cases. For completeness,
we include proofs of these claims in Appendix D. It immediately follows from this (and
monotonicity of the respective noise models in C) that the upper and lower bounds in
Theorems 3, 4, 5, and 7 are each sometimes tight in the case s = ∞, as limiting cases of
the above constructions: that is, the upper bounds are tight (up to logarithmic factors) for
C = {x 7→ 21S(x)− 1 : S ⊆ N, |S| ≤ d}, and the lower bounds are tight (up to logarithmic
factors) for C = {x 7→ 21S(x) − 1 : S ∈ 2{1,...,d} ∪ {{i} : d + 1 ≤ i < ∞}}. It is interesting
to note that the above space C for which the upper bounds are tight can be embedded in
a variety of hypothesis classes in common use in machine learning (while maintaining VC

6. We should expect a more significant dependence on δ near 1, since one case easily prove that ΛRE(ε, δ)→
0 as δ → 1.

7. Technically, for Theorems 4 and 7, we require slightly stronger versions of the lower bound to establish
tightness for β or ν near 0: namely, adding the lower bound from Theorem 3 to these lower bounds.
The validity of this stronger lower bound follows immediately from the facts that RE ⊆ BN(β) and
RE ⊆ BE(ν).
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dimension . d and star number . s): for instance, in the case of s = ∞, this is true of
linear separators in R3d and axis-aligned rectangles in R2d. It follows that the upper bounds
in these theorems are tight (up to logarithmic factors) for each of these hypothesis classes.

5.1.4 Separation of TN(a, α) and BC(a, α)

Another interesting implication of these results is a separation between the noise models
TN(a, α) and BC(a, α) not previously noted in the literature. Specifically, if we consider
any class C comprised of only the s + 1 classifiers in Definition 2, then one can show8 that
(for s ≥ 3), for any α ∈ (0, 1], a ∈ [4,∞), ε ∈ (0, 1/(4a1/α)), and δ ∈ (0, 1/16],

ΛBC(a,α)(ε, δ) & a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}
Log

(
1

δ

)
.

In particular, when s > 1
aεα , we have ΛBC(a,α)(ε, δ) & aεα−2Log(1/δ), which is larger

than the upper bound on ΛTN(a,α)(ε, δ). Furthermore, when s = ∞, this lower bound has
asymptotic dependence on ε that is Ω(εα−2), which is the same dependence found in the
sample complexity of passive learning, up to a logarithmic factor (see Section 6 below).
Comparing this to the upper bounds in Theorem 5, which exhibit asymptotic dependence
on ε as ΛTN(a,α)(ε, δ) = Õ(εmin{2α−1,0}−1) when s = ∞, we see that for this class, any
α ∈ (0, 1) has ΛTN(a,α)(ε, δ) � ΛBC(a,α)(ε, δ). One reason this separation is interesting is
that most of the existing literature on active learning under TN(a, α) makes use of the noise
condition via the fact that it implies P(x : h(x) 6= f?PXY (x)) ≤ a(erPXY (h)−erPXY (f?PXY ))α

for all h ∈ C: that is, TN(a, α) ⊆ BC(a, α). This separation indicates that, to achieve
the optimal performance under TN(a, α), one needs to consider more-specific properties of
this noise model, beyond those satisfied by BC(a, α). Another reason this separation is
quite interesting is that it contrasts with the known results for passive learning, where (as
we discuss in Section 6 below) the sample complexities under these two noise models are
equivalent (up to an unresolved logarithmic factor).

5.1.5 Gaps in Theorems 6 and 8, and Related Open Problems

We conjecture that the dependence on d and s in the upper bounds of Theorem 6 can be
refined in general (where presently it is linear in sd). More specifically, we conjecture that
the upper bound can be improved to

ΛBC(a,α)(ε, δ) . a2

(
1

ε

)2−2α

min

{
s,

d

aεα

}
polylog

(
1

εδ

)
,

though it is unclear at this time as to how this might be achieved. The above example
(separating BC(a, α) from TN(a, α)) indicates that we generally cannot hope to reduce the
upper bound on the label complexity for BC(a, α) much beyond this.

As for whether the form of the upper bound on ΛAG(ν)(ε, δ) in Theorem 8 can generally
be improved to match the form of the upper bound for ΛBE(ν)(ε, δ), this remains a fascinat-
ing open question. We conjecture that at least the dependence on d and s can be improved
to some extent (where presently it is linear in ds).

8. Specifically, this follows by taking ζ = a
2
(4ε)α, β = 1

2
− 2
a4α

ε1−α, and k = min {s− 1, b1/ζc} in Lemma 26
of Appendix A.2, and noting that the resulting set of distributions RR(k, ζ, β) is contained in BC(a, α)
for this C.
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5.1.6 Minutiae

We note that the restrictions to the ranges of ε and δ in the above results are required only
for the lower bounds (aside from δ ∈ (0, 1], ε > 0), as are the restrictions to the ranges of
the parameters a, α, and ν, aside from the constraints in the definitions in Section 3; the
upper bounds are proven without any such restrictions in Appendix B. Also, several of the
upper bounds above (e.g., Theorems 5 and 7) are slightly looser (by logarithmic factors)
than those actually proven in Appendix B, which are typically stated in a different form
(e.g., with factors of dLog

(
1
ε

)
+ Log

(
1
δ

)
, rather than simply d · polylog

(
1
εδ

)
). We state

the weaker results here purely to simplify the theorem statements, referring the interested
reader to the proofs for the refined versions. However, aside from Theorem 3, we believe it
is possible to further optimize the logarithmic factors in all of these upper bounds.

We additionally note that we can also obtain results by the subset relations between the
noise models. For instance, since RE ⊆ BN(β) ⊆ BE(β) ⊆ AG(β), in the case β is close to
0 we can increase the lower bounds in Theorems 4, 7, and 8 based on the lower bound in
Theorem 3: that is, for ν ≥ β ≥ 0,

ΛAG(ν)(ε, δ) ≥ ΛBE(ν)(ε, δ) ≥ ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & max

{
min

{
s,

1

ε

}
, d

}
.

Similarly, since RE is contained in all of the noise models studied here, Log
(
min

{
1
ε , |C|

})
can also be included as a lower bound in each of these results. Likewise, in the cases that a is
very large or α is very close to 0, we can get a more informative upper bound in Theorem 5
via Theorem 7, since TN(a, α) ⊆ BE(1/2). For simplicity, in most of the above theorems,
we have not explicitly included the various compositions of the above results that can be
obtained in this way (with only a few exceptions).

5.2 The Strategy behind Theorems 5 and 7

The upper bounds in Theorems 5 and 7 represent the main results of this work, and along
with the upper bound in Theorem 4, are based on a general argument with essentially three
main components. The first component is a more-sophisticated variant of a basic approach
introduced to the active learning literature by Kääriäinen (2006): namely, reduction to
the realizable case via repeatedly querying for the label at a point in X until its Bayes
optimal classification can be determined (based on a sequential probability ratio test, as
studied by Wald, 1945, 1947). Of course, in the present model of active learning, repeatedly
requesting a label Yi yields no new information beyond requesting Yi once, since we are
not able to resample from the distribution of Yi given Xi (as Kääriäinen, 2006, does). To
resolve this, we argue that it is possible to partition the space X into cells, in a way such
that f?PXY is nearly constant in the vast majority of cells (without direct knowledge of f?PXY
or P); this is essentially a data-dependent approximation to the recently-discovered finite
approximability property of VC classes (Adams and Nobel, 2012). Given this partition, for
a given point Xi, we can find many other points Xj in the same cell of the partition as Xi,
and request labels for these points until we can determine what the majority label for the
cell is. We show that, with high probability, this value will equal f?PXY (Xi), so that we can
effectively use these majority labels in an active learning algorithm for the realizable case.
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However, we note that in the case of TN(a, α), if we simply apply this repeated querying
strategy to random P-distributed samples, the resulting label complexity would be too large,
and we would sometimes expect to exhaust most of the queries determining the optimal
labels in very noisy regions (i.e., in cells of the partition where η(·;PXY ) is close to 1/2
on average). This is because Tsybakov’s condition allows that such regions can have non-
negligible probability, and the number of samples required to determine the majority value
of a ±1 random variable becomes unbounded as its mean approaches zero. However, we can
note that it is also less important for the final classifier ĥ to agree with f?PXY on these high-
noise points than it is for low-noise points, since classifying them opposite from f?PXY has

less impact on the excess error rate erPXY (ĥ)−erPXY (f?PXY ). Therefore, as the second main
component of our active learning strategy, we take a tiered approach to learning, effectively
shifting the distribution P to favor points in cells with average η(·;PXY ) value further from
1/2. We achieve this by discarding a point Xi if the number of queries exhausted toward
determining the majority label in its cell of the partition becomes excessively large, and
we gradually decrease this threshold as the data set grows, so that the points making it
through this filter have progressively less and less noisy labels. By choosing ĥ to agree
with the inferred f?PXY classification of every point passing this filter, and combining this
with the standard analysis of learning in the realizable case (Vapnik, 1982, 1998; Blumer,
Ehrenfeucht, Haussler, and Warmuth, 1989), this allows us to provide a bound on the
fraction of points in X at a given level of noisiness (i.e., |η(·;PXY ) − 1/2|) on which the
produced classifier ĥ disagrees with f?PXY , such that this bound decreases as the noisiness
decreases (i.e., as |η(·;PXY )−1/2| increases). Furthermore, by discarding many of the points
in high-noise regions without exhausting too many label requests trying to determine their
f?PXY classifications, we are able to reduce the total number of label requests needed to
obtain ε excess error rate.

Already these two components comprise the essential strategy that achieves these upper
bounds in the case of s = ∞. However, to obtain the stated dependence on s in these
bounds when s < ∞, we need to introduce a third component: namely, using the inferred
values of f?PXY (Xi) in the context of an active learning algorithm for the realizable case.
For this, we specifically use the disagreement-based strategy of Cohn, Atlas, and Ladner
(1994) (known as CAL), which processes the unlabeled data in sequence, and requests to
observe the classification f?PXY (Xi) if and only if Xi is in the region of disagreement of
the set of classifiers in C consistent with all previously-observed f?PXY (Xj) values. Using
a modification of a recent analysis of this algorithm by Wiener, Hanneke, and El-Yaniv
(2015) (applied to each tier of label-noise separately), combined with the results below (in
Section 7.3) relating the complexity measure used in that analysis to the star number, we
obtain the dependence on s stated in the above results.

6. Comparison to Passive Learning

The natural baseline for comparison in active learning is the passive learning protocol, in
which the labeled data are i.i.d. samples with common distribution PXY : that is, the input
to the passive learning algorithm is (X1, Y1), . . . , (Xn, Yn). In this context, the minimax
sample complexity of passive learning, denoted MD(ε, δ), is defined as the smallest n ∈
N ∪ {0} for which there exists a passive learning rule mapping (X1, Y1), . . . , (Xn, Yn) to
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a classifier ĥ : X → Y such that, for any PXY ∈ D, with probability at least 1 − δ,
erPXY (ĥ)− infh∈C erPXY (h) ≤ ε.

Clearly ΛD(ε, δ) ≤ MD(ε, δ) for any D, since for every passive learning algorithm
A, there is an active learning algorithm that requests Y1, . . . , Yn and then runs A with
(X1, Y1), . . . , (Xn, Yn) to determine the returned classifier. One of the main interests in the
theory of active learning is determining the size of the gap between these two complexities,
for various sets D. For the purpose of this comparison, we now review several results known
to hold forMD(ε, δ), for various sets D. Specifically, the following bounds are known to hold
for any choice of hypothesis class C, and for β, a, α, ν, ε, and δ as in the respective theorems
from Section 5 (Vapnik and Chervonenkis, 1971; Vapnik, 1982, 1998; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989; Ehrenfeucht, Haussler, Kearns, and Valiant, 1989; Haussler,
Littlestone, and Warmuth, 1994; Massart and Nédélec, 2006; Hanneke, 2014).

• 1
ε

(
d+ Log

(
1
δ

))
.MRE(ε, δ) . 1

ε

(
dLog

(
1

max{ε,δ}

)
+ Log

(
1
δ

))
.

• 1
(1−2β)ε

(
d+ Log

(
1
δ

))
.MBN(β)(ε, δ) .

1
(1−2β)ε

(
dLog

(
1−2β
ε

)
+ Log

(
1
δ

))
.

• a
ε2−α

(
d+ Log

(
1
δ

))
.MTN(a,α)(ε, δ) ≤MBC(a,α) .

a
ε2−α

(
dLog

(
1
aεα

)
+ Log

(
1
δ

))
.

• ν+ε
ε2

(
d+ Log

(
1
δ

))
.MBE(ν)(ε, δ) ≤MAG(ν)(ε, δ) .

ν+ε
ε2

(
dLog

(
1
ν+ε

)
+ Log

(
1
δ

))
.

Let us compare these to the results for active learning in Section 5 on a case-by-case
basis. In the realizable case, we observe clear improvements of active learning over passive
learning in the case s � d

ε (aside from logarithmic factors). In particular, based on the
upper and lower bounds for both passive and active learning, we may conclude that s <
∞ is necessary and sufficient for the asymptotic dependence on ε to satisfy ΛRE(ε, ·) =
o(MRE(ε, ·)); specifically, when s < ∞, ΛRE(ε, ·) = O(Log(MRE(ε, ·))), and when s = ∞,
ΛRE(ε, ·) = Θ(MRE(ε, ·)). For bounded noise, we have a similar asymptotic behavior. When
s < ∞, again ΛBN(β)(ε, ·) = O(polylog(MBN(β)(ε, ·))), and when s = ∞, ΛBN(β)(ε, ·) =

Θ̃(MBN(β)(ε, ·)). In terms of the constants, to obtain improvements over passive learning

(aside from the effects of logarithmic factors), it suffices to have s � (1−2β)d
ε , which is

somewhat smaller (depending on β) than was sufficient in the realizable case.

Under Tsybakov’s noise condition, every α ∈ (0, 1/2] shows an improvement in the upper
bounds for active learning over the lower bound for passive learning by a factor of roughly

1
aεα (aside from logarithmic factors). On the other hand, when α ∈ (1/2, 1), if s < d

a1/αε
, the

improvement of active upper bounds over the passive lower bound is by a factor of roughly
1
aεα

(
d
s

)2α−1
, while for s ≥ d

a1/αε
, the improvement is by a factor of roughly 1

a
1−α
α ε1−α

(again,

ignoring logarithmic factors in both cases). In particular, for any α∈(0, 1), when s <∞, the
asymptotic dependence on ε satisfies ΛTN(a,α)(ε, ·) = Θ̃

(
εαMTN(a,α)(ε, ·)

)
, and when s =∞,

the asymptotic dependence on ε satisfies ΛTN(a,α)(ε, ·) = Θ̃
(
εmin{α,1−α}MTN(a,α)(ε, ·)

)
. In

either case, we have that for any α ∈ (0, 1), ΛTN(a,α)(ε, ·) = o(MTN(a,α)(ε, ·)).
For the Bernstein class condition, the gaps in the upper and lower bounds of Theorem 6

render unclear the necessary and sufficient conditions for ΛBC(a,α)(ε, ·) = o(MBC(a,α)(ε, ·)).
Certainly s <∞ is a sufficient condition for this, in which case the improvements are by a
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factor of roughly 1
aεα . However, in the case of s =∞, the upper bounds do not reveal any

improvements over those given above for MBC(a,α)(ε, δ). Indeed, the example given above
in Section 5 reveals that, in some nontrivial cases, ΛBC(a,α)(ε, δ) &MBC(a,α)(ε, δ)/Log(1/ε),
in which case any improvements would be, at best, in the constant and logarithmic factors.
Note that this example also presents an interesting contrast between active and passive
learning, since it indicates that in some cases ΛBC(a,α)(ε, δ) and ΛTN(a,α)(ε, δ) are quite
different, while the above bounds for passive learning reveal thatMBC(a,α)(ε, δ) is equivalent
to MTN(a,α)(ε, δ) up to constant and logarithmic factors.

In the case of benign noise, comparing the above bounds for passive learning to The-
orem 7, we see that (aside from logarithmic factors) the upper bound for active learning
improves over the lower bound for passive learning by a factor of roughly 1

ν when ν ≥
√
ε.

When ν <
√
ε, if s > d

ε , the improvements are by a factor of roughly ν+ε
ε , and if s ≤ d

ε ,

the improvements are by roughly a factor of min
{

1
ν ,

(ν+ε)d
ε2s

}
(again, ignoring logarithmic

factors). However, as has been known for this noise model for some time (Kääriäinen, 2006),
there are no gains in terms of the asymptotic dependence on ε for fixed ν. However, if we con-
sider νε such that ε ≤ νε = o(1), then for s <∞ we have ΛBE(νε)(ε, ·) = Θ̃(νεMBE(νε)(ε, ·)),
and for s =∞ we have ΛBE(νε)(ε, ·) = Õ

(
max

{
νε,

ε
νε

}
MBE(νε)(ε, ·)

)
.

Finally, for agnostic noise, similarly to the Bernstein class condition, the gaps between
the upper and lower bounds in Theorem 8 render unclear precisely what types of improve-
ments we can expect when s > 1

ν+ε , ranging from the lower bound, which has the behavior
described above for ΛBE(ν), to the upper bound, which reflects no improvements over pas-

sive learning in this case. When s < 1
ν+ε , the upper bound for active learning reflects an

improvement over the lower bound for passive learning by roughly a factor of 1
(ν+ε)s (aside

from logarithmic factors). It remains an interesting open problem to determine whether the
stronger improvements observed for benign noise generally also hold for agnostic noise.

We conclude this section with a remark on the logarithmic factors in the above upper
bounds. It is known that the terms of the form “dLog(x)” in each of the above upper bounds
for passive learning can be refined to replace x with the maximum of the disagreement
coefficient (see Section 7.1 below) over the distributions in D (Giné and Koltchinskii, 2006;
Hanneke and Yang, 2012; Hanneke, 2014). Therefore, based on the results in Section 7.1
relating the disagreement coefficient to the star number, we can replace these “dLog(x)”
terms with “dLog(s∧x)”. In the case of BN(β), Massart and Nédélec (2006) and Raginsky
and Rakhlin (2011) have argued that, at least in some cases, this logarithmic factor can
also be included in the lower bounds. It is presently not known whether this is the case for
the other noise models studied here.

7. Connections to the Prior Literature on Active Learning

As mentioned, there is already a substantial literature bounding the label complexities of
various active learning algorithms under various noise models. It is natural to ask how
the results in the prior literature compare to those stated above. However, as most of the
prior results are PXY -dependent, the appropriate comparison is to the worst-case values of
those results: that is, maximizing the bounds over PXY in the respective noise model. This
section makes this comparison. In particular, we will see that the label complexity upper
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bounds above for RE, BN(β), TN(a, α), and BE(ν) all show some improvements over the
known results, with the last two of these showing the strongest improvements.

The general results in the prior literature each express their label complexity bounds
in terms of some kind of complexity measure. There are now several such complexity
measures in use, each appropriate for studying some family of active learning algorithms
under certain noise models. Most of these quantities are dependent on the distribution PXY
or the data, and their definitions are quite diverse. For some pairs of them, there are known
inequalities loosely relating them, while other pairs have defied attempts to formally relate
the quantities. The dependence on PXY in the general results in the prior literature is
typically isolated to the various complexity measures they are expressed in terms of. Thus,
the natural first step is to characterize the worst-case values of these complexity measures,
for any given hypothesis class C. Plugging these worst-case values into the original bounds
then allows us to compare to the results stated above.

In the process of studying the worst-case behaviors of these complexity measures, we also
identify a very interesting fact that has heretofore gone unnoticed: namely, that almost all
of the complexity measures in the relevant prior literature on the label complexity of active
learning are in fact equal to the star number when maximized over the choice of distribution
or data set. In some sense, this fact is quite surprising, as this seemingly-eclectic collection
of complexity measures includes disparate definitions and interpretations, corresponding to
entirely distinct approaches to the analysis of the respective algorithms these quantities are
used to bound the label complexities of. Thus, this equivalence is interesting in its own
right; additionally, it plays an important role in our proofs of the main results above, since
it allows us to build on these diverse techniques from the prior literature when establishing
these results.

Each subsection below is devoted to a particular complexity measure from the prior
literature on active learning, each representing an established technique for obtaining label
complexity bounds. Together, they represent a summary of the best-known general results
from the prior literature relevant to our present discussion. In each case, we show the
equivalence of the worst-case value of the complexity measure to the star number, and
then combine this fact with the known results to obtain the corresponding bounds on the
minimax label complexities implicit in the prior literature. In each case, we then compare
this result to those obtained above.

We additionally study the doubling dimension, a quantity which has been used to bound
the sample complexity of passive learning, and can be used to provide a loose bound on
the label complexity of certain active learning algorithms. Below we argue that, when
maximized over the choice of distribution, the doubling dimension can be upper and lower
bounded in terms of the star number. One immediate implication of these bounds is that
the doubling dimension is bounded if and only if the star number is finite.

Our findings on the relations of these various complexity measures to the star number
are summarized in Table 1.

7.1 The Disagreement Coefficient

We begin with, what is perhaps the most well-studied complexity measure in the active
learning literature: the disagreement coefficient (Hanneke, 2007b, 2009b).
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Technique Source Relation to s

disagreement coefficient (Hanneke, 2007b) sup
P
θP (ε) = s ∧ 1

ε

splitting index (Dasgupta, 2005) sup
h,P

lim
τ→0

⌊
1

ρh,P (ε;τ)

⌋
= s ∧

⌊
1
ε

⌋
teaching dimension (Hanneke, 2007a) XTD(C,m) = s ∧m
version space compression (El-Yaniv and Wiener, 2010) max

h∈C
max
U∈Xm

n̂h(U) = s ∧m

doubling dimension (Li and Long, 2007) sup
h,P

Dh,P (ε)∈ [1, O(d)] log
(
s ∧ 1

ε

)
Table 1: Many complexity measures from the literature are related to the star number.

Definition 9 For any r0 ≥ 0, any classifier h, and any probability measure P over X , the
disagreement coefficient of h with respect to C under P is defined as

θh,P(r0) = sup
r>r0

P (DIS (BP (h, r)))

r
∨ 1.

Also, for any probability measure PXY over X×Y, letting P denote the marginal distribution
of PXY over X , and letting h∗PXY denote a classifier with erPXY (h∗PXY ) = infh∈C erPXY (h)

and infh∈C P(x : h(x) 6= h∗PXY (x)) = 0,9 define the disagreement coefficient of the class C
with respect to PXY as θPXY (r0) = θh∗PXY ,P

(r0).

The disagreement coefficient is used to bound the label complexities of a family of
active learning algorithms, described as disagreement-based. This line of work was initiated
by Cohn, Atlas, and Ladner (1994), who propose an algorithm effective in the realizable
case. That method was extended to be robust to label noise by Balcan, Beygelzimer,
and Langford (2006, 2009), which then inspired a slew of papers studying variants of this
idea; the interested reader is referred to Hanneke (2014) for a thorough survey of this
literature. The general-case label complexity analysis of disagreement-based active learning
(in terms of the disagreement coefficient) was initiated in the work of Hanneke (2007b,
2009b), and followed up by many papers since then (e.g., Dasgupta, Hsu, and Monteleoni,
2007; Hanneke, 2009a, 2011, 2012; Koltchinskii, 2010; Hanneke and Yang, 2012), as well as
many works characterizing the value of the disagreement coefficient under various conditions
(e.g., Hanneke, 2007b; Friedman, 2009; Balcan, Hanneke, and Vaughan, 2010; Wang, 2011;
Balcan and Long, 2013; Hanneke, 2014); again, see Hanneke (2014) for a thorough survey
of the known results on the disagreement coefficient.

To study the worst-case values of the label complexity bounds expressed in terms of the
disagreement coefficient, let us define

ˆ̂θ(ε) = sup
PXY

θPXY (ε).

In fact, a result of Hanneke (2014, Theorem 7.4) implies that ˆ̂θ(ε) = supP suph∈C θh,P(ε),

so that this would be an equivalent way to define ˆ̂θ(ε), which can sometimes be simpler to

9. See Hanneke (2012) for a proof that such a classifier always exists (though not necessarily in C).
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work with. We can now express the bounds on the minimax label complexity implied by
the best general results to date in the prior literature on disagreement-based active learning
(namely, the results of Hanneke, 2011; Dasgupta, Hsu, and Monteleoni, 2007; Koltchinskii,
2010; Hanneke and Yang, 2012; Hanneke, 2014), summarized as follows (see the survey
of Hanneke, 2014, for detailed descriptions of the best-known logarithmic factors in these
results).

• ΛRE(ε, δ) . ˆ̂θ(ε)d · polylog
(

1
εδ

)
.

• ΛBN(β)(ε, δ) .
1

(1−2β)2
ˆ̂θ(ε/(1− 2β))d · polylog

(
1
εδ

)
.

• ΛTN(a,α)(ε, δ) . a2
(

1
ε

)2−2α ˆ̂θ(aεα)d · polylog
(

1
εδ

)
.

• ΛBC(a,α)(ε, δ) . a2
(

1
ε

)2−2α ˆ̂θ(aεα)d · polylog
(

1
εδ

)
.

• ΛBE(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d · polylog
(

1
εδ

)
.

• ΛAG(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d · polylog
(

1
εδ

)
.

In particular, these bounds on ΛTN(a,α)(ε, δ), ΛBC(a,α)(ε, δ), ΛBE(ν)(ε, δ), and ΛAG(ν)(ε, δ)
are the best general-case bounds on the label complexity of active learning in the prior liter-
ature (up to logarithmic factors), so that any improvements over these should be considered
an interesting advance in our understanding of the capabilities of active learning methods.

To compare these results to those stated in Section 5, we need to relate ˆ̂θ(ε) to the star
number. Interestingly, we find that these quantities are equal (for ε = 0). Specifically, the
following result describes the relation between these two quantities; its proof is included in
Appendix C.1. This connection also plays a role in the proofs of some of our results from
Section 5.

Theorem 10 ∀ε ∈ (0, 1], ˆ̂θ(ε) = s ∧ 1
ε and ˆ̂θ(0) = s.

With this result in hand, we immediately observe that several of the upper bounds from

Section 5 offer refinements over those stated in terms of ˆ̂θ(·) above. For simplicity, we do
not discuss differences in the logarithmic factors here. Specifically, the upper bound on

ΛRE(ε, δ) in Theorem 3 refines that stated here by replacing the factor ˆ̂θ(ε)d = min
{
sd, dε

}
with the sometimes-smaller factor min

{
s, dε
}

. Likewise, the upper bound on ΛBN(β)(ε, δ)

in Theorem 4 refines the result stated here, again by replacing the factor ˆ̂θ(ε/(1− 2β))d =

min
{
sd, (1−2β)d

ε

}
with the sometimes-smaller factor min

{
s, (1−2β)d

ε

}
. On the other hand,

Theorem 5 offers a much stronger refinement over the result stated above. Specifically,
in the case α ≤ 1/2, the upper bound in Theorem 5 completely eliminates the factor of
ˆ̂θ(aεα) from the upper bound on ΛTN(a,α)(ε, δ) stated here (i.e., replacing it with a universal
constant). For the case α > 1/2, the upper bound on ΛTN(a,α)(ε, δ) in Theorem 5 replaces

this factor of ˆ̂θ(aεα) = min
{
s, 1
aεα

}
with the factor min

{
s
d ,

1
a1/αε

}2α−1
, which is always

smaller (for small ε and large d). The upper bounds on ΛBC(a,α)(ε, δ) and ΛAG(ν)(ε, δ) in
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Theorems 6 and 8 are equivalent to those stated here; indeed, this is precisely how these
results are obtained in Appendix B. We have conjectured above that at least the dependence
on d and s can be refined, analogous to the refinements for the realizable case and bounded
noise noted above. However, we do obtain refinements for the bound on ΛBE(ν)(ε, δ) in

Theorem 7, replacing the factor of
(
ν2

ε2
+ 1
)

ˆ̂θ(ν + ε)d =
(
ν2

ε2
+ 1
)

min
{
sd, d

ν+ε

}
in the

upper bound here with a factor ν2

ε2
d + min

{
s, dε
}

, which is sometimes significantly smaller
(for ε� ν � 1 and large d).

7.2 The Splitting Index

Another, very different, approach to the design and analysis of active learning algorithms
was proposed by Dasgupta (2005): namely, the splitting approach. In particular, this
technique has the desirable property that it yields distribution-dependent label complexity
bounds for the realizable case which, even when the marginal distribution P is held fixed,
(almost) imply near-minimax performance. The intuition behind this technique is that the
objective in the realizable case (achieving error rate at most ε) is typically well-approximated
by the related objective of reducing the diameter of the version space (set of classifiers
consistent with the observed labels) to size at most ε. From this perspective, at any given
time, the impediments to achieving this objective are clearly identifiable: pairs of classifiers
{h, g} in C consistent with all labels observed thus far, yet with P(x : h(x) 6= g(x)) > ε.
Supposing we have only a finite number of such classifiers (which can be obtained if we
first replace C by a fine-grained finite cover of C), we can then estimate the usefulness of
a given point Xi by the number of these pairs it would be guaranteed to eliminate if we
were to request its label (supposing the worse of the two possible labels); by “eliminate,” we
mean that at least one of the two classifiers will be inconsistent with the observed label. If
we always request labels of points guaranteed to eliminate a large fraction of the surviving
ε-separated pairs, we will quickly arrive at a version space of diameter ε, and can then
return any surviving classifier. Dasgupta (2005) further applies this strategy in tiers, first
eliminating at least one classifier from every 1

2 -separated pair, then repeating this for the
remaining 1

4 -separated pairs, and so on. This allows the label complexity to be localized,
in the sense that the surviving ∆-separated pairs we need to eliminate will be composed
of classifiers within distance 2∆ of f?PXY (or the representative thereof in the initial finite
cover of C). The analysis of this method naturally leads to the following definition from
Dasgupta (2005).

For any finite set Q ⊆ {{h, g} : h, g ∈ C} of unordered pairs of classifiers in C, for any
x ∈ X and y ∈ Y, let Qyx = {{h, g} ∈ Q : h(x) = g(x) = y}, and define

Split(Q, x) = |Q| −max
y∈Y
|Qyx|.

This represents the number of pairs guaranteed to be eliminated (as described above) by
requesting the label at a point x. The splitting index is then defined as follows.

Definition 11 For any ρ,∆, τ ∈ [0, 1], a set H ⊆ C is said to be (ρ,∆, τ)-splittable under a
probability measure P over X if, for all finite Q ⊆ {{h, g} ⊆ H : P(x : h(x) 6= g(x)) ≥ ∆},

P(x : Split(Q, x) ≥ ρ|Q|) ≥ τ.
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For any classifier h : X → Y, any probability measure P over X , and any ε, τ ∈ [0, 1], the
splitting index is defined as

ρh,P(ε; τ) = sup {ρ ∈ [0, 1] : ∀∆ ≥ ε,BP(h, 4∆) is (ρ,∆, τ)-splittable under P} .

Dasgupta (2005) proves a bound on the label complexity of a general active learning
algorithm based on the above strategy, in the realizable case, expressed in terms of the
splitting index. Specifically, for any τ > 0, letting ρ = ρf?PXY ,P

(ε/4; τ), Dasgupta (2005)

finds that for that algorithm to achieve error rate at most ε with probability at least 1− δ,
it suffices to use a number of label requests

d

ρ
polylog

(
d

εδτρ

)
. (1)

The τ argument to ρh,P(ε; τ) captures the trade-off between the number of label requests
and the number of unlabeled samples available, with smaller τ corresponding to the scenario
where more unlabeled data are available, and a larger value of ρh,P(ε; τ). Specifically,

Dasgupta (2005) argues that Õ
(
d
τρ

)
unlabeled samples suffice to achieve the above result.

In our present model, we suppose an abundance of unlabeled data, and as such, we are
interested in the behavior for very small τ . However, note that the logarithmic factors in
the above bound have an inverse dependence on τ , so that taking τ too small can potentially
increase the value of the bound. It is not presently known whether or not this is necessary
(though intuitively it seems not to be). However, for the purpose of comparison to our
results in Section 5, we will ignore this logarithmic dependence on 1/τ , and focus on the
leading factor. In this case, we are interested in the value lim

τ→0
ρh,P(ε; τ). Additionally, to

convert (1) into a distribution-free bound for the purpose of comparison to the results in
Section 5, we should minimize this value over the choice of P and h ∈ C. Formally, we are
interested in the following quantity, defined for any ε ∈ [0, 1].

ˆ̂ρ(ε) = inf
P

inf
h∈C

lim
τ→0

ρh,P (ε; τ).

In particular, in terms of this quantity, the maximum possible value of the bound (1) for a
given hypothesis class C is at least

d

ˆ̂ρ(ε/4)
polylog

(
d

εδ

)
.

To compare this to the upper bound in Theorem 3, we need to relate 1
ˆ̂ρ(ε)

to the star

number. Again, we find that these quantities are essentially equal (as ε → 0), as stated in
the following theorem.

Theorem 12 ∀ε ∈ (0, 1],
⌊

1
ˆ̂ρ(ε)

⌋
= s ∧

⌊
1
ε

⌋
.

The proof of this result is included in Appendix C.2. We note that the inequalities

s ∧
⌊

1
ε

⌋
≤
⌊

1
ˆ̂ρ(ε)

⌋
≤
⌊

1
ε

⌋
were already implicit in the original work of Dasgupta (2005,

Corollary 3 and Lemma 1). For completeness (and to make the connection explicit), we
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include these arguments in the proof given in Appendix C.2, along with our proof that⌊
1

ˆ̂ρ(ε)

⌋
≤ s (which was heretofore unknown).

Plugging this into the above bound, we see that the maximum possible value of the
bound (1) for a given hypothesis class C is at least

min

{
sd,

d

ε

}
polylog

(
d

εδ

)
.

Note that the upper bound in Theorem 3 refines this by reducing the first term in the “min”
from sd to simply s.

Dasgupta (2005) also argues for a kind of lower bound in terms of the splitting index,
which was reformulated as a lower bound on the minimax label complexity (for a fixed
P) in the realizable case by Balcan and Hanneke (2012); Hanneke (2014). In our present
distribution-free style of analysis, the implication of that result is the following lower bound.

ΛRE(ε, δ) &
1

ˆ̂ρ(4ε)
.

Based on Theorem 12, we see that the min
{
s, 1
ε

}
term in the lower bound of Theorem 3

follows immediately from this lower bound. For completeness, in Appendix B, we directly
prove this term in the lower bound, based on a more-direct argument than that used to
establish the above lower bound. We note, however, that Dasgupta (2005, Corollary 3) also
describes a technique for obtaining lower bounds, which is essentially equivalent to that used
in Appendix B to obtain this term (and furthermore, makes use of a distribution-dependent
version of the “star” idea).

The upper bounds of Dasgupta (2005) have also been extended to the bounded noise
setting. In particular, Balcan and Hanneke (2012) and Hanneke (2014) have proposed vari-
ants of the splitting approach, which are robust to bounded noise. They have additionally
bounded the label complexities of these methods in terms of the splitting index. Similarly
to the above discussion of the realizable case, the worst-case values of these bounds for any
given hypothesis class C are larger than those stated in Theorem 4 by factors related to the
VC dimension (logarithmic factors aside). We refer the interested readers to these sources
for the details of those bounds.

7.3 The Teaching Dimension

Another quantity that has been used to bound the label complexity of certain active learning
methods is the extended teaching dimension growth function. This quantity was introduced
by Hanneke (2007a), inspired by analogous notions used to tightly-characterize the query
complexity of Exact learning with membership queries (Hegedüs, 1995; Hellerstein, Pil-
laipakkamnatt, Raghavan, and Wilkins, 1996). The term teaching dimension takes its name
from the literature on Exact teaching (Goldman and Kearns, 1995), where the teaching di-
mension characterizes the minimum number of well-chosen labeled data points sufficient to
guarantee that the only classifier in C consistent with these labels is the target function.
Hegedüs (1995) extends this to target functions not contained in C, in which case the ob-
jective is simply to leave at most one consistent classifier in C; he refers to the minimum
number of points sufficient to achieve this as the extended teaching dimension, and argues
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that this quantity can be used to characterize the minimum number of membership queries
by a learning algorithm sufficient to guarantee that the only classifier in C consistent with
the returned labels is the target function (which is the objective in Exact learning).

Hanneke (2007a) transfers this strategy to the statistical setting studied here (where the
objective is only to obtain excess error rate ε with probability 1 − δ, rather than exactly
identifying a target function). That work introduces empirical versions of the teaching
dimension and extended teaching dimension, and defines distribution-dependent bounds on
these quantities. It then proves upper and lower bounds on the label complexity in terms
of these quantities. For our present purposes, we will be most-interested in a particular
distribution-free upper bound on these quantities, called the extended teaching dimension
growth function, also introduced by Hanneke (2006, 2007a). Since both this quantity and
the star number are distribution-free, they can be directly compared.

We introduce these quantities formally as follows. For any m ∈ N∪{0} and S ∈ Xm, and
for any h : X → Y, define the version space VS,h = {g ∈ C : ∀x ∈ S, g(x) = h(x)} (Mitchell,
1977). For any m ∈ N and U ∈ Xm, let C[U ] denote an arbitrary subset of classifiers in C
such that, ∀h ∈ C, |C[U ] ∩ VU ,h| = 1: that is, C[U ] contains exactly one classifier from each
equivalence class in C induced by the classifications of U . For any classifier h : X → Y,
define

TD(h,C[U ],U) = min{t ∈ N ∪ {0} : ∃S ∈ U t s.t. |VS,h ∩ C[U ]| ≤ 1},
the empirical teaching dimension of h on U with respect to C[U ]. Any S ∈

⋃
t U t with |VS,h∩

C[U ]| ≤ 1 is called a specifying set for h on U with respect to C[U ]; thus, TD(h,C[U ],U) is
the size of a minimal specifying set for h on U with respect to C[U ]. Equivalently, S ∈

⋃
t U t

is a specifying set for h on U with respect to C[U ] if and only if DIS(VS,h) ∩ U = ∅. Also
define TD(h,C,m) = max

U∈Xm
TD(h,C[U ],U), TD(C,m) = max

h∈C
TD(h,C,m) (the teaching

dimension growth function), and XTD(C,m) = max
h:X→Y

TD(h,C,m) (the extended teaching

dimension growth function).
Hanneke (2007a) proves two upper bounds on the label complexity of active learning

relevant to our present discussion. They are summarized as follows (see the original source
for the precise logarithmic factors).10

• ΛRE(ε, δ) . XTD
(
C,
⌈

1
ε

⌉)
d · polylog

(
d
εδ

)
.

• ΛAG(ν)(ε, δ) .
(
ν2

ε2
+ 1
)

XTD
(
C,
⌈

1
ν+ε

⌉)
d · polylog

(
d
εδ

)
.

Since BE(ν) ⊆ AG(ν), we have the further implication that

ΛBE(ν)(ε, δ) .

(
ν2

ε2
+ 1

)
XTD

(
C,
⌈

1

ν + ε

⌉)
d · polylog

(
d

εδ

)
.

Additionally, by a refined argument of Hegedüs (1995), the ideas of Hanneke (2007a) can
be applied (see Hanneke, 2006, 2009b) to show that

ΛRE(ε, δ) .
XTD(C, dd/εe)

log2(XTD(C, dd/εe))
d · polylog

(
d

εδ

)
.

10. Here we have simplified the arguments m to the XTD(C,m) instances compared to those of Han-
neke (2007a), using monotonicity of m 7→ XTD(C,m), combined with the basic observation that
XTD(C,mk) ≤ XTD(C,m)k for any integer k ≥ 1.
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To compare these bounds to the results stated in Section 5, we will need to relate the
quantity XTD(C,m) to the star number. Although it may not be obvious from a superficial
reading of the definitions, we find that these quantities are exactly equal (as m→∞). Thus,
the extended teaching dimension growth function is simply an alternative way of referring
to the star number (and vice versa), as they define the same quantity.11 This equivalence
is stated formally in the following theorem, the proof of which is included in Appendix C.3.

Theorem 13 ∀m ∈ N, XTD(C,m) = TD(C,m) = min{s,m}.

We note that the inequalities min{s,m} ≤ TD(C,m) ≤ XTD(C,m) ≤ m follow readily
from previously-established facts about the teaching dimension. For instance, Fan (2012)
notes that the teaching dimension of any class is at least the maximum degree of its one-
inclusion graph; applying this fact to C[U ] and maximizing over the choice of U ∈ Xm,
this maximum degree becomes min{s,m} (by definition of s). However, the inequality
XTD(C,m) ≤ s and the resulting fact that XTD(C,m) = TD(C,m) are apparently new.

In fact, in the process of proving this theorem, we establish another remarkable fact:
that every minimal specifying set is a star set. This is stated formally in the following
lemma, the proof of which is also included in Appendix C.3.

Lemma 14 For any h : X → Y, m ∈ N, and U ∈ Xm, every minimal specifying set for h
on U with respect to C[U ] is a star set for C ∪ {h} centered at h.

Using Theorem 13, we can now compare the results above to those in Section 5. For sim-
plicity, we will not discuss the differences in logarithmic factors here. Specifically, Theorem 3

refines these results on ΛRE(ε, δ), replacing a factor of min
{

XTD(C,d1/εe)d, XTD(C,dd/εe)d
log(XTD(C,dd/εe))

}
≈ min

{
sd, dε ,

sd
log(s) ,

d2

ε log(d/ε)

}
implied by the above results with a factor of min

{
s, dε ,

sd
log(s)

}
,

thus reducing the first term in the “min” by a factor of d (though see below, as Wiener,
Hanneke, and El-Yaniv, 2015, have already shown this to be possible, directly in terms of
XTD(C,m)). Theorem 13 further reveals that the above bound on ΛAG(ν)(ε, δ) is equivalent
(up to logarithmic factors) to that stated in Theorem 8. However, the bound on ΛBE(ν)(ε, δ)

in Theorem 7 refines that implied above, replacing a factor
(
ν2

ε2
+ 1
)

XTD
(
C,
⌈

1
ν+ε

⌉)
d ≈(

ν2

ε2
+ 1
)

min
{
sd, d

ν+ε

}
with a factor ν2

ε2
d + min

{
s, dε
}

, which can be significantly smaller

for ε� ν � 1 and large d.
Hanneke (2006, 2007a) also proves a lower bound on the label complexity of active

learning in the realizable case, based on the following modification of the extended teaching
dimension. For any set H ⊆ C, classifier h : X → Y, m ∈ N, U ∈ Xm, and δ ∈ [0, 1], define
the partial teaching dimension as

XPTD(h,H[U ],U , δ) = min{t ∈ N ∪ {0} : ∃S ∈ U t s.t. |VS,h ∩H[U ]| ≤ δ|H[U ]|+ 1},

and let XPTD(H,m, δ) = max
h:X→Y

max
U∈Xm

XPTD(h,H[U ],U , δ). Hanneke (2006, 2007a) proves

ΛRE(ε, δ) ≥ max
H⊆C

XPTD

(
H,
⌈

1− ε
ε

⌉
, δ

)
.

11. In this sense, the star number is not really a new quantity to the active learning literature, but rather a
simplified definition for the already-familiar extended teaching dimension growth function.

3514



Minimax Analysis of Active Learning

The following result relates this quantity to the star number.

Theorem 15 ∀m ∈ N, ∀δ ∈ [0, 1/2],

d(1− 2δ) min{s,m}e ≤ max
H⊆C

XPTD(H,m, δ) ≤
⌈(

1− δ

1 + δ

)
min{s,m}

⌉
.

The proof is in Appendix C.3. Note that, combined with the lower bound of Hanneke
(2006, 2007a), this immediately implies the part of the lower bound in Theorem 3 involving
s. In Appendix B, we provide a direct proof for this term in the lower bound, based on an
argument similar to that of Hanneke (2007a).

7.3.1 The Version Space Compression Set Size

More-recently, El-Yaniv and Wiener (2010, 2012); Wiener, Hanneke, and El-Yaniv (2015)
have studied a quantity n̂h(U) (for a sequence U ∈

⋃
mXm and classifier h), termed the

minimal version space compression set size, defined as the size of the smallest subsequence
S ⊆ U for which VS,h = VU ,h.12

It is easy to see that, when h ∈ C, the version space compression set size is equivalent
to the empirical teaching dimension: that is, ∀h ∈ C,

n̂h(U) = TD(h,C[U ],U).

To see this, note that since |VU ,h∩C[U ]| = 1, any S ⊆ U with VS,h = VU ,h has |VS,h∩C[U ]| =
1, and hence is a specifying set for h on U with respect to C[U ]. On the other hand, for
any S ⊆ U , we (always) have VS,h ⊇ VU ,h, so that if |VS,h ∩ C[U ]| ≤ 1, then VS,h ∩ C[U ] ⊇
VU ,h ∩ C[U ] and |VS,h ∩ C[U ]| ≥ |VU ,h ∩ C[U ]| = 1 ≥ |VS,h ∩ C[U ]|, which together imply
VS,h ∩ C[U ] = VU ,h ∩ C[U ]; thus, VS,h ⊆ {g ∈ C : ∀x ∈ U , g(x) = h(x)} = VU ,h ⊆ VS,h, so
that VS,h = VU ,h: that is, S is a version space compression set. Thus, in the case h ∈ C, any
version space compression set S is a specifying set for h on U with respect to C[U ] and vice
versa. That n̂h(U) = TD(h,C[U ],U) ∀h ∈ C follows immediately from this equivalence.

In particular, combined with Theorem 13, this implies that ∀m ∈ N,

max
U∈Xm

max
h∈C

n̂h(U) = TD(C,m) = min{s,m}. (2)

Letting n̂m = n̂f?PXY
({X1, . . . , Xm}), Wiener, Hanneke, and El-Yaniv (2015) have shown

that, in the realizable case, for the CAL active learning algorithm (proposed by Cohn, Atlas,
and Ladner, 1994) to achieve error rate at most ε with probability at least 1− δ, it suffices
to use a budget n of any size at least

max
1≤m≤Mε,δ

n̂m · polylog

(
1

εδ

)
,

where Mε,δ .
1
ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
is a bound on the sample complexity of passive learn-

ing by returning an arbitrary classifier in the version space (Vapnik, 1982, 1998; Blumer,

12. The quantity studied there is defined slightly differently, but is easily seen to be equivalent to this
definition.
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Ehrenfeucht, Haussler, and Warmuth, 1989). They further provide a distribution-dependent
bound (to remove the dependence on the data here) based on confidence bounds on n̂m (anal-
ogous to the aforementioned distribution-dependent bounds on the empirical teaching di-
mension studied by Hanneke, 2007a). For our purposes (distribution-free, data-independent
bounds), we can simply take the maximum over possible data sets and possible f?PXY func-
tions, so that the above bound becomes

max
x1,x2,...∈X

max
h∈C

max
1≤m≤Mε,δ

n̂h({x1, . . . , xm})polylog

(
1

εδ

)
= TD (C,Mε,δ) polylog

(
1

εδ

)
. TD

(
C,
⌊
d

ε

⌋)
polylog

(
1

εδ

)
.

Combining this with (2), we find that the label complexity of CAL in the realizable case is
at most

min

{
s,
d

ε

}
polylog

(
1

εδ

)
,

which matches the upper bound on the minimax label complexity from Theorem 3 up to
logarithmic factors.

7.4 The Doubling Dimension

Another quantity of interest in the learning theory literature is the doubling dimension,
also known as the local metric entropy (LeCam, 1973; Yang and Barron, 1999; Gupta,
Krauthgamer, and Lee, 2003; Bshouty, Li, and Long, 2009). Specifically, for any set H
of classifiers, a set of classifiers G is an ε-cover of H (with respect to the P(DIS({·, ·}))
pseudometric) if

sup
h∈H

inf
g∈G
P(x : g(x) 6= h(x)) ≤ ε.

LetN (ε,H,P) denote the minimum cardinality |G| over all ε-covers G ofH, or elseN(ε,H,P)
=∞ if no finite ε-cover of H exists. The doubling dimension (at h) is defined as follows.

Definition 16 For any ε ∈ (0, 1], any probability measure P over X , and any classifier h,
define

Dh,P (ε) = max
r≥ε

log2 (N (r/2,BP (h, r), P )) .

The quantity Dε = Df?PXY
,P(ε) is known to be useful in bounding the sample complexity

of passive learning. Specifically, Li and Long (2007); Bshouty, Li, and Long (2009) have

shown that there is a passive learning algorithm achieving sample complexity .
Dε/4
ε +

1
ε log

(
1
δ

)
for PXY ∈ RE. Furthermore, though we do not go into the details here, by a

combination of the ideas from Dasgupta (2005), Balcan, Beygelzimer, and Langford (2009),
and Hanneke (2007b), it is possible to show that a certain active learning algorithm achieves
a label complexity . 4DεDε ·polylog( 1

εδ ) for PXY ∈ RE, though this is typically a very loose
upper bound.

To our knowledge, the question of the worst-case value of the doubling dimension for a
given hypothesis class C has not previously been explored in the literature (though there is
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an obvious O(d log(1/ε)) upper bound derivable from the literature on covering numbers).
Here we obtain upper and lower bounds on this worst-case value, expressed in terms of
the star number. While this relation generally has a wide range (roughly a factor of d), it
does have the interesting implication that the doubling dimension is bounded if and only
if s < ∞. Specifically, we have the following theorem, the proof of which is included in
Appendix C.4.

Theorem 17 ∀ε ∈ (0, 1/4], max
{
d,Log

(
s ∧ 1

ε

)}
. sup

P
sup
h∈C

Dh,P (ε) . dLog
(
s ∧ 1

ε

)
.

One can show that the gap between the upper and lower bounds on supP suph∈CDh,P (ε)
in this result cannot generally be improved by much without sacrificing generality or in-
troducing additional quantities. Specifically, for the class C discussed in Appendix D.2, we
have supP suph∈CDh,P (ε) ≤ supP log2(N (ε/2,C, P )) . max

{
d,Log

(
s ∧ 1

ε

)}
, so that the

lower bound above is sometimes tight to within a universal constant factor. For the class
C discussed in Appendix D.1, based on a result of Raginsky and Rakhlin (2011, Lemma
4), one can show supP suph∈CDh,P (ε) & dLog

(
s
d ∧

1
ε

)
, so that the above upper bound is

sometimes tight, aside from a small difference in the logarithmic factor (dividing s by d).
Interestingly, in the process of proving the upper bound in Theorem 17, we also establish

the following inequality relating the doubling dimension and the disagreement coefficient,
holding for any classifier h, any probability measure P over X , and any ε ∈ (0, 1].

Dh,P(ε) ≤ 2d log2

(
22e2θh,P(ε)

)
.

This inequality may be of independent interest, as it enables comparisons between results
in the literature expressed in terms of these quantities. For instance, it implies that in the
realizable case, the passive learning sample complexity bound of Bshouty, Li, and Long
(2009) is no larger than that of Giné and Koltchinskii (2006) (aside from constant factors).

8. Conclusions

In this work, we derived upper and lower bounds on the minimax label complexity of active
learning under several noise models. In most cases, these new bounds offer refinements
over the best results in the prior literature. Furthermore, in the case of Tsybakov noise,
we discovered the heretofore-unknown fact that the minimax label complexity of active
learning with VC classes is always smaller than that of passive learning. We expressed
each of these bounds in terms of a simple combinatorial complexity measure, termed the
star number. We further found that almost all of the distribution-dependent and sample-
dependent complexity measures in the prior active learning literature are exactly equal to
the star number when maximized over the choice of distribution or data set.

The bounds derived here are all distribution-free, in the sense that they are expressed
without dependence or restrictions on the marginal distribution P over X . They are also
worst-case bounds, in the sense that they express the maximum of the label complexity
over the distributions in the noise model D, rather than expressing a bound on the label
complexity achieved by a given algorithm as a function of PXY . As observed by Dasgupta
(2005), there are some cases in which smaller label complexities can be achieved under
restrictions on the marginal distribution P, and some cases in which there are achievable
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label complexities which exhibit a range of values depending on PXY (see also Balcan,
Hanneke, and Vaughan, 2010; Hanneke, 2012, for further exploration of this). Our results
reveal that in some cases, such as Tsybakov noise with α ≤ 1/2, these issues might typically
not be of much significance (aside from logarithmic factors). However, in other cases,
particularly when s =∞, the issue of expressing distribution-dependent bounds on the label
complexity is clearly an important one. In particular, the question of the minimax label
complexity of active learning under the restrictions of the above noise models that explicitly
fix the marginal distribution P remains an important and challenging open problem. In
deriving such bounds, the present work should be considered a kind of guide, in that we
should restrict our focus to deriving distribution-dependent label complexity bounds with
worst-case values that are never worse than the distribution-free bounds proven here.

Appendix A. Preliminary Lemmas

Before presenting the proofs of the main results above, we begin by introducing some basic
lemmas, which will be useful in the main proofs below.

A.1 ε-nets and ε-covers

For a collection T of measurable subsets of X , a value ε ≥ 0, and a probability measure
P on X , we say a set N ⊆ X is an ε-net of P for T if N ∩ A 6= ∅ for every A ∈ T with
P(A) > ε (Haussler and Welzl, 1987). Also, a finite set H of classifiers is called an ε-cover
of C (under the P(DIS({·, ·})) pseudometric) if supg∈C minh∈H P(x : h(x) 6= g(x)) ≤ ε.

The following lemma bounds the probabilities and empirical probabilities of sets in a
collection in terms of each other. This result is based on the work of Vapnik and Chervo-
nenkis (1974) (see also Vapnik, 1982, Theorem A.3); this version is taken from Bousquet,
Boucheron, and Lugosi (2004, Theorem 7), in combination with the VC-Sauer Lemma
(Vapnik and Chervonenkis, 1971; Sauer, 1972) and a union bound.

Lemma 18 For any collection T of measurable subsets of X , letting k denote the VC
dimension of T , for any δ ∈ (0, 1), for any integer m > k, for any probability measure P
over X , if X ′1, . . . , X

′
m are independent P-distributed random variables, then with probability

at least 1− δ, it holds that ∀A ∈ T , letting P̂(A) = 1
m

∑m
i=1 1A(X ′i),

P(A) ≤ P̂(A) + 2

√
P(A)

kLog
(

2em
k

)
+ Log

(
8
δ

)
m

and P̂(A) ≤ P(A) + 2

√
P̂(A)

kLog
(

2em
k

)
+ Log

(
8
δ

)
m

.

In particular, with a bit of algebra, this implies the following corollary.

Corollary 19 There exists a finite universal constant c0 ≥ 1 such that, for any collection
T of measurable subsets of X , letting k denote the VC dimension of T , for any ε, δ ∈ (0, 1),
for any integer m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over X , if

X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at least

1− δ, it holds that ∀A ∈ T , letting P̂(A) = 1
m

∑m
i=1 1A(X ′i),
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• P̂(A) ≤ 3
4ε =⇒ P(A) < ε,

• P(A) ≤ 1
2ε =⇒ P̂(A) < 3

4ε.

Proof Let E(m) = 4
kLog( 2em

k )+Log( 8
δ )

m , and note that for m ≥ c0
ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
,

E(m) ≤ 4ε

c0

kLog
(

2ec0
kε

(
kLog

(
1
ε

)
+ Log

(
1
δ

)))
+ Log

(
8
δ

)
kLog

(
1
ε

)
+ Log

(
1
δ

) (3)

If kLog
(

1
ε

)
≥ Log

(
1
δ

)
, then

kLog

(
2ec0

kε

(
kLog

(
1

ε

)
+ Log

(
1

δ

)))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε
Log

(
1

ε

))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε2

)
+ Log

(
8

δ

)
≤ 2kLog

(
1

ε

)
+ kLog(4ec0) + Log(8) + Log

(
1

δ

)
≤ Log

(
32e3c0

)(
kLog

(
1

ε

)
+ Log

(
1

δ

))
.

Otherwise, if kLog
(

1
ε

)
< Log

(
1
δ

)
, then

kLog

(
2ec0

kε

(
kLog

(
1

ε

)
+ Log

(
1

δ

)))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

kε
Log

(
1

δ

))
+ Log

(
8

δ

)
≤ kLog

(
4ec0

ε

)
+ kLog

(
1

k
Log

(
1

δ

))
+ Log

(
8

δ

)
,

and since x 7→ xLog
(

1
xLog

(
1
δ

))
is nondecreasing for x > 0, and k ≤ kLog

(
1
ε

)
≤ Log

(
1
δ

)
,

the above is at most

kLog

(
4ec0

ε

)
+ Log

(
1

δ

)
+ Log

(
8

δ

)
≤ kLog

(
1

ε

)
+ kLog(4ec0) + Log(8) + 2Log

(
1

δ

)
≤ Log

(
32e2c0

)(
kLog

(
1

ε

)
+ Log

(
1

δ

))
.

In either case, we have that the right hand side of (3) is at most 4ε
c0

Log
(
32e3c0

)
. In

particular, taking c0 =214 suffices to make 4
c0

Log
(
32e3c0

)
≤ 1

64 , so that (3) implies E(m)≤ ε
64 .

Lemma 18 implies that with probability at least 1− δ, every A ∈ T has

P(A) ≤ P̂(A) +
√
P(A)E(m)

and

P̂(A) ≤ P(A) +

√
P̂(A)E(m).

Solving these quadratic expressions in
√
P(A) and

√
P̂(A), respectively, we have

P(A) ≤ P̂(A) +
1

2
E(m) +

1

2

√
E(m)2 + 4E(m)P̂(A) (4)
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and

P̂(A) ≤ P(A) +
1

2
E(m) +

1

2

√
E(m)2 + 4E(m)P(A). (5)

Therefore, if P̂(A) ≤ 3
4ε, then (4) implies

P(A) ≤ 3

4
ε+

1

2
E(m) +

1

2

√
E(m)2 + 3E(m)ε

≤

(
3

4
+

1

128
+

1

2

√
1

642
+

3

64

)
ε <

(
3

4
+

1

128
+

1

8

)
ε < ε,

and likewise, if P(A) ≤ 1
2ε, then (5) implies

P̂(A) ≤ 1

2
ε+

1

2
E(m) +

1

2

√
E(m)2 + 2E(m)ε

≤

(
1

2
+

1

128
+

1

2

√
1

642
+

1

32

)
ε <

(
1

2
+

1

128
+

1

8

)
ε <

3

4
ε.

We will be interested in applying these results to the collection of sets {DIS({h, g}) :
h, g ∈ C}. For this, the following lemma of Vidyasagar (2003, Theorem 4.5) will be useful.

Lemma 20 The VC dimension of the collection {DIS({h, g}) : h, g ∈ C} is at most 10d.

Together, these results imply the following lemma (see also Vapnik and Chervonenkis,
1974; Vapnik, 1982; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989; Haussler and
Welzl, 1987).

Lemma 21 There exists a finite universal constant c ≥ 1 such that, for any ε, δ ∈ (0, 1),
for any integer m ≥ c

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over X , if

X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at least

1 − δ, it holds that ∀h, g ∈ C, if (g(X ′1), . . . , g(X ′m)) = (h(X ′1), . . . , h(X ′m)), then P(x :
g(x) 6= h(x)) ≤ ε.
In particular, this implies that with probability at least 1− δ, letting C[(X ′1, . . . , X

′
m)] be as

in Section 7.3, C[(X ′1, . . . , X
′
m)] is an ε-cover of C (under the P(DIS({·, ·})) pseudometric),

and {X ′1, . . . , X ′m} is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Proof Let c0 be as in Corollary 19, and let k denote the VC dimension of {DIS({h, g}) :
h, g ∈ C}. Corollary 19 implies that, if m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
, then there is an event

E of probability at least 1−δ, on which every h, g ∈ C with
∑m

t=1 1DIS({h,g})(X
′
t) = 0 satisfy

P(DIS({h, g})) < ε; in particular, this proves that on the event E, {X ′1, . . . , X ′m} is an ε-net
of P for {DIS({h, g}) : h, g ∈ C}. Furthermore, by definition of C[(X ′1, . . . , X

′
m)], for every

h ∈ C, ∃g ∈ C[(X ′1, . . . , X
′
m)] with

∑m
t=1 1DIS({h,g})(X

′
t) = 0, which (on the event E) there-

fore also satisfies P(DIS({h, g})) < ε. Thus, on the event E, C[(X ′1, . . . , X
′
m)] is an ε-cover of

C (under the P(DIS({·, ·})) pseudometric). To complete the proof, we note that Lemma 20
implies k ≤ 10d, so that by choosing c = 10c0, the condition m ≥ c0

ε

(
kLog

(
1
ε

)
+ Log

(
1
δ

))
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will be satisfied for any m ≥ c
ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
.

Based on this result, it is straightforward to construct an ε-net of P for {DIS({h, g}) :
h, g ∈ C} of size . d

εLog
(

1
ε

)
, based on a relatively small number of random samples.

Specifically, we have the following lemma.

Lemma 22 There exists a finite universal constant c′ ≥ 1 such that, for any probability
measure P on X , if X ′1, X

′
2, . . . are independent P-distributed random variables, then ∀ε, δ ∈

(0, 1), for any integers m ≥ c′d
ε Log

(
1
ε

)
and ` ≥ c′

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
, defining Ni =

{X ′m(i−1)+1, . . . , X
′
mi} for each i ∈ {1, . . . , dlog2(2/δ)e}, letting

î = argmin
i∈{1,...,dlog2(2/δ)e}

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) :

h, g ∈ C,
mi∑

j=m(i−1)+1

1DIS({h,g})(X
′
j) = 0

,
and N̂ = Nî, with probability at least 1− δ, N̂ is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Proof Let k denote the VC dimension of the collection of sets {DIS({h, g}) : h, g ∈ C}.
Letting c0 be as in Corollary 19, taking c′ ≥ 10c0, we have ` ≥ c0

ε

(
10dLog

(
1
ε

)
+ Log

(
2
δ

))
,

which is at least c0
ε

(
kLog

(
1
ε

)
+ Log

(
2
δ

))
by Lemma 20. Therefore, Corollary 19 implies

there exists an event E′ of probability at least 1− δ/2 such that, on E′, ∀h, g ∈ C,

mdlog2(2/δ)e+`∑
mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) ≤

3

4
ε` =⇒ P(DIS({h, g})) ≤ ε, (6)

P(DIS({h, g})) ≤ ε

2
=⇒

mdlog2(2/δ)e+`∑
mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) ≤

3

4
ε`. (7)

Let c be as in Lemma 21. Taking c′ ≥ 6c, we have m ≥ 2c
ε

(
dLog

(
2
ε

)
+ Log (2)

)
, so

that Lemma 21 implies that, for each i ∈ {1, . . . , dlog2(2/δ)e}, Ni is an ε
2 -net of P for

{DIS({h, g}) : h, g ∈ C} with probability at least 1/2. Since the Ni sets are independent,
there is an event E of probability at least 1 − (1 − 1/2)dlog2(2/δ)e ≥ 1 − δ/2, on which
∃i∗ ∈ {1, . . . , dlog2(2/δ)e} such that Ni∗ is an ε

2 -net of P for {DIS({h, g}) : h, g ∈ C}. In
particular, this implies that on E,

sup

P(DIS({h, g})) : h, g ∈ C,
mi∗∑

j=m(i∗−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ ε

2
. (8)
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Therefore, on the event E′ ∩ E, we have

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) : h, g ∈ C,

mî∑
j=m(̂i−1)+1

1DIS({h,g})(X
′
j) = 0


≤ max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1DIS({h,g})(X
′
j) : h, g ∈ C,

mi∗∑
j=m(i∗−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ 3

4
ε`,

where the first inequality is by definition of î, and the second inequality is by a combination
of (8) with (7). Therefore, by (6), on the event E′ ∩ E, we have

max

P(DIS({h, g})) : h, g ∈ C,
mî∑

j=m(̂i−1)+1

1DIS({h,g})(X
′
j) = 0

 ≤ ε,
or equivalently, Nî is an ε-net of P for {DIS({h, g}) : h, g ∈ C}. To complete the proof, we
take c′ = max{10c0, 6c}, and note that the event E′ ∩E has probability at least 1− δ by a
union bound.

There are also variants of the above two lemmas applicable to sample compression
schemes. Specifically, the next lemma is due to Littlestone and Warmuth (1986); Floyd and
Warmuth (1995).

Lemma 23 There exists a finite universal constant c̃ ≥ 1 such that, for any collection
T of measurable subsets of X , any n ∈ N ∪ {0}, and any function φn : X n → T , for any
ε, δ ∈ (0, 1), for any integer m ≥ c̃

ε

(
nLog

(
1
ε

)
+ Log

(
1
δ

))
, for any probability measure P over

X , if X ′1, . . . , X
′
m are independent P-distributed random variables, then with probability at

least 1−δ, it holds that every i1, . . . , in ∈ {1, . . . ,m} with i1 ≤ · · · ≤ in and {X ′1, . . . , X ′m}∩
φn(X ′i1 , . . . , X

′
in

) = ∅ has P
(
φn(X ′i1 , . . . , X

′
in

)
)
≤ ε: that is, {X ′1, . . . , X ′m} is an ε-net of P

for {φn(X ′i1 , . . . , X
′
in

) : i1, . . . , in ∈ {1, . . . ,m}, i1 ≤ · · · ≤ in}.

This implies the following result.

Lemma 24 There exists a finite universal constant c̃′ ≥ 1 such that, for any collection T
of measurable subsets of X , any n ∈ N, and any function φn : X n × Yn → T , for any
probability measure P on X , if X ′1, X

′
2, . . . are independent P-distributed random variables,

then for any ε, δ ∈ (0, 1), for any integers m ≥ c̃′n
ε Log

(
1
ε

)
and ` ≥ c̃′

ε

(
nLog

(
m
n

)
+ Log

(
1
δ

))
,

defining Ni = {X ′m(i−1)+1, . . . , X
′
mi} for each i ∈ {1, . . . , dlog2(2/δ)e}, letting

î = argmin
i∈{1,...,dlog2(2/δ)e}

max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) : y1, . . . , yn ∈ Y,

m(i− 1) < i1 ≤ · · · ≤ in ≤ mi,
mi∑

j=m(i−1)+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0

 ∪ {0},
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and N̂=Nî, with probability at least 1−δ, N̂ is an ε-net of P for {φn(X ′i1 , . . . , X
′
in
, y1, . . . , yn)

: m(̂i− 1) < i1 ≤ · · · ≤ in ≤ mî, y1, . . . , yn ∈ Y}.

Proof Let c̃ be as in Lemma 23, define c̃′ = max {8c̃, 128}, and letm and ` be as described in
the lemma statement. Noting that 2c̃

ε

(
nLog

(
2
ε

)
+ Log

(
2n+1

))
≤ 8c̃n

ε Log
(

1
ε

)
, we have that

m ≥ 2c̃
ε

(
nLog

(
2
ε

)
+ Log

(
2n+1

))
. Thus, by Lemma 23, for each i ∈ {1, . . . , dlog2(2/δ)e}

and y1, . . . , yn ∈ Y, with probability at least 1 − 2−n−1,
{
X ′m(i−1)+1, . . . , X

′
mi

}
is an ε

2 -

net of P for
{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i− 1) < i1 ≤ · · · ≤ in ≤ mi

}
. By a union

bound, this holds simultaneously for all y1, . . . , yn ∈ Y with probability at least 1
2 . In

particular, since the
{
X ′m(i−1)+1, . . . , X

′
mi

}
subsequences are independent over values of

i, we have that there is an event E of probability at least 1 −
(

1
2

)dlog2(2/δ)e ≥ 1 − δ
2 , on

which ∃i∗ ∈ {1, . . . , dlog2(2/δ)e} such that
{
X ′m(i∗−1)+1, . . . , X

′
mi∗

}
is an ε

2 -net of P for{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i∗ − 1) < i1 ≤ · · · ≤ in ≤ mi∗, y1, . . . , yn ∈ Y

}
.

For any i ∈ {1, . . . , dlog2(2/δ)e}, any i1, . . . , in ∈ {m(i− 1) + 1, . . . ,mi} with i1 ≤ · · · ≤
in, and any y1, . . . , yn ∈ Y, Chernoff bounds (applied under the conditional distribution
given X ′i1 , . . . , X

′
in

) and the law of total probability imply that, with probability at least
1− exp {−ε`/32}, if P

(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
≤ ε

2 , then

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) ≤

3

4
ε`,

while if P
(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
> ε, then

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) >

3

4
ε`.

The number of distinct nondecreasing sequences (i1, . . . , in) ∈ {m(i − 1) + 1, . . . ,mi}n is(
n+m−1

n

)
≤
(

2em
n

)n
. Therefore, by a union bound, there exists an event E′ of probability at

least

1− 2n
(

2em

n

)n
dlog2(2/δ)e exp {−ε`/32} ,

on which this holds for every such y1, . . . , yn, i, i1, . . . , in. Noting that

32

ε
Log

(
2ndlog2(2/δ)e

(
2em

n

)n 2

δ

)
≤ 128

ε

(
nLog

(m
n

)
+ Log

(
1

δ

))
≤ `,

we have that E′ has probability at least 1− δ
2 .

In particular, defining for each i ∈ {1, . . . , dlog2(2/δ)e},

p̂i = max


mdlog2(2/δ)e+`∑

j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) : y1, . . . , yn ∈ Y,

m(i− 1) < i1 ≤ · · · ≤ in ≤ mi,
mi∑

j=m(i−1)+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0

 ∪ {0},
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we have that, on E∩E′, p̂i∗ ≤ 3
4ε`. Furthermore, for every i ∈ {1, . . . , dlog2(2/δ)e} for which{

X ′m(i−1)+1, . . . , X
′
mi

}
is not an ε-net of P for

{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) : m(i − 1) <

i1 ≤ · · · ≤ in ≤ mi, y1, . . . , yn ∈ Y
}

, by definition ∃i1, . . . , in ∈ {m(i − 1) + 1, . . . ,mi}
with i1 ≤ · · · ≤ in, and y1, . . . , yn ∈ Y, such that P

(
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn)

)
> ε while∑mi

j=m(i−1)+1 1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) = 0; thus, on the event E′,

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1φn(X′i1
,...,X′in ,y1,...,yn)(X

′
j) >

3

4
ε`

for this choice of i1, . . . , in, y1, . . . , yn. In particular, this implies that p̂i >
3
4ε`. Altogether,

we have that on the event E∩E′, any such i has p̂î ≤ p̂i∗ ≤
3
4ε` < p̂i, so that î 6= i. Therefore,

on the event E∩E′,
{
X ′
m(̂i−1)+1

, . . . , X ′
mî

}
is an ε-net of P for

{
φn(X ′i1 , . . . , X

′
in
, y1, . . . , yn) :

m(̂i− 1) < i1 ≤ · · · ≤ in ≤ mî, y1, . . . , yn ∈ Y
}

.

To complete the proof, we note that the event E ∩ E′ has probability at least 1− δ by
a union bound.

A.2 Lower Bound Constructions for Noisy Settings

Fix any ζ ∈ (0, 1], β ∈ [0, 1/2), and k ∈ N with k ≤ 1/ζ. Let Xk = {x1, . . . , xk+1} be any
k + 1 distinct elements of X (assuming |X | ≥ k + 1), and let Ck = {x 7→ 21{xi}(x) − 1 :
i ∈ {1, . . . , k}}, a set of functions mapping X to {−1,+1}. Let Pk,ζ be a probability
measure over X with Pk,ζ({xi}) = ζ for each i ∈ {1, . . . , k}, and Pk,ζ({xk+1}) = 1− ζk. For
each t ∈ {1, . . . , k}, let P ′k,ζ,t denote the probability measure over X × Y having marginal
distribution Pk,ζ over X , such that if (X,Y ) ∼ P ′k,ζ,t, then every i ∈ {1, . . . , k} has P(Y =
21{xt}(X)− 1|X = xi) = 1− β, and furthermore P(Y = −1|X = xk+1) = 1. Finally, define

RR′(k, ζ, β) =
{
P ′k,ζ,t : t ∈ {1, . . . , k}

}
. Raginsky and Rakhlin (2011) prove the following

result (see the proof of their Theorem 2).13

Lemma 25 For ζ, β, k as above, if k ≥ 2 and Ck ⊆ C, then for any δ ∈ (0, 1/4),

ΛRR′(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
βk ln

(
1
4δ

)
3(1− 2β)2

.

This has the following immediate implication for general X and C. Fix any ζ ∈ (0, 1]
and β ∈ [0, 1/2), let k ∈ N ∪ {0} satisfy k ≤ min {s− 1, b1/ζc}, and let x1, . . . , xk+1 and
h0, h1, . . . , hk be as in Definition 2. Let Pk,ζ be as above (for this choice of x1, . . . , xk+1),
and for each t ∈ {1, . . . , k}, let Pk,ζ,t denote the probability measure over X × Y having

13. Technically, the proof of Raginsky and Rakhlin (2011, Theorem 2) relies on a lemma (their Lemma
4), with various conditions on both k and a parameter “d” in their construction. However, one can
easily verify that the conclusions of that lemma continue to hold (in fact, with improved constants)
in our special case (corresponding to d = 1 and arbitrary k ∈ N) by defining Mk,1 = {0, 1}k1 in their
construction.
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marginal distribution Pk,ζ over X , such that if (X,Y ) ∼ Pk,ζ,t, then every i ∈ {1, . . . , k}
has P(Y = ht(X)|X = xi) = 1 − β, and furthermore P(Y = ht(X)|X = xk+1) = 1. Define
RR(k, ζ, β) = {Pk,ζ,t : t ∈ {1, . . . , k}}. We have the following result.

Lemma 26 For k, ζ, β as above, for any δ ∈ (0, 1/4),

ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

.

Proof First note that if k ≤ 1, then the lemma trivially holds (since ΛRR(k,ζ,β)(·, ·) ≥ 0).
For this same reason, the result also trivially holds if β = 0. Otherwise, suppose k ≥ 2 and
β > 0, and fix any n less than the right hand side of the above inequality. Let A be any
active learning algorithm, and consider the following modification A′ of A. For any given
sequence X1, X2, . . . of unlabeled data, A′(n) simulates the execution of A(n), except that
when A(n) would request the label Yi of a point Xi in the sequence, A′(n) requests the
label Yi, but proceeds as A(n) would if the label value had been −Yih0(Xi) instead of Yi.
When the simulation of A(n) concludes, if ĥ is its return value, A′(n) instead returns the
function x 7→ ĥ′(x) = −ĥ(x)h0(x).

Now fix a probability measure P ′k,ζ,t ∈ RR′(k, ζ, β) minimizing the probability that

erP ′k,ζ,t(ĥ
′) − infh∈Ck erP ′k,ζ,t(h) ≤ (ζ/2)(1 − 2β) when A′ is run with PXY = P ′k,ζ,t, and let

(X,Y ) ∼ P ′k,ζ,t. Note that the marginal distribution of P ′k,ζ,t over X is Pk,ζ , that for any
i ∈ {1, . . . , k}, P(−Y h0(X) = ht(X)|X = xi) = P(Y = 21{xt}(X) − 1|X = xi) = 1 − β,
and that P(−Y h0(X) = ht(X)|X = xk+1) = P(Y = −1|X = xk+1) = 1. In particular, this
implies (X,−Y h0(X)) ∼ Pk,ζ,t. Therefore, running the active learning algorithm A′(n) with
a sequence (X1, Y1), (X2, Y2), . . . of independent P ′k,ζ,t-distributed samples, the algorithm

behaves as A(n) would under Pk,ζ,t, except that its returned classifier is ĥ′ instead of ĥ.
Next, note that

erP ′k,ζ,t(ĥ
′) = P(−ĥ(X)h0(X) 6= Y )

= E[P(ĥ(X) 6= −Y |X)1[h0(X) = 1] + P(ĥ(X) 6= Y |X)1[h0(X) = −1]]

= P(ĥ(X) 6= −Y h0(X)) = erPk,ζ,t(ĥ),

and furthermore

inf
h∈Ck

erP ′k,ζ,t(h) = erP ′k,ζ,t(21{xt} − 1) = βζk = erPk,ζ,t(ht) = inf
h∈C

erPk,ζ,t(h).

Thus, if erPk,ζ,t(ĥ)− infh∈C erPk,ζ,t(h) ≤ (ζ/2)(1− 2β), then we must also have erP ′k,ζ,t(ĥ
′)−

infh∈Ck erP ′k,ζ,t(h) ≤ (ζ/2)(1 − 2β). Since n <
βk ln( 1

4δ )
3(1−2β)2 , Lemma 25 implies that (for this

choice of P ′k,ζ,t) A′(n) achieves the latter guarantee with probability strictly less than 1− δ,
and therefore the corresponding Pk,ζ,t ∈ RR(k, ζ, β) is such that A(n) has probability

strictly less than 1− δ of achieving erPk,ζ,t(ĥ)− infh∈C erPk,ζ,t(h) ≤ (ζ/2)(1−2β). Since this
argument applies to any active learning algorithm A, the result follows.
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A.3 Finite Approximation of VC Classes

For a given probability measure P over X , Adams and Nobel (2012) have proven that for
any τ > 0, if d <∞, there exist disjoint measurable sets A1, . . . , Ak (for some k ∈ N) with⋃
iAi = X such that, ∀h ∈ C, P (

⋃
{Ai : ∃x, y ∈ Ai s.t. h(x) 6= h(y)}) < τ : that is, every

h ∈ C is constant on all of the sets Ai, except a few of them whose total probability is
at most τ . This property has implications for bracketing behavior in VC classes, and was
proven in the context of establishing uniform laws of large numbers for VC classes under
stationary ergodic processes (see also Adams and Nobel, 2010; van Handel, 2013).

For our purposes, this result has the appealing feature that it allows one to effectively
discretize the space X by partitioning it into subsets, with the guarantee that with high
probability over the random choice of a point x, any other point y in the same cell in
the partition as x will have f?PXY (x) = f?PXY (y), for any PXY ∈

⋃
ν∈[0,1/2) BE(ν). However,

before we can make use of this property, we must first address the fact that the construction
of these sets Ai by Adams and Nobel (2012) requires a strong dependence on P, to the
extent that it is not obvious that this dependence can be supplanted by a data-dependent
construction. However, it turns out that if we relax the requirement that the classifiers be
constant in these cells, instead settling for being nearly-constant, then it is straightforward
to construct a partition A1, . . . , Ak satisfying the requirement. Specifically, we have the
following result.

Lemma 27 Fix any τ, δ ∈ (0, 1), and let mτ,δ =
⌈
c
τ

(
dLog

(
1
τ

)
+Log

(
1
δ

))⌉
(for c as in

Lemma 21). For any probability measure P over X , for any independent P-distributed ran-
dom variables X ′1, . . . , X

′
mτ,δ

, with probability at least 1−δ, letting Cτ,δ = C[(X ′1, . . . , X
′
mτ,δ

)]
(as defined in Section 7.3), the collection of disjoint sets

Jτ,δ =


⋂

g∈C[(X′1,...,X
′
mτ,δ

)]

Xg : ∀g ∈ Cτ,δ,Xg ∈ {{x : g(x) = +1}, {x : g(x) = −1}}


is a partition of X with the property that, ∀h ∈ C,∑

A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤ τ,

and ∀ε > 0, ∀h ∈ C,

P
(⋃{

A ∈ Jτ,δ : min
y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
≤ τ

ε
.

Proof By Lemma 21, with probability at least 1− δ, Cτ,δ is a τ -cover of C. Furthermore,
note that for every g ∈ Cτ,δ and every A ∈ Jτ,δ, either every x ∈ A has g(x) = +1 or every
x ∈ A has g(x) = −1 (i.e., g is constant on A). Therefore, ∀h ∈ C,∑

A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤

∑
A∈Jτ,δ

min
g∈Cτ,δ

P(x ∈ A : h(x) 6= g(x))

≤ min
g∈Cτ,δ

∑
A∈Jτ,δ

P(x ∈ A : h(x) 6= g(x)) = min
g∈Cτ,δ

P(x : h(x) 6= g(x)) ≤ τ.
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The final claim follows by Markov’s inequality, since on the above event, ∀ε > 0, ∀h ∈ C,

P
(⋃{

A ∈ Jτ,δ : min
y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
= P

(⋃{
A ∈ Jτ,δ : P(A) > 0,min

y∈Y
P(x ∈ A : h(x) = y) > εP(A)

})
= P

(⋃{
A ∈ Jτ,δ : P(A) > 0,min

y∈Y

P(x ∈ A : h(x) = y)

P(A)
> ε

})
≤ 1

ε

∑
A∈Jτ,δ

P(A) min
y∈Y

P(x ∈ A : h(x) = y)

P(A)
=

1

ε

∑
A∈Jτ,δ

min
y∈Y
P(x ∈ A : h(x) = y) ≤ τ

ε
.

Appendix B. Proofs for Results in Section 5

This section provides proofs of the main results of this article.

B.1 The Realizable Case

We begin with the particularly-simple case of Theorem 3.
Proof of Theorem 3 The lower bounds proportional to d and Log

(
min

{
1
ε , |C|

})
are due

to Kulkarni, Mitter, and Tsitsiklis (1993) (lower bound in terms of the covering numbers)
in conjunction with Kulkarni (1989); Kulkarni, Mitter, and Tsitsiklis (1993) (lower bounds
on the worst-case covering numbers). Specifically, Kulkarni, Mitter, and Tsitsiklis (1993)
study the problem of learning from arbitrary binary-valued queries. Since active learning
receives binary responses in the binary classification setting, it is a special case of this type of
algorithm. In particular, for any probability measure P over X , and ε ∈ (0, 1), letN (ε,C,P)
denote the minimum cardinality |H| over all ε-covers H of C (under the P(DIS({·, ·}))
pseudometric), or else N (ε,C,P) = ∞ if no finite ε-cover of C exists. Then the lower
bound of Kulkarni, Mitter, and Tsitsiklis (1993, Theorem 3) implies that, ∀ε, δ ∈ (0, 1/2),

ΛRE(ε, δ) ≥ sup
P
dlog2 ((1− δ)N (2ε,C,P))e . (9)

Furthermore, the construction in the proof of Kulkarni, Mitter, and Tsitsiklis (1993, Lemma
2) implies that supP N (2ε,C,P) ≥ min

{⌊
1
4ε

⌋
, |C|

}
, so that combined with (9), we have

ΛRE(ε, δ) ≥
⌈

log2

(
(1− δ) min

{⌊
1

4ε

⌋
, |C|

})⌉
.

For δ ∈ (0, 1/3) and ε ∈ (0, 1/8), and since |C| ≥ 3 (by assumption, intended to focus on non-
trivial cases to simplify the expressions), the right hand side is at least 1

4Log
(
min

{
1
ε , |C|

})
.

Furthermore, if d < 162, this already implies that for any ε ∈ (0, 1/3) and δ ∈ (0, 1/3),
ΛRE(ε, δ) ≥ 1

4 ln(3) ≥ d
648 . Otherwise, in the case that d ≥ 162, Kulkarni (1989, Proposi-

tion 3) proves that, if ε ∈ (0, 1/9), supP N (2ε,C,P) ≥ exp
{

2
(

1
2 − 4ε

)2
d
}
≥ exp {d/162}.
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Combined with (9), this implies that for ε ∈ (0, 1/9) and δ ∈ (0, 1/3), if d ≥ 162, then

ΛRE(ε, δ) ≥
⌈

log2

(
2

3
ed/162

)⌉
≥ d

162
log2(e)− log2

(
3

2

)
≥ d

162
log2

(
2e

3

)
≥ d

189
.

Thus, regardless of the value of d, we have ΛRE(ε, δ) ≥ d
648 .

For the final part of the proof of the lower bound, a lower bound proportional to s ∧ 1
ε

may be credited to Dasgupta (2005, 2004). It can be proven as follows. Let x1, . . . , xs and
h0, h1, . . . , hs be as in Definition 2, let t = s ∧

⌈
1−ε
ε

⌉
, and let us restrict the discussion to

those t+ 1 distributions PXY ∈ RE such that the marginal distribution P of PXY over X is
uniform on {x1, . . . , xt}, and f?PXY ∈ {h0, h1, . . . , ht}. Then for any active learning algorithm
A, for any n ≤ t/2, let Qi denote the (possibly random) set of (at most n) points Xi that
A(n) requests the labels of, given that f?PXY = hi (for i ∈ {0, . . . , t}), and let ĥi denote the
classifier returned by A(n) in this case. Since the marginal distribution of PXY over X is
fixed to P for all t+ 1 of these PXY distributions, we may consider the sequence X1, X2, . . .
of i.i.d. P-distributed random variables to be identical over these t + 1 possible choices of
PXY , without affecting the distributions of Qi and ĥi (see Kallenberg, 2002). Thus, we may
note that ĥi = ĥ0 whenever xi /∈ Q0, since xi /∈ Q0 implies that all of the labels observed
by the algorithm are identical to those that would be observed if f?PXY = h0 instead of

f?PXY = hi. Now, if it holds that P
(
P
(
x : ĥ0(x) 6= h0(x)

)
> ε
)
≤ δ, then since every xi

with i ≤ t has P({xi}) > ε, we have that P
(
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

)
≥ 1− δ. But

if this holds, then it must also be true that

max
i∈{1,...,t}

P
(
P(x : ĥi(x) 6= hi(x)) > ε

)
≥ 1

t

t∑
i=1

P
(
P(x : ĥi(x) 6= hi(x)) > ε

)
≥ 1

t

t∑
i=1

P
(
ĥi(xi) = h0(xi)

)
=

1

t
E

[
t∑
i=1

1

[
ĥi(xi) = h0(xi)

]]

≥ 1

t
E

[
t∑
i=1

1 [xi /∈ Q0]1
[
ĥi(xi) = h0(xi)

]]
=

1

t
E

[
t∑
i=1

1 [xi /∈ Q0]1
[
ĥ0(xi) = h0(xi)

]]

≥ 1

t
E

[
1

[
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

] t∑
i=1

1 [xi /∈ Q0]

]

≥ 1

t
E
[
1

[
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

]
(t− n)

]
=
t− n
t

P
(
∀i ∈ {1, . . . , t}, ĥ0(xi) = h0(xi)

)
≥ t− n

t
(1− δ) ≥ 1− δ

2
≥ 1

3
> δ.

Thus, when n ≤ t/2, at least one of these t + 1 distributions PXY (all of which are in
RE) has P (erPXY (A(n)) > ε) > δ. Since this argument holds for any A, we have that
ΛRE(ε, δ) > t/2 = 1

2 min
{
s,
⌈

1−ε
ε

⌉}
≥ 4

9 min
{
s, 1
ε

}
. Combined with the lower bounds

proportional d and Log
(
min

{
1
ε , |C|

})
established above, this completes the proof of the

lower bound in Theorem 3.
The proof of the upper bound is in three parts. The first part, establishing the d

εLog
(

1
ε

)
upper bound, is a straightforward application of Lemma 22. The second part, establishing
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the sd
Log(s)Log

(
1
ε

)
upper bound, is directly based on techniques of Hanneke (2007a); Hegedüs

(1995). Finally, and most involved, is the third part, establishing the sLog
(

1
ε

)
upper bound.

This part is partly based on a recent technique of Wiener, Hanneke, and El-Yaniv (2015)
for analyzing disagreement-based active learning (which refines an earlier technique of El-
Yaniv and Wiener, 2010, 2012). Here, we modify this technique by using an ε-net in
place of random samples, thereby refining logarithmic factors, and entirely eliminating the
dependence on δ in the label complexity.

Fix any ε, δ ∈ (0, 1). We begin with the d
εLog

(
1
ε

)
upper bound. Let m =

⌈
c′d
ε Log

(
1
ε

)⌉
and ` =

⌈
c′

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))⌉
, for c′ as in Lemma 22. Define

î = argmin
i∈{1,...,dlog2(2/δ)e}

max
h,g∈C:∑mi

j=m(i−1)+1 1DIS({h,g})(Xj)=0

mdlog2(2/δ)e+`∑
j=mdlog2(2/δ)e+1

1DIS({h,g})(Xj).

Consider an active learning algorithm which, given a budget n ∈ N, requests the labels Yt for

t ∈
{
m
(
î− 1

)
+ 1, . . . ,m

(
î− 1

)
+ min {m,n}

}
, and returns any classifier ĥn ∈ C with∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6= Yt

]
= 0 if such a classifier exists (and otherwise returns an

arbitrary classifier). Note that, for PXY ∈ RE,
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
f?PXY (Xt) 6= Yt

]
= 0

with probability one, and since f?PXY ∈ C, ĥn will have
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6= Yt

]
=

0 with probability one. Furthermore, this implies
∑m(̂i−1)+min{m,n}

t=m(̂i−1)+1
1

[
ĥn(Xt) 6=f?PXY (Xt)

]
=

0 with probability one. Additionally, Lemma 22 implies that, with probability at least 1−δ,
the set

{
Xt : t ∈

{
m
(
î− 1

)
+ 1, . . . ,mî

}}
is an ε-net of P for {DIS({h, g}) : h, g ∈ C}.

Since both ĥn, f
?
PXY ∈ C, this implies that if n ≥ m, then with probability at least 1 − δ,

P
(

DIS
({
ĥn, f

?
PXY

}))
≤ ε. Since PXY ∈ RE, erPXY

(
ĥn

)
= P

(
DIS

({
ĥn, f

?
PXY

}))
.

Thus, if n ≥ m, then with probability at least 1 − δ, erPXY

(
ĥn

)
≤ ε. Since this holds for

any PXY ∈ RE, we have established that ΛRE(ε, δ) ≤ m ≤ 2c′d
ε Log

(
1
ε

)
. This also completes

the proof of the entire upper bound in Theorem 3 in the case s = ∞; for this reason, for
the remainder of the proof below, we restrict our attention to the case s <∞.

Next, we turn to proving the sd
Log(s)Log

(
1
ε

)
upper bound, based on a technique of

Hanneke (2007a); Hegedüs (1995) (see also Hellerstein, Pillaipakkamnatt, Raghavan, and
Wilkins, 1996 for related ideas), except using an ε-net in place of the random samples used by

Hanneke (2007a). Let m and î be as above, and denote U=
{
Xt : t∈

{
m
(
î−1

)
+1, . . . ,mî

}}
.

The technique is based on using a general algorithm for Exact learning with membership
queries, treating U as the instance space, and C[U ] as the concept space (where C[U ] is
as defined in Section 7.3). Specifically, for any finite set V ⊆ C and any x ∈ X , let
hmaj(V )(x) = argmaxy∈Y |{h ∈ V : h(x) = y}| (breaking ties arbitrarily); hmaj(V ) is called
the majority vote classifier. In this context, the following algorithm is due to Hegedüs
(1995) (see Section 7.3 for the definition of “specifying set”).
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Memb-Halving-2
Input: label budget n
Output: classifier ĥn

0. V ← C[U ], t← 0
1. While |V | ≥ 2 and t < n
2. ĥ← hmaj(V )

3. Let k = TD(ĥ,C[U ],U)
4. Let {Xj1 , . . . , Xjk}∈Uk be a minimal specifying set for ĥ on U with respect to C[U ]
5. Repeat
6. Let ĵ = argmin

j∈{j1,...,jk}
|{g ∈ V : g(Xj) = ĥ(Xj)}|

7. Request the label Yĵ , let t← t+ 1
8. V ← {h ∈ V : h(Xĵ) = Yĵ}
9. Until ĥ(Xĵ) 6= Yĵ or |V | ≤ 1 or t = n

10. Return any ĥn in V (or ĥn arbitrary if V = ∅)

Fix any PXY ∈ RE, and note that we have f?PXY ∈ C, so that ∃h∗ ∈ C[U ] with
h∗(x) = f?PXY (x), ∀x ∈ U . Since Yj = f?PXY (Xj) for every j with probability one in this
case, we have that with probability one the set V will be nonempty in Step 10, so that
ĥn is chosen from V ; in particular, we have h∗(Xj) = Yj for every Xj ∈ U , and hence
h∗ ∈ V in Step 10. Furthermore, when this is the case, Hegedüs (1995) proves that, letting
XTD(C[U ],U) = max

h:X→Y
TD(h,C[U ],U) (see Section 7.3), if

n ≥ 2
XTD(C[U ],U)

1 ∨ log2(XTD(C[U ],U))
log2(|C[U ]|),

then the classifier ĥn returned by Memb-Halving-2 satisfies ĥn = h∗, so that ĥn(x) =
f?PXY (x) for every x ∈ U .14 Since XTD(C[U ],U) ≤ XTD(C,m), and Theorem 13 implies
XTD(C,m) = s∧m ≤ s, and since Log(XTD(C[U ],U)) ≤ 1∨ log2(XTD(C[U ],U)) and x 7→

x
Log(x) is nondecreasing on N ∪ {0}, and the VC-Sauer Lemma (Vapnik and Chervonenkis,

1971; Sauer, 1972) implies |C[U ]| ≤
(
em
d

)d
, we have that for any n ≥ 2 sd

Log(s) log2

(
em
d

)
, if

∀j, f?PXY (Xj) = Yj , then ĥn(x) = f?PXY (x) for every x ∈ U . Thus, for n ≥ 2 sd
Log(s) log2

(
em
d

)
,

with probability one the classifier ĥn returned by Memb-Halving-2 has ĥn(x) = f?PXY (x)
for every x ∈ U . Furthermore, as proven above, with probability at least 1−δ, U is an ε-net
of P for {DIS({h, g}) : h, g ∈ C}. Thus, since f?PXY , ĥn ∈ C, by a union bound we have

that for any n ≥ 2 sd
Log(s) log2

(
em
d

)
, with probability at least 1− δ, P(DIS({f?PXY , ĥn})) ≤ ε.

Since PXY ∈ RE, this implies erPXY (ĥn) = P(DIS({f?PXY , ĥn})) ≤ ε as well. Thus, since
this reasoning holds for any PXY ∈ RE, we have established that

ΛRE(ε, δ) ≤ 2
sd

Log(s)
log2

(em
d

)
≤ 16Log

(
2ec′

) sd

Log(s)
Log

(
1

ε

)
.

14. The two cases not covered by the theorem of Hegedüs (1995) are the case |C[U ]| = 1, for which the
algorithm returns the sole element of C[U ] (which must agree with f?PXY on U) without requesting any
labels, and the case |C[U ]| = 2, for which one can easily verify that XTD(C[U ],U) = 1 and that the
algorithm returns a classifier with the claimed property after requesting exactly one label.
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Finally, we establish the sLog
(

1
ε

)
upper bound, as follows. Note that, since |C| ≥ 2, we

must have s ≥ 1. Fix any PXY ∈ RE. Let T = {DIS(VS,h) : S ∈
⋃
m∈NXm, h a classifier},

and for each x1, . . . , xs ∈ X and y1, . . . , ys ∈ Y, define

φs(x1, . . . , xs, y1, . . . , ys) = DIS({g ∈ C : ∀i ≤ s, g(xi) = yi}) ∈ T .

Let c̃′ be as in Lemma 24, and define δ′ = δ/ (2dlog2(1/ε)e), ` = d2c̃′(sLog(3c̃′)+Log(1/δ′))e,
m = d2c̃′se, and j̃ = d(2mdlog2(2/δ′)e+ 2`)/εe. Consider the following algorithm.

Algorithm 0
Input: label budget n
Output: classifier ĥn

0. V0 ← C, j̄0 = 0
1. For k = 1, 2, . . . , bn/mc
2. If |{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃} : Xj ∈ DIS(Vk−1)}| < mdlog2(2/δ′)e+ `

3. Return any ĥn ∈ Vk−1 (or an arbitrary classifier ĥn if Vk−1 = ∅)
4. Let jk,1, . . . , jk,mdlog2(2/δ′)e+` denote the mdlog2(2/δ′)e+ ` smallest indices in the set

{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃} : Xj ∈ DIS(Vk−1)} (in increasing order)
5. Let j̄k = jk,mdlog2(2/δ′)e+`
6. For each i ∈ N, let

Ii =

(i1, . . . , is, y1, . . . , ys) ∈ Ns × Ys : m(i− 1) < i1 ≤ · · · ≤ is ≤ mi,

mi∑
t=m(i−1)+1

1φs(Xjk,i1
,...,Xjk,is

,y1,...,ys)(Xjk,t) = 0


7. Let

îk = argmin
i∈{1,...,dlog2(2/δ′)e}

max
(i1,...,is,y1,...,ys)∈Ii

mdlog2(2/δ′)e+`∑
t=mdlog2(2/δ′)e+1

1φs(Xjk,i1
,...,Xjk,is

,y1,...,ys)(Xjk,t)

8. Request the label Yjk,t for each t ∈
{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
9. Let Vk ←

{
g ∈ Vk−1 : ∀t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
, g(Xjk,t) = Yjk,t

}
10. Return any ĥn ∈ Vbn/mc

Fix any k ∈ {1, . . . , bn/mc}. In the event that Vk−1 is defined, let

Mk =
∣∣{j ∈ {j̄k−1 + 1, . . . , j̄k−1 + j̃

}
: Xj ∈ DIS(Vk−1)

}∣∣ .
By a Chernoff bound (applied under the conditional distribution given Vk−1 and j̄k−1)
and the law of total probability (integrating out Vk−1 and j̄k−1), there is an event E′k of
probability at least 1− δ′, on which, if Vk−1 is defined and satisfies

P(DIS(Vk−1)) ≥ 2j̃−1
(
mdlog2(2/δ′)e+ `

)
, (10)
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then Mk ≥ (1/2)j̃P(DIS(Vk−1)) ≥ mdlog2(2/δ′)e + `, in which case the algorithm will
execute Steps 4-9 for this particular value of k, and in particular, the set Vk is defined.

In this case, denote Uk =
{
Xjk,t : t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}}
, which is well-defined in

this case.

Next note that, on the event that Vk−1 is defined, the Mk samples{
Xj : j ∈

{
j̄k−1 + 1, . . . , j̄k−1 + j̃

}
, Xj ∈ DIS(Vk−1)

}
are conditionally independent given Vk−1, j̄k−1, and Mk, each having conditional distribu-
tion P(·|DIS(Vk−1)). Thus, applying Lemma 24 under the conditional distribution given
Vk−1, j̄k−1, and Mk, combined with the law of total probability (integrating out Vk−1, j̄k−1,
and Mk), we have that there exists an event Ek of probability at least 1 − δ′, on which, if
Vk−1 is defined, and Mk ≥ mdlog2(2/δ′)e+ `, then Uk is a 1

2 -net of P(·|DIS(Vk−1)) for{
φs(Xjk,i1

, . . . , Xjk,is
, y1, . . . , ys) : m

(
îk − 1

)
+ 1 < i1 ≤ · · · ≤ is ≤ mîk, y1, . . . , ys ∈ Y

}
.

(11)
Together, we have that on Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then Uk is a 1

2 -net
of P(·|DIS(Vk−1)) for the collection (11).

In particular, Theorem 13 implies that, for any x1, . . . , xm ∈ Xm and classifier f ∈ C,
∃i1, . . . , is ∈ {1, . . . ,m} such that {g ∈ C : ∀j ≤ s, g(xij ) = f(xij )} = {g ∈ C : ∀i ≤
m, g(xi) = f(xi)} (see the discussion in Section 7.3.1), and since the left hand side is
invariant to permutations of the ij values, without loss of generality we may take i1 ≤ · · · ≤
is. This implies that on Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then ∃i′1, . . . , i′s ∈{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
with i′1 ≤ · · · ≤ i′s such that

φs(Xjk,i′1
, . . . , Xjk,i′s

, f(Xjk,i′1
), . . . , f(Xjk,i′s

))

= DIS
({
g ∈ C : ∀t ∈

{
m
(
îk − 1

)
+ 1, . . . ,mîk

}
, g(Xjk,t) = f(Xjk,t)

})
= DIS(VUk,f ),

so that

DIS(VUk,f ) ∈{
φs(Xjk,i1

, . . . , Xjk,is
, y1, . . . , ys) : m

(
îk − 1

)
< i1 ≤ · · · ≤ is ≤ mîk, y1, . . . , ys ∈ Y

}
.

But we certainly have DIS(VUk,f ) ∩ Uk = ∅. Thus, by the 1
2 -net property, on the event

Ek ∩ E′k, if Vk−1 is defined and satisfies (10), then every f ∈ C has

P
(

DIS(VUk,f )
∣∣∣DIS(Vk−1)

)
≤ 1

2
. (12)

Also note that, since PXY ∈ RE, we have f?PXY ∈ C, and furthermore that there is an event
E of probability one, on which ∀j, Yj = f?PXY (Xj). In particular, on E, if Vk−1 and Vk are

defined, then Vk = VUk,f?PXY
∩ Vk−1, which implies DIS(Vk) = DIS

(
VUk,f?PXY

∩ Vk−1

)
⊆
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DIS(Vk−1). Thus, applying (12) with f = f?PXY , we have that on the event E ∩Ek ∩E′k, if
Vk−1 is defined and satisfies (10), then Vk is defined and satisfies

P(DIS(Vk)) = P(DIS(Vk)|DIS(Vk−1))P(DIS(Vk−1))

≤ P
(

DIS
(
VUk,f?PXY

) ∣∣∣DIS(Vk−1)
)
P(DIS(Vk−1)) ≤ 1

2
P(DIS(Vk−1)).

Now suppose bn/mc ≥ dlog2(1/ε)e. Applying the above to every k ≤ dlog2(1/ε)e, we
have that there exist events E′k and Ek for each k ∈ {1, . . . , dlog2(1/ε)e}, each of probability

at least 1−δ′, such that on the event E∩
⋂dlog2(1/ε)e
k=1 E′k∩Ek, every k ∈ {1, . . . , dlog2(1/ε)e}

with Vk−1 defined either has P(DIS(Vk−1)) < 2j̃−1 (mdlog2(2/δ′)e+ `) or else Vk is de-
fined and satisfies P(DIS(Vk)) ≤ 1

2P(DIS(Vk−1)). Since V0 = C is defined, by induction

we have that on the event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek, either some k ∈ {1, . . . , dlog2(1/ε)e}

has Vk−1 defined and satisfies P(DIS(Vk−1)) < 2j̃−1 (mdlog2(2/δ′)e+ `), or else every k ∈
{1, . . . , dlog2(1/ε)e} has Vk defined and satisfying P(DIS(Vk)) ≤ 1

2P(DIS(Vk−1)). In partic-
ular, in this latter case, since P(DIS(V0)) ≤ 1, by induction we have P(DIS(Vdlog2(1/ε)e)) ≤
2−dlog2(1/ε)e ≤ ε.

Also note that 2j̃−1 (mdlog2(2/δ′)e+ `) ≤ ε. Thus, denoting by k̂ the largest k ≤ bn/mc
for which Vk is defined (which also implies Vk is defined for every k ∈ {0, . . . , k̂}), on the

event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩Ek, either some k ≤ (k̂+ 1)∧ dlog2(1/ε)e has P(DIS(Vk−1)) < ε,

so that (since k 7→ Vk is nonincreasing for k ≤ k̂) P(DIS(Vk̂)) ≤ P(DIS(Vk−1)) < ε, or

else k̂ ≥ dlog2(1/ε)e, so that P(DIS(Vk̂)) ≤ P(DIS(Vdlog2(1/ε)e)) ≤ ε. Thus, on the event

E∩
⋂dlog2(1/ε)e
k=1 E′k∩Ek, in any case we have P(DIS(Vk̂)) ≤ ε. Furthermore, by the realizable

case assumption, we have f?PXY ∈ V0, and if f?PXY ∈ Vk−1 in Step 9, then (on the event
E) f?PXY ∈ Vk as well. Thus, by induction, on the event E, f?PXY ∈ Vk̂. In particular, this

also implies Vk̂ 6= ∅ on E, so that there exist valid choices of ĥn in Vk̂ upon reaching the

“Return” step (Step 3, if k̂ < bn/mc, or Step 10, if k̂ = bn/mc). Thus, ĥn ∈ Vk̂ as well on

E, so that on the event E we have
{
x : ĥn(x) 6= f?PXY (x)

}
⊆ DIS(Vk̂). Therefore, on the

event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek, we have

erPXY (ĥn) = P
(
x : ĥn(x) 6= f?PXY (x)

)
≤ P

(
DIS

(
Vk̂
))
≤ ε.

Finally, by a union bound, the event E ∩
⋂dlog2(1/ε)e
k=1 E′k ∩ Ek has probability at least

1− dlog2(1/ε)e2δ′ = 1− δ. Noting that the above argument holds for any PXY ∈ RE, and
that the condition bn/mc ≥ dlog2(1/ε)e is satisfied for any n ≥ 9c̃′sLog(1/ε), this completes
the proof that ΛRE(ε, δ) ≤ 9c̃′sLog(1/ε) . sLog(1/ε).

B.2 The Noisy Cases

To extend the above ideas to noisy settings, we make use of a novel modification of a
technique of Kääriäinen (2006). We first partition the data sequence into three parts. For
m ∈ N, let X1

m = X3(m−1)+1, X2
m = X3(m−1)+2, and let X3

m = X3m and Y 3
m = Y3m;
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also denote X1 = {X1
m}∞m=1, X2 = {X2

m}∞m=1, X3 = {X3
m}∞m=1, Y3 = {Y 3

m}∞m=1, and Z =
{(Xm, Ym)}∞m=1. Additionally, it will simplify some of the proofs to further partition X3

and Y3, as follows. Fix any bijection φ : N2 → N, and for each m, ` ∈ N, let X3
m,` = X3

φ(m,`)

and Y 3
m,` = Y 3

φ(m,`).

Fix values ε, δ ∈ (0, 1), and let γ̂ε be a value in [ε/2, 1]. Let kε = dlog2(8/γ̂ε)e, and for
each k ∈ {2, . . . , kε}, define

m̃k =

⌈
16 max{c, 8}kε

2kε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))⌉
,

for c as in Lemma 21. Also define m̃kε+1 =0, m̃=m̃2. and qε,δ = 2+
⌈
22kε+4 ln

(
32m̃22kε+3

δ

)⌉
.

Also, for each m ∈ {1, . . . , m̃}, define k̃m = max {k ∈ {2, . . . , kε} : m ≤ m̃k} and let q̃m =

23+2k̃m ln(32m̃qε,δ/δ). Fix a value τ = δε
512m̃ . Let Jτ,δ/2 be as in Lemma 27, applied to

the sequence X ′m = X1
m; to simplify notation, in this section we abbreviate J = Jτ,δ/2.

Also, for each x ∈ X , denote by J(x) the (unique) set A ∈ J with x ∈ A, and for each
m ∈ {1, . . . , m̃}, we abbreviate Jm = J(X2

m). Now consider the following algorithm.

Algorithm 1
Input: label budget n
Output: classifier ĥn

0. V0 ← C, t← 0, m← 0
1. While t < n and m < m̃
2. m← m+ 1
3. If X2

m ∈ DIS(Vm−1)
4. Run Subroutine 1 with arguments (n− t,m);

let (q, y) be the returned values; let t← t+ q
5. If y 6= 0 and ∃h ∈ Vm−1 with h(X2

m) = y
6. Let Vm ← {h ∈ Vm−1 : h(X2

m) = y}
7. Else let Vm ← Vm−1

8. Else let Vm ← Vm−1

9. Return any ĥn ∈ Vm

Subroutine 1
Input: label budget n, data point index m
Output: query counter q, value y

0. σm,0 ← 0, q ← 0, `m,0 ← 0
1. Repeat
2. Let `m,q+1 ← min{` > `m,q : X3

m,` ∈ Jm} (or `m,q+1 ← 1 if this set is empty)

3. Request the label Y 3
m,`m,q+1

; let σm,q+1 ← σm,q + Y 3
m,`m,q+1

; let q ← q + 1

4. If |σm,q| ≥ 3
√

2q ln(32m̃qε,δ/δ)
5. Return (q, sign(σm,q))
6. Else if q ≥ min{n, q̃m}
7. Return (q, 0)
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In this algorithm, the first part of the data (namely, X1) is used to partition the space via
Lemma 27, so that each cell of the partition has f?PXY nearly-constant within it (assuming
f?PXY ∈ C). The second part, X2, is used to simulate a commonly-studied active learning
algorithm for the realizable case (namely, the algorithm of Cohn, Atlas, and Ladner, 1994),
with two significant modifications. First, instead of directly requesting the label of a point,
we use samples from the third part of the data (i.e., X3) that co-occur in the same cell of the
partition as the would-be query point, repeatedly requesting for labels from that cell and
using the majority vote of these returned labels in place of the label of the original point.
Second, we discard a point X2

m if we cannot identify a clear majority label within a certain
number of queries, which decreases as the algorithm runs. Since this second modification
often ends up rejecting more samples in cells with higher noise rates than those with lower
noise rates, this effectively alters the marginal distribution over X , shifting the distribution
to favor less-noisy regions.

For the remainder of Appendix B.2, we fix an arbitrary probability measure PXY over
X ×Y with f?PXY ∈ C, and as usual, we denote by P(·) = PXY (· ×Y) the marginal of PXY
over X . For any x ∈ X , define γx =

∣∣η(x;PXY )− 1
2

∣∣, and define

γε = sup {γ ∈ (0, 1/2] : γP(x : γx ≤ γ) ≤ ε/2} .

Also, for the remainder of Appendix B.2, we suppose γ̂ε is chosen to be in the range [ε/2, γε].
For each A ∈ J , define

yA = argmax
y∈Y

P
(
x ∈ A : f?PXY (x) = y

)
= sign

(∫
A
f?PXY dP

)
,

and if P(A) > 0, define η(A;PXY ) = PXY (A × {1}|A × Y) (i.e., the average value of
η(x;PXY ) over x ∈ A), and let γA =

∣∣η(A;PXY )− 1
2

∣∣. For completeness, for any A ∈ J
with P(A) = 0, define η(A;PXY ) = 1/2 and γA = 0. Additionally, for each n ∈ N∪{∞} and
m ∈ N, let (q̂n,m, ŷn,m) denote the return values of Subroutine 1 when run with arguments
(n,m).

Denote by E1 the X1-measurable event of probability at least 1 − δ/2 implied by
Lemma 27, on which every h ∈ C has∑

A∈J
min
y∈Y
P (x ∈ A : h(x) = y) ≤ τ (13)

and ∀γ > 0,

P
(⋃{

A ∈ J : min
y∈Y
P (x ∈ A : h(x) = y) > γP(A)

})
≤ τ

γ
. (14)

We now proceed to characterize the behaviors of Subroutine 1 and Algorithm 1 via the
following sequence of lemmas.

Lemma 28 There exists a (X1,X2,X3)-measurable event E0 of probability 1, on which
∀m ∈ {1, . . . , m̃}, P(Jm) > 0 and |{` ∈ N : X3

m,` ∈ Jm}| =∞.
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Proof For each m, since each A ∈ J with P(A) = 0 has P(X2
m ∈ A) = 0, and J

has finite size, a union bound implies P(P(Jm) = 0) = 0. The strong law of large num-
bers (applied under the conditional distribution given Jm) and the law of total probability
implies that 1

`

∑`
j=1 1Jm(X3

m,j) → P(Jm) with probability 1, so that when P(Jm) > 0,∑`
j=1 1Jm(X3

m,j)→∞. Finally, a union bound implies

P
(
∃m ≤ m̃ : P(Jm) = 0 or |{` ∈ N : X3

m,` ∈ Jm}| <∞
)

≤
m̃∑
m=1

P (P(Jm) = 0) + P
(
P(Jm) > 0 and |{` ∈ N : X3

m,` ∈ Jm}| <∞
)

= 0.

Lemma 29 There exists a (X1,X2)-measurable event E2 of probability at least 1 − τm̃ ≥
1− δ/512 such that, on E1 ∩ E2, every m ∈ {1, . . . , m̃} has f?PXY (X2

m) = yJm.

Proof Noting that, on E1, (13) implies that

P
(
x : f?PXY (x) 6= yJ(x)

)
=
∑
A∈J
P
(
x ∈ A : f?PXY (x) 6= yA

)
=
∑
A∈J

min
y∈Y
P
(
x ∈ A : f?PXY (x) = y

)
≤ τ,

the result follows by a union bound.

Lemma 30 There exists a (X1,X2)-measurable event E3 of probability at least 1− 128τ
ε m̃ ≥

1 − δ/4 such that, on E1 ∩ E3, every m ∈ {1, . . . , m̃} has P
(
x ∈ Jm : f?PXY (x) 6= yJm

)
≤

ε
128P(Jm).

Proof Noting that, on E1, (14) implies that

P
(
x : P

(
x′ ∈ J(x) : f?PXY (x′) 6= yJ(x)

)
>

ε

128
P(J(x))

)
= P

(⋃{
A ∈ J : P

(
x′ ∈ A : f?PXY (x′) 6= yA

)
>

ε

128
P(A)

})
= P

(⋃{
A ∈ J : min

y∈Y
P
(
x′ ∈ A : f?PXY (x′) = y

)
>

ε

128
P(A)

})
≤ 128τ

ε
,

the result follows by a union bound.

Lemma 31 ∀A ∈ J ,

PXY (A× {yA}) ≥
1

2
P(A) +

∫
A
γxP(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
.
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Proof Any A ∈ J has

PXY (A× {yA}) ≥
∫
A
1[f?PXY (x) = yA]

(
1

2
+ γx

)
P(dx)

≥
∫
A

(
1

2
+ γx

)
P(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
=

1

2
P(A) +

∫
A
γxP(dx)− P

(
x ∈ A : f?PXY (x) 6= yA

)
.

Lemma 32 On the event E0 ∩ E1 ∩ E3, every m ∈ {1, . . . , m̃} with γJm > ε/128 has
PXY (Jm × {yJm}) > PXY (Jm × {−yJm}), and every m ∈ {1, . . . , m̃} with

∫
Jm
γxP(dx) >

(ε/2)P(Jm) has∫
Jm

γxP(dx) ≥ γJmP(Jm) ≥ 63

64

∫
Jm

γxP(dx) >
63

128
εP(Jm). (15)

Proof Jensen’s inequality implies we always have γAP(A) ≤
∫
A γxP(dx). In particular,

this implies that any A ∈ J with P(A) > 0 and P(x ∈ A : f?PXY (x) 6= yA) ≤ ε
128P(A) and

γA > ε/128 has
∫
A γxP(dx)− P(x ∈ A : f?PXY (x) 6= yA) ≥ γAP(A)− P(x ∈ A : f?PXY (x) 6=

yA) > (ε/128)P(A)−(ε/128)P(A) = 0, so that Lemma 31 implies PXY (A×{yA}) > 1
2P(A),

and therefore PXY (A × {yA}) > PXY (A × {−yA}). Since Lemmas 28 and 30 imply that,
on E0 ∩ E1 ∩ E3, for every m ∈ {1, . . . , m̃}, P(Jm) > 0 and P(x ∈ Jm : f?PXY (x) 6= yJm) ≤
ε

128P(Jm), we have established the first claim in the lemma statement.

For the second claim, the first inequality follows by Jensen’s inequality. For the second
inequality, note that any A ∈ J has γAP(A) ≥ PXY (A×{yA})− 1

2P(A), so that Lemma 31
implies γAP(A) ≥

∫
A γxP(dx)−P(x ∈ A : f?PXY (x) 6= yA). Therefore, since Lemma 30 im-

plies that, on E1 ∩ E3, every m ∈ {1, . . . , m̃} has P(x ∈ Jm : f?PXY (x) 6= yJm) ≤ ε
128P(Jm),

we have that on E1 ∩ E3, any m ∈ {1, . . . , m̃} with
∫
Jm
γxP(dx) > (ε/2)P(Jm) has

P(x ∈ Jm : f?PXY (x) 6= yJm) ≤ 1
64

∫
Jm
γxP(dx), so that γJmP(Jm) ≥

∫
Jm
γxP(dx) − P(x ∈

Jm : f?PXY (x) 6= yJm) ≥ 63
64

∫
Jm
γxP(dx). The final inequality then follows by the assump-

tion that
∫
Jm
γxP(dx) > (ε/2)P(Jm).

Lemma 33 On E1, ∀γ > (1/4)γε,

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 3P(x : γx < 4γ),

and ∀γ ∈ (0, (1/4)γε],

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 3ε

2γε
.
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Proof By Markov’s inequality, for any γ > 0, any A ∈ J with
∫
A γxP(dx) ≤ γP(A) must

have P(x ∈ A : γx ≥ 2γ) ≤ 1
2P(A), which implies P(x ∈ A : γx < 2γ) ≥ 1

2P(A). Therefore,

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ γP(A)

})
≤ P

(⋃{
A ∈ J : P(x ∈ A : γx < 2γ) ≥ 1

2
P(A)

})
≤ 2P(x : γx < 2γ), (16)

where the last inequality is due to Markov’s inequality.

Also, for every γ > 0, since γAP(A) ≥ PXY (A× {yA})− 1
2P(A),

P
(⋃
{A ∈ J : γA ≤ γ}

)
= P

(⋃
{A ∈ J : γAP(A) ≤ γP(A)}

)
≤ P

(⋃{
A ∈ J : PXY (A× {yA})−

1

2
P(A) ≤ γP(A)

})
.

Lemma 31 implies PXY (A× {yA})− 1
2P(A) ≥

∫
A γxP(dx)− P(x ∈ A : f?PXY (x) 6= yA), so

that the above is at most

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ γP(A) + P(x ∈ A : f?PXY (x) 6= yA)

})
.

By a union bound, this is at most

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ 2γP(A)

})
+ P

(⋃{
A ∈ J : P(x ∈ A : f?PXY (x) 6= yA) > γP(A)

})
. (17)

On E1, (14) implies that

P
(⋃{

A ∈ J : P(x ∈ A : f?PXY (x) 6= yA) > γP(A)
})
≤ τ

γ
<

ε

8γ
.

Furthermore, by (16),

P
(⋃{

A ∈ J :

∫
A
γxP(dx) ≤ 2γP(A)

})
≤ 2P(x : γx < 4γ).

Using these two inequalities to bound the two terms in (17), we have that

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ 2P(x : γx < 4γ) +

ε

8γ
.

By definition of γε, if γ > (1/4)γε, we must have 4γP(x : γx < 4γ) ≥ γεP(x : γx ≤ γε) ≥
ε/2, so that ε

8γ ≤ P(x : γx < 4γ), which implies

2P(x : γx < 4γ) +
ε

8γ
≤ 3P(x : γx < 4γ),
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which establishes the first claim. On the other hand, if 0 < γ ≤ (1/4)γε, we have 4γP(x :
γx < 4γ) ≤ ε/2, so that 2P(x : γx < 4γ) ≤ ε

4γ , which implies

2P(x : γx < 4γ) +
ε

8γ
≤ 3ε

8γ
.

This establishes the second claim, since (combined with monotonicity of probabilities) it
implies

P
(⋃
{A ∈ J : γA ≤ γ}

)
≤ P

(⋃
{A ∈ J : γA ≤ (1/4)γε}

)
≤ 3ε

2γε
.

Lemma 34 On E1, ∀h ∈ C,

erPXY (h)− erPXY (f?PXY ) ≤ 5τ +

∫
1[h(x) 6= f?PXY (x)]2γJ(x)P(dx).

Proof For any h ∈ C, we generally have

erPXY (h)− erPXY (f?PXY ) =

∫
1[h(x) 6= f?PXY (x)]2γxP(dx).

For each A ∈ J , let yhA = argmaxy∈Y P(x : h(x) = y). ∀x ∈ X , 1[h(x) 6= f?PXY (x)]2γx ≤ 1.
Therefore,∫

1[h(x) 6= f?PXY (x)]2γxP(dx) ≤ P
(
x : h(x) 6= yhJ(x) or f?PXY (x) 6= yJ(x)

)
+

∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx). (18)

By a union bound,

P
(
x : h(x) 6= yhJ(x) or f?PXY (x) 6= yJ(x)

)
≤ P

(
x : h(x) 6= yhJ(x)

)
+ P

(
x : f?PXY (x) 6= yJ(x)

)
.

Furthermore, on E1, (13) implies the right hand side is at most 2τ . Combining this with
(18) implies

erPXY (h)−erPXY (f?PXY ) ≤ 2τ+

∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx). (19)

Also,∫
{
x:h(x)=yh

J(x)
,f?PXY

(x)=yJ(x)

} 1[yhJ(x) 6= yJ(x)]2γxP(dx)

=
∑

A∈J :yhA 6=yA

∫
{
x∈A:h(x)=yhA,f

?
PXY

(x)=yA

} 2γxP(dx) ≤
∑

A∈J :yhA 6=yA

∫
{
x∈A:f?PXY

(x)=yA

} 2γxP(dx).
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Since f?PXY (x) = sign(2η(x;PXY )− 1) for every x ∈ X , any measurable C ⊆ X has

PXY
(
(x, y) : x ∈ C, y = f?PXY (x)

)
=

∫
C

(
1

2
+ γx

)
P(dx).

Therefore, for each A ∈ J ,

γAP(A) ≥ PXY (A× {yA})−
1

2
P(A) ≥ PXY

({
x ∈ A : f?PXY (x) = yA

}
× {yA}

)
− 1

2
P(A)

=

∫
{
x∈A:f?PXY

(x)=yA

}
(

1

2
+ γx

)
P(dx)− 1

2
P(A)

=

∫
{
x∈A:f?PXY

(x)=yA

} γxP(dx)− 1

2
P
(
x ∈ A : f?PXY (x) 6= yA

)
.

Therefore,∑
A∈J :yhA 6=yA

∫
{
x∈A:f?PXY

(x)=yA

} 2γxP(dx) ≤
∑

A∈J :yhA 6=yA

P
(
x ∈ A : f?PXY (x) 6= yA

)
+ 2γAP(A).

On E1, (13) implies that the right hand side is at most

τ +
∑

A∈J :yhA 6=yA

2γAP(A).

Combining this with (19), we have that on E1,

erPXY (h)− erPXY (f?PXY ) ≤ 3τ +
∑

A∈J :yhA 6=yA

2γAP(A). (20)

For each A ∈ J and x ∈ A, if yhA 6= yA, then either h(x) 6= f?PXY (x) holds, or else one of

h(x) 6= yhA or f?PXY (x) 6= yA holds. Thus, any A ∈ J with yhA 6= yA has

P(A) ≤
∫
A

(
1
[
h(x) 6= f?PXY (x)

]
+ 1

[
h(x) 6= yhA

]
+ 1

[
f?PXY (x) 6= yA

])
P(dx)

= P
(
x ∈ A : h(x) 6= yhA

)
+ P

(
x ∈ A : f?PXY (x) 6= yA

)
+

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx).

Combined with (20), this implies that on E1,

erPXY (h)− erPXY (f?PXY )

≤ 3τ +
∑

A∈J :yhA 6=yA

2γA

(
P
(
x ∈ A : h(x) 6= yhA

)
+ P

(
x ∈ A : f?PXY (x) 6= yA

)
+

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx)

)
.
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Since 2γA ≤ 1, the right hand side is at most

3τ +
∑
A∈J
P
(
x ∈ A : h(x) 6= yhA

)
+
∑
A∈J
P
(
x ∈ A : f?PXY (x) 6= yA

)
+

∑
A∈J :yhA 6=yA

2γA

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx),

and on E1, (13) implies this is at most

5τ +
∑

A∈J :yhA 6=yA

2γA

∫
A
1
[
h(x) 6= f?PXY (x)

]
P(dx)

≤ 5τ +
∑
A∈J

∫
A
1
[
h(x) 6= f?PXY (x)

]
2γAP(dx) = 5τ +

∫
1
[
h(x) 6= f?PXY (x)

]
2γJ(x)P(dx).

Lemma 35 There is a Z-measurable event E4 of probability at least 1− δ/32 such that, on⋂4
j=0Ej, ∀k ∈ {2, . . . , kε}, ∀m ∈ {m̃k+1+1, . . . , m̃k}, ∀n ∈ N∪{∞}, ŷn,m ∈ {0, f?PXY (X2

m)},

q̂n,m ≤
⌈

8
max{γ2

Jm
,2−2k} ln

(
32m̃qε,δ

δ

)⌉
, and if γJm ≥ 2−k then ŷ∞,m = f?PXY (X2

m).

Proof Since q̂n,m ≤ q̂∞,m, and ŷn,m = 0 whenever q̂n,m < q̂∞,m, it suffices to show the
claims hold for q̂∞,m and ŷ∞,m for each m ∈ {1, . . . , m̃}.

For each m ∈ {1, . . . , m̃}, let `m,1, `m,2, . . . denote the increasing infinite subsequence of
values ` ∈ N with X3

m,` ∈ Jm, guaranteed to exist by Lemma 28 on E0; also, for each q ∈ N,

define σm,q =
∑q

j=1 Y
3
m,`m,j

. Note that these definitions of `m,q and σm,q agree with those
defined in Subroutine 1 for each q ≤ q̂∞,m. Let E4 denote the event that E0 occurs and
that ∀m ∈ {1, . . . , m̃}, ∀q ∈ {1, . . . , qε,δ},

|σm,q − q(2η(Jm;PXY )− 1)| ≤

√
2q ln

(
32m̃qε,δ

δ

)
. (21)

For each m ∈ {1, . . . , m̃} and q ∈ {1, . . . , qε,δ}, Lemma 28 and Hoeffding’s inequality imply
that (21) holds with conditional probability (given Jm) at least 1 − δ/(32m̃qε,δ). The law
of total probability and a union bound over values of m and q then imply that E4 has
probability at least 1− δ/32.

Now fix any k ∈ {2, . . . , kε} and m ∈ {m̃k+1 + 1, . . . , m̃k}. Since k̃m = k, the condition

in Step 6 guarantees q̂∞,m ≤
⌈
22k+3 ln

(
32m̃qε,δ

δ

)⌉
. Furthermore, if γJm ≥ 2−k, then for

q =

⌈
8

γ2
Jm

ln

(
32m̃qε,δ

δ

)⌉
,

we have

2qγm ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
.
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In particular, recalling that 2qγJm = |q(2η(Jm;PXY )− 1)|, we have

|q(2η(Jm;PXY )− 1)| ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
. (22)

Since qε,δ ≥
⌈
22k+3 ln

(
32m̃qε,δ

δ

)⌉
≥ q, the event E4 implies that (21) holds, so that

σm,q ≥ q(2η(Jm;PXY )− 1)−

√
2q ln

(
32m̃qε,δ

δ

)
.

Thus, if q(2η(Jm;PXY )−1) ≥ 4

√
2q ln

(
32m̃qε,δ

δ

)
, the condition in Step 4 will imply q̂∞,m ≤

q, and since q ≤ q̃m, that ŷ∞,m ∈ Y. Likewise, (21) implies

σm,q ≤ q(2η(Jm;PXY )− 1) +

√
2q ln

(
32m̃qε,δ

δ

)
,

so that q(2η(Jm;PXY )−1) ≤ −4

√
2q ln

(
32m̃qε,δ

δ

)
would also suffice to imply q̂∞,m ≤ q and

ŷ∞,m ∈ Y via the condition in Step 4. Thus, since (22) implies one of these two conditions

holds, we have that on E4, if γJm ≥ 2−k then q̂∞,m ≤
⌈

8
γ2
Jm

ln
(

32m̃qε,δ
δ

)⌉
and ŷ∞,m ∈ Y.

It remains only to show that ŷ∞,m ∈ {0, f?PXY (X2
m)}. This clearly holds if the return

value originates in Step 7, so we need only consider the case where Subroutine 1 reaches
Step 5. Due to the condition in Step 6, this cannot occur for a value of q > qε,δ (since
q̃m ≤ q̃1 ≤ qε,δ), so let us consider any value of q ∈ {1, . . . , qε,δ}, and suppose |σm,q| ≥

3

√
2q ln

(
32m̃qε,δ

δ

)
. On the event E4, (21) implies that if σm,q ≥ 3

√
2q ln

(
32m̃qε,δ

δ

)
, then

q(2η(Jm;PXY ) − 1) ≥ σm,q −
√

2q ln
(

32m̃qε,δ
δ

)
≥ 2

√
2q ln

(
32m̃qε,δ

δ

)
> 0, and likewise

if σm,q ≤ −3

√
2q ln

(
32m̃qε,δ

δ

)
, then q(2η(Jm;PXY ) − 1) ≤ σm,q +

√
2q ln

(
32m̃qε,δ

δ

)
≤

−2

√
2q ln

(
32m̃qε,δ

δ

)
< 0; thus, since |2η(Jm;PXY )−1| = 2γJm , if |σm,q| ≥ 3

√
2q ln

(
32m̃qε,δ

δ

)
,

then

γJm ≥

√
2

q
ln

(
32m̃qε,δ

δ

)
(23)

and sign(2η(Jm;PXY )− 1) = sign(σm,q). In particular, since q ≤ qε,δ ≤ 22kε+5 ln
(

32m̃qε,δ
δ

)
,

this implies

γJm ≥

√
2

qε,δ
ln

(
32m̃qε,δ

δ

)
≥ 2−kε−2 > ε/128.

Therefore, Lemma 32 implies that on
⋂4
j=0Ej , sign(2η(Jm;PXY ) − 1) = yJm ; combined

with the above, this implies sign(σm,q) = yJm . Furthermore, Lemma 29 implies that on
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⋂4
j=0Ej , yJm = f?PXY (X2

m), so that sign(σm,q) = f?PXY (X2
m). In particular, recall that if

ŷ∞,m ∈ Y, then |σm,q̂∞,m | ≥ 3

√
2q̂∞,m ln

(
32m̃qε,δ

δ

)
. Thus, since the condition in Step 6 im-

plies q̂∞,m ≤ q̃m ≤ qε,δ, we have that on
⋂4
j=0Ej , if ŷ∞,m ∈ Y, then ŷ∞,m = f?PXY (X2

m). This

completes the proof that ŷ∞,m ∈ {0, f?PXY (X2
m)} on

⋂4
j=0Ej . Since we established above

that ŷ∞,m ∈ Y if γJm ≥ 2−k on E4, this also completes the proof that ŷ∞,m = f?PXY (X2
m)

when γJm ≥ 2−k on
⋂4
j=0Ej .

Lemma 36 There exists an (X1,X2)-measurable event E5 of probability at least 1 − δ/64
such that, on E5, for every k ∈ {2, . . . , kε} with P

(⋃{
A∈J : γA∈

[
2−k, 21−k]}) ≥ 2k−3ε/kε,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ∈

[
2−k, 21−k

]}∣∣∣ ≥ (1/2)m̃kP
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})
.

Proof Fix any k ∈ {2, . . . , kε}. First, note that a Chernoff bound (under the conditional
distribution given J) implies that, with conditional probability (given J) at least

1− exp

{
−m̃k

8
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})}
,

we have∣∣∣{m ∈ {1, . . . , m̃k} : γJm ∈
[
2−k, 21−k

]}∣∣∣ ≥ m̃k

2
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})
. (24)

If P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) ≥ 2k−3ε/kε, then

exp

{
−m̃k

8
P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k

]})}
≤ exp

{
−8kε

2kε
Log

(
64kε
δ

)
2k−3ε/kε

}
= exp

{
−Log

(
64kε
δ

)}
=

δ

64kε
.

Thus, by the law of total probability, there is an event G5(k) of probability at least
1 − δ/(64kε) such that, on G5(k), if P

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]}) ≥ 2k−3ε/kε, then

(24) holds. This holds for all k ∈ {2, . . . , kε} on the event E5 =
⋂kε
k=2G5(k), which has

probability at least 1− δ/64 by a union bound.

We are now ready to apply the above results to characterize the behavior of Algorithm
1. For simplicity, we begin with the case of an infinite budget n, so that the algorithm
proceeds until m = m̃; later, we discuss sufficient finite sizes of n to retain this behavior.

Lemma 37 Consider running Algorithm 1 with budget ∞. On the event
⋂4
j=0Ej, ∀k ∈

{2, . . . , kε}, ∀m ∈ {1, . . . , m̃k}, f?PXY ∈ Vm and

Vm ⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.
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Proof Fix any k ∈ {2, . . . , kε}. We proceed by induction. The claim is clearly satisfied
for V0 = C. Now take as the inductive hypothesis that, for some m ∈ {1, . . . , m̃k}, f?PXY ∈
Vm−1 ⊆

{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

.

If X2
m /∈ DIS(Vm−1), then we have Vm = Vm−1, so that f?PXY ∈ Vm as well. Furthermore,

since f?PXY ∈ Vm−1, the fact that X2
m /∈ DIS(Vm−1) implies that every h ∈ Vm has h(X2

m) =

f?PXY (X2
m). Therefore,

Vm = Vm−1 ∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

Next, consider the case that X2
m ∈ DIS(Vm−1). Lemma 35 implies that on

⋂4
j=0Ej ,

ŷ∞,m ∈ {0, f?PXY (X2
m)}. If ŷ∞,m = 0, then Vm = Vm−1, so that f?PXY ∈ Vm by the inductive

hypothesis. Furthermore, since k ≤ k̃m, Lemma 35 implies that on
⋂4
j=0Ej , if γJm ≥ 2−k

then ŷ∞,m 6= 0; thus, if ŷ∞,m = 0, we have γJm < 2−k, so that

Vm = Vm−1 ⊆
{
h ∈ C : ∀m′ ≤ m− 1 with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}

=
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

On the other hand, if ŷ∞,m = f?PXY (X2
m), then since f?PXY ∈ Vm−1 by the inductive

hypothesis, the condition in Step 5 will be satisfied, so that we have Vm =
{
h ∈ Vm−1 :

h(X2
m) = f?PXY (X2

m)
}

. In particular, this implies f?PXY ∈ Vm as well, and combined with

the inductive hypothesis, we have

Vm = Vm−1 ∩
{
h ∈ C : h(X2

m) = f?PXY (X2
m)
}

⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k, h(X2

m′) = f?PXY (X2
m′)
}
.

The result follows by the principle of induction.

In particular, this implies the following result.

Lemma 38 There exists an event E6 of probability at least 1−δ/64 such that, on
⋂6
j=0Ej,

the classifier ĥ∞ produced by Algorithm 1 with budget∞ has erPXY (ĥ∞)−erPXY (f?PXY ) ≤ ε.

Proof Fix any k ∈ {2, . . . , kε} and let ˆ̀
k =

⌈
(1/2)m̃kP

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]})⌉.

Note that

ˆ̀
k ≥

8ckεP
(⋃{

A∈J : γA ∈
[
2−k, 21−k]})

2kε

(
dLog

(
8kεP

(⋃{
A∈J : γA ∈

[
2−k, 21−k]})

2kε

)

+ Log

(
64kε
δ

))
,
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for c as in Lemma 21. Let m̂k = min
{
m ∈ N :

∑m
m′=1 1[2−k,21−k](γJm′ ) = ˆ̀

k

}
∪ {∞}. Note

that, if m̂k <∞, then the sequence
{
X2
m : 1 ≤ m ≤ m̂k, γJm ∈

[
2−k, 21−k]} is conditionally

i.i.d. (given J and m̂k), with conditional distributions P
(
·
∣∣∣⋃{A ∈ J : γA ∈

[
2−k, 21−k]}).

Applying Lemma 21 to these samples implies that there exists an event of conditional
probability (given J and m̂k) at least 1 − δ/(64kε) on which, if we have m̂k < ∞ and

P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
, then letting

Hk =
{
h ∈ C : ∀m ≤ m̂k with γJm ∈

[
2−k, 21−k

]
, h(X2

m) = f?PXY (X2
m)
}
,

every h ∈ Hk has

P
(
x : h(x) 6= f?PXY (x)

∣∣∣γJ(x) ∈
[
2−k, 21−k

])
≤ 2kε

8kεP (
⋃
{A ∈ J : γA ∈ [2−k, 21−k]})

,

which implies

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 2kε

8kε
.

By the law of total probability and a union bound, there exists an event E6 of probability
at least 1− δ/64 on which this holds for every k ∈ {2, . . . , kε}.

Lemma 37 implies that, on
⋂4
j=0Ej , ∀k ∈ {2, . . . , kε},

Vm̃ ⊆ Vm̃k ⊆
{
h ∈ C : ∀m ≤ m̃k with γJm ≥ 2−k, h(X2

m) = f?PXY (X2
m)
}
.

Lemma 36 implies that, on E5, ∀k ∈ {2, . . . , kε}, if P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
,

then
∣∣{m ∈ {1, . . . , m̃k} : γJm ∈

[
2−k, 21−k]}∣∣ ≥ (1/2)m̃kP

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k]}),

so that m̂k ≤ m̃k. In particular, this implies m̂k <∞ and{
h ∈ C : ∀m ≤ m̃k with γJm ≥ 2−k, h(X2

m) = f?PXY (X2
m)
}
⊆ Hk.

Combining the above three results, we have that on
⋂6
j=0Ej , for every k ∈ {2, . . . , kε} with

P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) > 2kε

8kε
, Vm̃ ⊆ Hk, and therefore every h ∈ Vm̃ has

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 2kε

8kε
.

Furthermore, for every k ∈ {2, . . . , kε} with P
(⋃{

A ∈ J : γA ∈
[
2−k, 21−k]}) ≤ 2kε

8kε
, we

also have that every h ∈ Vm̃ satisfies

P
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ P

(⋃{
A ∈ J : γA ∈

[
2−k, 21−k

]})
≤ 2kε

8kε
.
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Combined with Lemma 34, we have that on
⋂6
j=0Ej , every h ∈ Vm̃ has

erPXY (h)− erPXY (f?PXY ) ≤ 5τ +

∫
1
[
h(x) 6= f?PXY (x)

]
2γJ(x)P(dx)

≤ 5τ + 21−kεP
(
x : h(x) 6= f?PXY (x) and γJ(x) ≤ 2−kε

)
+

kε∑
k=2

22−kP
(
x : h(x) 6= f?PXY (x) and γJ(x) ∈

[
2−k, 21−k

])
≤ 5τ + 21−kεP

(⋃{
A ∈ J : γA ≤ 2−kε

})
+

kε∑
k=2

22−k 2kε

8kε
. (25)

Next, note that
∑kε

k=2 22−k 2kε
8kε

= (kε − 1) ε
2kε
≤ ε

2 . Furthermore, since 2−kε ≤ γ̂ε/8 < γε/4,
Lemma 33 implies that, on E1,

P
(⋃{

A ∈ J : γA ≤ 2−kε
})
≤ 3ε

2γε
.

Plugging these facts into (25) reveals that, on
⋂6
j=0Ej , ∀h ∈ Vm̃,

erPXY (h)− erPXY (f?PXY ) ≤ 5τ + 21−kε 3ε

2γε
+
ε

2
≤ 5τ +

3

8
ε+

ε

2
≤ 453

512
ε < ε.

The result follows by noting that, when the budget is set to ∞, Algorithm 1 definitely
reaches m = m̃ before halting, so that ĥ∞ ∈ Vm̃.

The only remaining question is how many label requests the algorithm makes in the
process of producing this ĥ∞, so that taking a budget n of at least this size is equivalent to
having an infinite budget. This question is addressed by the following sequence of lemmas.

Lemma 39 Consider running Algorithm 1 with budget ∞. There exists an event E7 of
probability at least 1− δ/64 such that, on E1 ∩ E7, ∀k ∈ {2, . . . , kε},∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.

Proof Fix any k ∈ {2, . . . , kε}. By a Chernoff bound (applied under the conditional given
J) and the law of total probability, there is an event G7(k) of probability at least 1− δ

64kε
,

on which∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k
}∣∣∣ ≤ log2

(
64kε
δ

)
+ 2eP

(⋃{
A ∈ J : γA ≤ 21−k

})
m̃k.

Lemma 33 implies that, on E1,

P
(⋃{

A ∈ J : γA ≤ 21−k
})
≤ max

{
3P
(
x : γx < 23−k

)
,

3ε

2γε

}
.
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Therefore, on E1 ∩G7(k),∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣ ≤ ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k
}∣∣∣

≤ log2

(
64kε
δ

)
+ 6emax

{
P
(
x : γx < 23−k

)
,
ε

2γε

}
m̃k. (26)

Furthermore, since γ̂ε ≤ γε, and

ε

2γ̂ε
m̃k ≥

64

2kε γ̂ε
Log

(
64kε
δ

)
≥ 4Log

(
64kε
δ

)
≥ 2 log2

(
64kε
δ

)
,

(26) is at most(
6e+

1

2

)
max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k ≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.

Defining E7 =
⋂kε
k=2G7(k), a union bound implies E7 has probability at least 1− δ/64, and

the result follows.

Lemma 40 Consider running Algorithm 1 with budget ∞. There exists an event E8 of
probability at least 1−δ/64 such that, on E8∩

⋂4
j=0Ej, ∀k̄ ∈ {3, . . . , kε}, ∀k ∈ {2, . . . , k̄−1},∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
,

for c as in Lemma 21 and c̃ as in Lemma 23.

Proof The claim trivially holds if s = ∞, so for the remainder of the proof we suppose
s <∞. Fix any k̄ ∈ {3, . . . , kε} and k ∈ {2, . . . , k̄ − 1}, and note that∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤
∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

+
∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣ . (27)

We proceed to bound each term on the right hand side. A Chernoff bound (applied under
the conditional distribution given J) and the law of total probability imply that, on an

event G
(i)
8 (k̄, k) of probability at least 1− δ

256k2
ε
,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ log2

(
256k2

ε

δ

)
+ 2eP

(⋃{
A ∈ J : γA ≤ 2−k̄

})
m̃k,
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and Lemma 33 implies that, on E1, this is at most

log2

(
256k2

ε

δ

)
+ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k.

Now we turn to bounding the second term on the right hand side of (27). We proceed
in two steps, noting that monotonicity of m 7→ DIS(Vm) implies∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤
∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

+
∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm̃k̄)
}∣∣∣ . (28)

We start with the first term on the right of (28). Let L =
∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄

}∣∣∣,
and let `1, . . . , `L denote the increasing subsequence of values ` ∈ {1, . . . , m̃k̄} with γJ` ≥
2−k̄. Also, let j̃k̄ = max {1, dlog2 (m̃k̄/(s + Log(1/δ)))e}, let M0 = 0, and for each j ∈ N, let

Mj =

⌈
c̃2j
(
sLog

(
2j
)

+ Log

(
256k2

ε j̃k̄
δ

))⌉
,

for c̃ as in Lemma 23. Let V ?
0 = C, and for each i ≤ L, let

V ?
i =

{
h ∈ C : ∀j ∈ {1, . . . , i}, h(X2

`j
) = f?PXY (X2

`j
)
}
.

Let φs be the function mapping any U ∈ X s to the set DIS({h ∈ C : ∀x ∈ U , h(x) =
f?PXY (x)}). Fix any j ∈ N. By Theorem 13, if Mj ≤ L, then there exist i1, . . . , is ∈
{1, . . . ,Mj} such that {h ∈ C : ∀r ∈ {1, . . . , s}, h(X2

`ir
) = f?PXY (X2

`ir
)} = V ?

Mj
(see the dis-

cussion in Section 7.3.1). In particular, for this choice of i1, . . . , is, we have φs(X
2
`i1
, . . . , X2

`is
)

= DIS(V ?
Mj

); furthermore, since φs is permutation-invariant, we can take i1 ≤ · · · ≤ is

without loss of generality. Also note that X2
`1
, . . . , X2

`Mj∧L
are conditionally independent

(given L and J), each with conditional distribution P
(
·
∣∣∣⋃{A ∈ J : γA ≥ 2−k̄

})
. Since

(when Mj ≤ L) {X2
`1
, . . . , X2

`Mj
} ∩ φs(X2

`i1
, . . . , X2

`is
) = {X2

`1
, . . . , X2

`Mj
} ∩ DIS(V ?

Mj
) = ∅,

Lemma 23 (applied under the conditional distribution given L and J) and the law of total

probability imply that, on an event G
(ii)
8 (k̄, k, j) of probability at least 1− δ

256k2
ε j̃k̄

, if Mj ≤ L,

then
P
(

DIS(V ?
Mj

)
∣∣∣⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−j . (29)

Furthermore, this clearly holds for j = 0 as well. Since P
(

DIS
(
V ?
i−1

) ∣∣∣⋃{A∈J : γA≥2−k̄
})

is nonincreasing in i, for every j ≥ 0 with Mj < L, and every i ∈ {Mj + 1, . . . ,Mj+1 ∧ L},
on G

(ii)
8 (k̄, k, j), P

(
DIS

(
V ?
i−1

) ∣∣∣⋃{A ∈ J : γA ≥ 2−k̄
})
≤ 2−j . Since every j ≥ j̃k̄ has

Mj ≥ m̃k̄ ≥ L, this holds simultaneously for every j with Mj < L on
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j).

Now note that, conditioned on J and L,{
1DIS(V ?i−1)

(
X2
`i

)
− P

(
DIS

(
V ?
i−1

) ∣∣∣⋃{
A ∈ J : γA ≥ 2−k̄

})}L
i=1
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is a martingale difference sequence with respect to X2
`1
, . . . , X2

`L
. Therefore, Bernstein’s

inequality for martingales (e.g., McDiarmid, 1998, Theorem 3.12), applied under the con-
ditional distribution given J and L, along with the law of total probability, imply that

there exists an event G
(iii)
8 (k̄, k) of probability at least 1− δ

256k2
ε

such that, on G
(iii)
8 (k̄, k)∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),

L∑
i=1

1DIS(V ?i−1)

(
X2
`i

)
≤ log2

(
256k2

ε

δ

)
+ 2e

j̃k̄−1∑
j=0

2−j(Mj+1 −Mj)

≤ log2

(
256k2

ε

δ

)
+ 4e+ 4ec̃

(
sLog

(
2j̃k̄
)

+ Log

(
256k2

ε j̃k̄
δ

))
j̃k̄

≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄.

By Lemma 37, on
⋂4
j=0Ej , ∀m ∈ {1, . . . , m̃k̄},

Vm ⊆
{
h ∈ C : ∀m′ ≤ m with γJm′ ≥ 2−k̄, h(X2

m′) = f?PXY (X2
m′)
}
.

In particular, this implies V`i−1 ⊆ V ?
i−1 for all i ≤ L. Therefore, on

⋂4
j=0Ej ∩G

(iii)
8 (k̄, k) ∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),

∣∣∣{m ∈ {1, . . . , m̃k̄} : γJm ≥ 2−k̄, X2
m ∈ DIS(Vm−1)

}∣∣∣ =

L∑
i=1

1DIS(V`i−1)

(
X2
`i

)
≤

L∑
i=1

1DIS(V ?i−1)

(
X2
`i

)
≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄. (30)

Next, we turn to bounding the second term on the right hand side of (28). A Chernoff
bound (applied under the conditional distribution given Vm̃k̄ and J) and the law of total

probability imply that there is an event G
(iv)
8 (k̄, k) of probability at least 1− δ

256k2
ε
, on which

∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2
m ∈ DIS(Vm̃k̄)

}∣∣∣
≤ log2

(
256k2

ε

δ

)
+ 2eP

(
DIS

(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})

m̃k. (31)

Also, by a Chernoff bound (applied under the conditional distribution given J), with prob-
ability at least

1− exp
{
−(1/8)P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
m̃k̄

}
,

we have

L ≥ (1/2)m̃k̄P
(⋃{

A ∈ J : γA ≥ 2−k̄
})

. (32)
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If P
(⋃{

A ∈ J : γA ≥ 2−k̄
})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then

exp
{
−(1/8)P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
m̃k̄

}
≤ δ

256kε
.

Thus, by the law of total probability, there is an eventG
(v)
8 (k̄) of probability at least 1− δ

256kε
,

on which, if P
(⋃{

A ∈ J : γA ≥ 2−k̄
})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then (32) holds. Let

ĵ = max
{
j ∈

{
0, 1, . . . , j̃k̄ − 1

}
: Mj ≤ (1/2)m̃k̄P

(⋃{
A ∈ J : γA ≥ 2−k̄

})}
,

and note that

ĵ ≥

log2

 m̃k̄P
(⋃{

A ∈ J : γA ≥ 2−k̄
})

4c̃
(

2sLog
(

2j̃k̄
)

+ Log
(

256k2
ε

δ

))
 . (33)

(29) implies that on
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j), if (32) holds, we have

P
(

DIS (V ?
L )
∣∣∣⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−ĵ .

Furthermore, Lemma 37 implies that, on
⋂4
j=0Ej , Vm̃k̄ ⊆ V ?

L . Altogether, on
⋂4
j=0Ej ∩

G
(v)
8 (k̄) ∩

⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j), if P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
≥ 8

m̃k̄
Log

(
256kε
δ

)
, then

P
(

DIS
(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ 2−ĵP

(⋃{
A ∈ J : γA ≥ 2−k̄

})
≤ 8c̃

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
,

where the last inequality is by (33). Otherwise, if P
(⋃{

A∈J :γA≥2−k̄
})

< 8
m̃k̄

Log
(

256kε
δ

)
,

then in any case we have

P
(

DIS
(
Vm̃k̄

)
∩
⋃{

A ∈ J : γA ≥ 2−k̄
})
≤ P

(⋃{
A ∈ J : γA ≥ 2−k̄

})
<

8

m̃k̄

Log

(
256kε
δ

)
≤ 8c̃

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
.

Combined with (31), this implies that on
⋂4
j=0Ej∩G

(iv)
8 (k̄, k)∩G(v)

8 (k̄)∩
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),∣∣∣{m ∈ {m̃k̄ + 1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm̃k̄)
}∣∣∣

≤ log2

(
256k2

ε

δ

)
+ 16ec̃

m̃k

m̃k̄

(
2sLog

(
2j̃k̄
)

+ Log

(
256k2

ε

δ

))
≤ 32ec̃

m̃k

m̃k̄

(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ 64ec̃2k̄−k

(
sj̃k̄ + Log

(
256k2

ε

δ

))
.
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Plugging this and (30) into (28), we have that on
⋂4
j=0Ej∩G

(iii)
8 (k̄, k)∩G(iv)

8 (k̄, k)∩G(v)
8 (k̄)∩⋂j̃k̄−1

j=1 G
(ii)
8 (k̄, k, j),∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≥ 2−k̄, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 8ec̃

(
sj̃k̄ + Log

(
256k2

ε

δ

))
j̃k̄ + 64ec̃2k̄−k

(
sj̃k̄ + Log

(
256k2

ε

δ

))
= 8ec̃

(
23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
.

Combined with the above result bounding the first term in (27), we have that on
⋂4
j=0Ej ∩

G
(i)
8 (k̄, k) ∩G(iii)

8 (k̄, k) ∩G(iv)
8 (k̄, k) ∩G(v)

8 (k̄) ∩
⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),∣∣{m ∈ {1, . . . , m̃k} : X2

m ∈ DIS(Vm−1)
}∣∣

≤ log2

(
256k2

ε

δ

)
+ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 8ec̃
(

23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k + (1 + 8ec̃)

(
23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
.

(34)

Noting that s ≥ d, a bit of algebra reveals that

m̃k̄

s + Log(1/δ)
≤ 32ckε

ε
Log

(
128k2

ε

ε

)
≤ 29ck2

ε

ε3/2
,

so that

j̃k̄ ≤ log2

(
210ck2

ε

ε3/2

)
≤ 3

2
Log

(
210ck2

ε

ε3/2

)
,

and therefore

(1 + 8ec̃)
(

23+k̄−k + j̃k̄

)(
sj̃k̄ + Log

(
256k2

ε

δ

))
≤ (1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
210ck2

ε

ε3/2

))(
3

2
sLog

(
210ck2

ε

ε3/2

)
+ Log

(
256k2

ε

δ

))
≤ (1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
210ck2

ε

ε3/2

))(
3

2
sLog

(
216ck4

ε

ε3/2

)
+ Log

(
1

δ

))
.

Furthermore, since kε ≤
√

32/ε, this is at most

(1 + 8ec̃)

(
23+k̄−k +

3

2
Log

(
215c

ε5/2

))(
3

2
sLog

(
226c

ε7/2

)
+ Log

(
1

δ

))
≤ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.
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Plugging this into (34), we have that on
⋂4
j=0Ej ∩ G

(i)
8 (k̄, k) ∩ G(iii)

8 (k̄, k) ∩ G(iv)
8 (k̄, k) ∩

G
(v)
8 (k̄) ∩

⋂j̃k̄−1
j=1 G

(ii)
8 (k̄, k, j),

∣∣{m ∈ {1, . . . , m̃k} : X2
m ∈ DIS(Vm−1)

}∣∣
≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
. (35)

Letting

E8 =

kε⋂
k̄=3

G(v)
8 (k̄) ∩

k̄−1⋂
k=2

G
(i)
8 (k̄, k) ∩G(iii)

8 (k̄, k) ∩G(iv)
8 (k̄, k) ∩

j̃k̄−1⋂
j=1

G
(ii)
8 (k̄, k, j)

 ,

we have that (35) holds for all k̄ ∈ {3, . . . , kε} and k ∈ {2, . . . , k̄ − 1} on the event E8 ∩⋂4
j=0Ej . A union bound implies that E8 has probability at least

1−
kε∑
k̄=3

 δ

256kε
+

k̄−1∑
k=2

3
δ

256k2
ε

+

j̃k̄−1∑
j=1

δ

256k2
ε j̃k̄


≥ 1− δ

256
−

kε∑
k̄=3

(k̄ − 2)
δ

64k2
ε

≥ 1− δ

256
− δ

128
> 1− δ

64
.

We can now state a sufficient size on the budget n so that, with high probability,
Algorithm 1 reaches m = m̃, so that the returned ĥn is equivalent to the ĥ∞ classifier from
Lemma 38, which therefore satisfies the same guarantee on its error rate.

Lemma 41 There exists a finite universal constant c̄ ≥ 1 such that, on the event
⋂8
j=0Ej,

for any k̄ ∈ {2, . . . , kε}, for any n of size at least

c̄1[k̄ > 2]22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(36)

running Algorithm 1 with budget n results in at most n label requests, and the returned
classifier ĥn satisfies erPXY (ĥn) − erPXY (f?PXY ) ≤ ε. Furthermore, the event

⋂8
j=0Ej has

probability at least 1− δ.
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Proof The value of t keeps the running total of the number of label requests made by the
algorithm after each call to Subroutine 1. Furthermore, within each execution of Subroutine
1, the value t+ q represents the running total of the number of label requests made by the
algorithm so far. Since the n − t budget argument to Subroutine 1 ensures that it halts
(in Step 6) if ever t+ q = n, and since the first condition in Step 1 of Algorithm 1 ensures
that Algorithm 1 halts if ever t = n, we are guaranteed that the algorithm never requests
a number of labels larger than the budget n.

We will show that taking n of the stated size suffices for the result by showing that this
size suffices to reproduce the behavior of the infinite budget execution of Algorithm 1. Due
to the condition m < m̃ in Step 1 of Algorithm 1, the final value of t obtained when running
Algorithm 1 with budget ∞ may be expressed as

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
.

Lemma 35 implies that, on
⋂8
j=0Ej , this is at most

m̃∑
m=1

⌈
8

max{γ2
Jm
, 2−2k̃m}

ln

(
32m̃qε,δ

δ

)⌉
1DIS(Vm−1)

(
X2
m

)
≤

m̃∑
m=1

k̃m∑
k=2

1

[
γJm ≤ 21−k

]
22k+4 ln

(
32m̃qε,δ

δ

)
1DIS(Vm−1)

(
X2
m

)
.

The summation in this last expression is over all m ∈ {1, . . . , m̃} and k ∈ {2, . . . , kε} such
that k ≤ k̃m, which is equivalent to those m ∈ {1, . . . , m̃} and k ∈ {2, . . . , kε} such that
m ≤ m̃k. Therefore, exchanging the order of summation, this expression is equal to

kε∑
k=2

m̃k∑
m=1

1

[
γJm ≤ 21−k

]
22k+4 ln

(
32m̃qε,δ

δ

)
1DIS(Vm−1)

(
X2
m

)
=

kε∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣ . (37)

Fix any value k̄ ∈ {2, . . . , kε}. For any k ∈
{
k̄, . . . , kε

}
, Lemma 39 implies that, on

⋂8
j=0Ej ,

∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤ 17 max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k.
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This implies

kε∑
k=k̄

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤

kε∑
k=k̄

22k+9 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
m̃k

≤
kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

}
2k+17ckε

ε

(
dLog

(
2kε
ε

)
+Log

(
64kε
δ

))
Log

(
32m̃qε,δ

δ

)

≤
kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

} 2k+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+Log

(
1

δ

))
Log

(
32cd

εδ

)
,

(38)

where this last inequality is based on the fact that kε ≤
√

32/ε, combined with some simple
algebra. If k̄ > 2, for any k ∈

{
2, . . . , k̄ − 1

}
, Lemma 40 implies that, on

⋂8
j=0Ej ,∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2

m ∈ DIS(Vm−1)
}∣∣∣

≤ 6emax

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+ 91c̃

(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.

This implies

k̄−1∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤

k̄−1∑
k=2

22k+9 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

}
m̃k

+
k̄−1∑
k=2

22k+11c̃ ln

(
32m̃qε,δ

δ

)(
21+k̄−k + Log

(
64c

ε

))(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
.

Since

k̄−1∑
k=2

22km̃k ≤
k̄−1∑
k=2

2k+8ckε
ε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))

≤ 2k̄+8ckε
ε

(
dLog

(
2kε
ε

)
+ Log

(
64kε
δ

))
≤ 2k̄+12cLog(1/γ̂ε)

ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
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and

k̄−1∑
k=2

22k

(
21+k̄−k + Log

(
64c

ε

))
≤ 22k̄

(
2 + Log

(
64c

ε

))
≤ 22k̄+1Log

(
64c

ε

)
,

we have that

k̄−1∑
k=2

22k+4 ln

(
32m̃qε,δ

δ

) ∣∣∣{m ∈ {1, . . . , m̃k} : γJm ≤ 21−k, X2
m ∈ DIS(Vm−1)

}∣∣∣
≤ 29 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} k̄−1∑
k=2

22km̃k

+ 211c̃ ln

(
32m̃qε,δ

δ

)(
6sLog

(
128c

ε

)
+ Log

(
1

δ

)) k̄−1∑
k=2

22k

(
21+k̄−k + Log

(
64c

ε

))

≤ 29 ln

(
32m̃qε,δ

δ

)
max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+12cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
+ 211c̃ ln

(
32m̃qε,δ

δ

)(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
22k̄+1Log

(
64c

ε

)

≤ max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
Log

(
32cd

εδ

)
+ 22k̄+16c̃

(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
Log

(
64c

ε

)
Log

(
32cd

εδ

)
.

Plugging this and (38) into (37) reveals that, on
⋂8
j=0Ej , if k̄ > 2,

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
≤ max

{
P
(
x : γx < 22−k̄

)
,
ε

2γε

} 2k̄+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+ Log

(
1

δ

))
Log

(
32cd

εδ

)
+ 22k̄+16c̃

(
6sLog

(
128c

ε

)
+ Log

(
1

δ

))
Log

(
64c

ε

)
Log

(
32cd

εδ

)

+

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

2γ̂ε

} 2k+25cLog
(

1
γ̂ε

)
ε

(
dLog

(
64

ε

)
+Log

(
1

δ

))
Log

(
32cd

εδ

)
.

≤ c̄22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,
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for an appropriate finite universal constant c̄ ≥ 1. Furthermore, if k̄ = 2, (38) and (37)
already imply that, on

⋂8
j=0Ej ,

m̃∑
m=1

q̂∞,m1DIS(Vm−1)

(
X2
m

)
≤ c̄

kε∑
k=k̄

max

{
P
(
x : γx < 23−k

)
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

again for c̄ ≥ 1 chosen appropriately large.

Therefore, for a choice of c̄ as above, on
⋂8
j=0Ej , for any k̄ ∈ {2, . . . , kε}, the final value

of t obtained when running Algorithm 1 with budget ∞ is at most (36). Since running
Algorithm 1 with a finite budget n only returns a different ĥn from the ĥ∞ returned by the
infinite-budget execution if t would exceed n in the infinite-budget execution, this implies
that taking any n of size at least (36) suffices to produce identical output to the infinite-
budget execution, on the event

⋂8
j=0Ej : that is, ĥn = ĥ∞. Therefore, since Lemma 38

implies that, on
⋂8
j=0Ej , erPXY (ĥ∞)− erPXY (f?PXY ) ≤ ε, we conclude that for n of size at

least (36), on
⋂8
j=0Ej , erPXY (ĥn)− erPXY (f?PXY ) ≤ ε.

Finally, by a union bound, the event
⋂8
j=0Ej has probability at least

1− 0− δ

2
− δ

512
− δ

4
− δ

32
− 4

δ

64
> 1− δ.

We can obtain the upper bounds for Theorems 4, 5, and 7 from Section 5 by straightfor-
ward applications of Lemma 41. Note that, due to the choice of γ̂ε in each of these proofs,
Algorithm 1 is not adaptive to the noise parameters. It is conceivable that this dependence
can be removed by a model selection procedure (see Balcan and Hanneke, 2012; Hanneke,
2011, for discussions related to this). However, we do not discuss this further here, leaving
this important issue for future work. The upper bounds for Theorems 6 and 8 are based on
known results for other algorithms in the literature, though the lower bound for Theorem 6
is new here. The remainder of this section provides the details of these proofs.

Proof of Theorem 4 Fix any β ∈ [0, 1/2), ε, δ ∈ (0, 1), and PXY ∈ BN(β). Any
γ < 1/2 − β has P(x : γx ≤ γ) = 0, and since we always have γε ≥ ε/2, we must have
γε ≥ max{1/2−β, ε/2}. We may therefore take γ̂ε = max{1/2−β, ε/2}. Therefore, taking
k̄ = kε in Lemma 41, the first term in (36) is at most

210c̄

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
,

while the second term in (36) is at most

c̄max

{
P (x : γx < γ̂ε) ,

ε

γ̂ε

}
16

γ̂εε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
.
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Since P (x : γx < 1/2− β) = 0 < ε
1/2−β and P (x : γx < ε/2) ≤ 1 < 2 = ε

ε/2 , we have that

P (x : γx < γ̂ε) <
ε
γ̂ε

, so that the above is at most

64c̄

(1− 2β)2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
2

(1− 2β) ∨ ε

)
.

Therefore, recalling that s ≥ d, since Lemma 41 implies that, with any budget n at least the
size of the sum of these two terms, Algorithm 1 produces a classifier ĥn with erPXY (ĥn)−
erPXY (f?PXY ) ≤ ε with probability at least 1 − δ, and requests a number of labels at most
n, we have that

ΛBN(β)(ε, δ) ≤
210c̄

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+

64c̄

(1− 2β)2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
2

(1− 2β) ∨ ε

)
.

1

(1− 2β)2

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
.

On the other hand, Giné and Koltchinskii (2006) have shown that for the passive
learning method of empirical risk minimization, producing a classifier ȟn satisfying ȟn =
argminh∈C

∑n
m=1 1[h(Xm) 6= Ym], if n is of size at least

č

(1− 2β)ε

(
dLog

(
θPXY

(
ε

1− 2β

))
+ Log

(
1

δ

))
,

for an appropriate finite universal constant č, then with probability at least 1− δ, we have
erPXY (ȟn) − erPXY (f?PXY ) ≤ ε. Therefore, since Theorem 10 implies θPXY (ε/(1 − 2β)) ≤
θPXY ((ε/(1− 2β)) ∧ 1) ≤ min

{
s, 1−2β

ε ∨ 1
}

, it follows that

ΛBN(β)(ε, δ) .
1

(1− 2β)ε

(
dLog

(
min

{
s,

1− 2β

ε

})
+ Log

(
1

δ

))
.

Together, these two bounds on ΛBN(β)(ε, δ) imply the following upper bound, simply by
choosing whichever of these two methods has the smaller corresponding bound for the
given values of ε, δ, β, d, and s.

ΛBN(β)(ε, δ) . min


1

(1−2β)2

(
sLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
d
εδ

)
Log

(
1
ε

)
1

(1−2β)ε

(
dLog

(
min

{
s, 1−2β

ε

})
+ Log

(
1
δ

)) .

The statement of the upper bound in Theorem 4 represents a relaxation of this, in that it is
slightly larger (in the logarithmic factors), the intention being that it is a simpler expression
to state. To arrive at this relaxation, we note that sLog

(
1
ε

)
+ Log

(
1
δ

)
≤ sLog

(
1
εδ

)
, and

dLog
(

min
{
s, 1−2β

ε

})
+ Log

(
1
δ

)
≤ dLog

(
1
εδ

)
Log

(
d
εδ

)
Log

(
1
ε

)
, so that the above is at most

1

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
.
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Next, we turn to establishing the lower bound. Fix ε ∈ (0, (1 − 2β)/24) and δ ∈
(0, 1/24]. First note that taking ζ = 2ε

1−2β and k = min {s− 1, b1/ζc} in Lemma 26, we
have RR(k, ζ, β) ⊆ BN(β), so that Lemma 26 implies

ΛBN(β)(ε, δ) ≥ ΛRR(k,ζ,β)(ε, δ) = ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ) ≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

≥ min

{
s− 2,

1− 2ζ

ζ

}
β ln

(
1
4δ

)
3(1− 2β)2

=
β

(1− 2β)2
min

{
s− 2,

1− 2β − 4ε

2ε

}
ln

(
1

4δ

)
.

≥ β

8(1− 2β)2
min

{
s− 2,

1− 2β

ε

}
Log

(
1

δ

)
. (39)

Additionally, based on techniques of Kääriäinen (2006); Beygelzimer, Dasgupta, and
Langford (2009); Hanneke (2011), the recent article of Hanneke (2014) contains the following
lower bound (in the proof of Theorem 4.3 there), for ε ∈ (0, (1− 2β)/24) and δ ∈ (0, 1/24].

ΛBN(β)(ε, δ) ≥ max

{
2

⌊
1− (1− 2β)2

2(1− 2β)2
ln

(
1

8δ(1− 2δ)

)⌋
,
d− 1

6

⌊
1− (1− 2β)2

2(1− 2β)2
ln

(
9

8

)⌋}
≥ max

{
2

⌊
β

(1− 2β)2
Log

(
1

8δ

)⌋
,
d− 1

6

⌊
β

10(1− 2β)2

⌋}
.

If β
(1−2β)2 Log

(
1
8δ

)
≥ 1, then 2

⌊
β

(1−2β)2 Log
(

1
8δ

)⌋
≥ β

(1−2β)2 Log
(

1
8δ

)
≥ β

3(1−2β)2 Log
(

1
δ

)
,

so that ΛBN(β)(ε, δ) & β
(1−2β)2 Log

(
1
δ

)
. Otherwise, if β

(1−2β)2 Log
(

1
8δ

)
< 1, then since

RE ⊆ BN(β), and |C| ≥ 2 implies d ≥ 1 > β
(1−2β)2 Log

(
1
8δ

)
, Theorem 3 (proven above)

implies we still have ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & β
(1−2β)2 Log

(
1
δ

)
in this case. When d = 1,

these observations further imply ΛBN(β) & dβ
(1−2β)2 . On the other hand, if d > 1, and if

β
10(1−2β)2 ≥ 1, then d−1

6

⌊
β

10(1−2β)2

⌋
≥ d

240
β

(1−2β)2 , so that ΛBN(β)(ε, δ) &
dβ

(1−2β)2 . Otherwise,

if β
10(1−2β)2 < 1, then since RE ⊆ BN(β), Theorem 3 implies we still have ΛBN(β)(ε, δ) ≥

ΛRE(ε, δ) & d & dβ
(1−2β)2 in this case as well. If β > 1/4, then dβ

(1−2β)2 ≥ d
4(1−2β)2 & d

(1−2β)2 ,

so that ΛBN(β)(ε, δ) &
d

(1−2β)2 . Otherwise, if β ≤ 1/4, then 1
(1−2β)2 ≤ 4, so that Theorem 3

implies ΛBN(β)(ε, δ) ≥ ΛRE(ε, δ) & d & d
(1−2β)2 . Altogether, we have that

ΛBN(β)(ε, δ) &
1

(1− 2β)2
max

{
βLog

(
1

δ

)
, d

}
. (40)

When s ≤ 2, min
{
s, 1−2β

ε

}
≤ 2, so that (40) trivially implies

ΛBN(β)(ε, δ) &
1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
βLog

(
1

δ

)
, d

}
. (41)

Otherwise, when s ≥ 3, we have s− 2 ≥ s/3, so that min
{
s− 2, 1−2β

ε

}
≥ 1

3 min
{
s, 1−2β

ε

}
.

Combined with (39) and (40), this implies (41) holds in this case as well.

3558



Minimax Analysis of Active Learning

Proof of Theorem 5 We begin with the upper bounds. Fix any a ∈ [1,∞), α ∈ (0, 1),

ε, δ ∈ (0, 1), and PXY ∈ TN(a, α). For any γ ≤
(
ε

2a′

)1−α
, by definition of TN(a, α), we have

γP (x : γx ≤ γ) ≤ a′γ1/(1−α) ≤ ε/2. Therefore, since we always have γε ≥ ε/2, we have

γε ≥ max
{(

ε
2a′

)1−α
, ε2

}
, so that we can take γ̂ε = max

{(
ε

2a′

)1−α
, ε2

}
.

Therefore, taking k̄ = 2 in Lemma 41 implies that, with any budget n of size at least

c̄

kε∑
k=2

max

{
min

{
a′2(3−k)α/(1−α), 1

}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(42)
Algorithm 1 produces a classifier ĥn with erPXY (ĥn) − erPXY (f?PXY ) ≤ ε with probability
at least 1− δ, and requests a number of labels at most n. This implies ΛTN(a,α)(ε, δ) is at
most (42).

First note that

kε∑
k=2

ε

γ̂ε

2k

ε
≤ 21+kε

γ̂ε
=

2dlog2(16/γ̂ε)e

γ̂ε
≤ 32

γ̂2
ε

≤ 32 min
{(

2a′
)2−2α

ε2α−2, 4ε−2
}

= 32 min
{

(2− 2α)2−2α(2α)2αa2ε2α−2, 4ε−2
}
≤ 128 min

{
a2ε2α−2, ε−2

}
. (43)

Furthermore, since ε−2<a2ε2α−2 only if ε>a−1/α, this is at most 128 min
{
a2ε2α−2, a1/αε−1

}
.

Also, for α ≥ 1/2, letting k(a,α) =
⌈
log2

(
8 (a′)(1−α)/α

)⌉
, we have k(a,α) ≥ 2. Additionally,

for α ≥ 1/2, 2k
1−2α
1−α is nonincreasing in k. In particular, if k(a,α) = 2, then

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

kε∑
k=k(a,α)

8a′

ε
2(k−3) 1−2α

1−α ≤ 8kε
ε

(a′)
1−α
α .

Otherwise, if k(a,α) ≥ 3, then

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

k(a,α)−1∑
k=2

2k

ε
+

kε∑
k=k(a,α)

8a′

ε
2(k−3) 1−2α

1−α .

≤ 16

ε
(a′)

1−α
α +

8(kε − 2)

ε
(a′)

1−α
α =

8kε
ε

(a′)
1−α
α .

Furthermore, since (1− α)
1−α
α ≤ 1, we have

8kε
ε

(a′)
1−α
α =

8kε
ε

(1− α)
1−α
α (2α)a1/α ≤ 16kε

ε
a1/α.

Therefore, in either case, when α ≥ 1/2, (42) is at most

c̄
(

16kεa
1/αε−1 + 128a1/αε−1

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 767c̄

a1/α

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log2

(
1

ε

)
,
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which is therefore an upper bound on ΛTN(a,α)(ε, δ) in this case.

Otherwise, if α ≤ 1/2, then 2k
1−2α
1−α is nondecreasing in k, so that

kε∑
k=2

min
{
a′2(3−k)α/(1−α), 1

} 2k

ε
≤

kε∑
k=2

8a′2(k−3) 1−2α
1−α

1

ε
≤ (kε − 1)8a′2(kε−3) 1−2α

1−α
1

ε

≤ (kε − 1)8a′
(

2

γ̂ε

) 1−2α
1−α 1

ε
≤ (kε − 1)8a′2

1−2α
1−α

(
2a′
)1−2α

(
1

ε

)2−2α

≤ (kε − 1)32

(
a′

ε

)2−2α

= (kε − 1)32(1− α)2−2α(2α)2αa2ε2α−2 ≤ (kε − 1)32a2ε2α−2.

Therefore, (42) is at most

c̄
(
(kε − 1)32a2ε2α−2 + 128a2ε2α−2

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 832c̄a2ε2α−2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log2

(
1

ε

)
.

In particular, this implies ΛTN(a,α)(ε, δ) is at most this large when α ≤ 1/2. Furthermore,
this completes the proof of the upper bound for the cases where either α ≤ 1/2, or α ≥ 1/2
and s

d ≥
1

a1/αε
.

Next, consider the remaining case that α ≥ 1/2 and s
d < 1

a1/αε
. In particular, this

requires that s <∞, and since s ≥ d, that ε < a−1/α. In this case, let us take

k̄ = 3 +

⌈
(1− α) log2

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))⌉ .
Since s ≥ d, we have

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
≤ sLog( 1

ε)
dLog( 1

ε)
= s

d , so that, since s
d < 1

a1/αε
, we have

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
< 1

a1/αε
. A bit of algebra reveals that, in this case, k̄ ≥ 2. Therefore, in this

case, Lemma 41 implies that, with any budget n of size at least

c̄22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+

c̄

kε∑
k=k̄

max

{
min

{
a′2(3−k)α/(1−α), 1

}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(44)

Algorithm 1 produces a classifier ĥn with erPXY (ĥn) − erPXY (f?PXY ) ≤ ε with probability
at least 1− δ, and requests a number of labels at most n. This implies ΛTN(a,α)(ε, δ) is at
most (44).
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Now note that

22k̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 256

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))2−2α(
sLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 1024a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Also, since α ≥ 1/2, 2k
1−2α
1−α is nonincreasing in k, so that

kε∑
k=k̄

a′2(3−k)α/(1−α) 2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 8a′kε

ε
2(k̄−3) 1−2α

1−α

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 8a′kε

ε

(
kεa
′

8ε

dLog
(

1
ε

)
+ Log

(
1
δ

)
sLog

(
1
ε

)
+ Log

(
1
δ

))1−2α(
dLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 256a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Furthermore, by (43),

c̄

kε∑
k=k̄

ε

γ̂ε

2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ 128a2

(
1

ε

)2−2α(
dLog

(
1

ε

)
+ Log

(
1

δ

))

≤ 128a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log2−2α

(
1

ε

)
.

Therefore, since Log
(

1
γ̂ε

)
≤ Log

(
2
ε

)
≤ 2Log

(
1
ε

)
, (44) is at most

211c̄a2

(
1

ε

)2−2α
(
sLog

(
1
ε

)
+ Log

(
1
δ

)
dLog

(
1
ε

)
+ Log

(
1
δ

))2α−1(
dLog

(
1

ε

)
+Log

(
1

δ

))
Log

(
d

εδ

)
Log3−2α

(
1

ε

)
.

(45)
The upper bound for the case α ≥ 1/2 and s

d < 1
a1/αε

then follows by further relaxing

this (purely to simplify the theorem statement), noting that Log3−2α
(

1
ε

)
≤ Log2

(
1
ε

)
, and

sLog( 1
ε)+Log( 1

δ )
dLog( 1

ε)+Log( 1
δ )
≤ s

d .

Next, we turn to establishing the lower bound. Fix any a ∈ [4,∞), α ∈ (0, 1), δ ∈
(0, 1/24], and ε ∈

(
0, 1/(24a1/α)

)
. For this range of values, the recent article of Hanneke

(2014) proves a lower bound of

ΛTN(a,α)(ε, δ) & a2

(
1

ε

)2−2α(
d+ Log

(
1

δ

))
,
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based on techniques of Kääriäinen (2006); Beygelzimer, Dasgupta, and Langford (2009);
Hanneke (2011). It remains only to establish the remaining term in the lower bound for
the case when α > 1/2, via Lemma 26. In the cases that s ≤ 2, this term is implied by
the above a2ε2α−2Log

(
1
δ

)
lower bound. For the remainder of the proof, suppose s ≥ 3 and

α > 1/2. Let

k = min

{
s− 1,

⌊
(a′)

α−1
α

ε

⌋
,

⌊
a′

ε
4−

1
1−α

⌋}
,

β = 1
2 −

(
kε
a′

)1−α
, and ζ = 2ε

1−2β ; note that ζ ∈ (0, 1], β ∈ [0, 1/2), and 2 ≤ k ≤
min{s−1, b1/ζc}; in particular, the fact that k ≤ b1/ζc is established by concavity of

the x 7→ (a′)α−1

εα x1−α function, which equals x at both x = 0 and x = x0 = (a′)
α−1
α

ε ; since
this function is 1/ζ at x = k, and 0 < k ≤ x0, concavity of the function implies 1/ζ ≥ k,
and integrality of k implies b1/ζc ≥ k as well. Also note that any PXY ∈ RR(k, ζ, β) has a
marginal distribution P such that

P (x : |η(x;PXY )− 1/2| ≤ 1/2− β) = kζ = kε
2

1− 2β

= a′ (1/2− β)
1

1−α
2

1− 2β
= a′ (1/2− β)

α
1−α .

Since every point x in the support of Pk,ζ has either |η(x;PXY ) − 1/2| = 1/2 − β or
|η(x;PXY )−1/2|=1/2, this implies that any γ∈ [1/2−β, 1/2) has P(x : |η(x;PXY )−1/2|≤γ)

= P (x : |η(x;PXY )− 1/2| ≤ 1/2− β) = a′ (1/2− β)α/(1−α) ≤ a′γα/(1−α), while any γ ≥
1/2 always has P (x : |η(x;PXY )− 1/2| ≤ γ) = 1 ≤ a′γα/(1−α). Furthermore, any γ ∈
(0, 1/2 − β) has P(x : |η(x;PXY ) − 1/2| ≤ γ) = 0 ≤ a′γα/(1−α). Thus, PXY ∈ TN(a, α)
as well. Since this holds for every PXY ∈ RR(k, ζ, β), this implies RR(k, ζ, β) ⊆ TN(a, α).
Therefore, Lemma 26 implies

ΛTN(a,α)(ε, δ) ≥ ΛRR(k,ζ,β)(ε, δ) = ΛRR(k,ζ,β)((ζ/2)(1− 2β), δ)

≥
β(k − 1) ln

(
1
4δ

)
3(1− 2β)2

&
β(k − 1)

(1− 2β)2
Log

(
1

δ

)
. (46)

Finally, note that

β(k − 1)

(1− 2β)2
=

(
1

2
−
(
kε

a′

)1−α
)

1

4

(
a′

kε

)2−2α

(k − 1) ≥ 1

16

(
a′

ε

)2−2α

k2α−2(k − 1)

≥ 1

32

(
a′

ε

)2−2α

(k − 1)2α−1 ≥ a2

64

(
1

ε

)2−2α

(k − 1)2α−1. (47)

Since a ≥ 4,(
a′
)α−1

α = a′
(
a′
)−1/α

= a′(1− α)−1/α(2α)−1/(1−α)a
− 1
α(1−α)

≤ a′(1− α)−1/α(2α)−1/(1−α)4
− 1
α(1−α) = a′

(
41/α(1− α)(1−α)/α(2α)

)−1/(1−α)
.
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One can easily verify that 41/α(1 − α)(1−α)/α(2α) ≥ 6 for α ∈ (1/2, 1) (with minimum

achieved at α = 3/4), so that a′
(
41/α(1− α)(1−α)/α(2α)

)−1/(1−α)≤a′6−1/(1−α)≤a′4−1/(1−α).

Thus, (a′)
α−1
α

ε ≤ a′

ε 4−
1

1−α , so that the third term in the definition of k is redundant. There-
fore, (47) is at least

a2

64

(
1

ε

)2−2α

min

{
s− 2,

(a′)
α−1
α

ε
− 2

}2α−1

≥ a2

64

(
1

ε

)2−2α

min

{
s− 2,

1

2a1/αε
− 2

}2α−1

≥ a2

64

(
1

ε

)2−2α

min

{
s

3
,

1

3a1/αε

}2α−1

≥ a2

192

(
1

ε

)2−2α

min

{
s,

1

a1/αε

}2α−1

.

Plugging this into (46) completes the proof.

As an aside, we note that it is possible to improve the logarithmic factors in the upper
bound in Theorem 5. One clear refinement comes from using (45) directly (rather than
relaxing the factor depending on s). We can further reduce the bound by another logarithmic

factor when α is bounded away from 1/2 by noting that the summations of terms 2(k−3) 1−2α
1−α

in the above proof are geometric in that case. We also note that, for very large values of a,
the bounds (proven below) for ΛBE(1/2)(ε, δ) may be more informative than those derived
above.
Proof of Theorem 6 The technique leading to Lemma 41 does not apply to BC(a, α),
since we are not guaranteed f?PXY ∈ C for PXY ∈ BC(a, α). We therefore base the upper
bounds in Theorem 6 directly on existing results in the literature, in combination with
Theorem 10. Thus, the proof of this upper bound does not provide any new insights on
improving the design of active learning algorithms for distributions in BC(a, α). Rather, it
merely re-expresses the known results, in terms of the star number instead of a distribution-
dependent complexity measure. The lower bounds are directly inherited from Theorem 5.

Fix any a ∈ [1,∞), α ∈ [0, 1], and ε, δ ∈ (0, 1). Following the work of Hanneke (2009a,
2011) and Koltchinskii (2010), the recent work of Hanneke and Yang (2012) studies an
algorithm proposed by Hanneke (2012) (a modified variant of the A2 algorithm of Balcan,
Beygelzimer, and Langford, 2006, 2009), and shows that there exists a finite universal
constant c̊ ≥ 1 such that, for any PXY ∈ BC(a, α), for any budget n of size at least

c̊a2

(
1

ε

)2−2α

θPXY (aεα)

(
dLog (θPXY (aεα)) + Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
, (48)

the algorithm produces a classifier ĥn with erPXY (ĥn)−infh∈C erPXY (h) ≤ ε with probability
at least 1−δ/4, and requests a number of labels at most n (see also Hanneke, 2009b,a, 2011,
2012, 2014; Koltchinskii, 2010, for similar results for related methods). By Theorem 10,
when aεα ≤ 1, (48) is at most

c̊a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
min

{
s,

1

aεα

})
+ Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
, (49)

which is therefore an upper bound on ΛBC(a,α)(ε, δ). We can also extend this to the case
aεα > 1 as follows. Vapnik and Chervonenkis (1971); Vapnik (1982, 1998) have proven that
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the sample complexity of passive learning satisfies

MAG(1)(ε, δ) .
1

ε2

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
.

In the case aεα > 1, this is at most

a

(
1

ε

)2−α(
dLog

(
1

ε

)
+ Log

(
1

δ

))
= a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
1

ε

)
+ Log

(
1

δ

))
≤ a2

(
1

ε

)2−2α

min

{
s,

1

aεα

}(
dLog

(
min

{
s,

1

aεα

})
+ Log

(
Log(1/ε)

δ

))
Log

(
1

ε

)
.

Therefore, since ΛAG(1)(ε, δ) ≤MAG(1)(ε, δ) and BC(a, α) ⊆ AG(1), we may conclude that,
regardless of whether aεα is greater than or less than 1, we have that ΛBC(a,α)(ε, δ) is
bounded by a value proportional to (49). To match the form of the upper bound stated in

Theorem 6, we can simply relax this, noting that dLog
(
min

{
s, 1
aεα

})
+ Log

(
Log(1/ε)

δ

)
≤

2dLog
(

1
ε

)
+ Log

(
1
δ

)
≤ 2dLog

(
1
εδ

)
.

Next, turning to the lower bound, recall that TN(a, α) ⊆ BC(a, α), so that ΛTN(a,α)(ε, δ)
≤ ΛBC(a,α)(ε, δ) (Mammen and Tsybakov, 1999; Tsybakov, 2004). Thus, the lower bound
in Theorem 5 (proven above) for ΛTN(a,α)(ε, δ) also applies to ΛBC(a,α)(ε, δ).

Proof of Theorem 7 Again, we begin with the upper bound. Fix any ν ∈ [0, 1/2],
ε, δ ∈ (0, 1), and PXY ∈ BE(ν). The case ν = 0 is already addressed by the upper bound
in Theorem 3; we therefore focus the remainder of the proof on the case of ν > 0. For
(X,Y ) ∼ PXY , any x ∈ X has 1 − 2P(Y 6= f?PXY (X)|X = x) = 2γx. Therefore, for any
γ ∈ [0, 1/2), any x ∈ X with γx ≤ γ has P(Y 6= f?PXY (X)|X = x) ≥ 1/2−γ. Thus, Markov’s
inequality implies

P(x : γx ≤ γ) ≤ P(x : P(Y 6= f?PXY (X)|X = x) ≥ 1/2−γ) ≤ 2

1− 2γ
erPXY (f?PXY ) ≤ 2ν

1− 2γ
.

(50)

In particular, this implies that for γ ≤ ε
4ν+2ε , γP(x : γx ≤ γ) ≤ 2νγ

1−2γ ≤
2ν/(2ν+ε)

1−ε/(2ν+ε)
ε
2 = ε

2 .

Thus, γε ≥ ε
4ν+2ε . We can therefore take γ̂ε = max

{
ε

4ν+2ε ,
ε
2

}
.

Also note that any γ ≥ 0 has P(x : γx ≤ γ) ≤ 1, so that together with (50), we have
P(x : γx ≤ γ) ≤ 2ν

1−min{2γ,1−2ν} . Now taking k̄ = 2, Lemma 41 implies that, with any
budget n of size at least

c̄

kε∑
k=2

max

{
2ν

1−min {24−k, 1− 2ν}
,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
,

(51)
Algorithm 1 produces a classifier ĥn with erPXY (ĥn)− erPXY (f?PXY ) ≤ ε with probability at
least 1− δ, and requests a number of labels at most n. This implies ΛBE(ν)(ε, δ) is at most
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(51). Now note that
kε∑
k=2

ε

γ̂ε

2k

ε
≤ 1

γ̂ε
21+kε ≤ 512

(
ν + ε

ε

)2

. (52)

Next, we have

kε∑
k=2

2ν

1−min {24−k, 1− 2ν}
2k

ε
≤ 28

ε
+

kε∑
k=5

2ν

1− 24−k
2k

ε
≤ 28

ε
+

kε∑
k=5

4ν

ε
2k

≤ 28

ε
+

4ν

ε
21+kε ≤ 28

ε
+

128ν

εγ̂ε
≤ 28

ε
+ 512

(
ν + ε

ε

)2

.

Therefore, (51) is at most

210c̄

((
ν + ε

ε

)2

+
1

ε

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)

≤ 2103c̄

((
ν + ε

ε

)2

+
1

ε

)(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
ν + ε

ε

)
. (53)

Next, consider taking k̄ = 5. Lemma 41 implies that, with any budget n of size at least

210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ c̄

kε∑
k=5

max

{
2ν

1− 24−k ,
ε

γ̂ε

}
2k

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
, (54)

Algorithm 1 produces a classifier ĥn with erPXY (ĥn)− erPXY (f?PXY ) ≤ ε with probability at
least 1− δ, and requests a number of labels at most n. This implies ΛBE(ν)(ε, δ) is at most
(54). As above, we have

kε∑
k=5

2ν

1− 24−k
2k

ε
≤ 512

(
ν + ε

ε

)2

.

Combined with (52), this implies (54) is at most

210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ 210c̄

(
ν + ε

ε

)2(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

γ̂ε

)
≤ 210c̄

(
sLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
1

ε

)
+ 2103c̄

(
ν + ε

ε

)2(
dLog

(
1

ε

)
+ Log

(
1

δ

))
Log

(
d

εδ

)
Log

(
ν + ε

ε

)
. (55)

In particular, when
(
sLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
1
ε

)
< 3

ε

(
dLog

(
1
ε

)
+ Log

(
1
δ

))
Log

(
ν+ε
ε

)
, this

is smaller than (53). Thus, the minimum of these two expressions upper bounds ΛBE(ν)(ε, δ).
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To simplify the expression of this bound into the form given in the statement of The-
orem 7, we note that dLog

(
1
ε

)
+ Log

(
1
δ

)
≤ dLog

(
1
εδ

)
, sLog

(
1
ε

)
+ Log

(
1
δ

)
≤ sLog

(
1
εδ

)
,

Log
(
ν+ε
ε

)
≤ Log

(
1
ε

)
,
(
ν+ε
ε

)2 ≤ 4max{ν,ε}2
ε2

≤ 4
(
ν2

ε2
+ 1
)

, and d ≤ min
{
s, dε
}

, so that the

minimum of (53) and (55) is at most

2123c̄

((
ν2

ε2
+ 1

)
d+ min

{
s,
d

ε

})
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
≤ 2133c̄

(
ν2

ε2
d+ min

{
s,
d

ε

})
Log

(
d

εδ

)
Log

(
1

εδ

)
Log

(
1

ε

)
.

This completes the proof of the upper bound.

Next, we turn to establishing the lower bound. Fix ν ∈ [0, 1/2), ε ∈ (0, (1 − 2ν)/24),
and δ ∈ (0, 1/24]. Based on the works of Kääriäinen (2006); Hanneke (2007a); Beygelzimer,
Dasgupta, and Langford (2009), the recent article of Hanneke (2014) contains the following
lower bound (in the proof of Theorem 4.3 there), letting γ = 12ε

ν+12ε .

ΛBE(ν)(ε, δ) ≥ max

{
2

⌊
1− γ2

2γ2
ln

(
1

8δ(1− 2δ)

)⌋
,
d− 1

6

⌊
1− γ2

2γ2
ln

(
9

8

)⌋}
≥ max

{
2

⌊
1− γ2

2γ2
ln

(
1

8δ

)⌋
,
d− 1

6

⌊
1− γ2

17γ2

⌋}
(56)

If 1−γ2

2γ2 ln
(

1
8δ

)
≥ 1, then 2

⌊
1−γ2

2γ2 ln
(

1
8δ

)⌋
≥ 1−γ2

2γ2 ln
(

1
8δ

)
, so that (56) implies ΛBE(ν)(ε, δ) &

1−γ2

γ2 Log
(

1
δ

)
. Otherwise, if 1−γ2

2γ2 ln
(

1
8δ

)
< 1, then since RE ⊆ BE(ν), and |C| ≥ 2 implies

d ≥ 1 > 1−γ2

2γ2 ln
(

1
8δ

)
, Theorem 3 (proven above) implies ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & d &

1−γ2

γ2 Log
(

1
δ

)
in this case as well. If d = 1, these observations further imply ΛBE(ν)(ε, δ) &

d1−γ2

γ2 . On the other hand, if d ≥ 2, and if 1−γ2

17γ2 ≥ 1, then d−1
6

⌊
1−γ2

17γ2

⌋
≥ d

408
1−γ2

γ2 , so

that (56) implies ΛBE(ν)(ε, δ) & d1−γ2

γ2 . Otherwise, if 1−γ2

17γ2 < 1, then since RE ⊆ BE(ν),

Theorem 3 implies we still have ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & d & d1−γ2

γ2 in this case as well.
Altogether, we have that

ΛBE(ν)(ε, δ) &
1− γ2

γ2
max

{
d,Log

(
1

δ

)}
&

1− γ2

γ2

(
d+ Log

(
1

δ

))
. (57)

When ν ≥ 12ε, γ ≤ 1/2, so that (57) implies

ΛBE(ν)(ε, δ) &
1

γ2

(
d+ Log

(
1

δ

))
=

(
ν + 12ε

12ε

)2(
d+ Log

(
1

δ

))
&
ν2

ε2

(
d+ Log

(
1

δ

))
.

Otherwise, if ν < 12ε, then

1− γ2

γ2
=

(1− γ)(1 + γ)

γ2
=

(
ν + 12ε

12ε

)2( ν

ν + 12ε

)(
ν + 24ε

ν + 12ε

)
≥ ν

ν + 12ε
≥ ν

12ε
≥ ν2

144ε2
.

(58)
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Therefore, if ν < 12ε, (57) implies that ΛBE(ν)(ε, δ) &
ν2

ε2

(
d+ Log

(
1
δ

))
in this case as well.

It remains only to establish the final term in the lower bound. For this, we simply note that
RE ⊆ BE(ν), so that Theorem 3 implies ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & min

{
s, 1
ε

}
. Combining

these results implies

ΛBE(ν)(ε, δ) & max

{
ν2

ε2

(
d+ Log

(
1

δ

))
,min

{
s,

1

ε

}}
&
ν2

ε2

(
d+ Log

(
1

δ

))
+ min

{
s,

1

ε

}
.

Examining the proof of the lower bound for ΛBE(ν)(ε, δ), we note that this argument
also establishes a slightly stronger lower bound in the case ε > ν. Specifically, if we use
the expression just left of the right-most inequality in (58), rather than the right-most
expression, we find that we can add a term ν

εLog
(

1
δ

)
to the stated lower bound. This term

can be larger than the stated term ν2

ε2
Log

(
1
δ

)
when ε > ν. Additionally, since RE ⊆ BE(ν),

we can of course also add a term d to the stated lower bound, which again would increase
the bound when ε > ν.
Proof of Theorem 8 Again, we begin with the upper bounds. As with the proof of
Theorem 6, we cannot use the technique leading to Lemma 41; we turn instead to a simple
combination of an upper bound from the literature, combined with Theorem 10.

Fix any ν ∈ [0, 1] and ε, δ ∈ (0, 1). Following the work of Hanneke (2007b); Dasgupta,
Hsu, and Monteleoni (2007); Koltchinskii (2010), the recent work of Hanneke (2014) studies
a modified variant of the A2 algorithm of Balcan, Beygelzimer, and Langford (2006, 2009),
showing that there exists a finite universal constant c̈ ≥ 1 such that, for any PXY ∈ AG(ν),
for any budget n of size at least

c̈θPXY (ν + ε)

(
ν2

ε2
+ Log

(
1

ε

))(
dLog (θPXY (ν + ε)) + Log

(
Log(1/ε)

δ

))
, (59)

the algorithm produces a classifier ĥn with erPXY (ĥn)−infh∈C erPXY (h) ≤ ε with probability
at least 1 − δ, and requests a number of labels at most n (see also Dasgupta, Hsu, and
Monteleoni, 2007; Beygelzimer, Dasgupta, and Langford, 2009, for similar results for related
methods). By Theorem 10,

θPXY (ν+ε) = θPXY ((ν+ε)∧1) ≤ min

{
s,

1

(ν + ε)∧1

}
≤ min

{
s,

2

ν + ε

}
≤ 2 min

{
s,

1

ν + ε

}
,

while Log (θPXY (ν + ε)) ≤ Log
(

min
{
s, 1
ν+ε

}
∨ 1
)

= Log
(

min
{
s, 1
ν+ε

})
. Therefore, (59)

is at most

2c̈min

{
s,

1

ν + ε

}(
ν2

ε2
+ Log

(
1

ε

))(
dLog

(
min

{
s,

1

ν + ε

})
+ Log

(
Log(1/ε)

δ

))
,

which is therefore an upper bound on ΛAG(ν)(ε, δ). To match the form of the upper

bound stated in Theorem 8, we can relax this by noting that dLog
(

min
{
s, 1
ν+ε

})
+

Log
(

Log(1/ε)
δ

)
≤ 2dLog

(
1
ε

)
+Log

(
1
δ

)
≤ 2dLog

(
1
εδ

)
, while ν2

ε2
+Log

(
1
ε

)
≤
(
ν2

ε2
+ 1
)

Log
(

1
ε

)
.
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To prove the lower bound in Theorem 8, we note that BE(ν) ⊆ AG(ν) for ν ∈ [0, 1/2),
so that ΛBE(ν)(ε, δ) ≤ ΛAG(ν)(ε, δ). Thus, the lower bound on ΛBE(ν)(ε, δ) in Theorem 7
(proven above) also applies to ΛAG(ν)(ε, δ).

Appendix C. Proofs for Results in Section 7

This section provides proofs of the equivalences between complexity measures stated in
Section 7.

C.1 The Disagreement Coefficient

Here we present the proof of Theorem 10. First, we have a helpful lemma, which allows us
to restrict focus to finitely discrete probability measures. Let Π denote the set of probability
measures P on X such that ∃m ∈ N and a sequence {zi}mi=1 in X for which P({zi : i ∈
{1, . . . ,m}}) = 1.

Lemma 42 If s <∞, then ∀ε ∈ (0, 1], ˆ̂θ(ε) = sup
P∈Π

sup
h∈C

θh,P(ε).

Proof Suppose s <∞, and fix any ε ∈ (0, 1]. Since PXY ranges over all probability mea-

sures over X ×Y in the definition of ˆ̂θ(ε), including all those in RE with marginal P over X
contained in Π (in which case, θPXY (ε)=θf?PXY ,P

(ε)), we always have supP∈Π suph∈C θh,P (ε)

≤ ˆ̂θ(ε). Thus, it suffices to show that we also have supP∈Π suph∈C θh,P(ε) ≥ ˆ̂θ(ε).

The result trivially holds if ˆ̂θ(ε) = 1, since every P and h have θh,P(ε) ≥ 1. To address

the nontrivial case, suppose ˆ̂θ(ε) > 1. Fix any γ1, γ2, γ3 ∈ (0, 1). Fix any PXY with
θPXY (ε) > 1, and as usual denote P(·) = PXY (· × Y). Also let h∗PXY be as in Definition 9,

so that θPXY (ε) = θh∗PXY ,P
(ε). Let rε ∈ (ε, 1] be such that 1

rε
P(DIS(BP(h∗PXY , rε))) ≥

(1 − γ1)θPXY (ε) (which exists, by the definition of the supremum, combined with the fact
that 1 < θPXY (ε) ≤ 1/ε < ∞). Also let h ∈ C have P(x : h(x) 6= h∗PXY (x)) ≤ γ3rε, which
exists by the definition of h∗PXY .

Let m =
⌈

8
γ2

2r
2
ε

(
10dLog

(
8e
γ2

2r
2
ε

)
+ Log(24)

)⌉
, which is a finite natural number, since

d ≤ s < ∞. It follows from Lemma 20 and Lemma 18 that, for X ′1, . . . , X
′
m inde-

pendent P-distributed random variables, with probability at least 2/3, every g ∈ C has
1
m

∑m
i=1 1DIS({h,g})(X

′
i) ≤ P(x : h(x) 6= g(x)) + γ2rε ≤ P(x : h∗PXY (x) 6= g(x)) + (γ3 + γ2)rε.

Furthermore, by Hoeffding’s inequality, we also have that with probability at least 2/3,
1
m

∑m
i=1 1DIS(BP (h∗PXY

,rε))(X
′
i) ≥ P(DIS(BP(h∗PXY , rε)))− γ2rε. By a union bound, both of

these events happen with probability at least 1/3. In particular, this implies ∃z1, . . . , zm ∈ X
such that, letting P̂ be the probability measure with P̂(A) = 1

m

∑m
i=1 1A(zm) for all mea-

surable A ⊆ X , we have, ∀g ∈ C, P̂(DIS({h, g})) ≤ P(DIS({h∗PXY , g})) + (γ3 + γ2)rε, and

furthermore P̂(DIS(BP(h∗PXY , rε))) ≥ P(DIS(BP(h∗PXY , rε))) − γ2rε. This further implies
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that BP(h∗PXY , rε) ⊆ BP̂(h, (1 + γ3 + γ2)rε), and thus

P̂(DIS(BP̂(h, (1 + γ3 + γ2)rε))) ≥ P̂(DIS(BP(h∗PXY , rε))) ≥ P(DIS(BP(h∗PXY , rε)))− γ2rε

≥ (1− γ1)θPXY (ε)rε − γ2rε ≥ (1− γ1 − γ2)θPXY (ε)rε.

Therefore,

θh,P̂(ε) ≥
P̂(DIS(BP̂(h, (1 + γ3 + γ2)rε)))

(1 + γ3 + γ2)rε
≥ 1− γ1 − γ2

1 + γ3 + γ2
θPXY (ε).

Noting that P̂({z1, . . . , zm}) = 1, so that P̂ ∈ Π, since PXY was arbitrary, we have estab-
lished that ∀PXY , ∃P ∈ Π and h ∈ C such that θh,P (ε) ≥ 1−γ1−γ2

1+γ3+γ2
θPXY (ε). Since this holds

for any choices of γ1, γ2, γ3 ∈ (0, 1), taking the limits as γ1 → 0, γ3 → 0, and γ2 → 0, we

have supP∈Π suph∈C θh,P (ε) ≥ ˆ̂θ(ε).

In fact, it is easy to show (based on the first part of the proof below) that the “s <∞”
constraint is unnecessary in Lemma 42, though this is not important for our purposes. We
are now ready for the proof of Theorem 10.

Proof of Theorem 10 First, we prove ˆ̂θ(ε) ≥ s ∧ 1
ε . Toward this end, let {xi}si=1 and

{hi}si=0 be as in Definition 2, and let m = s ∧
⌈

1
ε

⌉
. Let P be a probability measure on

X with P({xi}) = 1/m for each i ∈ {1, . . . ,m}. In particular, this implies that every
i ∈ {1, . . . ,m} has P(x : hi(x) 6= h0(x)) = 1/m, so that hi ∈ BP(h0, 1/m). Since clearly
h0 ∈ BP(h0, 1/m) as well, and every i ∈ {1, . . . ,m} has xi ∈ DIS({hi, h0}), every r > 1/m
has P(DIS(BP(h0, r))) = P({xi : i ∈ {1, . . . ,m}}) = 1. Therefore, letting PXY be the
distribution in RE with f?PXY = h0 and marginal P over X ,

ˆ̂θ(ε) ≥ θPXY (ε) = θh0,P(ε) ≥ P(DIS(BP(h0,max{1/m, ε})))
max{1/m, ε}

=
1

max{1/m, ε}
= m ∧ 1

ε
= s ∧ 1

ε
.

Next, we prove that ˆ̂θ(ε) ≤ s∧ 1
ε . That ˆ̂θ(ε) ≤ 1

ε follows directly from the definition, and

the fact that probabilities are at most 1: that is, any P and h have supr>ε
P(DIS(BP (h,r)))

r ≤
supr>ε

1
r = 1

ε . Therefore, it remains only to show that ˆ̂θ(ε) ≤ s when s < 1
ε . Furthermore,

Lemma 42 implies that it suffices to show that supP∈Π suph∈C θh,P(ε) ≤ s in this case.
Toward this end, suppose s < 1

ε . We first stratify the set Π based on the size of the support,
defining, for each m ∈ N, Πm = {P ∈ Π : ∃z1, . . . , zm ∈ X s.t. P({z1, . . . , zm}) = 1}. Thus,
Πm is the set of probability measures on X for which the support of the probability mass
function has cardinality at most m.

We now proceed by induction on m. As a base case, fix any m ≤ s, any classifier h, and
any P ∈ Πm, and let z1, . . . , zm ∈ X be such that P({z1, . . . , zm}) = 1. For any r ∈ [1/s, 1],
P(DIS(BP(h, r)))/r ≤ 1/r ≤ s. Furthermore (following an argument of Hanneke, 2014), for
any r ∈ (ε, 1/s), for any g ∈ C with P(x : g(x) 6= h(x)) ≤ r, every z ∈ X with P({z}) > r
has P(x : g(x) 6= h(x)) < P({z}), so that g(z) = h(z); thus, z /∈ DIS(BP(h, r)). We there-
fore have that P(DIS(BP(h, r))) ≤ P(x : P({x}) ≤ r) =

∑m
i=1 1 [P({zi}) ≤ r]P({zi}) ≤
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r|{i ∈ {1, . . . ,m} : P({zi}) ≤ r}|. Therefore, P(DIS(BP (h,r)))
r ≤ |{i ∈ {1, . . . ,m} : P({zi}) ≤

r}| ≤ m ≤ s, so that (since s ≥ 1, due to the assumption that |C| ≥ 2), we have θh,P(ε) ≤ s.
Now take as an inductive hypothesis that, for some m ∈ N with m > s, we have

sup
P∈Πm−1

sup
h∈C

θh,P(ε) ≤ s.

Fix any h ∈ C, r > ε, and P ∈ Πm, and let z1, . . . , zm ∈ X be such that P({z1, . . . , zm}) = 1.
If ∃i, j ∈ {1, . . . ,m} with i 6= j and zi = zj , or if some j ∈ {1, . . . ,m} has P({zj}) = 0, then
since either of these has P({zk : k ∈ {1, . . . ,m} \ {j}}) = 1, we would also have P ∈ Πm−1,
so that θh,P(ε) ≤ s by the inductive hypothesis. To handle the remaining nontrivial cases,
suppose the z1, . . . , zm are all distinct, and mini∈{1,...,m} P({zi}) > 0. Furthermore, note
that, since m > s, {z1, . . . , zm} cannot be a star set for C.

We now consider three cases. First, consider the case that ∃k ∈ {1, . . . ,m} with zk /∈
DIS(BP(h, r)). In this case, define a probability measure P ′ over X such that, for any
measurable A ⊆ X \ {zk}, P ′(A) = P ′(A ∪ {zk}) = P(A)/(1 − P({zk})). Note that this
is a well-defined probability measure, since m ≥ 2 and mini∈{1,...,m} P({zi}) > 0, so that
P(X \ {zk}) = 1 − P({zk}) > 0. Also note that (since h ∈ BP(h, r)) any g ∈ BP(h, r) has
g(zk) = h(zk), so that P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x))/(1 − P({zk})) ≤ r/(1 −
P({zk})). Therefore, BP ′(h, r/(1 − P({zk}))) ⊇ BP(h, r), and since zk /∈ DIS(BP(h, r)),
P ′(DIS(BP ′(h, r/(1−P({zk}))))) ≥ P ′(DIS(BP(h, r))) = P(DIS(BP(h, r)))/(1−P({zk})).
Thus,

P(DIS(BP(h, r))) ≤ (1− P({zk}))P ′(DIS(BP ′(h, r/(1− P({zk}))))). (60)

Noting that P ′({zi : i ∈ {1, . . . ,m} \ {k}}) = P({z1, . . . , zm} \ {zk})/(1 − P({zk})) =
1, we have that P ′ ∈ Πm−1. Therefore, by the inductive hypothesis and the fact that
r/(1− P({zk})) > r > ε,

P ′
(

DIS

(
BP ′

(
h,

r

1− P({zk})

)))
≤ θh,P ′(ε)

r

1− P({zk})

≤ sup
P∈Πm−1

sup
h′∈C

θh′,P (ε)
r

1− P({zk})
≤ sr

1− P({zk})
.

Combined with (60), this further implies that P(DIS(BP(h, r))) ≤ (1 − P({zk}))sr/(1 −
P({zk})) = sr.

Next, consider a second case, where {z1, . . . , zm} ⊆ DIS(BP(h, r)), and ∃j, k∈{1, . . . ,m}
with j 6= k such that, ∀g ∈ BP(h, r), g(zk) 6= h(zk) ⇒ g(zj) 6= h(zj). In this case,
define a probability measure P ′ over X such that, for any measurable A ⊆ X \ {zj , zk},
P ′(A) = P(A), P ′(A∪{zj}) = P(A), and P ′(A∪{zk}) = P ′(A∪{zj , zk}) = P(A∪{zj , zk}):
in other words, P ′ has a probability mass function x 7→ P ′({x}) equal to x 7→ P({x})
everywhere, except that P ′({zj}) = 0 and P ′({zk}) = P({zj}) + P({zk}). Note that,
for any g ∈ BP(h, r) with g(zk) = h(zk), P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x)) −
1[g(zj) 6= h(zj)]P({zj}) ≤ P(x : g(x) 6= h(x)) ≤ r. Furthermore, any g ∈ BP(h, r) with
g(zk) 6= h(zk) also has g(zj) 6= h(zj), so that P ′(x : g(x) 6= h(x)) = P(x : g(x) 6= h(x)) ≤
r. Therefore, BP ′(h, r) ⊇ BP(h, r). Since zj , zk ∈ DIS(BP(h, r)), this further implies
that zj , zk ∈ DIS(BP ′(h, r)). Therefore, by definition of P ′ and monotonicity of measures,
P ′(DIS(BP ′(h, r))) = P(DIS(BP ′(h, r))) ≥ P(DIS(BP(h, r))). Noting that P ′({zi : i ∈
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{1, . . . ,m} \ {j}) = P({z1, . . . , zm}) = 1, we have P ′ ∈ Πm−1, and therefore (by the
inductive hypothesis), P ′(DIS(BP ′(h, r))) ≤ θh,P ′(ε)r ≤ supP∈Πm−1

suph′∈C θh′,P (ε)r ≤ sr.
Thus, since we established above that P(DIS(BP(h, r))) ≤ P ′(DIS(BP ′(h, r))), we have that
P(DIS(BP(h, r))) ≤ sr.

Finally, consider a third case (the complement of the first two), in which {z1, . . . , zm} ⊆
DIS(BP(h, r)), but @j, k ∈ {1, . . . ,m} with j 6= k such that, ∀g ∈ BP(h, r), g(zk) 6=
h(zk) ⇒ g(zj) 6= h(zj). In particular, note that the first condition (which is, in fact,
redundant, but included for clarity) implies P(DIS(BP(h, r))) = 1. In this case, since
(as above) {z1, . . . , zm} is not a star set for C, ∃i ∈ {1, . . . ,m} such that ∀g ∈ C with
g(zi) 6= h(zi), ∃j ∈ {1, . . . ,m} \ {i} with g(zj) 6= h(zj) as well; fix any such i ∈ {1, . . . ,m}.
Since {z1, . . . , zm} ⊆ DIS(BP(h, r)), we have zi ∈ DIS(BP(h, r)). Thus, we may let
gi ∈ BP(h, r) be such that gi(zi) 6= h(zi), and let j ∈ {1, . . . ,m} \ {i} be such that
gi(zj) 6= h(zj) (which exists, by our choice of i). Let P ′ be a probability measure over
X such that, for all measurable A ⊆ X \ {zi, zj}, P ′(A) = P(A), P ′(A ∪ {zi}) = P(A),
and P ′(A∪ {zj}) = P ′(A∪ {zi, zj}) = P(A∪ {zi, zj}): in other words, P ′ has a probability
mass function x 7→ P ′({x}) equal to x 7→ P({x}) everywhere, except that P ′({zi}) = 0
and P ′({zj}) = P({zi}) + P({zj}). Note that, for any measurable set A ⊆ X with
{zi, zj} ⊆ A, P ′(A) = P(A). In particular, since {zi, zj} ⊆ DIS({gi, h}), P ′(DIS({gi, h})) =
P(DIS({gi, h})) ≤ r, so that gi ∈ BP ′(h, r), and therefore (since h ∈ BP ′(h, r) as well)
{zi, zj} ⊆ DIS(BP ′(h, r)). Furthermore, for any k ∈ {1, . . . ,m} \ {i, j}, by the prop-
erty characterizing this third case, and since zk ∈ DIS(BP(h, r)), ∃g ∈ BP(h, r) with
g(zk) 6= h(zk) and g(zj) = h(zj), so that P ′(DIS({g, h})) = P(DIS({g, h}) \ {zi}) ≤
P(DIS({g, h})) ≤ r (i.e., g ∈ BP ′(h, r)), and therefore (since h ∈ BP ′(h, r) as well)
zk ∈ DIS(BP ′(h, r)) as well. Altogether, we have that {z1, . . . , zm} ⊆ DIS(BP ′(h, r)).
Therefore, since {zi, zj} ⊆ DIS(BP ′(h, r)), the definition of P ′ implies P ′(DIS(BP ′(h, r))) =
P(DIS(BP ′(h, r))) ≥ P({z1, . . . , zm}) = 1 = P(DIS(BP(h, r))). Noting that P ′({zk : k ∈
{1, . . . ,m} \ {i}}) = P({z1, . . . , zm}) = 1, we have that P ′ ∈ Πm−1, and therefore (by the
inductive hypothesis), P ′(DIS(BP ′(h, r))) ≤ θh,P ′(ε)r ≤ supP∈Πm−1

suph′∈C θh′,P (ε)r ≤ sr.
Since P ′(DIS(BP ′(h, r))) = 1 = P(DIS(BP(h, r))), we have that P(DIS(BP(h, r))) ≤ sr as
well.

Thus, in all three cases, we have that P(DIS(BP(h, r))) ≤ sr. Since this holds for every
r > ε, and |C| ≥ 2 implies s ≥ 1, we have that θh,P(ε) ≤ s. Since this holds for every h ∈ C
and P ∈ Πm, we have established that supP∈Πm suph∈C θh,P(ε) ≤ s, which completes the
inductive step. It follows by the principle of induction that supP∈Πm suph∈C θh,P(ε) ≤ s for
every m ∈ N, and therefore, since Π =

⋃
m Πm, supP∈Π suph∈C θh,P(ε) ≤ s.

The claim that ˆ̂θ(0) = s follows as a limiting case, due to continuity of the supremum
from below. Specifically, fix any sequence {An}∞n=1 of nonempty subsets of R. For each
m ∈ N,

⋃
nAn ⊇ Am, so sup

⋃
nAn ≥ supAm (allowing the supremum to take the value ∞

where appropriate), and since this holds for every such m, we have sup
⋃
nAn ≥ supn supAn

Furthermore, ∀a ∈
⋃
nAn, ∃m ∈ N s.t. a ∈ Am, so that supn supAn ≥ supAm ≥ a, and

therefore (since this holds for every such a) supn supAn ≥ sup
⋃
nAn. Thus, sup

⋃
nAn =

supn supAn. In particular, taking (for each n ∈ N)

An =

{P(DIS(BP(h∗PXY , r)))

r
∨ 1 : r > 1/n,PXY ∈ AG(1)

}
,
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(where, as usual, P(·) = PXY (· × Y) denotes the marginal of PXY over X ), and noting

that sup
⋃
nAn = ˆ̂θ(0) and ∀n ∈ N, supAn = ˆ̂θ(1/n), we have that ˆ̂θ(0) = supn

ˆ̂θ(1/n) =
supn s ∧ n = s.

C.2 The Splitting Index

Here we present the proof of Theorem 12. First, we introduce a quantity related to ˆ̂ρ(ε),
but slightly simpler. For ε, τ ∈ (0, 1] and any probability measure P over X , define

ρ̄P(ε; τ) = sup {ρ ∈ [0, 1] : C is (ρ, ε, τ)-splittable under P} ,

and let

ρ̄(ε) = inf
P

lim
τ→0

ρ̄P (ε; τ).

In the arguments below, we will see that b1/ρ̄(ε)c =
⌊
1/ ˆ̂ρ(ε)

⌋
, so that it suffices to work

with this simpler quantity. We begin with a lemma which allows us to restrict our focus (in
part of the proof) to finitely discrete probability measures. Recall the definition of Π from
Appendix C.1 above.

Lemma 43 If d <∞, then ∀ε ∈ (0, 1], ρ̄(ε) ≥ lim
γ→0

inf
P∈Π

lim
τ→0

ρ̄P ((1− γ)ε; τ).

Proof Suppose d <∞, and fix any ε ∈ (0, 1]. Fix arbitrary values γ1, γ2 ∈ (0, 1), and let

m =

⌈
8

γ2
2ε

2

(
10dLog

(
8e

γ2
2ε

2

)
+ Log(24)

)⌉
,

which is a finite natural number. Fix any probability measure P over X , and any τ ∈
(0, 1/(3m)), and note that τ ′ 7→ ρ̄P(ε;τ ′) is nonincreasing, so that ρ̄P(ε; τ)≤ limτ ′→0 ρ̄P(ε; τ ′).
For brevity, denote ρ̄ = ρ̄P(ε; τ). Since C is not (γ1 + ρ̄, ε, τ)-splittable under P, let Q ⊆
{{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε} be a finite set such that

P (x : Split(Q, x) ≥ (γ1 + ρ̄) |Q|) < τ.

Let X ′1, . . . , X
′
m be independent P-distributed random variables. Lemmas 18 and 20

imply that, with probability at least 2/3, ∀f, g ∈ C,∣∣∣∣∣P(x : f(x) 6= g(x))− 1

m

m∑
i=1

1
[
f(X ′i) 6= g(X ′i)

]∣∣∣∣∣ ≤ γ2ε.

Furthermore, by a union bound, with probability at least 1−mP(x :Split(Q, x)≥(γ1+ρ̄) |Q|)
> 1 − mτ > 1 − m(1/(3m)) = 2/3, every i ∈ {1, . . . ,m} has Split(Q,X ′i) < (γ1 +
ρ̄)|Q|. By a union bound, both of the above events occur with probability at least 1/3.
In particular, this implies ∃z1, . . . , zm ∈ X such that, letting P̂ denote the probability
measure with P̂(A) = 1

m

∑m
i=1 1A(zm) for all measurable A ⊆ X , we have, ∀f, g ∈ C,∣∣∣P(x : f(x) 6= g(x))− P̂(x : f(x) 6= g(x))

∣∣∣ ≤ γ2ε, and P̂(x : Split(Q, x) ≥ (γ1 + ρ̄)|Q|) = 0.
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For any {f, g} ∈ Q, we have P̂(x : f(x) 6= g(x)) ≥ P(x : f(x) 6= g(x))− γ2ε ≥ (1− γ2)ε.
Therefore, C is not (γ1 + ρ̄, (1 − γ2)ε, τ ′)-splittable under P̂ for any τ ′ > 0, which implies
limτ ′→0 ρ̄P̂((1− γ2)ε; τ ′) ≤ γ1 + ρ̄P(ε; τ). Since P̂ ∈ Π, we have

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ γ1 + ρ̄P(ε; τ) ≤ γ1 + lim
τ ′→0

ρ̄P(ε; τ ′).

Since this holds for any γ1 ∈ (0, 1), taking the limit as γ1 → 0 implies

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ lim
τ ′→0

ρ̄P(ε; τ ′).

Furthermore, since this holds for any γ2 ∈ (0, 1) and any P, we have

lim
γ2→0

inf
P∈Π

lim
τ ′→0

ρ̄P ((1− γ2)ε; τ ′) ≤ inf
P

lim
τ ′→0

ρ̄P (ε; τ ′) = ρ̄(ε).

We are now ready for the proof of Theorem 12.

Proof of Theorem 12 We first establish that s ∧
⌊

1
ε

⌋
≤
⌊

1
ˆ̂ρ(ε)

⌋
for any ε ∈ (0, 1]. The

proof of this fact was implicitly established in the original work of Dasgupta (2005, Corollary
3), but we include the argument here for completeness. Let {xi}si=1 and {hi}si=0 be as in
Definition 2, and let m = s ∧

⌊
1
ε

⌋
. Let ∆ = 1/m, and note that ∆ ≥ 1/

⌊
1
ε

⌋
≥ ε. As

in the proof of Theorem 10, let P be a probability measure on X with P({xi}) = 1/m
for each i ∈ {1, . . . ,m}. Thus, every i ∈ {1, . . . ,m} has P(x : hi(x) 6= h0(x)) = ∆, so
that hi ∈ BP(h0,∆) ⊆ BP(h0, 4∆), and the finite set Q = {{h0, hi} : i ∈ {1, . . . ,m}}
satisfies Q ⊆ {{f, g} ⊆ BP(h0, 4∆) : P(x : f(x) 6= g(x)) ≥ ∆}. In particular, since
P(X \ {x1, . . . , xm}) = 0, and every i ∈ {1, . . . ,m} has Split(Q, xi) = 1 = 1

m |Q|, we have
P
(
x : Split(Q, x) > 1

m |Q|
)

= 0. Thus, for any ρ > 1
m , and any τ > 0, BP(h0, 4∆) is not

(ρ,∆, τ)-splittable. Therefore, ˆ̂ρ(ε) ≤ limτ→0 ρh0,P(ε; τ) ≤ 1
m , which implies 1

ˆ̂ρ(ε)
≥ m; since

m ∈ N, it follows that
⌊

1
ˆ̂ρ(ε)

⌋
≥ m.

Next, we prove that
⌊

1
ˆ̂ρ(ε)

⌋
≤ s ∧

⌊
1
ε

⌋
for any ε ∈ (0, 1]. Since, for every h ∈ C, every

probability measure P over X , and every ∆ ≥ ε, every finite Q ⊆ {{f, g} ⊆ BP(h, 4∆) :
P(x : f(x) 6= g(x)) ≥ ∆} also has Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}, we have

ρ̄(ε) ≤ ˆ̂ρ(ε). Thus, it suffices to show
⌊

1
ρ̄(ε)

⌋
≤ s ∧

⌊
1
ε

⌋
.

That ρ̄(ε) ≥ ε was established by Dasgupta (2005, Lemma 1); we repeat the argument
here for completeness. Fix any probability measure P over X and any ε, τ ∈ (0, 1] with
τ < ε. Fix any finite set Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}. If Q = ∅, then trivially
P(x : Split(Q, x) ≥ ε|Q|) = 1 ≥ τ . Otherwise, if Q 6= ∅, letting X ∼ P,

E[Split(Q,X)] ≥ E

 ∑
{f,g}∈Q

1[f(Z) 6= g(Z)]

 =
∑
{f,g}∈Q

P(x : f(x) 6= g(x)) ≥ |Q|ε.

Furthermore, since Split(Q, x) ≤ |Q|,

E[Split(Q,X)]

= E [1[Split(Q,X) ≥ (ε− τ)|Q|]Split(Q,X)] + E [1[Split(Q,X) < (ε− τ)|Q|]Split(Q,X)]

< P (x : Split(Q, x) ≥ (ε− τ)|Q|) |Q|+ (ε− τ)|Q|.
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Together, these inequalities imply

|Q|ε < P (x : Split(Q, x) ≥ (ε− τ)|Q|) |Q|+ (ε− τ)|Q|.

Subtracting (ε− τ)|Q| from both sides and dividing by |Q|, we have

τ < P (x : Split(Q, x) ≥ (ε− τ)|Q|) .

Since this holds for any such Q, we have that C is ((ε− τ), ε, τ)-splittable under P, so that
ρ̄P(ε; τ) ≥ ε− τ . Since this holds for every choice of P, we have that

ρ̄(ε) = inf
P

lim
τ→0

ρ̄P(ε; τ) ≥ lim
τ→0

ε− τ = ε,

from which it immediately follows that
⌊

1
ρ̄(ε)

⌋
≤
⌊

1
ε

⌋
.

It remains only to show that
⌊

1
ρ̄(ε)

⌋
≤ s. In particular, since this trivially holds when

s = ∞, for the remainder of the proof we suppose s < ∞. As argued in Section 4, we
have d ≤ s, so that this also implies d < ∞. Thus, Lemma 43 implies that ρ̄(ε) ≥
limγ→0 infP∈Π limτ→0 ρ̄P((1−γ)ε; τ). Therefore, if we can establish that, for every ε ∈ (0, 1]
and P ∈ Π, limτ→0 ρ̄P(ε; τ) ≥ 1/s, then we would have that for every ε ∈ (0, 1],⌊

1

ρ̄(ε)

⌋
≤ 1

ρ̄(ε)
≤ lim

γ→0
sup
P∈Π

1

limτ→0 ρ̄P((1− γ)ε; τ)
≤ s,

which would thereby complete the proof.
Toward this end, fix any ε ∈ (0, 1], and for each P ∈ Π, denote τP = min{P({x}) :

x ∈ X ,P({x}) > 0}; in particular, note that (since P ∈ Π) 0 < τP ≤ 1, and therefore
also that, ∀ε ∈ (0, 1], limτ→0 ρ̄P(ε; τ) ≥ ρ̄P(ε; τP) (in fact, they are equal). Furthermore,
denoting supp(P) = {x ∈ X : P({x}) > 0}, every x ∈ supp(P) has P({x}) ≥ τP , while
P(X \ supp(P)) = 0. Thus, for any finite Q ⊆ {{f, g} ⊆ C : P(x : f(x) 6= g(x)) ≥ ε}, and
any ρ ∈ [0, 1], P(x : Split(Q, x) ≥ ρ|Q|) ≥ τP if and only if maxx∈supp(P) Split(Q, x) ≥ ρ|Q|.
Furthermore, since P(X \ supp(P)) = 0, for any ε ∈ (0, 1], every {f, g} ⊆ C with P(x :
f(x) 6= g(x)) ≥ ε must have DIS({f, g}) ∩ supp(P) 6= ∅. Thus, defining

ρ̊P = sup

{
ρ ∈ [0, 1] : ∀ finite Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ supp(P) 6= ∅},

max
x∈supp(P)

Split(Q, x) ≥ ρ|Q|
}
,

we have ρ̊P ≤ ρ̄P(ε; τP) for all ε ∈ (0, 1] (in fact, they are equal for ε ≤ τP). Thus, it
suffices to show that infP∈Π ρ̊P ≥ 1/s. Now partition the set Π by the sizes of the supports,
defining, for each m ∈ N, Πm = {P ∈ Π : |supp(P)| = m} (this is slightly different from the
definition used in the proof of Theorem 10). Note that, for any P ∈ Π, the value of ρ̊P is
entirely determined by supp(P). Thus, defining, ∀m ∈ N with m ≤ |X |,

ρ̊m = inf
Xm⊆X :|Xm|=m

sup

{
ρ ∈ [0, 1] : ∀ finite Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅},

max
x∈Xm

Split(Q, x) ≥ ρ|Q|
}
,
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we have infP∈Πm ρ̊P ≥ ρ̊m (in fact, they are equal). Thus, since Π =
⋃
m∈N Πm, we have

infP∈Π ρ̊P = infm∈N:m≤|X | infP∈Πm ρ̊P ≥ infm∈N:m≤|X | ρ̊m. Therefore, it suffices to show
that ρ̊m ≥ 1/s for all m ∈ N with m ≤ |X |.

We proceed by induction on m ∈ N with m ≤ |X |, combined with a nested inductive
argument on Q. As base cases (for induction on m), consider any m ≤ s. Fix any Xm ⊆ X
with |Xm| = m (noting that m ≤ s implies m ≤ |X |, since s ≤ |X | immediately follows
from Definition 2). Also fix any finite set Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}.
Since ∀{f, g} ∈ Q, ∃x ∈ Xm such that f(x) 6= g(x), the pigeonhole principle implies
∃x ∈ Xm with |{{f, g} ∈ Q : f(x) 6= g(x)}| ≥ |Q|/|Xm| = |Q|/m. For this x, we have
Split(Q, x) ≥ |{{f, g} ∈ Q : f(x) 6= g(x)}| ≥ (1/m)|Q| ≥ (1/s)|Q|. Since this holds for any
such choice of Q and Xm, we have that ρ̊m ≥ 1/s.

If |X | = s, this completes the proof. Otherwise, take as an inductive hypothesis that,
for some m ∈ N with s < m ≤ |X |, ρ̊m−1 ≥ 1/s. Fix any Xm ⊆ X with |Xm| = m. We
now introduce a nested inductive argument on Q (based on the partial ordering induced by
the subset relation). As a base case, if Q = ∅, then trivially maxx∈Xm Split(Q, x) = 0 =
(1/s)|Q|. Now take as a nested inductive hypothesis that, for some nonempty finite set Q ⊆
{{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}, for every strict subset R ⊂ Q, maxx∈Xm Split(R, x) ≥
(1/s)|R|.

First, consider the case in which ∃x ∈ Xm such that x /∈
⋃
{f,g}∈Q DIS({f, g}). In this

case, every {f, g} ∈ Q has DIS({f, g}) ∩ (Xm \ {x}) = DIS({f, g}) ∩ Xm 6= ∅, so that Q ⊆
{{f, g} ⊆ C : DIS({f, g})∩(Xm\{x}) 6= ∅}. Therefore, since |Xm\{x}| = m−1, by definition
of ρ̊m−1 we have maxx′∈Xm Split(Q, x′) ≥ maxx′∈Xm\{x} Split(Q, x′) ≥ ρ̊m−1|Q|. Combined
with the inductive hypothesis (for m), this implies maxx′∈Xm Split(Q, x′) ≥ (1/s)|Q|.

Now consider the remaining case, in which ∀x∈Xm, ∃{fx, gx}∈Q with x∈DIS({fx, gx}).
Since {fx, gx} /∈ Qyx for every y ∈ Y and x ∈ Xm, we have maxx∈Xm Split(Q, x) ≥ 1. We
proceed by a kind of set-covering argument, as follows. For each x ∈ Xm, denote yx =
argmaxy∈Y |Q

y
x| (breaking ties arbitrarily), and denote Sx = {x′ ∈ Xm : {fx, gx} /∈ Q

yx′
x′ }.

Let z1 be any element of Xm. Then, for integers i ≥ 2, inductively define zi as any element
of Xm \

⋃i−1
j=1 Szj , up until the smallest index i ∈ N for which Xm \

⋃i
j=1 Szi = ∅; denote by I

this smallest i with Xm \
⋃i
j=1 Szi = ∅. Note that, since {fx, gx} /∈ Qyxx (and hence x ∈ Sx)

for each x ∈ Xm, every zi is distinct, which further implies that I ≤ m (and in particular,
that I exists). Furthermore, since any i ∈ {1, . . . , I} and x ∈ Xm with {fx, gx} = {fzi , gzi}
have Sx = Szi , and therefore x ∈ Szi , @j > i with zj = x. Thus, we also have that
{fzi , gzi} 6= {fzj , gzj} for every i, j ∈ {1, . . . , I} with i 6= j.

Now let i1 = I, and for integers k ≥ 2, inductively define

ik = max

i ∈ {1, . . . , ik−1 − 1} :

Szi \ i−1⋃
j=1

Szj

 \ k−1⋃
j=1

Szij 6= ∅

 ,

up to the smallest index k ∈ N with
{
i∈{1, . . . , ik − 1} :

(
Szi\

⋃i−1
j=1 Szj

)
\
⋃k
j=1 Szij 6=∅

}
=

∅; denote by K this final value of k (which must exist, since ik+1 ∈ N is defined and
strictly smaller than ik for any k for which this set is nonempty; in particular, 1 ≤ K ≤
I). Finally, let x1 = zi1 , and for each k ∈ {1, . . . ,K}, let xk denote any element of(
Szik \

⋃ik−1
j=1 Szj

)
\
⋃k−1
j=1 Szij , which is nonempty by definition of ik.
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We first establish, by induction, that
⋃K
k=1 Szik = Xm. By construction, we have⋃I

i=1 Szi = Xm. Furthermore, for any i ∈ {1, . . . , I}, if
⋃
j≤i Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik =

Xm, then either i ∈ {i1, . . . , iK}, in which case
⋃
j<i Szj ∪

⋃
1≤k≤K:ik≥i Szik =

⋃
j≤i Szj ∪⋃

1≤k≤K:ik≥i+1 Szik = Xm, or else i /∈ {i1, . . . , iK}, which (by definition of the ik se-

quence) implies Szi ⊆
⋃i−1
j=1 Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik , so that

⋃
j<i Szj ∪

⋃
1≤k≤K:ik≥i Szik =⋃

j<i Szj ∪
⋃

1≤k≤K:ik≥i+1 Szik =
⋃
j≤i Szj ∪

⋃
1≤k≤K:ik≥i+1 Szik = Xm. By induction, we

have that
⋃K
k=1 Szik =

⋃
j<1 Szj ∪

⋃
1≤k≤K:ik≥1 Szik = Xm. In other words, ∀x ∈ Xm,

∃k(x) ∈ {1, . . . ,K} with {fzik(x)
, gzik(x)

} /∈ Qyxx .

In particular, letting R = Q \ {{fzik , gzik} : k ∈ {1, . . . ,K}}, we have that ∀x ∈ Xm,

{fzik(x)
, gzik(x)

} ∈ (Q \R) \ (Qyxx \R) while Qyxx \R ⊆ Q \R, so that |Q \R| − |Qyxx \R| ≥ 1.

Therefore, ∀x ∈ Xm,

Split(R, x) = |R| −max
y∈Y
|Ryx| ≤ |R| − |Ryxx | = |R| − |R ∩Qyxx |

= (|Q| − |Q \R|)− (|Qyxx | − |Qyxx \R|) = (|Q| − |Qyxx |)− (|Q \R| − |Qyxx \R|)
≤ |Q| − |Qyxx | − 1 = |Q| −max

y∈Y
|Qyx| − 1 = Split(Q, x)− 1. (61)

Since K ≥ 1, we may note that R is a strict subset of Q, so that the (nested) inductive
hypothesis implies that maxx∈Xm Split(R, x) ≥ (1/s)|R|. Combined with (61), this implies

max
x∈Xm

Split(Q, x) ≥ max
x∈Xm

Split(R, x) + 1 ≥ (1/s)|R|+ 1. (62)

Next, we argue that K ≤ s, by proving that {x1, . . . , xK} is a star set for C. By definition
of zI , we have zI ∈ Xm\

⋃I−1
j=1 Szj ⊆ Xm\

⋃K
k=2 Szik . Furthermore, zI ∈ SzI , so that zI ∈ SzI \⋃K

k=2 Szik . Since x1 = zi1 = zI , we have x1 ∈ Szi1 \
⋃K
k=2 Szik . Also, for each k ∈ {2, . . . ,K},

by definition, xk ∈
(
Szik \

⋃ik−1
j=1 Szj

)
\
⋃k−1
j=1 Szij ⊆

(
Szik \

⋃K
j=k+1 Szij

)
\
⋃k−1
j=1 Szij =

Szik \
⋃

1≤j≤K:j 6=k Szij . Therefore, every k ∈ {1, . . . ,K} has xk ∈ Szik \
⋃

1≤j≤K:j 6=k Szij .

In particular, for every k ∈ {1, . . . ,K}, since xk ∈ Szik , we have {fzik , gzik} /∈ Q
yxk
xk , so

that ∃hk ∈ {fzik , gzik} with hk(xk) 6= yxk . Furthermore, for every j ∈ {1, . . . ,K} \ {k},
since xj /∈ Szik , we have {fzik , gzik} ∈ Q

yxj
xj , so that fzik (xj) = gzik (xj) = yxj , and in

particular, hk(xj) = yxj . Also, since we have chosen x1 = zi1 , so that x1 ∈ DIS({fzi1 , gzi1}),
∃h0 ∈ {fzi1 , gzi1} with h0(x1) 6= h1(x1): that is, h0(x1) = yx1 . Thus, since fzi1 (xj) =
gzi1 (xj) = yxj for every j ∈ {2, . . . ,K}, we have that h0(xk) = yxk for every k ∈ {1, . . . ,K}.
Altogether, we have that every k ∈ {1, . . . ,K} has hk(xk) 6= h0(xk), while every j ∈
{1, . . . ,K} \ {k} has hk(xj) = h0(xj). In other words, ∀k ∈ {1, . . . ,K}, DIS({h0, hk}) ∩
{x1, . . . , xK} = {xk}: that is, {x1, . . . , xK} is a star set for C, witnessed by {h0, h1, . . . , hK}.
In particular, this implies K ≤ s.

Therefore, since |Q \R| = K (by distinctness of the pairs {fzi , gzi} argued above), (62)
implies

max
x∈Xm

Split(Q, x) ≥ (1/s)|R|+ K

s
= (1/s)(|R|+ |Q \R|) = (1/s)|Q|.

By the principle of induction (on Q), we have maxx∈Xm Split(Q, x) ≥ (1/s)|Q| for every
finite set Q ⊆ {{f, g} ⊆ C : DIS({f, g}) ∩ Xm 6= ∅}. Since this holds for any choice of
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Xm with |Xm| = m, we have ρ̊m ≥ 1/s. By the principle of induction (on m), we have
established that ρ̊m ≥ 1/s for every m ∈ N with m ≤ |X |, which completes the proof of the
theorem.

C.3 The Teaching Dimension

Here we give the proofs of results from Section 7.3. We first prove that every minimal
specifying set is a star set (Lemma 14). In fact, we establish a slightly stronger claim here
(which also applies to local minima), stated formally as follows.

Lemma 44 Fix any h : X → Y, m ∈ N, U ∈ Xm, and any specifying set S for h on U
with respect to C[U ]. If ∀x ∈ S, S \ {x} is not a specifying set for h on U with respect to
C[U ], then S is a star set for C ∪ {h} centered at h.

Proof Fix an arbitrary sequence U = {x1, . . . , xm} ∈ Xm and any h : X → Y. Let
t ≥ TD(h,C[U ],U), and let i1, . . . , it ∈ {1, . . . ,m} be such that S = {xi1 , . . . , xit} is a
specifying set for h on U with respect to C[U ]. First note that, if ∃j ∈ {1, . . . , t} such
that every g ∈ VS\{xij },h has g(xij ) = h(xij ) (which includes the case VS\{xij },h = ∅), then

VS\{xij },h = VS,h, so that |VS\{xij },h ∩ C[U ]| = |VS,h ∩ C[U ]| ≤ 1; thus, S \ {xij} is also a

specifying set for h on U with respect to C[U ].
Therefore, if S is such that ∀j ≤ t, S \ {xij} is not a specifying set for h on U with

respect to C[U ], then ∀j ∈ {1, . . . , t}, ∃hj ∈ VS\{xij },h with hj(xij ) 6= h(xij ); noting that

“hj ∈ VS\{xij },h” is equivalent to saying “hj(xik) = h(xik) for every k ∈ {1, . . . , t} \ {j},”
this precisely matches the definition of a star set in Section 4: that is, we have proven that
{xi1 , . . . , xit} is a star set for C∪{h}, witnessed by {h, h1, . . . , ht}, and hence centered at h.

Proof of Lemma 14 Lemma 14 follows immediately from Lemma 44 by noting that,
for any minimal specifying set S for h on U with respect to C[U ], ∀x ∈ S, |S \ {x}| <
TD(h,C[U ],U), so that S \ {x} cannot possibly be a specifying set for h on U with respect
to C[U ].

We are now ready for the proof of Theorem 13.
Proof of Theorem 13 Fix any m ∈ N. First, note that for {xi}si=1 and {hi}si=0 as in
Definition 2, letting U = {x1, . . . , xmin{s,m}}, for any positive integer i ≤ min{s,m}, any
subsequence S ⊆ U with xi /∈ S has {h0, hi} ⊆ VS,h0 . Thus, since xi ∈ U , and h0(xi) 6=
hi(xi), we have |VS,h0 ∩ C[U ]| ≥ 2. Since this is true for every such i ≤ min{s,m}, every
S ⊆ U without {x1, . . . , xmin{s,m}} ⊆ S has |VS,h0∩C[U ]| ≥ 2. Therefore, TD(h0,C[U ],U) ≥
min{s,m}. Thus, by the definitions of XTD and TD, monotonicity of maximization in the
set maximized over, and monotonicity of t 7→ TD(C, t),15 we have

XTD(C,m) ≥ TD(C,m) ≥ TD(C,min{s,m}) ≥ TD(h0,C[U ],U) ≥ min{s,m}.

15. ∀S ∈ X t, ∀x ∈ S, ∀h, TD(h,C[S ∪ {x}], S ∪ {x}) = TD(h,C[S], S). Thus, TD(C, t + 1) =
maxh∈C maxS∈X t maxx∈X TD(h,C[S ∪ {x}], S ∪ {x}) ≥ maxh∈C maxS∈X t maxx∈S TD(h,C[S ∪ {x}], S ∪
{x}) = maxh∈C maxS∈X t TD(h,C[S], S) = TD(C, t).
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Furthermore, it follows immediately from the definition that XTD(C,m) ≤ m. Note that
this completes the proof in the case that s ≥ m. To address the remaining case, for the
remainder of the proof, we suppose s ≤ m, and focus on establishing XTD(C,m) ≤ s.

For this, we proceed by induction on m, taking as a base case the fact that XTD(C, s) ≤
s, which trivially follows from the definition of XTD. Now take as an inductive hypothesis
that for some m > s, we have XTD(C,m− 1) ≤ s. Fix any sequence Um = {x1, . . . , xm} ∈
Xm, and h : X → Y, and denote Um−1 = {x1, . . . , xm−1}. Let t ∈ N ∪ {0} and S ∈ U tm−1

be such that S is a minimal specifying set for h on Um−1 with respect to C[Um−1]. If
|S| ≥ TD(h,C[Um],Um), then since S is a minimal specifying set for h on Um−1 with respect
to C[Um−1], we have |S| = TD(h,C[Um−1],Um−1) ≤ XTD(C,m − 1) ≤ s by the inductive
hypothesis; thus, in this case we have TD(h,C[Um],Um) ≤ |S| ≤ s. On the other hand,
suppose |S| < TD(h,C[Um],Um). In this case, since S is a specifying set for h on Um−1 with
respect to C[Um−1], we have DIS(VS,h)∩Um ⊆ (DIS(VS,h)∩Um−1)∪{xm} = {xm}. But since
|S| < TD(h,C[Um],Um), S cannot be a specifying set for h on Um with respect to C[Um],
so that DIS(VS,h) ∩ Um 6= ∅. Therefore, DIS(VS,h) ∩ Um = {xm}. In particular, this implies
that S∪{xm} is a specifying set for h on Um with respect to C[Um], and in particular, must
be a minimal such specifying set, since |S∪{xm}| = |S|+1 ≤ TD(h,C[Um],Um). Therefore,
Lemma 14 implies that S∪{xm} is a star set for C∪{h} centered at h. If h ∈ C, this already
implies that |S ∪ {xm}| ≤ s; furthermore, we can argue that this remains the case even if
h /∈ C, as follows. Since xm ∈ DIS(VS,h), we have VS∪{xm},h 6= ∅, so that ∃g0 ∈ C such that
∀x ∈ S ∪{xm}, g0(x) = h(x). Therefore, S ∪{xm} is also a star set for C centered at g0, so
that |S∪{xm}| ≤ s. In particular, since S∪{xm} is a minimal specifying set for h on Um with
respect to C[Um], we have |S ∪ {xm}| = TD(h,C[Um],Um), so that TD(h,C[Um],Um) ≤ s
in this case as well. Thus, in either case, we have TD(h,C[Um],Um) ≤ s. Maximizing over
the choice of h and {x1, . . . , xm}, we have XTD(C,m) ≤ s, which completes the inductive
step. The result now follows by the principle of induction.

Next, we prove Theorem 15.
Proof of Theorem 15 Fix any m ∈ N and δ ∈ [0, 1]. Let {xi}si=1 and {hi}si=0 be as
in Definition 2, and let U = {x1, . . . , xmin{s,m}} and G = {hi : i ∈ {0, . . . ,min{s,m}}.
As in the proof of Theorem 13, for any positive integer i ≤ min{s,m}, any subsequence
S ⊆ U with xi /∈ S has {h0, hi} ⊆ VS,h0 . Thus, since xi ∈ U for every i ≤ min{s,m}, and
every hi realizes a distinct classification of U (i ≤ min{s,m}), we have |VS,h0 ∩ G[U ]| ≥
|{i ∈ {1, . . . ,min{s,m}} : xi /∈ S}| + 1 ≥ min{s,m} − |S| + 1. In particular, to have
|VS,h0∩G[U ]| ≤ δ|G[U ]|+1 = δ(min{s,m}+1)+1, we must have |S| ≥ (1−δ) min{s,m}−δ.
Therefore, XPTD(h0,G[U ],U , δ) ≥ (1 − δ) min{s,m} − δ. By definition of XPTD(H,m, δ)
and the fact that G ⊆ C, and since t 7→ XPTD(H, t, δ) is nondecreasing (since ∀S ∈ X t,
∀x ∈ S, ∀h, XPTD(h,H[S ∪ {x}], S ∪ {x}, δ) = XPTD(h,H[S], S, δ)), this further implies

max
H⊆C

XPTD(H,m, δ) ≥ XPTD(G,m, δ) ≥ XPTD(G,min{s,m}, δ)

≥ XPTD(h0,G[U ],U , δ) ≥ (1− δ) min{s,m} − δ ≥ (1−2δ) min{s,m},

where this last inequality is due to the assumption that |C| ≥ 3 (Section 2), which implies
s ≥ 1. Since XPTD(·,m, δ) ∈ N ∪ {0}, this further implies maxH⊆C XPTD(H,m, δ) ≥
d(1− 2δ) min{s,m}e when δ ≤ 1/2.
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To establish the right inequality, fix any H ⊆ C, let U ∈ Xm and h : X → Y be such
that XPTD(h,H[U ],U , δ) = XPTD(H,m, δ), and let S ⊆ U be a minimal specifying set for

h on U with respect to H[U ]. If δ = 0 or |S| < 1+δ
δ , then |S| − 1 <

(
1− δ

1+δ

)
|S| ≤ |S|,

so that XPTD(h,H[U ],U , δ) ≤ |S| =
⌈(

1− δ
1+δ

)
|S|
⌉
. Otherwise, suppose δ > 0 and

|S| ≥ 1+δ
δ , and let k =

⌊
|S|/

⌊
δ

1+δ |S|
⌋⌋

, and note that k ≥ 1. Let R1, . . . , Rk denote

disjoint subsequences of S with each |Ri| =
⌊

δ
1+δ |S|

⌋
, which must exist since minimality of S

guarantees that its elements are distinct. Note that, for each i ∈ {1, . . . , k}, (VS\Ri,h\VS,h)∩
H[U ] is the set of classifiers g inH[U ] with DIS({g, h})∩(S\Ri) = ∅ but DIS({g, h})∩Ri 6= ∅;
in particular, for any i, j ∈ {1, . . . , k} with i 6= j, since Rj ⊆ S \ Ri and Ri ⊆ S \ Rj ,
(VS\Ri,h \ VS,h) ∩H[U ] and (VS\Rj ,h \ VS,h) ∩H[U ] are disjoint. Thus, since H[U ] ⊇ (VS,h ∩
H[U ]) ∪

⋃k
i=1(VS\Ri,h \ VS,h) ∩H[U ], we have

|H[U ]| ≥

∣∣∣∣∣(VS,h ∩H[U ]) ∪
k⋃
i=1

(VS\Ri,h \ VS,h) ∩H[U ]

∣∣∣∣∣
= |VS,h ∩H[U ]|+

k∑
i=1

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣≥ k∑

i=1

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣

≥ k min
i∈{1,...,k}

∣∣(VS\Ri,h \ VS,h) ∩H[U ]
∣∣ .

Thus, letting i∗ = argmini∈{1,...,k}
∣∣(VS\Ri,h\VS,h) ∩H[U ]

∣∣, we have
∣∣(VS\Ri∗ ,h\VS,h) ∩H[U ]

∣∣
≤ 1

k |H[U ]|. Furthermore, since S is a specifying set for h on U with respect to H[U ],
|VS,h ∩H[U ]| ≤ 1, so that (since VS,h ⊆ VS\Ri∗ ,h)∣∣VS\Ri∗ ,h ∩H[U ]

∣∣ =
∣∣((VS\Ri∗ ,h \ VS,h) ∩H[U ]

)
∪ (VS,h ∩H[U ])

∣∣
=
∣∣(VS\Ri∗ ,h \ VS,h) ∩H[U ]

∣∣+ |VS,h ∩H[U ]| ≤ 1

k
|H[U ]|+ 1.

Also, since
1

k
≤ 1⌊

1+δ
δ

⌋ ≤ 1
1+δ
δ − 1

= δ,

this implies |VS\Ri∗ ,h ∩ H[U ]| ≤ δ|H[U ]| + 1, so that XPTD(h,H[U ],U , δ) ≤ |S \ Ri∗ |.
Furthermore, since Ri∗ ⊆ S, |S \Ri∗ | = |S| − |Ri∗ | = |S| −

⌊
δ

1+δ |S|
⌋

=
⌈(

1− δ
1+δ

)
|S|
⌉
.

Thus, for any δ ∈ [0, 1] and regardless of the size of |S|, we have XPTD(h,H[U ],U , δ) ≤⌈(
1− δ

1+δ

)
|S|
⌉
. Furthermore, since S is a minimal specifying set for h on U with respect

to H[U ], we have |S| ≤ XTD(H,m) ≤ XTD(C,m), and Theorem 13 implies XTD(C,m) =

min{s,m}. Therefore, XPTD(h,H[U ],U , δ) ≤
⌈(

1− δ
1+δ

)
min{s,m}

⌉
. Maximizing the left

hand side over the choice of h, H, and U completes the proof.

C.4 The Doubling Dimension

We now present the proof of Theorem 17
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Proof of Theorem 17 For the lower bound, fix any ε ∈ (0, 1], and take {xi}si=1 and {hi}si=0

as in Definition 2, and let m = s∧
⌊

1
ε

⌋
. Let P be a probability measure on X with P({xi}) =

1/m for each i ∈ {1, . . . ,m}. Thus, {h0, h1, . . . , hm} ⊆ BP(h0, 1/m). Furthermore, for any
i ∈ {0, . . . ,m} and any classifier g with P(x : g(x) 6= hi(x)) ≤ 1/(2m), we must have
g(xj) = hi(xj) for every j ∈ {1, . . . ,m}. Therefore, any 1

2m -cover of BP(h0, 1/m) must
contain classifiers g0, . . . , gm with ∀i ∈ {0, . . . ,m}, ∀j ∈ {1, . . . ,m}, gi(xj) = hi(xj). Thus,
since each hi (with i ≤ m) realizes a distinct classification of {x1, . . . , xm}, it follows that
N (1/(2m),BP(h0, 1/m),P) ≥ m+ 1. Noting that 1/m ≥ ε, we have that

sup
P

sup
h∈C

Dh,P (ε)≥Dh0,P(ε)≥ log2

(
N
(

1

2m
,BP

(
h0,

1

m

)
,P
))
≥ log2(m+ 1)≥ log2

(
s ∧ 1

ε

)
.

For the remaining term in the lower bound (i.e., d), we modify an argument of Kulkarni
(1989, Proposition 3). If d < 5, then d . Log

(
s ∧ 1

ε

)
, so that the lower bound follows

from the above. Otherwise, suppose d ≥ 5. We first let {x′1, . . . , x′d} denote a set of d
points in X shattered by C, and we let G denote the set of classifiers g ∈ C[{x′1, . . . , x′d}]
with g(x′d) = −1 and

∑d−1
i=1 1[g(x′i) = +1] =

⌊
d−1

4

⌋
. For any g ∈ G, note that, if H is a

classifier sampled uniformly at random from G, a Chernoff bound (for sampling without
replacement) implies

P

(
d−1∑
i=1

1[H(x′i) = g(x′i)] ≥
d− 1

8

)
≤ exp

{
−d− 1

48

}
.

Thus, there are at most |G| exp
{
−d−1

48

}
elements h ∈ G with

∑d−1
i=1 1[h(x′i) = g(x′i)] ≥ d−1

8 .
Now take H0 = {}, and take as an inductive hypothesis that, for some positive integer
k < 1 + exp

{
d−1
48

}
, there is a set Hk−1 ⊆ G with |Hk−1| = k − 1 such that ∀h, g ∈ Hk−1

with h 6= g,
∑d−1

i=1 1[h(x′i) = g(x′i)] <
d−1

8 . Since |Hk−1| · |G| exp
{
−d−1

48

}
< |G|, ∃gk ∈ G

such that ∀h ∈ Hk−1,
∑d−1

i=1 1[h(x′i) = gk(x
′
i)] <

d−1
8 . Thus, defining Hk = Hk−1 ∪ {gk}

extends the inductive hypothesis. By induction, this establishes the existence of a setH ⊆ G
with |H| ≥ exp

{
d−1
48

}
such that ∀h, g ∈ H with h 6= g,

∑d−1
i=1 1[h(x′i) = g(x′i)] <

d−1
8 . Fix

any ε ∈ (0, 1/4] and let P denote a probability measure over X with P({x′i}) = 4ε
d−1 for

each i ∈ {1, . . . , d− 1}, and P({x′d}) = 1− 4ε. Note that any h, g ∈ G with
∑d−1

i=1 1[h(x′i) =
g(x′i)] <

d−1
8 have P(x : h(x) 6= g(x)) > d−1

4
4ε
d−1 = ε. Thus, H is an ε-packing under

the L1(P) pseudometric. Recall that this implies |H| ≤ N (ε/2, G,P) (Kolmogorov and
Tikhomirov, 1959, 1961). Furthermore, note that any g ∈ G has P(x : g(x) = +1) =⌊
d−1

4

⌋
4ε
d−1 ≤ ε. Thus, letting h− ∈ C be such that ∀i ∈ {1, . . . , d}, h−(x′i) = −1 (which

exists, by shatterability of x′1, . . . , x
′
d), we have G ⊆ BP(h−, ε). Therefore, N (ε/2, G,P) ≤

N (ε/2,BP(h−, ε),P). Altogether, we have that

d .
d− 1

48
log2(e) ≤ log2(|H|) ≤ log2 (N (ε/2,BP(h−, ε),P)) ≤ Dh−,P(ε) ≤ sup

P
sup
h∈C

Dh,P (ε).

For the upper bound, fix any h ∈ C, any probability measure P over X , and any
ε ∈ (0, 1], and fix any value r ∈ [ε, 1]. Recall that any maximal subset Gr ⊆ BP(h, r) of
classifiers in BP(h, r) with minf,g∈Gr:f 6=g P(x : f(x) 6= g(x)) > r/2 (called a maximal (r/2)-
packing of BP(h, r)) is also an (r/2)-cover of BP(h, r) (see e.g., Kolmogorov and Tikhomirov,
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1959, 1961). Thus, we have that N
(
r
2 ,BP(h, r),P

)
≤ |Gr|, for any such set Gr. Let

m =
⌈

4
r ln(|Gr|)

⌉
, and let X1, X2, . . . , Xm be independent P-distributed random variables.

Let E1 denote the event that ∀f, g ∈ Gr with f 6= g, ∃i ∈ {1, . . . ,m} with f(Xi) 6= g(Xi).
For any f, g ∈ Gr with f 6= g, P(∃i ∈ {1, . . . ,m} : f(Xi) 6= g(Xi)) = 1− (1− P(x : f(x) 6=
g(x)))m > 1 − (1 − r/2)m > 1 − e−mr/2 ≥ 1 − 1/|Gr|2. Therefore, by a union bound,
P(E1) > 1 −

(|Gr|
2

)
1
|Gr|2 ≥

1
2 . In particular, note that on the event E1, the elements of Gr

realize distinct classifications of the sequence (X1, . . . , Xm), so that (since Gr ⊆ BP(h, r))
|Gr| is upper bounded by the number of distinct classifications of (X1, . . . , Xm) realized by
classifiers in BP(h, r). Furthermore, since all classifiers in BP(h, r) agree on the classification
of any points Xi /∈ DIS(BP(h, r)), and BP(h, r) ⊆ C, we have that |Gr| is upper bounded by
the number of distinct classifications of {X1, . . . , Xm}∩DIS(BP(h, r)) realized by classifiers
in C.

By a Chernoff bound, on an event E2 of probability at least 1/2,

|{X1, . . . , Xm} ∩DIS(BP(h, r))| ≤ 1 + 2eP(DIS(BP(h, r)))m.

By the definition of the disagreement coefficient, this is at most 1 + 2eθh,P(r)rm ≤ 1 +
2e + 8eθh,P(r) ln(|Gr|), which, if |Gr| ≥ 3, is at most 11eθh,P(r) ln(|Gr|). By a union
bound, the event E1 ∩ E2 has probability strictly greater than 0. Thus, letting m′ =
d11eθh,P(r) ln(|Gr|)e, there exists a sequence x1, . . . , xm′ ∈ X such that |Gr| is at most the
max of 2 and the number of distinct classifications of {x1, . . . , xm′} realized by classifiers in

C. In the case |Gr| ≥ 3, this latter value is at most
(
em′

d

)d
≤
(

22e2θh,P (r) ln(|Gr|)
d

)d
by the

VC-Sauer lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972).
Taking the logarithm, we have that

ln(|Gr|) ≤ max

{
ln(2), d ln

(
22e2θh,P(r)

)
+ d ln

(
ln(|Gr|)

d

)}
,

which implies (see e.g., Vidyasagar, 2003, Corollary 4.1)

ln(|Gr|) < max
{

1, 2d ln
(
22e2θh,P(r)

)}
= 2d ln

(
22e2θh,P(r)

)
.

Dividing both sides by ln(2), altogether we have that

Dh,P(ε) = sup
r∈[ε,1]

log2

(
N
(r

2
,BP(h, r),P

))
≤ sup

r∈[ε,1]
log2 (|Gr|)

≤ sup
r∈[ε,1]

2d log2

(
22e2θh,P(r)

)
= 2d log2

(
22e2θh,P(ε)

)
.

In particular, by Theorem 10, this is at most 2d log2

(
22e2

(
s ∧ 1

ε

))
, so that maximizing the

left hand side over the choice of h ∈ C and P completes the proof.

Appendix D. Examples Spanning the Gaps

In this section, taking d and s as fixed values in N (with d ≥ 3 and s ≥ 4d), and taking
X = N, we establish that the upper bounds in Theorems 3, 4, 5, and 7 are all tight
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(up to universal constant and logarithmic factors) when we take C = {x 7→ 21S(x) − 1 :
S ⊆ {1, . . . , s}, |S| ≤ d}, and that the lower bounds in these theorems are all tight (up to
logarithmic factors) when we take C = {x 7→ 21S(x)−1 : S ∈ 2{1,...,d}∪{{i} : d+1 ≤ i ≤ s}}.
One can easily verify that, in both cases, the VC dimension is indeed d, and the star number
is indeed s.

D.1 The Upper Bounds are Sometimes Tight

We begin with the upper bounds. In this case, take

C = {x 7→ 21S(x)− 1 : S ⊆ {1, . . . , s}, |S| ≤ d}. (63)

For this hypothesis class, we argue that the lower bounds can be increased to match the
upper bounds (up to logarithmic factors). We begin with a general lemma.

For each i ∈ {1, . . . , d}, let Xi = {bs/dc(i− 1) + 1, . . . , bs/dci}, Ci = {x 7→ 21{t}(x)−1 :
t ∈ Xi} ∪ {x 7→ −1}, and let Di be a finite nonempty set of probability measures Pi
on X × Y such that Pi(Xi × Y) = 1 (i.e., with marginal over X supported only on Xi).
Let D =

{
1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
. Note that for any choices of Pi ∈ Di for

each i ∈ {1, . . . , d}, letting P = 1
d

∑d
i=1 Pi, we have that ∀i ∈ {1, . . . , d}, ∀x ∈ Xi with

Pi({x} × Y) > 0,

P ({(x,+1)}|{x} × Y) =
P ({(x,+1)})
P ({x} × Y)

=
1
d

∑d
j=1 Pj({(x,+1)})

1
d

∑d
j=1 Pj({x} × Y)

=
Pi({(x,+1)})
Pi({x} × Y)

= Pi({(x,+1)}|{x} × Y),

so that the conditional distribution of Y given X = x (for (X,Y ) ∼ P ) is specified by the
conditional of Y ′ given X ′ = x for (X ′, Y ′) ∼ Pi, for the value i with x ∈ Xi. Furthermore,
since any x ∈ Xi has P ({x} × Y) = 0 if and only if Pi({x} × Y) = 0, without loss we may
define P ({(x,+1)}|{x}×Y) = Pi({(x,+1)}|{x}×Y) for any such x. For each i ∈ {1, . . . , d}
and ε, δ ∈ (0, 1), let Λi(ε, δ) denote the minimax label complexity under Di with respect to
Ci (i.e., the value of ΛDi(ε, δ) when C = Ci). The value ΛD(ε, δ) remains defined as usual
(i.e., with respect to the set C specified in (63)).

Lemma 45 Fix any γ∈(2/d, 1), ε∈(0, γ/4), and δ∈
(

0, γ
4−γ

)
. If min

i∈{1,...,d}
Λi((4/γ)ε, γ)≥2,

then

ΛD(ε, δ) ≥ (γ/4)d min
i∈{1,...,d}

Λi((4/γ)ε, γ).

Proof Fix any n ∈ N with n < (γ/4)dmini∈{1,...,d} Λi((4/γ)ε, γ). Denote n′ =
⌈

n
(γ/2)d

⌉
, and

note that n′ ≤ n and n′ < mini∈{1,...,d} Λi((4/γ)ε, γ). For each i ∈ {1, . . . , d}, let Pi ∈ Di,
and denote g∗i = argming∈Ci erPi(g) (breaking ties arbitrarily). We will later optimize over

the choice of these Pi. Also let g∗ =
∑d

i=1 g
∗
i 1Xi , the classifier that predicts with g∗i on

each respective Xi set; note that, since each g∗i classifies at most one point as +1, we have
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g∗ ∈ C. Denote P = 1
d

∑d
i=1 Pi. Let ĥP denote the (random) classifier produced by A(n)

when PXY = P . Note that if
∑d

i=1 1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
> (γ/4)d, then

erP

(
ĥP

)
− inf
h∈C

erP (h) =
1

d

d∑
i=1

erPi

(
ĥP

)
− inf
h∈C

1

d

d∑
i=1

erPi(h)

≥ 1

d

d∑
i=1

erPi

(
ĥP

)
− 1

d

d∑
i=1

erPi (g∗) =
1

d

d∑
i=1

(
erPi

(
ĥP

)
− erPi (g∗i )

)
≥ 1

d

d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
(4/γ)ε > ε.

Therefore,

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ P

(
d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
> (γ/4)d

)

= 1− P

(
d∑
i=1

1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

]
≤ (γ/4)d

)

= 1− P

(
d∑
i=1

(
1− 1

[
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

])
≥ (1− γ/4)d

)

≥ 1− 1

(1− γ/4)d

d∑
i=1

(
1− P

(
erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

))
= − γ

4− γ
+

4

4− γ
1

d

d∑
i=1

P
(

erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

)
, (64)

where the second inequality is due to Markov’s inequality and linearity of expectations.
Now we note that there is a simple reduction from the problem of learning with Ci under

Pi to the problem of learning with C under P . Specifically, for a given i.i.d. Pi-distributed
sequence (Xi1, Yi1), (Xi2, Yi2), . . ., we can construct i.i.d. P -distributed random variables
(X ′1, Y

′
1), (X ′2, Y

′
2), . . ., as follows. For each j ∈ {1, . . . , d} \ {i}, let (Xj1, Yj1), (Xj2, Yj2), . . .

be independent and Pj-distributed, and independent over j, and all independent from the
(Xit, Yit) sequence. Let j1, j2, . . . be independent Uniform({1, . . . , d}) random variables
(also independent from the above sequences). Then for each t ∈ N, let rt =

∑t
s=1 1[js = jt],

and define (X ′t, Y
′
t ) = (Xjtrt , Yjtrt). One can easily verify that this these (X ′t, Y

′
t ) are

independent and P -distributed. Now we can construct an active learning algorithm for the
problem of learning with Ci under Pi, given the budget n′ ≤ n, as follows. We execute
the algorithm A(n). If at any time it requests the label Y ′t of some X ′t in the sequence
such that jt 6= i, then we simply use the value Y ′t = Yjtrt (which, for the purpose of this
reduction, is considered an accessible quantity). Otherwise, if A(n) requests the label Y ′t of
some X ′t in the sequence such that jt = i, then our algorithm will request the label Yirt and
provide that as the value of Y ′t to be used in the execution of A(n). If at any time A(n)
has already requested n′ labels Y ′t such that jt = i, and attempts to request another label
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Y ′t with jt = i, our algorithm simply returns an arbitrary classifier, and this is considered a
“failure” event. Otherwise, upon termination of A(n), our algorithm halts and returns the
classifier A(n) produces. Note that this is a valid active learning algorithm for the problem
of learning Ci under Pi with budget n′, since the algorithm requests at most n′ labels from
the Pi-distributed sequence. In particular, in this reduction, we are thinking of the samples
(X ′t, Y

′
t ) with jt 6= i as simply part of the internal randomness of the learning algorithm.

Let ĥ′P,i denote the classifier returned by the algorithm constructed via this reduction.

Furthermore, if we consider also the classifier ĥP,i returned by A(n) when run (unmodified)
on the P -distributed sequence (X ′1, Y

′
1), (X ′2, Y

′
2), . . ., and denote by n′P,i the number of

labels Y ′t with jt = i that this unmodified A(n) requests, then on the event that n′P,i ≤ n′,
we have ĥ′P,i = ĥP,i. Additionally, let nP,i denote the number of labels Yt requested by
A(n) with Xt ∈ Xi (when A(n) is run with the sequence {(Xt, Yt)}∞t=1), and note that the
sequences {(X ′t, Y ′t )}∞t=1 and {(Xt, Yt)}∞t=1 are distributionally equivalent, so that (ĥP,i, n

′
P,i)

and (ĥP , nP,i) are distributionally equivalent as well. Therefore,

P
(

erPi

(
ĥP

)
− erPi(g

∗
i ) > (4/γ)ε

)
≥ P

(
erPi

(
ĥP

)
− erPi(g

∗
i ) > (4/γ)ε and nP,i ≤ n′

)
= P

(
erPi

(
ĥP,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i ≤ n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i ≤ n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε and n′P,i > n′

)
≥ P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
n′P,i > n′

)
= P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
− P

(
nP,i > n′

)
≥ P

(
erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
−

E[nP,i]

n′
,

where this last inequality is due to Markov’s inequality.
Applying this to every i ∈ {1, . . . , d}, this implies

1

d

d∑
i=1

P
(

erPi

(
ĥP

)
− erPi (g∗i ) > (4/γ)ε

)
≥ − 1

dn′

d∑
i=1

E[nP,i] +
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi (g∗i ) > (4/γ)ε

)
.

By linearity of the expectation, 1
dn′
∑d

i=1 E[nP,i] = 1
dn′E

[∑d
i=1 nP,i

]
≤ n

dn′ ≤
γ
2 , so that the

above is at least

−γ
2

+
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi (g∗i ) > (4/γ)ε

)
.

Plugging this into (64), we have that

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ − 3γ

4− γ
+

4

4− γ
1

d

d∑
i=1

P
(

erPi

(
ĥ′P,i

)
− erPi(g

∗
i ) > (4/γ)ε

)
.
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The above strategy, producing ĥ′P,i, is a valid active learning algorithm (with budget n′)
for any choices of the probability measures Pj , j ∈ {1, . . . , d} \ {i}. We may therefore con-
sider its behavior if we choose these at random. Specifically, for any probability measure Π\i

over ×j 6=iDj , let {P̃j,Π\i}j 6=i ∼ Π\i, and for any Pi ∈ Di, let P̃Π\i,Pi
= 1

dPi + 1
d

∑
j 6=i P̃j,Π\i .

Then ĥ′
P̃

Π\i,Pi
,i

is the output of a valid active learning algorithm (with budget n′); in par-

ticular, here we are considering the P̃j,Π\i as internal random variables to the algorithm
(along with their corresponding (Xjt, Yjt) samples used in the algorithm, which are now
considered conditionally independent given {P̃j,Π\i}j 6=i, where each (Xjt, Yjt) has condi-

tional distribution P̃j,Π\i): that is, random variables that are independent from the data
sequence (Xi1, Yi1), (Xi2, Yi2), . . .. Now note that, since n′ < Λi((4/γ)ε, γ),

max
Pi∈Di

P
(

erPi

(
ĥ′
P̃

Π\i,Pi
,i

)
− inf
g∈Ci

erPi(g) > (4/γ)ε

)
> γ. (65)

For any given sequence P1, . . . , Pd, with Pj ∈ Di for each j ∈ {1, . . . , d}, for every

i ∈ {1, . . . , d}, denote ψi(Pi, {Pj}j 6=i) = P
(

erPi

(
ĥ′P,i

)
− infg∈Ci erPi(g) > (4/γ)ε

)
, where

P = 1
d

∑d
j=1 Pj as above. Then, by the law of total probability, (65) may be restated as

max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
> γ.

Since this holds for every choice of Π\i, we have that

inf
Π\i

max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
≥ γ.

Since each Dj is finite, by the minimax theorem (von Neumann, 1928; von Neumann and
Morgenstern, 1944), for each i ∈ {1, . . . , d}, there exists a probability measure Πi over Di
such that, if P̃i ∼ Πi (independent from every {P̃j,Π\i}j 6=i), then

inf
Π\i

E
[
ψi

(
P̃i,
{
P̃j,Π\i

}
j 6=i

)]
= inf

Π\i
max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
.

In particular, taking these {P̃i}di=1 to be independent, we have that ∀i ∈ {1, . . . , d},

E
[
ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
≥ inf

Π\i
E
[
ψi

(
P̃i,
{
P̃j,Π\i

}
j 6=i

)]
=inf

Π\i
max
Pi∈Di

E
[
ψi

(
Pi,
{
P̃j,Π\i

}
j 6=i

)]
≥γ.

Thus,

sup
Pi∈Di:

i∈{1,...,d}

d∑
i=1

ψi(Pi, {Pj}j 6=i) ≥ E

[
d∑
i=1

ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
=

d∑
i=1

E
[
ψi

(
P̃i,
{
P̃j

}
j 6=i

)]
≥ γd.

Altogether, we have that

sup
Pi∈Di:

i∈{1,...,d}

P
(

erP

(
ĥP

)
− inf
h∈C

erP (h) > ε

)
≥ − 3γ

4− γ
+

4

4− γ
1

d
sup
Pi∈Di:

i∈{1,...,d}

d∑
i=1

ψi (Pi, {Pj}j 6=i)

≥ − 3γ

4− γ
+

4γ

4− γ
=

γ

4− γ
> δ.
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Since this holds for any active learning algorithmA and n<(γ/4)dmini∈{1,...,d}Λi((4/γ)ε, γ),
the lemma follows.

With this lemma in hand, we can now plug in various sets Di to obtain lower bounds
for learning with this set C under various noise models. In particular, we can make use
of the constructions of lower bounds on Λi(ε, δ) given in the proofs of the theorems in
Section 5, noting that the VC dimension of Ci is 1, and the star number of Ci is bs/dc.
Note that, in the case d . 1, the lower bounds in each of these theorems already match
their respective upper bounds up to constant and logarithmic factors (using the lower bound
from Theorem 3 as a lower bound on ΛBN(β)(ε, δ) for β near 0). We may therefore suppose
d ≥ 32 for the remainder of this subsection.

D.1.1 The Realizable Case

For the realizable case, for each i ∈ {1, . . . , d} and t ∈ {1, . . . , bs/dc}, let Pit be a uniform
distribution on {bs/dc(i − 1) + 1, . . . , bs/dc(i − 1) + t} ⊆ Xi, and let Di denote the set of
probability measures Pi in RE having marginal over X among {Pit : 1 ≤ t ≤ bs/dc} and
having f?Pi ∈ Ci. Noting that the star number of Ci is bs/dc and that Xi is a (maximal) star
set for Ci, and recalling that the first term in the “max” in the lower bound of Theorem 3
was proven in Appendix B.1 under the uniform marginal distribution on the first t elements
of a maximal star set (for an appropriate value of t, of size at least 1 and at most the star
number), we have that for ε ∈

(
0, 1

9·16

)
,

Λi(16ε, 1/4) & min

{
s

d
,
1

ε

}
.

Therefore, Lemma 45 (with γ=1/4) implies that for D=
{

1
d

∑d
i=1Pi :∀i∈{1, . . . , d}, Pi∈Di

}
,

∀δ ∈
(
0, 1

15

)
,

ΛD(ε, δ) & min

{
s,
d

ε

}
.

Furthermore, for each choice of P1, . . . , Pd (with each Pi ∈ Di), by construction, every i ∈
{1, . . . , d} has at most one x ∈ Xi with Pi({(x,+1)}|{x}×Y) = 1, and every other x′ in Xi
has Pi({(x′,+1)}|{x′}×Y) = 0. Therefore, since P ({(x,+1)}|{x}×Y) = Pi({(x,+1)}|{x}×
Y) for every x ∈ Xi, for P = 1

d

∑d
j=1 Pj , we have that there are at most d points x in

⋃d
i=1Xi

with P ({(x,+1)}|{x} × Y) = 1, and all other points x in
⋃d
i=1Xi have P ({(x,+1)}|{x} ×

Y) = 0. In particular, this implies that for (X,Y ) ∼ P , P(f?P (X) 6= Y |X ∈
⋃d
i=1Xi) = 0.

Since we also have that ∀t ∈ N \
⋃d
i=1Xi, P ({t} × Y) = 0, we can take f?P (x) = −1 for

every x ∈ X \
⋃d
i=1Xi while guaranteeing erP (f?P ) = 0. Since

⋃d
i=1Xi ⊆ {1, . . . , s}, we also

have that f?P ∈ C. Together, these facts imply P ∈ RE. Thus, D ⊆ RE, which implies
ΛRE(ε, δ) ≥ ΛD(ε, δ), so that

ΛRE(ε, δ) & min

{
s,
d

ε

}
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as well. Since the upper bound in Theorem 3 is within a factor proportional to Log(1/ε) of
this,16 this establishes that the upper bound is sometimes tight to within a factor propor-
tional to Log(1/ε).

D.1.2 Bounded Noise

In the case of bounded noise, fix any β ∈ (0, 1/2) and any ε ∈ (0, (1 − 2β)/(256e)). Take
ζ = 32eε

1−2β and k = min {bs/dc − 1, b1/ζc}, and for each i ∈ {1, . . . , d}, let Di be defined as
the set RR(k, ζ, β) in Lemma 26, as applied to the hypothesis class Ci with {x1, . . . , xk+1} =
{bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, h0 = −1, and hj = 21{bs/dc(i−1)+j}−1 for each
j ∈ {1, . . . , k}. Then Lemma 26 implies

Λi(16eε, 1/(4e)) ≥ β(k − 1)

3(1− 2β)2
&

β

(1− 2β)2
min

{
s

d
,
1− 2β

ε

}
.

Furthermore, recall from the definition of RR(k, ζ, β) in Section A.2 that Di is a finite
set of probability measures, and every Pi ∈ Di has Pi((X \ {x1, . . . , xk+1}) × Y) = 0. In
particular, note that {x1, . . . , xk+1} ⊆ Xi in this case. Furthermore, every Pi ∈ Di has
∀x ∈ {x1, . . . , xk}, Pi({(x,+1)}|{x} × Y) ∈ {β, 1 − β}, and at most one x ∈ {x1, . . . , xk}
has Pi({(x,+1)}|{x} × Y) = 1− β, while Pi({(xk+1,+1)}|{xk+1} × Y) = 0. Thus, for any
choices of Pi ∈ Di for each i ∈ {1, . . . , d}, the probability measure P = 1

d

∑d
i=1 Pi satisfies

the property that, ∀x ∈ X with P ({x} ×Y) > 0, P ({(x,+1)}|{x} ×Y) ∈ {0, β, 1− β}, and
there are at most d values x ∈ X with P ({x} × Y) > 0 and P ({(x,+1)}|{x} × Y) = 1− β.
In particular, this implies that without loss, we can take f?P ∈ C, and furthermore that P ∈
BN(β). Thus, for the set D =

{
1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
, we have D ⊆ BN(β).

Lemma 45 (with γ = 1/(4e)) then implies that ∀δ ∈
(

0, 1
16e−1

)
,

ΛBN(β)(ε, δ) ≥ ΛD(ε, δ) & d min
i∈{1,...,d}

Λi(16eε, 1/(4e)) &
β

(1− 2β)2
min

{
s,

(1− 2β)d

ε

}
.

For β bounded away from 0, the upper bound in Theorem 4 is within a polylog
(
d
εδ

)
factor of

this, so that this establishes that the upper bound is sometimes tight to within logarithmic
factors when β is bounded away from 0. Furthermore, since RE ⊆ BN(β), the above result
for sometimes-tightness of the upper bound in the realizable case implies that the upper
bound in Theorem 4 is also sometimes tight to within logarithmic factors for any β near 0.

D.1.3 Tsybakov Noise

For the case of Tsybakov noise, the tightness (up to logarithmic factors) of the upper bound
for α ≤ 1/2 is already established by the lower bound for that case in Theorem 5. Thus,
it remains only to consider α ∈ (1/2, 1). Fix any values a ∈ [4,∞), α ∈ (1/2, 1), and
ε ∈

(
0, 1/(211a1/α)

)
, let a′ be as in the definition of TN(a, α), and let

k = min

{⌊ s
d

⌋
− 1,

⌊
(a′)

α−1
α

64ε

⌋
,

⌊
a′

64ε
4−

1
1−α

⌋}
,

16. Note that, although sd
Log(s)

can sometimes be much smaller than s ∧ d
ε
, we always have s ∧ d

ε
.

sd
Log(s)

Log
(

1
ε

)
, so that this s ∧ d

ε
lower bound does not contradict the sd

Log(s)
Log

(
1
ε

)
upper bound.
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β = 1
2 −

(
k64ε
a′

)1−α
, and ζ = 128ε

1−2β . Note that ζ ∈ (0, 1), β ∈ [1/4, 1/2), and 2 ≤ k ≤
min {bs/dc − 1, b1/ζc} (following the arguments from the proof of Theorem 5, with ε re-
placed by 64ε). Furthermore, ∀i ∈ {1, . . . , d}, let Di be the set RR(k, ζ, β) in Lemma 26, as
applied to the class Ci, with {x1, . . . , xk+1} = {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1},
h0 = −1, and hj = 21{bs/dc(i−1)+j} − 1 for each j ∈ {1, . . . , k}. Thus, by Lemma 26,

Λi(64ε, 1/16) ≥ β(k − 1) ln(4)

3(1− 2β)2
&
( ε
a′

)2α−2
k2α−1

& a2

(
1

ε

)2−2α

min

{
s

d
,
(a′)

α−1
α

ε
,
a′

ε
4−

1
1−α

}2α−1

& a2

(
1

ε

)2−2α

min

{
s

d
,

1

a1/αε

}2α−1

,

where this last inequality relies on the fact (established in the proof of Theorem 5) that

(a′)
α−1
α ≤ a′4−

1
1−α .

We note that any Pi ∈ Di has Pi((X \{bs/dc(i−1)+1, . . . , bs/dc(i−1)+k+1})×Y) = 0.
Without loss of generality, suppose each Pi ∈ Di has η(x;Pi) = 0 for every x ∈ X \
{bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}. As in the proof of the lower bound in Theo-
rem 5, we note that any Pi ∈ Di has Pi((x, y) : |η(x;Pi)−1/2| ≤ t) ≤ a′tα/(1−α) for every t >
0, and furthermore that f?Pi(·) = sign(2η(·;Pi)− 1), which has at most one x with f?Pi(xi) =
+1 (by definition of RR(k, ζ, β) in Section A.2). This further implies that, for any choices
of Pi ∈ Di for each i ∈ {1, . . . , d}, the probability measure P = 1

d

∑d
i=1 Pi has support for

its marginal over X only in
⋃d
i=1 {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, and for each

i ∈ {1, . . . , d}, ∀x ∈ {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}, η(x;P ) = η(x;Pi), while
we may take η(x;P ) = 0 for every x /∈

⋃d
i=1 {bs/dc(i− 1) + 1, . . . , bs/dc(i− 1) + k + 1}.

Therefore, f?P has at most d points x ∈
⋃d
i=1Xi with f?P (x) = +1, and f?P (x) = −1 for all

other x ∈ X : that is, f?P ∈ C. Additionally, since the supports of the marginals of the Pi
distributions over X are disjoint, we have that ∀t > 0,

P ((x, y) : |η(x;P )− 1/2| ≤ t) =
1

d

d∑
i=1

Pi ((x, y) : |η(x;P )− 1/2| ≤ t)

=
1

d

d∑
i=1

Pi ((x, y) : |η(x;Pi)− 1/2| ≤ t) ≤ 1

d

d∑
i=1

a′tα/(1−α) = a′tα/(1−α).

Thus, the set D =
{

1
d

∑d
i=1 Pi : ∀i ∈ {1, . . . , d}, Pi ∈ Di

}
satisfies D ⊆ TN(a, α). Combined

with the fact that each set Di is finite (by the definition of RR(k, ζ, β) in Section A.2),
Lemma 45 (with γ = 1/16) implies that ∀δ ∈

(
0, 1

63

)
,

ΛTN(a,α)(ε, δ) ≥ ΛD(ε, δ) & d min
i∈{1,...,d}

Λi(64ε, 1/16) & a2

(
1

ε

)2−2α

min

{
s

d
,

1

a1/αε

}2α−1

d.

Since this is within logarithmic factors of the upper bound of Theorem 5, this establishes
that the upper bound is sometimes tight to within logarithmic factors (for sufficiently small
values of ε).
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D.1.4 Benign Noise

We can establish that the upper bound in Theorem 7 is sometimes tight by reduction from
the above problems. Specifically, since RE ⊆ BE(ν) for every ν ∈ [0, 1/2), for the above
choice of C we have that ∀ν ∈ [0, 1/2], ∀ε ∈

(
0, 1

9·16

)
, ∀δ ∈

(
0, 1

15

)
,

ΛBE(ν)(ε, δ) ≥ ΛRE(ε, δ) & min

{
s,
d

ε

}
.

Furthermore, the lower bound in Theorem 7 already implies that ∀ε ∈
(
0, 1−2ν

24

)
, ∀δ ∈(

0, 1
24

]
,

ΛBE(ν)(ε, δ) &
ν2

ε2
d.

Together, we have that ∀ν ∈ [0, 1/2), ∀ε ∈
(
0, 1−2ν

9·16

)
, ∀δ ∈

(
0, 1

24

]
,

ΛBE(ν)(ε, δ) & max

{
ν2

ε2
d,min

{
s,
d

ε

}}
&
ν2

ε2
d+ min

{
s,
d

ε

}
.

Thus, the upper bound in Theorem 7 is sometimes tight to within logarithmic factors.

D.2 The Lower Bounds are Sometimes Tight

We now argue that the lower bounds in Theorems 3, 4, 5, and 7 are sometimes tight (up
to logarithmic factors). First we have a general lemma. Let X1 ⊂ X and X2 = X \ X1, and
let C1,C2 be hypothesis classes such that ∀i ∈ {1, 2}, ∀h ∈ Ci, ∀x ∈ X \ Xi, h(x) = −1.
Further suppose that ∀i ∈ {1, 2}, the all-negative classifier x 7→ h−(x) = −1 is in Ci. For
each i ∈ {1, 2} and γ ∈ [0, 1], let Di(γ) be a nonempty set of probability measures on
X × Y such that ∀Pi ∈ Di(γ), Pi(Xi × Y) = 1; further suppose ∀γ, γ′ ∈ [0, 1] with γ ≤ γ′,
Di(γ) ⊇ Di(γ′). Also, for each i ∈ {1, 2}, γ, δ ∈ [0, 1], and ε > 0, let Λi,γ(ε, δ) denote the
minimax label complexity under Di(γ) with respect to Ci (i.e., the value of ΛDi(γ)(ε, δ) when
C = Ci). Let D = {γP1 + (1− γ)P2 : P1 ∈ D1(γ), P2 ∈ D2(1− γ), γ ∈ [0, 1]}.

Lemma 46 For C = C1 ∪ C2, ∀ε, δ ∈ (0, 1),

ΛD(ε, δ) ≤ 2 sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
.

Proof For each i ∈ {1, 2} and γ ∈ [0, 1], let Aγ,i be an active learning algorithm such that,

for any integer n ≥ Λi,γ

(
ε

2(γ+ε/8) ,
δ
3

)
, if PXY ∈ Di(γ), then with probability at least 1−δ/3,

the classifier ĥ produced by Aγ,i(n) satisfies erPXY (ĥ) − infh∈Ci erPXY (h) ≤ ε
2(γ+ε/8) ; such

an algorithm is guaranteed to exist by the definition of Λi,γ(·, ·).
Now suppose PXY ∈ D, so that PXY = γP1 + (1− γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ),

and P2 ∈ D2(1− γ). Let (X1, Y1), (X2, Y2), . . . be the data sequence, as usual (i.i.d. PXY ).
Consider an active learning algorithm A defined as follows. We first split the sequence of
indices into three subsequences: i0,k = 2k− 1 for k ∈ N, i1,1, i1,2, . . . is the increasing subse-
quence of indices i such that i/2 ∈ N and Xi ∈ X1, and i2,1, i2,2, . . . is the remaining increas-
ing subsequence (i.e., indices i such that i/2 ∈ N and Xi ∈ X2). Given a budget n ∈ N, A(n)
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proceeds as follows. First, we let m =
⌈

128
ε2

ln
(

12
δ

)⌉
, γ1 = max

{
1
m

∑m
k=1 1X1(Xi0,k)− ε

16 , 0
}

,

and γ2 = max
{

1
m

∑m
k=1 1X2(Xi0,k)− ε

16 , 0
}

. By Hoeffding’s inequality and a union bound,
with probability at least 1− δ/3, ∀i ∈ {1, 2},

PXY (Xi × Y)− ε

8
≤ γi ≤ PXY (Xi × Y). (66)

Denote by H this event.
Next, for each j ∈ {1, 2}, if the subsequence ij,1, ij,2, . . . is infinite, then run Aγj ,j(bn/2c)

with the data subsequence {X(j)
k }

∞
k=1 = {Xij,k}∞k=1; if the algorithm Aγj ,j requests the label

for an index k (i.e., corresponding to X
(j)
k ), then A(n) requests the corresponding label Yij,k

and provides this value to Aγj ,j as the label of X
(j)
k . Let ĥj denote the classifier returned

by this execution of Aγj ,j(bn/2c). On the other hand, if the subsequence ij,1, ij,2, . . . is

finite (or empty), then we let ĥj denote an arbitrary classifier. Finally, let A(n) return the

classifier ĥ = ĥ11X1 + ĥ21X2 . In particular, note that this method requests at most n labels,
since all labels are requested by one of the Aγj ,j algorithms, each of which requests at most
bn/2c labels.

For this method, we have that

erPXY (ĥ)− inf
h∈C

erPXY (h) = γerP1(ĥ1) + (1− γ)erP2(ĥ2)− inf
h∈C

(γerP1(h) + (1− γ)erP2(h))

≤ γ
(

erP1(ĥ1)− inf
h∈C

erP1(h)

)
+ (1− γ)

(
erP2(ĥ2)− inf

h∈C
erP2(h)

)
.

For each j ∈ {1, 2}, since every h ∈ C\Cj has h(x) = h−(x) for every x ∈ Xj , and h− ∈ Cj ,
we have that infh∈C erPj (h) = infh∈Cj erPj (h). Thus, the above implies

erPXY (ĥ)− inf
h∈C

erPXY (h) ≤ γ
(

erP1(ĥ1)− inf
h∈C1

erP1(h)

)
+(1−γ)

(
erP2(ĥ2)− inf

h∈C2

erP2(h)

)
.

(67)
If γ = 0, then with probability one, every Xi ∈ X2, and {(Xi2,k , Yi2,k)}∞k=1 is an infinite

i.i.d. P2-distributed sequence. Furthermore, 1 − ε/8 < γ2 = 1 − ε/16 < 1, so that PXY ∈
D2(γ2). Thus, if n ≥ 2Λ2,1−ε/8

(
ε

2(1+ε/8) ,
δ
3

)
, then we also have n ≥ Λ2,γ2

(
ε

2(γ2+ε/8) ,
δ
3

)
(by

monotonicity of D2(·) and the label complexity), so that with probability at least 1− δ/3,
erP2(ĥ2)− infh∈C2 erP2(h) ≤ ε

2(γ2+ε/8) = ε
2(1+ε/16) <

ε
2 (here we are evaluating the label com-

plexity guarantee of Aγ2,2 under the conditional distribution given γ2, and then invoking
the law of total probability and intersecting with the above probability-one event). Com-
bined with (67), this implies erPXY (ĥ) − infh∈C erPXY (h) < ε

2 . If γ = 1, then a symmetric

argument implies that if n ≥ 2Λ1,1−ε/8

(
ε

2(1+ε/8) ,
δ
3

)
, then with probability at least 1− δ/3,

erPXY (ĥ)− infh∈C erPXY (h) < ε
2 .

Otherwise, suppose 0 < γ < 1. Note that, on the event H, γ − ε/8 ≤ γ1 ≤ γ and
1−γ−ε/8 ≤ γ2 ≤ 1−γ, so that D1(γ1) ⊆ D1((γ−ε/8)∨0) and D2(γ2) ⊆ D2((1−γ−ε/8)∨0),
and hence that

Λ1,γ1

(
ε

2(γ1 + ε/8)
,
δ

3

)
≤ Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
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and

Λ2,γ2

(
ε

2(γ2 + ε/8)
,
δ

3

)
≤ Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)
.

In this case, by the strong law of large numbers, with probability one, ∀j ∈ {1, 2}, the
sequence ij,1, ij,2, . . . exists and is infinite. Since the support of the marginal of Pj over
X is contained within Xj , and X1 and X2 are disjoint, we may observe that (Xij,1 , Yij,1),
(Xij,2 , Yij,2), . . . are independent Pj-distributed random variables. In particular, if

n ≥ 2 max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
,

then (by the label complexity guarantee of Aγj ,j applied under the conditional distribu-
tion given γj , combined with the law of total probability, and intersecting with the above
probability-one event) there are events H1 and H2, each of probability at least 1 − δ/3,
such that on the event H ∩ H1, erP1(ĥ1) − infh∈C1 erP1(h) ≤ ε

2(γ1+ε/8) ≤
ε

2γ , and on the

event H ∩ H2, erP2(ĥ2) − infh∈C2 erP2(h) ≤ ε
2(γ2+ε/8) ≤

ε
2(1−γ) . Therefore, on the event

H ∩ H1 ∩ H2, the right hand side of (67) is at most γ ε
2γ + (1 − γ) ε

2(1−γ) = ε, so that

erPXY (ĥ) − infh∈C erPXY (h) ≤ ε. By a union bound, the probability of H ∩H1 ∩H2 is at
least 1− δ. Since this holds for any PXY ∈ D, the result follows.

We can now apply this result with various choices of the sets D1(γ) and D2(γ) to obtain
upper bounds for the above space C, matching the lower bounds proven above for various
noise models. Specifically, consider X = N, X1 = {1, . . . , d}, X2 = {d+1, d+2, . . .}, C1 =
{x 7→ 21S(x)− 1 : S ⊆ {1, . . . , d}}, and C2 =

{
x 7→ 21{t}(x)−1 : t ∈ {d+1, d+2, . . . , s}

}
∪

{x 7→ −1}. Note that C1 and C2 satisfy the requirements specified above, and also that
the VC dimension of C1 is d and the star number of C1 is d, while the VC dimension of C2

is 1 and the star number of C2 is s − d. Furthermore, take C = {x 7→ 21S(x) − 1 : S ∈
2{1,...,d} ∪ {{i} : d + 1 ≤ i ≤ s}}, and note that this satisfies C = C1 ∪ C2, and C has VC
dimension d and star number s.

D.2.1 The Realizable Case

For the realizable case, we can in fact show that that lower bound in Theorem 3 is sometimes
tight up to universal constant factors. Specifically, let Di denote the set of all Pi ∈ RE
with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. For every γ ∈ [0, 1] and i ∈ {1, 2}, define
Di(γ) = Di. In particular, note that for any P ∈ RE, for any measurable A ⊆ X × Y,
P (A) = P (X1 × Y)P (A|X1 × Y) + P (X2 × Y)P (A|X2 × Y). Furthermore, note that any
i ∈ {1, 2} with P (Xi×Y) > 0 has P (·×Y|Xi×Y) supported only in Xi, and has P (·|Xi×Y) ∈
RE, so that P (·|Xi×Y) ∈ Di. Thus, P ∈ D = {γP1+(1−γ)P2 : P1 ∈ D1, P2 ∈ D2, γ ∈ [0, 1]}.
Therefore, RE ⊆ D. Together with Lemma 46, this implies ∀ε, δ ∈ (0, 1),

ΛRE(ε, δ) ≤ ΛD(ε, δ) ≤ 2 max

{
Λ1,0

(
ε

2(1 + ε/8)
,
δ

3

)
,Λ2,0

(
ε

2(1 + ε/8)
,
δ

2

)}
≤ 2 max

{
Λ1,0

(
ε

3
,
δ

3

)
,Λ2,0

(
ε

3
,
δ

2

)}
,
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for Λi,0(·, ·) defined as above.

Now note that, since every P1 ∈ D1 has P1(· × Y) supported only in X1, and P1 ∈ RE,
and since C1 contains classifiers realizing all 2d distinct classifications of X1, ∃hP1 ∈ C1 with
erP1(hP1) = 0; thus, without loss, we can take f?P1

= hP1 , so that P1 is in the realizable case
with respect to C1. In particular, since there are only d points in X1, if we consider the
active learning algorithm that (given a budget n ≥ d) simply requests Yi for exactly one i
s.t. Xi = x, for each x ∈ X1 for which ∃Xi = x, and then returns any classifier ĥ consistent
with these labels, if PXY ∈ D1, with probability one every x ∈ X1 with PXY ({x} × Y) > 0
has some Xi = x, so that erPXY (ĥ) = 0. Noting that this algorithm requests at most d
labels, we have that ∀ε, δ ∈ (0, 1),

Λ1,0

(
ε

3
,
δ

3

)
≤ d.

Similarly, since every P2 ∈ D2 has P2(· × Y) supported only in X2, and P2 ∈ RE, f?P2

is either equal −1 with P2-probability one, or else ∃x ∈ {d + 1, . . . , s} with f?P2
(x) = +1;

in either case, ∃hP2 ∈ C2 with erP2(hP2) = 0; thus, without loss, we can take f?P2
= hP2 ,

so that P2 is in the realizable case with respect to C2. Now consider an active learning
algorithm that first calculates the empirical frequency P̂({x}) = 1

m

∑m
i=1 1[Xi = x] for each

x ∈ {d + 1, . . . , s} among the first m =
⌈

34

2ε4
ln
(

3(s−d)
δ

)⌉
unlabeled data points. Then,

for each x ∈ {d + 1, . . . , s}, if P̂({x}) > (1 − ε/3)ε/3, the algorithm requests Yi for the
first i ∈ N with Xi = x (supposing the budget n has not yet been reached). If any
requested value Yi equals +1, then for the x ∈ {d + 1, . . . , s} with Xi = x, the algorithm
returns the classifier x′ 7→ 21{x}(x

′)− 1. Otherwise, the algorithm returns the all-negative

classifier: x′ 7→ −1. Denote by ĥ the classifier returned by the algorithm. By Hoeffding’s
inequality and a union bound, with probability at least 1 − δ/3, every x ∈ {d + 1, . . . , s}
has P̂({x}) ≥ PXY ({x} × Y) − (ε/3)2. Also, if PXY ∈ RE, then with probability one,
every Yi = f?PXY (Xi). Therefore, if PXY ∈ D2, on these events, every x ∈ {d + 1, . . . , s}
with PXY ({x} × Y) > ε/3 will have a label Yi with Xi = x requested by the algorithm
(supposing sufficiently large n), which implies ĥ(x) = f?PXY (x). Since f?PXY has at most
one x ∈ X2 with f?PXY (x) = +1, and if such an x exists it must be in {d + 1, . . . , s},
if any requested Yi = +1, we have erPXY (ĥ) = 0, and otherwise either no x ∈ X2 has
f?PXY (x) = +1 or else the one such x has PXY ({x} × Y) ≤ ε/3; in either case, we have

erPXY (ĥ) = PXY ({x : f?PXY (x) = +1}×Y) ≤ ε/3. Thus, regardless of whether the algorithm

requests a Yi with value +1, we have erPXY (ĥ) ≤ ε/3. By a union bound for the two events,
we have that P(erPXY (ĥ) > ε/3) ≤ δ/3 (given a sufficiently large n). Furthermore, there

are at most min
{
s− d, 1

(1−ε/3)ε/3

}
points x ∈ {d + 1, . . . , s} with P̂({x}) > (1 − ε/3)ε/3,

and therefore at most this many labels Yi are requested by the algorithm. Thus, a budget
n of at least this size suffices for this guarantee. Since this holds for every PXY ∈ D2, we
have that

Λ2,0

(
ε

3
,
δ

3

)
≤ min

{
s− d, 1

(1− ε/3)ε/3

}
. min

{
s,

1

ε

}
.
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Altogether, we have that ∀ε, δ ∈ (0, 1),

ΛRE(ε, δ) . max

{
min

{
s,

1

ε

}
, d

}
.

Thus, the lower bound in Theorem 3 is tight up to universal constant factors in this case.17

D.2.2 Bounded Noise

To prove that the lower bound in Theorem 4 is sometimes tight, fix any β ∈ (0, 1/2), and
let Di denote the set of all Pi ∈ BN(β) with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. For all
γ ∈ [0, 1] and i ∈ {1, 2}, define Di(γ) = Di. As above, note that for any P ∈ BN(β), for
any measurable A ⊆ X × Y, P (A) = P (X1 × Y)P (A|X1 × Y) + P (X2 × Y)P (A|X2 × Y).
Furthermore, any i ∈ {1, 2} with P (Xi × Y) > 0 has P (· × Y|Xi × Y) supported only on
Xi, and since η(x;P (·|Xi × Y)) = η(x;P ) for every x ∈ Xi, we have P (·|Xi × Y) ∈ BN(β),
so that P (·|Xi × Y) ∈ Di. Thus, P ∈ D = {γP1 + (1− γ)P2 : P1 ∈ D1, P2 ∈ D2, γ ∈ [0, 1]}.
Therefore, BN(β) ⊆ D. Together with Lemma 46, this implies ∀ε, δ ∈ (0, 1),

ΛBN(β)(ε, δ) ≤ ΛD(ε, δ) ≤ 2 max

{
Λ1,0

(
ε

3
,
δ

3

)
,Λ2,0

(
ε

3
,
δ

3

)}
,

for Λi,0(·, ·) defined as above.

Now note that, for each i ∈ {1, 2}, since every Pi ∈ Di has Pi ∈ BN(β), we have f?Pi ∈ C.
Furthermore, since every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative
function x 7→ −1 is contained in Ci, and since Pi(Xi × Y) = 1, without loss we can take
f?Pi ∈ Ci (i.e., there is a version of f?Pi contained in Ci). Together with the condition
on η(·;Pi) from the definition of BN(β), this implies each Pi satisfies the bounded noise
condition (with parameter β) with respect to Ci.

Since this is true of every P1 ∈ D1, and the star number and VC dimension of C1 are
both equal d, the upper bound in Theorem 4 implies ∀ε ∈ (0, (1− 2β)/8), δ ∈ (0, 1/8],

Λ1,0

(
ε

3
,
δ

3

)
.

1

(1− 2β)2
d · polylog

(
d

εδ

)
.

Similarly, since every P2 ∈ D2 satisfies the bounded noise condition (with parameter β)
with respect to C2, and the star number of C2 is s − d ≤ s while the VC dimension of C2

is 1, the upper bound in Theorem 4 implies ∀ε ∈ (0, (1− 2β)/8), δ ∈ (0, 1/8],

Λ2,0

(
ε

3
,
δ

3

)
.

1

(1− 2β)2
min

{
s,

1− 2β

ε

}
polylog

(
1

εδ

)
.

Altogether, we have that

ΛBN(β)(ε, δ) .
1

(1− 2β)2
max

{
min

{
s,

1− 2β

ε

}
, d

}
polylog

(
d

εδ

)
.

17. The term Log
(
min

{
1
ε
, |C|

})
in the lower bound is dominated by the other terms in this example, so

that this upper bound is still consistent with the existence of this term in the lower bound.
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For β bounded away from 0, this is within logarithmic factors of the lower bound in Theo-
rem 4, so that we may conclude that the lower bound is sometimes tight to within logarith-
mic factors in this case. Furthermore, when β is near 0, it is within logarithmic factors of the
lower bound in Theorem 3, which is also a lower bound on ΛBN(β)(ε, δ) since RE ⊆ BN(β);
thus, this inherited lower bound on ΛBN(β)(ε, δ) is also sometimes tight to within logarithmic
factors when β is near 0.

D.2.3 Tsybakov Noise

The case of Tsybakov noise is slightly more involved than the above. In this case, fix
any a ∈ [1,∞), α ∈ (0, 1). Since the upper bound in Theorem 5 already matches the
lower bound up to logarithmic factors when α ∈ (0, 1/2], it suffices to focus on the case
α ∈ (1/2, 1). In this case, for γ ∈ (0, 1], let Di(γ) denote the set of all Pi ∈ TN(a/γ1−α, α)
with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. Also let Di(0) denote the set of all probability
measures Pi with Pi(Xi × Y) = 1, for each i ∈ {1, 2}. Again, for any P ∈ TN(a, α), P (·) =
P (X1×Y)P (·|X1×Y) +P (X2×Y)P (·|X2×Y), and for any i ∈ {1, 2} with P (Xi×Y) > 0,
P (· × Y|Xi × Y) is supported only in Xi, and η(·;P (·|Xi × Y)) = η(·;P ) on Xi, so that for
any t > 0,

P
(
{x : |η(x;P (·|Xi × Y))− 1/2| ≤ t} × Y

∣∣∣Xi × Y)
=

1

P (Xi × Y)
P ({x ∈ Xi : |η(x;P )− 1/2| ≤ t} × Y)

≤ 1

P (Xi × Y)
a′tα/(1−α) = (1− α)(2α)α/(1−α)

(
a

P (Xi × Y)1−α

)1/(1−α)

tα/(1−α).

Also, since f?P ∈ C, and η(·;P (·|Xi×Y)) = η(·;P ) on Xi, we can take f?P (·|Xi×Y)(x) = f?P (x)
for every x ∈ Xi, so that there exists a version of f?P (·|Xi×Y) contained in C. Together,

these imply that P (·|Xi × Y) ∈ Di(P (Xi × Y)). We therefore have that ∀P ∈ TN(a, α),
P = γP1 + (1 − γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ), and P2 ∈ D2(1 − γ): that is,
TN(a, α) ⊆ D, for D as in Lemma 46 (with respect to these definitions of Di(·)). Therefore,
Lemma 46 implies that ∀ε, δ ∈ (0, 1),

ΛTN(a,α)(ε, δ) ≤ ΛD(ε, δ)

. sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
. (68)

First note that, for the case γ ≤ ε/4, we trivially have

Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,0

(
ε

2(γ + ε/4)
,
δ

3

)
≤ Λ1,0

(
1,
δ

3

)
= 0,

and similarly for the case γ ≥ 1− ε/4, we have Λ2,(1−γ−ε/8)∨0

(
ε

2(1−γ+ε/8) ,
δ
3

)
= 0.

For the remaining cases, for any γ ∈ (0, 1], since every Pi ∈ Di(γ) has f?Pi ∈ C, and
every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative function x 7→ −1
is contained in Ci, and Pi(Xi × Y) = 1, without loss we can take f?Pi ∈ Ci. Together with
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the definition of Di(γ), we have that Di(γ) is contained in the set of probability measures
Pi satisfying the Tsybakov noise condition with respect to the hypothesis class Ci, with
parameters a

γ1−α and α. Therefore, since the star number and VC dimension of C1 are both

d, Theorem 5 implies that for any γ ∈ (ε/4, 1],18

Λ1,γ−ε/8

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,γ/2

(
ε

3γ
,
δ

3

)
.

(
a

γ1−α

)2 (γ
ε

)2−2α
d · polylog

(
d

εδ

)
= a2

(
1

ε

)2−2α

d · polylog

(
d

εδ

)
.

Similarly, since the star number of C2 is s− d and the VC dimension of C2 is 1, Theorem 5
implies that for any γ ∈ [0, 1− ε/4),

Λ2,1−γ−ε/8

(
ε

2(1− γ + ε/8)
,
δ

3

)
≤ Λ2,(1−γ)/2

(
ε

3(1− γ)
,
δ

3

)
.

(
a

(1− γ)1−α

)2(1− γ
ε

)2−2α

min

{
s− d, (1− γ)1/α(1− γ)

a1/αε

}2α−1

polylog

(
1

εδ

)
≤ a2

(
1

ε

)2−2α

min

{
s,

1

a1/αε

}2α−1

polylog

(
1

εδ

)
.

Plugging this into (68), we have that

ΛTN(a,α)(ε, δ) . a2

(
1

ε

)2−2α

max

{
min

{
s,

1

a1/αε

}2α−1

, d

}
polylog

(
d

εδ

)
.

As claimed, this is within logarithmic factors of the lower bound in Theorem 5 (for 1/2 <
α < 1, a ≥ 4, ε ∈ (0, 1/(24a1/α)), and δ ∈ (0, 1/24]), so that, combined with the tightness
(always) for the case 0 < α ≤ 1/2, we may conclude that the lower bounds in Theorem 5
are sometimes tight to within logarithmic factors.

D.2.4 Benign Noise

The case of benign noise proceeds analogously to the above. Since BE(0) = RE, tightness of
the lower bound for the case ν = 0 (up to constant factors) has already been addressed above
(supposing we include the lower bound from Theorem 3 as a lower bound on ΛBE(ν)(ε, δ) to
strengthen the lower bound in Theorem 7). For the remainder, we suppose ν ∈ (0, 1/2). For
γ ∈ [0, 1], let Di(γ) denote the set of all Pi ∈ BE(ν/(γ ∨ 2ν)) with Pi(Xi ×Y) = 1, for each
i ∈ {1, 2}. Again, for any P ∈ BE(ν), P (·) = P (X1×Y)P (·|X1×Y)+P (X2×Y)P (·|X2×Y),
and for any i ∈ {1, 2} with P (Xi × Y) > 0, P (· × Y|Xi × Y) is supported only in Xi, and
η(·;P (·|Xi×Y)) = η(·;P ) on Xi, so that we can take f?P (·|Xi×Y)(x) = f?P (x) for every x ∈ Xi;

18. Recall that, as mentioned in Section 5, the upper bounds on the label complexities stated in Section 5
hold without the stated restrictions on the values ε, δ ∈ (0, 1) and a.
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thus, there is a version of f?P (·|Xi×Y) contained in C. Furthermore,

erP (·|Xi×Y)(f
?
P (·|Xi×Y)) =

1

P (Xi × Y)
P ((x, y) : f?P (x) 6= y and x ∈ Xi)

≤ 1

P (Xi × Y)
P ((x, y) : f?P (x) 6= y) ≤ ν

P (Xi × Y)
.

Also, since every x ∈ Xi has f?P (·|Xi×Y)(x) = f?P (x) = sign(2η(x;P )−1) = sign(2η(x;P (·|Xi×
Y))−1), we have P ((x, y) : f?P (·|Xi×Y)(x) = y|x ∈ Xi) ≥ 1/2, so that erP (·|Xi×Y)(f

?
P (·|Xi×Y)) ≤

1/2. Together, these imply that P (·|Xi × Y) ∈ Di(P (Xi × Y)). We therefore have that
∀P ∈ BE(ν), P = γP1 + (1−γ)P2 for some γ ∈ [0, 1], P1 ∈ D1(γ), and P2 ∈ D2(1−γ): that
is, BE(ν) ⊆ D, for D as in Lemma 46 (with respect to these definitions of Di(·)). Therefore,
Lemma 46 implies that ∀ε, δ ∈ (0, 1),

ΛBE(ν)(ε, δ) ≤ ΛD(ε, δ)

. sup
γ∈[0,1]

max

{
Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
,Λ2,(1−γ−ε/8)∨0

(
ε

2(1− γ + ε/8)
,
δ

3

)}
. (69)

First note that, as above, for the case γ ≤ ε/4, we trivially have

Λ1,(γ−ε/8)∨0

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,0

(
ε

2(γ + ε/4)
,
δ

3

)
≤ Λ1,0

(
1,
δ

3

)
= 0,

and similarly for the case γ ≥ 1− ε/4, we have Λ2,(1−γ−ε/8)∨0

(
ε

2(1−γ+ε/8) ,
δ
3

)
= 0.

For the remaining cases, for any γ ∈ (0, 1], since every Pi ∈ Di(γ) has f?Pi ∈ C, and
every h ∈ C \ Ci has h(x) = −1 for every x ∈ Xi, and the all-negative function x 7→ −1 is
contained in Ci, and Pi(Xi ×Y) = 1, without loss we can take f?Pi ∈ Ci. Together with the
definition of Di(γ), we have that Di(γ) is contained in the set of probability measures Pi
satisfying the benign noise condition with respect to the hypothesis class Ci, with parameter
ν
γ ∧

1
2 . Therefore, since the star number and VC dimension of C1 are both d, Theorem 7

implies that for any γ ∈ (ε/4, 1],19

Λ1,γ−ε/8

(
ε

2(γ + ε/8)
,
δ

3

)
≤ Λ1,γ/2

(
ε

3γ
,
δ

3

)
.

(
(ν/γ)2

(ε/γ)2
d+ d

)
polylog

(
d

εδ

)
.

(
ν2

ε2
∨ 1

)
d · polylog

(
d

εδ

)
.

Similarly, since the star number of C2 is s− d and the VC dimension of C2 is 1, Theorem 7
implies that for any γ ∈ [0, 1− ε/4),

Λ2,1−γ−ε/8

(
ε

2(1− γ + ε/8)
,
δ

3

)
≤ Λ2,(1−γ)/2

(
ε

3(1− γ)
,
δ

3

)
.

(
(ν/(1− γ))2

(ε/(1− γ))2
+ min

{
s− d, 1

ε

})
polylog

(
1

εδ

)
.

(
ν2

ε2
∨min

{
s,

1

ε

})
polylog

(
1

εδ

)
.

19. Again, as mentioned in Section 5, the restrictions on ε, δ stated in Theorem 7 are only required for the
lower bounds.
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Plugging these into (69), we have that for ε ∈ (0, ν),

ΛBE(ν)(ε, δ) .

(
ν2

ε2
d+ min

{
s,

1

ε

})
polylog

(
d

εδ

)
.

Again, this is within logarithmic factors of the lower bound in Theorem 7 (for ε ∈ (0,
(1−2ν)/24) and δ ∈ (0, 1/24]), so that we may conclude that this lower bound is sometimes
tight to within logarithmic factors when ν is not near 0 (specifically, when ε < ν). For
ν ≤ ε, the above implies

ΛBE(ν)(ε, δ) . max

{
d,min

{
s,

1

ε

}}
polylog

(
d

εδ

)
,

which is within logarithmic factors of the lower bound in Theorem 3 (for ε ∈ (0, 1/9) and
δ ∈ (0, 1/3)). Since RE ⊆ BE(ν), this is also a lower bound on ΛBE(ν)(ε, δ). Thus, in this
case, we may conclude that this inherited lower bound on ΛBE(ν)(ε, δ) is sometimes tight to
within logarithmic factors, for ν near 0 (specifically, when ε ≥ ν).
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