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Abstract

The vector autoregressive (VAR) model is a powerful tool in learning complex time series
and has been exploited in many fields. The VAR model poses some unique challenges
to researchers: On one hand, the dimensionality, introduced by incorporating multiple
numbers of time series and adding the order of the vector autoregression, is usually much
higher than the time series length; On the other hand, the temporal dependence structure
naturally present in the VAR model gives rise to extra difficulties in data analysis. The
regular way in cracking the VAR model is via “least squares” and usually involves adding
different penalty terms (e.g., ridge or lasso penalty) in handling high dimensionality. In this
manuscript, we propose an alternative way in estimating the VAR model. The main idea
is, via exploiting the temporal dependence structure, formulating the estimating problem
to a linear program. There is instant advantage of the proposed approach over the lasso-
type estimators: The estimation equation can be decomposed to multiple sub-equations
and accordingly can be solved efficiently using parallel computing. Besides that, we also
bring new theoretical insights into the VAR model analysis. So far the theoretical results
developed in high dimensions (e.g., Song and Bickel, 2011 and Kock and Callot, 2015) are
based on stringent assumptions that are not transparent. Our results, on the other hand,
show that the spectral norms of the transition matrices play an important role in estima-
tion accuracy and build estimation and prediction consistency accordingly. Moreover, we
provide some experiments on both synthetic and real-world equity data. We show that
there are empirical advantages of our method over the lasso-type estimators in parameter
estimation and forecasting.

Keywords: transition matrix, multivariate time series, vector autoregressive model,
double asymptotic framework, linear program

1. Introduction

The vector autoregressive (VAR) model plays a fundamental role in analyzing multivariate
time series data and has many applications in numerous academic fields. The VAR model
is heavily used in finance (Tsay, 2005), econometrics (Sims, 1980), and brain imaging data
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analysis (Valdés-Sosa et al., 2005). For example, in understanding the brain connectivity
network, multiple resting-state functional magnetic resonance imaging (rs-fMRI) data are
obtained by consecutively scanning the same subject for approximately a hundred times or
more. This naturally produces a high dimensional dependent data and a common strategy
in handling such data is via building a vector autoregressive model (see Qiu et al., and the
references therein).

This manuscript considers estimating the VAR model. Our focus is on the stationary
vector autoregression with the order (or called lag) p and Gaussian noises. More specifically,
let random vectors X1, . . . , XT be from a stochastic process (Xt)

∞
t=−∞. Each Xt is a d-

dimensional random vector and satisfies that

Xt =

p∑
k=1

AT
kXt−k + Zt, Zt ∼ Nd(0,Ψ),

where A1, . . . , Ap are called the transition matrices and (Zt)
∞
t=−∞ are independent multi-

variate Gaussian noises. Via assuming det(Id−
∑p

k=1A
T
kz

k) 6= 0 for all z ∈ C with modulus
not greater than one, we then have the process is stationary (check, for example, Section
2.1 in Lütkepohl, 2005) and Xt ∼ Nd(0,Σ) for some covariance matrix Σ depending on
{Ak, k = 1, . . . , p} and Ψ.

There are in general three main targets in analyzing an VAR model. One is to es-
timate the transition matrices A1, . . . , Ap. These transition matrices reveal the temporal
dependence in the data sequence and estimating them builds a fundamental first step in
forecasting. Moreover, the zero and nonzero entries in the transition matrices directly in-
corporate the Granger non-causalities and causalities with regard to the stochastic sequence
(see, for example, Corollary 2.2.1 in Lütkepohl, 2005). Another one of interest is the error
covariance Ψ, which reveals the contemporaneous interactions among d time series. Finally,
by merely treating the temporal dependence as another measure of the data dependence
(in parallel to the mixing conditions, Bradley, 2005), it is also of interest to estimate the
covariance matrix Σ.

This manuscript focuses on estimating the transition matrices A1, . . . , Ap, while noting
that the techniques developed here can also be exploited to estimate the covariance matrix
Σ and the noise covariance Ψ. We first review the methods developed so far in transition
matrix estimation. Let A = (AT

1 , . . . , A
T
p )T ∈ Rdp×d be the combination of the transition

matrices. Given X1, . . . , XT , the perhaps most classic method in estimating A is least
squares minimization (Hamilton, 1994)

ÂLSE = argmin
M∈Rdp×d

‖Ỹ −MTX̃‖2F, (1)

where ‖ · ‖F is the matrix Frobenius norm, Ỹ = (Xp+1, . . . , XT ) ∈ Rd×(T−p), and X̃ =
{(XT

p , . . . , X
T
1 )T, . . . , (XT

T−1, . . . , X
T
T−p)

T} ∈ R(dp)×(T−p). However, a fatal problem in (1) is
that the product of the order of the autoregression p and the number of time series d is
frequently larger than the time series length T . Therefore, the model has to be constrained
to enforce identifiability. A common strategy is to add sparsity on the transition matrices
so that the number of nonzero entries is less than T . Built on this assumption, there
has been a large literature discussing adding different penalty terms to (1) for regularizing

3116



Estimation of VAR Models

the estimator: From the ridge-penalty to the lasso-penalty and more non-concave penalty
terms. In the following we list the major efforts. Hamilton (1994) discussed the use of
the ridge-penalty ‖M‖2F in estimating the transition matrices. Hsu et al. (2008) proposed
to add the L1-penalty in estimating the transition matrices, inducing a sparse output.
Several extensions to transition matrix estimation in the VAR model include: Wang et al.
(2007) exploited the L1-penalty in simultaneously estimating the regression coefficients and
determining the number of lags in a linear regression model with autoregressive errors. In
detecting causality, Haufe et al. (2008) transferred the problem to estimating transition
matrices in an VAR model and advocated using a group-lasso penalty for inducing joint
sparsity among a whole block of coefficients. In studying the graphical Granger causality
problem, Shojaie and Michailidis (2010) exploited the VAR model and proposed to estimate
the coefficients using a truncated weighted L1-penalty. Song and Bickel (2011) exploited
the L1 penalty in a complicated VAR model and aimed to select the variables and lags
simultaneously.

The theoretical properties of the L1-regularized estimator have been analyzed in Bento
et al. (2010), Nardi and Rinaldo (2011), Song and Bickel (2011), and Kock and Callot
(2015) under the assumption that the matrix A is sparse, i.e., the number of nonzero
entries in A is much less than the dimension of parameters pd2. Nardi and Rinaldo (2011)
provided both subset and parameter estimation consistency results under a relatively low
dimensional settings with d = o(n1/2). Bento et al. (2010) studied the problem of estimating
supports sets of the transition matrices in the high dimensional settings and proposed an
“irrepresentable condition” similar as what is proposed in the linear regression model (Zou,
2006; Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006; Wainwright, 2009). It is for
the L1 regularized estimator to attain the support set selection consistency. In parallel,
Song and Bickel (2011) and Kock and Callot (2015) studied the parameter estimation and
support set selection consistency of the L1-regularized estimator in high dimensions.

In this paper, we propose a new approach to estimate the transition matrix A. Different
from the line of lasso-based estimation procedures, which are built on penalizing the least
square term, we exploit the linear programming technique and the proposed method is
very fast to solve via parallel computing. Moreover, we do not need A to be exactly
sparse and allow it to be only “weakly sparse”. The main idea is to estimate A using
the relationship between A and the marginal and lag 1 autocovariance matrices (such a
relationship is referred to as the Yule-Walker equation). We thus formulate the estimation
procedure to a linear program, while adding the ‖ · ‖max (element-wise supremum norm)
for model identifiability. Here we note that the proposed procedure can be considered as
a generalization of the Dantzig selector (Candes and Tao, 2007) to the linear regression
model with multivariate response. Indeed, our proposed method can also be exploited in
conducting multivariate regression (Breiman and Friedman, 1997).

The proposed method enjoys several advantages compared to the existing ones: (i)
Computationally, our method can be formulated into d linear programs and can be solved in
parallel. Similar ideas have been used in learning high dimensional linear regression (Candes
and Tao, 2007; Bickel et al., 2009) and graphical models (Yuan, 2010; Cai et al., 2011). (ii)
In the model-level, our method allows A to be only weakly sparse. (iii) Theoretically, so
far the analysis on lasso-type estimators (Song and Bickel, 2011; Kock and Callot, 2015)
depends on certain regularity conditions, restricted eigenvalue conditions on the design
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matrix for example, which are not transparent and do not explicitly reveal the role of
temporal dependence in it. In contrast, we provide explicit nonasymptotic analysis, and
our analysis highlights the spectral norm ‖A‖2 in estimation accuracy, which is inspired by
some recent developments (Loh and Wainwright, 2012). Moreover, for exact sign recovery,
our analysis does not need the “irrepresentable condition” which is usually required in the
analysis of lasso-type estimators (Bento et al., 2010).

The major theoretical results are briefly stated as follows. We adopt a double asymptotic
framework where d is allowed to increase with T . We call a matrix s-sparse if there are
at most s nonzero elements on each of its column. Under mild conditions, we provide the
explicit rates of convergence of our estimator Â based on the assumption that A is s-sparse
(Cai et al., 2011). In particular, for lag 1 time series, we show that

‖Â−A‖1 = OP

{
s‖A‖1

1− ‖A‖2

(
log d

T

)1/2
}
, ‖Â−A‖max = OP

{
‖A‖1

1− ‖A‖2

(
log d

T

)1/2
}
,

where ‖ · ‖max and ‖ · ‖q represent the matrix elementwise absolute maximum norm (Lmax

norm) and induced Lq norm (detailed definitions will be provided in §2). Using the Lmax

norm consistency result, we further provide the sign recovery consistency of the proposed
method. This result is of self interest and sheds light to detecting Granger causality. We
also provide the prediction consistency results based on the L1 consistency result and show
that element-wise error in prediction can be controlled. Here for simplicity we only provide
the results when A is exactly sparse and defer the presentation of the results for weakly
sparse matrix to Section 4.

The rest of the paper is organized as follows. In Section 2, we briefly review the vector
autoregressive model. In Section 3, we introduce the proposed method for estimating the
transition matrices of the vector autoregressive model. In Section 4, we provide the main
theoretical results. In Section 5, we apply the new method to both synthetic and real equity
data for illustrating its effectiveness. More discussions are provided in the last section.
Detailed technical proofs are provided in the appendix1.

2. Background

In this section, we briefly review the vector autoregressive model. Let M = (Mjk) ∈ Rd×d
and v = (v1, ..., vd)

T ∈ Rd be a matrix and an vector of interest. We denote vI to be the
subvector of v whose entries are indexed by a set I ⊂ {1, . . . , d}. We also denote MI,J to be
the submatrix of M whose rows are indexed by I and columns are indexed by J . We denote
MI,∗ to be the submatrix of M whose rows are indexed by I, M∗,J to be the submatrix of
M whose columns are indexed by J . For 0 < q <∞, we define the L0, Lq, and L∞ vector
(pseudo-)norms to be

‖v‖0 :=
d∑
j=1

I(vj 6= 0), ‖v‖q :=
( d∑
j=1

|vj |q
)1/q

, and ‖v‖∞ := max
1≤j≤d

|vj |,

1. Some of the results in this paper were first stated without proof in a conference version (Han and Liu,
2013).
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where I(·) is the indicator function. Letting M be a matrix, we denote the matrix Lq, Lmax,
and Frobenius norms to be

‖M‖q := max
‖v‖q=1

‖Mv‖q, ‖M‖max := max
jk
|Mjk|, and ‖M‖F :=

(∑
j,k

|Mjk|2
)1/2

.

We denote 1d = (1, . . . , 1)T ∈ Rd. Let σ1(M) ≥ · · · ≥ σd(M) be the singular values of M .
Let p ≥ 1 be an integer. A lag p vector autoregressive process can be elaborated as

follows: Let (Xt)
∞
t=−∞ be a stationary sequence of random vectors in Rd with mean 0 and

covariance matrix Σ. We say that (Xt)
∞
t=−∞ follow a lag p vector autoregressive model if

and only if they satisfy

Xt =

p∑
k=1

AT
kXt−k + Zt (t ∈ Z). (2)

Here A1, . . . , Ap are called transition matrices. We denote A = (AT
1 , . . . , A

T
p )T to be the

combination of the transition matrices. We assume that Zt are independently and identically
generated from a Gaussian distribution Nd(0,Ψ). Moreover, Zt and (Xs)s<t are independent
for any t ∈ Z. We pose an additional assumption that det(Id −

∑p
k=1A

T
kz

k) 6= 0 for all
z ∈ C with modulus not greater than one. This guarantees that the sequence is stationary
and we have, for any t ∈ Z, Xt follows a Gaussian distribution Nd(0,Σ),

We denote Σi(·) to be an operator on the process (Xt)
∞
t=−∞. In particular, we define

Σi{(Xt)} = Cov(X0, Xi). It is easy to see that Σ0{(Xt)} = Σ. If the lag of the vector
autoregressive model is 1 (i.e., Xt = AT

1Xt−1 + Zt, for any t ∈ Z), by simple calculation we
have the so called “Yule-Walker Equation”

Σi{(Xt)} = Σ0{(Xt)}(A1)
i, (3)

which further implies that

A1 = [Σ0{(Xt)}]−1 · Σ1{(Xt)}.

The results for lag 1 vector autoregressive model can be extended to the lag p vector
autoregressive model by appropriately redefining the random vectors. In detail, the autore-
gressive model with lag p shown in (2) can be reformulated as an autoregressive model with
lag 1

X̃t = ÃTX̃t−1 + Z̃t, (4)

where

X̃t =


Xt+p−1
Xt+p−2

...
Xt

 , Ã =


A1 Id 0 . . . 0
...

. . . · · · · · ·
...

Ap−1 0 0 . . . Id
Ap 0 0 . . . 0

 , Z̃t =


Zt+p−1

0
...
0

 . (5)

Here Id ∈ Rd×d is the identity matrix, X̃t ∼ Ndp(0, Σ̃) for t = 1, . . . , T , and Z̃t ∼ Ndp(0, Ψ̃)

with Σ̃ = Cov(X̃t) and Ψ̃ = Cov(Z̃t). Therefore, we also have

Ã = [Σ0{(X̃t)}]−1 · Σ1{(X̃t)}. (6)

This is similar to the relationship for the lag 1 vector autoregressive model.
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3. Methods and Algorithms

We provide a new formulation to estimate A1, . . . , Ap for the vector autoregressive model.
Let X1, . . . , XT be from a lag p vector autoregressive process (Xt)

∞
t=−∞ and we denote

X̃t = (XT
t+p−1, . . . , X

T
t )T for t = 1, . . . , T − p + 1. We denote S and S1 to be the marginal

and lag 1 sample covariance matrices of (X̃t)
T−p+1
t=1

S :=
1

T − p+ 1

T−p+1∑
t=1

X̃tX̃
T
t , S1 :=

1

T − p

T−p∑
t=1

X̃tX̃
T
t+1. (7)

Using the connection between Ã and Σ0{(X̃t)},Σ1{(X̃t)} shown in (6), we know that a
good estimator Ω̌ of Ã shall satisfy that

‖Σ0{(X̃t)}Ω̌− Σ1{(X̃t)}‖ (8)

is small enough with regard to a certain matrix norm ‖ · ‖. Moreover, using the fact that
A = (AT

1 , . . . , A
T
p )T = Ã∗,J , where J = {1, . . . , d}, by (8) we have that a good estimate Ǎ of

A shall satisfy

‖Σ0{(X̃t)}Ǎ− [Σ1{(X̃t)}]∗,J‖ (9)

is small enough.
Motivated by (9), we estimate A1, . . . , Ap via replacing Σ0{(X̃t) and [Σ1{(X̃t)}]∗,J with

their empirical versions. For formulating the estimation equation to a linear program, we use
the Lmax norm. Accordingly, we end in solving the following convex optimization program

Ω̂ = argmin
M∈Rdp×d

∑
jk

|Mjk|, subject to ‖SM − (S1)∗,J‖max ≤ λ0, (10)

where λ0 > 0 is a tuning parameter. In (10), the constraint part aims to find an estimate
that approximates the true parameter well, and combined with the minimization part, aims
to induce certain sparsity. Let Ω̂∗,j = β̂j , it is easy to see that (10) can be decomposed to

many subproblems and each β̂j can be solved by

β̂j = argmin
v∈Rdp

‖v‖1, subject to ‖Sv − (S1)∗,j‖∞ ≤ λ0. (11)

Accordingly, compared to the lasso-type procedures, the proposed method can be solved in
parallel and therefore is computationally more efficient.

Once Ω̂ is obtained, the estimator of the transition matrix Ak can then be written as

Âk = Ω̂Jk,∗, (12)

where we denote Jk = {j : d(k − 1) + 1 ≤ j ≤ dk}.
We now show that the optimization in (11) can be formulated into a linear program.

Recall that any real number a takes the decomposition a = a+−a−, where a+ = a ·I(a ≥ 0)
and a− = −a · I(a < 0). For any vector v = (v1, . . . , vd)

T ∈ Rd, let v+ = (v+1 , . . . , v
+
d )T and

v− = (v−1 , . . . , v
−
d )T. We denote v ≥ 0 if v1, . . . , vd ≥ 0 and v < 0 if v1, . . . , vd < 0, v1 ≥ v2
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if v1− v2 ≥ 0, and v1 < v2 if v1− v2 < 0. Letting v = (v1, . . . , vd)
T, the problem in (11) can

be further relaxed to the following problem

β̂j = argmin
v+,v−

1T
d (v+ + v−),

subject to ‖Sv+ − Sv− − (S1)∗,j‖∞ ≤ λ0, v+ ≥ 0, v− ≥ 0. (13)

To minimize 1T
d (v+ + v−), v+ or v− can not be both nonzero. Therefore, the solution to

(13) is exactly the solution to (11). The optimization in (13) can be written as

β̂j = argmin
v+,v−

1T
d (v+ + v−),

subject to Sv+ − Sv− − (S1)∗,j ≤ λ01d,
−Sv+ + Sv− + (S1)∗,j ≤ λ01d,

v+ ≥ 0, v− ≥ 0.

This is equivalent to

β̂j = argmin
ω

1T
2dω, subject to θ +Wω ≥ 0, ω ≥ 0, (14)

where

ω =

(
v+

v−

)
, θ =

[
(S1)∗,j + λ01d
−(S1)∗,j + λ01d

]
, W =

(
−S S
S −S

)
.

The optimization (14) is a linear program. We can solve it using the simplex algorithm
(Murty, 1983).

4. Theoretical Properties

In this section, under the double asymptotic framework, we provide the nonasymptotic rates
of convergence in parameter estimation under the matrix L1 and Lmax norms.

We first present the rates of convergence of the estimator Ω̂ in (10) under the vector
autoregressive model with lag 1. This result allows us to sharply characterize the impact
of the temporal dependence of the time series on the obtained rate of convergence. In
particular, we show that the rate of convergence is closely related to the L1 and L2 norms
of the transition matrix A1, where ‖A1‖2 is the key part in characterizing the impact
of temporal dependence on estimation accuracy. Secondly, we present the sign recovery
consistency result of our estimator. Compared to the lasso-type estimators, our result does
not require the irrepresentable condition. These results are combined together to show that
we have the prediction consistency, i.e., the term ‖A1XT − Â1XT ‖ goes to zero with regard
to certain norms ‖ · ‖. The application to lag p > 1 case is left for future studies.

We start with some additional notation. Let Md ∈ R be a quantity which may scale
with the time series length and dimension (T, d). We define the set of square matrices in
Rd×d, denoted by M(q, s,Md), as

M(q, s,Md) :=
{
M ∈ Rd×d : max

1≤j≤d

d∑
i=1

|Mij |q ≤ s,‖M‖1 ≤Md

}
.
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For q = 0, the classM(0, s,Md) contains all the s-sparse matrices with bounded L1 norms.
There are two general remarks about the model M(q, s,Md): (i) M(q, s,Md) can be

considered as the matrix version of the vector “weakly sparse set” explored in Raskutti
et al. (2011) and Vu and Lei (2012). Such a way to define the weakly sparse set of matrices
is also investigated in Cai et al. (2011). (ii) For the exactly sparse matrix set,M(0, s,Md),
the sparsity level s here represents the largest number of nonzero entries in each column
of the matrix. In contrast, the sparsity level s′ exploited in Kock and Callot (2015) is the
total number of nonzero entries in the matrix. We must have s′ ≥ s and regularly s′ � s
(means s/s′ → 0).

The next theorem presents the L1 and Lmax rates of convergence of our estimator under
the vector autoregressive model with lag 1.

Theorem 1 Suppose that (Xt)
T
t=1 are from a lag 1 vector autoregressive process (Xt)

∞
t=−∞

as described in (2). We assume the transition matrix A1 ∈M(q, s,Md) for some 0 ≤ q < 1.
Let Â1 be the optimum to (10) with the tuning parameter

λ0 =
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A‖2)
(2Md + 3)

(
log d

T

)1/2

.

For T ≥ 6 log d+1 and d ≥ 8, we have, with probability no smaller than 1− 14d−1,

‖Â1 −A1‖1 ≤ 4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2
}1−q

. (15)

Moreover, with probability no smaller than 1− 14d−1,

‖Â1 −A1‖max ≤
64‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2

. (16)

In the above results, Σ is the marginal covariance matrix of Xt.

It can be observed that, similar to the lasso and Dantzig selector (Candes and Tao,
2007; Bickel et al., 2009), the tuning parameter λ0 here depends on the variance term Σ.
In practice, same as most preceded developments (see, for example, Song and Bickel, 2011),
we can use a data-driven way to select the tuning parameter. In this manuscript we explore
using cross-validation to choose λ0 with the best prediction accuracy. In Section 5 we
will show that the procedure of selecting the tuning parameter via cross-validation gives
reasonable results.

Here A1 is assumed to be at least weakly sparse and belong to the setM(q, s,Md). This
is merely for the purpose of model identifiability. Otherwise, we will have multiple global
optima in the optimization problem.

The obtained rates of convergence in Theorem 1 depend on both Σ and A1 with ‖A1‖2
characterizing the temporal dependence. In particular, the estimation error is related to the
spectral norm of the transition matrix A1. Intuitively, this is because ‖A1‖2 characterizes
the data dependence of X1, . . . , XT , and accordingly intrinsically characterizes how much
information there is in the data. If ‖A1‖2 is larger, then there is less information we can
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exploit in estimating A1. Technically, ‖A1‖2 determines the rate of convergence of S and
S1 to their population counterparts. We refer to the proofs of Lemmas 1 and 2 for details.

In the following, we list two examples to provide more insights about the results in
Theorem 1.

Example 1 We consider the case where Σ is a strictly diagonal dominant (SDD) matrix
(Horn and Johnson, 1990) with the property

δi := |Σii| −
∑
j 6=i
|Σij | ≥ 0, (i = 1, . . . , d).

This corresponds to the cases where the d entries in any Xt with t ∈ {1, . . . , T} are weakly
dependent. In this setting, Ahlberg and Nilson (1963) showed that

‖Σ−1‖1 = ‖Σ−1‖∞ ≤
{

min
i

(
|Σii| −

∑
j 6=i
|Σij |

)}−1
= max

i
(δ−1i ). (17)

Moreover, by algebra, we have

‖Σ‖2 ≤ ‖Σ‖1 = max
i

(
|Σii|+

∑
j 6=i
|Σij |

)
≤ 2 max

i
(|Σii|). (18)

Equations (17) and (18) suggest that, when maxi(Σii) is upper bounded, and both mini(Σii)
and δi are lower bounded by a fixed constant, we have both ‖Σ−1‖1 and ‖Σ‖2 are upper
bounded, and the obtained rates of convergence in (15) and (16) can be simplified as

‖Â1 −A1‖1 = OP

s{ Md

1− ‖A1‖2

(
log d

T

)1/2
}1−q

 ,
‖Â1−A1‖max = OP

{
Md

1− ‖A1‖2

(
log d

T

)1/2
}
.

Example 2 We can generalize the “entry-wise weakly dependent” structure in Example 1
to a “block-wise weakly dependent” structure. More specifically, we consider the case where
Σ = (Σb

jk) with blocks Σb
jk ∈ Rdj×dk (1 ≤ j ≤ K) is a strictly block diagonal dominant

(SBDD) matrix with the property

δbi = ‖(Σb
ii)
−1‖−1∞ −

∑
j 6=i
‖Σb

ij‖∞ > 0 (i = 1, . . . ,K).

In this case, Varah (1975) showed that

‖Σ−1‖1 = ‖Σ−1‖∞ ≤
{

min
i

(
‖(Σb

ii)
−1‖−1∞ −

∑
j 6=i
‖Σb

ij‖∞
)}−1

= max{(δbi )−1}.

Moreover, we have

‖Σ‖2 ≤ ‖Σ‖1 ≤ max
i

(‖(Σb
ii)
−1‖−1∞ + ‖Σb

ii‖∞).
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Accordingly, generally (‖(Σb
ii)
−1‖−1∞ + ‖Σb

ii‖∞) is in the scale of maxi(di)� d, and when δbi
are lower bounded and the condition number of Σ is upper bounded, we have the obtained
rates of convergence can be simplified as

‖Â1 −A1‖1 = OP

s{Md ·maxi(di)

1− ‖A1‖2

(
log d

T

)1/2
}1−q

 ,
‖Â1−A1‖max = OP

{
Md ·maxi(di)

1− ‖A1‖2

(
log d

T

)1/2
}
.

We then continue to the results of feature selection. If we have A1 ∈M(0, s,Md), from
the element-wise Lmax norm convergence, a sign recovery result can be obtained. In detail,
let Ă1 be a truncated version of Â1 with level γ

(Ă1)ij = (Â1)ijI{|(Â1)ij | ≥ γ}. (19)

The following corollary shows that Ă1 recovers the sign of A1 with overwhelming probability.

Corollary 1 Suppose that the conditions in Theorem 1 hold and A1 ∈ M(0, s,Md). If we
choose the truncation level

γ =
64‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2

in (19) and with the assumption that

min
{(j,k):(A1)jk 6=0}

|(A1)jk| ≥ 2γ,

we have, with probability no smaller than 1 − 14d−1, sign(A1) = sign(Ă1). Here for any
matrix M , sign(M) is a matrix with each element representing the sign of the corresponding
entry in M .

Here we note that Corollary 1 sheds lights to detecting Granger causality. For any
two processes {yt} and {zt}, Granger (1969) defined the causal relationship in principle as
follows: Provided that we know everything in the universe, {yt} is said to cause {zt} in
Granger’s sense if removing the information about {ys}s≤t from the whole knowledge base
built by time t will increase the prediction error about zt. It is known that the noncausalities
are determined by the transition matrices in the stable VAR process (Lütkepohl, 2005).
Therefore, detecting the nonzero entries of A1 consistently means that we can estimate the
Granger-causality network consistently.

We then turn to evaluate the prediction performance of the proposed method. Given a
new data point XT+1 in the time point T+1, based on (Xt)

T
t=1, the next corollary quantifies

the distance between XT+1 and Â1XT in terms of L∞ norm.

Corollary 2 Suppose that the conditions in Theorem 1 hold and let

Ψmax := max
i

(Ψii) and Σmax := max
i

(Σii).
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Then for the new data point XT+1 at time point T + 1 and any constant α > 0, with
probability greater than

1− 2(dα/2−1
√
π/2 · α log d})−1 − 14d−1,

we have

‖XT+1 − ÂT
1XT ‖∞ ≤ (Ψmax · α log d)1/2+

4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md + 3)

(
log d

T

)1/2
}1−q

· (Σmax ·α log d)1/2, (20)

where Â1 is calculated based on (Xt)
T
t=1.

Here we note that the first term in the right-hand side of Equation (20), (Ψmax ·α log d)1/2, is
present due to the diverges of the new data point from its mean caused by an unpredictable
noise perturb term ZT+1 ∼ Nd(0,Ψ). This term is unable to be canceled out even if we
have almost infinite data points. The second term in the right-hand side of Equation (20)
depends on the estimation accuracy of Â1 to A1 and will converge to zero under certain
conditions. In other words, the term

‖AT
1XT − ÂT

1XT ‖∞ → 0,

converges to zero in probability as n, d→∞.
Although A1 is in general asymmetric, there exist cases such that a symmetric transition

matrix is more of interest. It is known that the off-diagonal entries in the transition matrix
represent the influence of one state on the others and such influence might be symmetric or
not. Weiner et al. (2012) provided several examples where a symmetric transition matrix
is more appropriate for modeling the data.

If we can further suppose that the transition matrix A1 is symmetric, we can use this
information and obtain a new estimator Ā1 as

(Ā1)jk = (Ā1)kj := (Â1)jkI(|(Â1)jk| ≤ |(Â1)kj |) + (Â1)kjI(|(Â1)kj | ≤ |(Â1)jk|).

In other word, we always pick the entry with smaller magnitudes. Then using Theorem 1,
we have ‖Ā1−A1‖1 and ‖Ā1−A1‖∞ can be upper bounded by the same number presented
in the right-hand side of (15). In this case, because both A1 and Ā1 are symmetric, we
have ‖Ā1−A1‖2 ≤ ‖Ā1−A1‖1 = ‖Ā1−A1‖∞. We then proceed to quantify the prediction
accuracy under L2 norm in the next corollary.

Corollary 3 Suppose that the conditions in Theorem 1 hold and A1 is a symmetric matrix.
Then for the new data point XT+1 at time point T+1, with probability greater than 1−18d−1,
we have

‖XT+1 − ĀT
1XT ‖2 ≤

√
2‖Ψ‖2 log d+

√
tr(Ψ) +

4s

{
32‖Σ−1‖1 maxj(Σjj)‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
(2Md+3)

(
log d

T

)1/2
}1−q

· {
√

2‖Σ‖2 log d+
√

tr(Σ)}. (21)

Based on Corollary 3, we have, similar as what is discussed in Corollary 2, the term
‖AT

1XT−ÂT
1XT ‖2 will vanish when the second term in the left-hand side of (21) can converge

to zero.
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5. Experiments

We conduct numerical experiments on both synthetic and real data to illustrate the effec-
tiveness of our proposed method compared to the competing ones, as well as obtain more
insights on the performance of the proposed method. In the following we consider the three
competing methods:

• (i) The least square estimation using a ridge-penalty (The method in Hamilton, 1994,
by adding a ridge-penalty ‖M‖2F to the least squares loss function in Equation 1).

• (ii) The least square estimation using an L1 penalty (The method in Hsu et al., 2008,
by adding an L1 penalty

∑
ij |Mij | to Equation 1).

• (iii) Our method (The estimator described in Equation 10).

Here we consider including the procedure discussed in Hamilton (1994) because it is a
commonly explored baseline and shows how bad the classic procedure can be when the
dimension is high. We only consider the competing procedure proposed in Hsu et al. (2008)
because this is the only method that is specifically designed for the same simple VAR as
what we study. We do not consider other aforementioned procedures (e.g., Haufe et al.,
2008; Shojaie and Michailidis, 2010) because they are designed for more specific models with
more assumptions. We use the R package “glmnet” (Friedman et al., 2010) for implementing
the lasso method in Hsu et al. (2008), and the simplex algorithm for implementing ours.

5.1 Cross-Validation Procedure

We start with an introduction to how to conduct cross-validation for choosing the lag p and
the tuning parameter λ in the algorithm outlined in Section 3.

For the time series (Xt)
T
t=−∞ and a specific time point t0 of interest, if both p and λ are

assumed to be unknown, the proposed cross-validation procedure is as follows.

1. We set all possible choices of (p, λ) to be a grid. We set n1 and n2 to be two numbers
(representing the length of training data and the number of replicates).

2. For each Xt among Xt0−1, . . . , Xt0−n2 , the estimates Ât1(p, λ), . . . , Âtp(p, λ) are cal-
culated based on the training data Xt−1, . . . , Xt−n1 and any choice of (p, λ). We
set the prediction error at time t, denoted as Errt(p, λ), to be Errt(p, λ) := ‖Xt −∑p

k=1 Â
t
k(p, λ)TXt−k‖2.

3. We take an average over the prediction errors and denote

Err(p, λ) :=
1

n2

t0−1∑
t=t0−n2

Errt(p, λ)

.

4. We choose the (p, λ) over the grid such that Err(p, λ) is minimized.

In case when p is predetermined, the above procedure can be easily modified to focus
only on selecting λ with p to be the determined value.
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(a) band (b) cluster (c) hub

(d) random (e) scale-free

Figure 1: Five different transition matrix patterns used in the experiments. Here gray
points represent the zero entries and black points represent nonzero entries.

5.2 Synthetic Data Analysis

In this subsection, we compare the performance of our method with the ridge and lasso
methods using synthetic data under multiple settings. We also study the impact of transi-
tion matrices’ spectral norms on estimation accuracy, and how the computation time and
memory usage of all methods scale with the number of lags.

5.2.1 Performance Comparison: Lag p = 1

This section focuses on vector autoregressive model described in (2) with lag one. We
compare our method to the competing ones on several synthetic data sets. We consider the
settings where the time series length T varies from 50 to 100 and the dimension d varies
from 50 to 200.

We create the transition matrix A1 according to five different patterns: band, cluster,
hub, random, and scale-free. Typical realizations of these patterns are illustrated in Figure
1 and are generated using the “flare” package in R (Li et al., 2015). In those plots, the gray
points represent the zero entries and the black points represent the nonzero entries. We
then rescale A1 such that we have ‖A1‖2 = 0.5. Once A1 is obtained, we generate Σ using
two models. First is the simple setting with Σ to be diagonal

Σ = 2‖A1‖2Id. (22)
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.71 0.52 2.47 2.34 0.50 1.54 2.08 0.49 0.58
(0.028) (0.023) (0.103) (0.064) (0.029) (0.161) (0.045) (0.006) (0.039)

100 50 4.21 0.64 3.54 5.52 0.75 3.13 3.26 0.52 1.03
(0.026) (0.024) (0.136) (0.075) (0.024) (0.211) (0.052) (0.017) (0.321)

200 100 7.28 0.76 6.26 6.36 0.64 2.77 4.26 0.50 0.69
(0.031) (0.018) (0.132) (0.057) (0.015) (0.112) (0.045) (0.003) (0.035)

Table 1: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “band”.

The second is the complex setting where Σ is of Toeplitz form

Σi,i = 1, Σi,j = ρ|i−j| for some ρ ∈ (0, 1) and i, j = 1, . . . , d.

We then calculate the covariance matrix Ψ of the Gaussian noise vector Zt as Ψ = Σ −
AT

1ΣA1. With A1,Σ, and Ψ, we simulate a time series (X1, . . . , XT )T ∈ RT×d according to
the model described in (2).

We construct 1, 000 replicates and compare the three methods described above. The
averaged estimation errors under different matrix norms are illustrated in Tables 1 to 10.
The standard deviations of the estimation errors are provided in the parentheses. The
tuning parameters for the three methods are selected using the cross-validation procedure
outlined in Section 5.1 with n1 = T/2, n2 = T/2, and the lag p predetermined to be 1.

Tables 1 to 10 show that our method nearly uniformly outperforms the methods in Hsu
et al. (2008) and Hamilton (1994) under different norms (Frobenius, L2, and L1 norms).
In particular, the improvement over the method in Hsu et al. (2008) tends to be more
significant when the dimension d is larger. Our method also has averagely slightly less
standard deviations compared to the method in Hsu et al. (2008), but overall the difference
is not significant. The method in Hamilton (1994) has worse performance than the other
two methods. This verifies that it is not appropriate to handle very high dimensional data.

5.2.2 Synthetic Data: Lag p ≥ 1

In this section, we further compare the performance of the three competing methods under
the settings of possibly multiple lags, with the number of lags known.

In detail, we choose p to be from 1 to 9, the time series length T = 100, and the dimension
d = 50. The transition matrices A1, . . . , Ap are created according to “hub” or “scale-free”
pattern, and then rescaled such that ‖Ai‖2 = 0.1 for i = 1, . . . , p. The error covariance
matrix Ψ is set to be identity for simplicity. Under this multiple lags setting, we then
calculate the covariance matrix of X̃t, i.e., Σ̃ defined in (5), by solving a discrete Lyapunov
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.48 0.44 2.40 2.12 0.43 1.56 1.48 0.49 0.69
(0.034) (0.024) (0.110) (0.055) (0.032) (0.119) (0.020) (0.011) (0.026)

100 50 3.74 0.58 3.46 5.24 0.67 3.16 2.27 0.50 0.66
(0.031) (0.022) (0.121) (0.084) (0.025) (0.223) (0.002) (0.001) (0.002)

200 100 6.80 0.72 6.26 5.82 0.55 2.80 3.02 0.49 0.77
(0.025) (0.021) (0.188) (0.058) (0.014) (0.109) (0.024) (0.010) (0.047)

Table 2: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “cluster”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.41 0.42 2.37 1.96 0.38 1.48 1.16 0.41 1.05
(0.033) (0.027) (0.102) (0.06) (0.039) (0.141) (0.115) (0.058) (0.092)

100 50 3.49 0.55 3.44 5.06 0.63 3.11 1.86 0.50 1.40
(0.034) (0.023) (0.143) (0.088) (0.032) (0.214) (0.118) (0.016) (0.138)

200 100 6.61 0.69 6.24 5.48 0.52 2.75 2.12 0.50 1.26
(0.035) (0.017) (0.133) (0.062) (0.019) (0.147) (0.046) (0.006) (0.031)

Table 3: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “hub”.

3129



Han, Lu, and Liu

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.60 0.48 2.45 2.21 0.43 1.53 1.73 0.44 0.73
(0.031) (0.027) (0.102) (0.061) (0.030) (0.143) (0.051) (0.026) (0.034)

100 50 4.10 0.61 3.53 5.44 0.71 3.09 3.07 0.48 1.21
(0.025) (0.020) (0.136) (0.077) (0.024) (0.224) (0.066) (0.024) (0.177)

200 100 7.01 0.74 6.27 6.03 0.58 2.79 3.54 0.44 0.95
(0.024) (0.019) (0.179) (0.048) (0.011) (0.163) (0.036) (0.026) (0.079)

Table 4: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “random”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.48 0.44 2.40 2.09 0.41 1.51 1.44 0.41 0.98
(0.032) (0.025) (0.098) (0.059) (0.033) (0.154) (0.075) (0.052) (0.108)

100 50 3.60 0.56 3.43 5.14 0.64 3.11 2.16 0.46 1.36
(0.034) (0.023) (0.133) (0.085) (0.031) (0.188) (0.130) (0.043) (0.115)

200 100 6.65 0.70 6.26 5.57 0.51 3.29 2.51 0.42 2.49
(0.034) (0.017) (0.143) (0.065) (0.014) (0.274) (0.249) (0.050) (0.108)

Table 5: Comparison of estimation performance of three methods with diagonal covariance
matrix over 1,000 replications. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “scale-free”.

3130



Estimation of VAR Models

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.47 0.51 2.25 2.10 0.45 1.32 1.82 0.47 0.57
(0.031) (0.033) (0.101) (0.066) (0.035) (0.131) (0.084) (0.014) (0.044)

100 50 3.98 0.67 3.31 5.22 0.74 2.81 3.15 0.51 1.04
(0.029) (0.033) (0.107) (0.083) (0.032) (0.174) (0.114) (0.063) (0.529)

200 100 6.92 0.79 5.96 5.82 0.61 2.44 3.79 0.48 0.67
(0.033) (0.028) (0.142) (0.060) (0.023) (0.134) (0.078) (0.006) (0.034)

Table 6: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “band”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.32 0.42 2.25 2.01 0.39 1.42 1.46 0.47 0.69
(0.041) (0.029) (0.114) (0.066) (0.030) (0.124) (0.027) (0.019) (0.037)

100 50 3.61 0.57 3.33 5.08 0.65 3.01 2.47 0.47 1.02
(0.034) (0.029) (0.124) (0.087) (0.031) (0.212) (0.075) (0.031) (0.155)

200 100 6.63 0.70 6.13 5.58 0.54 2.59 2.96 0.48 0.79
(0.038) (0.020) (0.162) (0.069) (0.019) (0.153) (0.027) (0.013) (0.046)

Table 7: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “cluster”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.27 0.40 2.22 1.85 0.36 1.34 1.16 0.39 1.01
(0.039) (0.037) (0.099) (0.067) (0.041) (0.157) (0.124) (0.062) (0.102)

100 50 3.37 0.54 3.26 4.94 0.61 2.96 1.86 0.50 1.37
(0.041) (0.034) (0.125) (0.102) (0.033) (0.222) (0.120) (0.017) (0.104)

200 100 6.46 0.67 6.19 5.24 0.50 2.54 2.13 0.49 1.24
(0.042) (0.024) (0.168) (0.071) (0.025) (0.162) (0.107) (0.023) (0.042)

Table 8: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “hub”.

ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.49 0.45 2.34 2.15 0.41 1.44 1.74 0.44 0.74
(0.036) (0.029) (0.104) (0.071) (0.032) (0.139) (0.058) (0.033) (0.043)

100 50 4.02 0.60 3.42 5.34 0.70 2.96 3.07 0.47 1.21
(0.029) (0.024) (0.123) (0.092) (0.028) (0.207) (0.085) (0.027) (0.192)

200 100 6.89 0.72 6.13 5.87 0.56 2.65 3.54 0.43 0.97
(0.028) (0.022) (0.164) (0.057) (0.016) (0.174) (0.052) (0.019) (0.091)

Table 9: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard devi-
ations are presented in the parentheses. Here LF, L2, and L1 represent the Frobe-
nius, L2, and L1 matrix norms respectively. The pattern of the transition matrix
is “random”.
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ridge method lasso method our method

d T LF L2 L1 LF L2 L1 LF L2 L1

50 100 2.36 0.42 2.27 2.00 0.38 1.36 1.42 0.37 0.89
(0.036) (0.033) (0.094) (0.064) (0.033) (0.136) (0.068) (0.056) (0.108)

100 50 3.49 0.55 3.29 5.03 0.63 2.96 2.21 0.42 1.29
(0.039) (0.029) (0.124) (0.100) (0.027) (0.212) (0.149) (0.050) (0.131)

200 100 6.52 0.67 6.18 5.36 0.49 3.06 2.55 0.39 2.44
(0.041) (0.019) (0.165) (0.070) (0.013) (0.219) (0.364) (0.062) (0.134)

Table 10: Comparison of estimation performance of three methods on data generated with
Toeplitz covariance matrix (ρ = 0.5), over 1,000 replications. The standard
deviations are presented in the parentheses. Here LF, L2, and L1 represent the
Frobenius, L2, and L1 matrix norms respectively. The pattern of the transition
matrix is “scale-free”.

equation ÃTΣ̃Ã − Σ̃ + Ψ̃ = 0. This is via using the Matlab command “dlyapchol”. With
{Ai}pi=1, Σ̃, and Ψ determined, we simulate a time series (X1, . . . , XT )T ∈ RT×d according
to the model described in (2) (with lag p ≥ 1).

The estimation error is calculated by measuring the difference of (AT
1 , . . . , A

T
p )T and

(ÂT
1 , . . . , Â

T
p )T with regard to different matrix norms (LF, L2, and L1 norms). We conduct

1, 000 simulations and compare the averaged performance of three competing methods. The
calculated averaged estimation errors are illustrated in Tables 11 and 12. The standard devi-
ations of the estimation errors are provided in the parentheses. Here the tuning parameters
are selected in the same way as before. Tables 11 and 12 confirms that our method still
outperforms the competing two methods.

5.2.3 Synthetic Data: Impact of Transition Matrices’ Spectral Norms

In this section we illustrate the effects of the transition matrices’ spectral norms on esti-
mation accuracy. To this end, we study the settings in Section 5.2. More specifically, we
set lag p = 1, the dimension d and the sample size T to be d = 50 and T = 100. The
transition matrix A1 is created according to different patterns (“band”, “cluster”, “hub”,
“scale-free”, and “random”), and then rescaled such that ‖A1‖2 = κ, where κ is from 0.05 to
0.9. Covariance matrix Σ is set to be of the form (22), and Ψ is accordingly determined by
stationary condition. We select the tuning parameters using the cross-validation procedure
as before. The estimation errors are then plotted against κ and shown in Figure 2.

Figure 2 illustrates that the estimation error is an increasing function of the spectral
norm ‖A1‖2. This demonstrates that the spectral norms of the transition matrices play an
important role in estimation accuracy and justifies the theorems in Section 4.
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ridge method lasso method our method

p LF L2 L1 LF L2 L1 LF L2 L1

1 6.93 2.50 7.35 1.83 0.52 1.36 0.25 0.11 0.23
(0.012) (0.094) (0.377) (0.039) (0.017) (0.128) (0.014) (0.016) (0.002)

3 9.13 2.89 15.96 2.52 0.59 2.18 0.45 0.18 0.70
(0.129) (0.092) (0.249) (0.085) (0.016) (0.116) (0.023) (0.004) (0.003)

5 5.57 1.57 11.73 2.75 0.61 3.19 0.58 0.23 1.23
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

7 4.27 1.14 10.92 2.90 0.60 3.44 0.72 0.31 1.83
(0.010) (0.041) (0.152) (0.026) (0.025) (0.183) (0.077) (0.067) (0.222)

9 3.59 0.90 10.17 2.98 0.61 4.11 0.70 0.30 2.11
(0.026) (0.023) (0.219) (0.061) (0.004) (0.201) (0.000) (0.000) (0.000)

Table 11: Comparison of estimation performance of three methods over 1,000 replications
under multiple lag settings. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “hub”.

ridge method lasso method our method

p LF L2 L1 LF L2 L1 LF L2 L1

1 6.93 2.51 7.39 1.83 0.53 1.35 0.30 0.12 0.24
(0.116) (0.093) (0.340) (0.041) (0.018) (0.129) (0.045) (0.016) (0.039)

3 9.14 3.00 15.97 2.53 0.60 2.19 0.46 0.17 0.57
(0.133) (0.099) (0.219) (0.090) (0.020) (0.094) (0.058) (0.007) (0.083)

5 5.58 1.57 11.66 2.77 0.60 2.97 0.62 0.23 0.93
(0.002) (0.002) (0.018) (0.001) (0.002) (0.076) (0.012) (0.002) (0.078)

7 4.28 1.14 10.97 2.90 0.60 3.34 0.69 0.24 1.29
(0.014) (0.042) (0.164) (0.031) (0.020) (0.131) (0.041) (0.005) (0.078)

9 3.62 0.90 10.25 3.01 0.61 3.42 0.87 0.30 1.79
(0.024) (0.023) (0.267) (0.058) (0.003) (0.112) (0.078) (0.012) (0.198)

Table 12: Comparison of estimation performance of three methods over 1,000 replications
under multiple lag settings. The standard deviations are presented in the paren-
theses. Here LF, L2, and L1 represent the Frobenius, L2, and L1 matrix norms
respectively. The pattern of the transition matrix is “scale-free”.
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Figure 2: Estimation errors of A1 (in L1 norm) plotted against spectral norms of A1.

5.2.4 Computation Time and Memory Usage

This section is devoted to show the computation time and memory usage of our method.
First, we show the advantage of our method in terms of saving the computation time.
A major advantage of our method over the two competing methods is that our method
can be easily parallelly computed, and hence has the potential to save the computation
time. We illustrate this point with a figure and two tables using the computation time as
a function of the number of available cores. All experiments are conducted on a 2816-core
Westmere/Ivybridge 2.67/2.5GHz Linux server with 17T memory, a cluster system with
batch scheduling.

We first focus on the lag p = 1 case. In detail, we set the time series length T = 100
and the dimension d = 50. The transition matrix A1 is created according to the pattern
“random”, and then rescaled such that ‖A1‖2 = 0.5. The covariance matrix Σ is generated
as in (22), and Ψ is generated by stationary condition. We then solve (11) using parallel
computing based on 1 to 50 cores.

Figure 3 shows the computation time. It illustrates that, in terms of saving the com-
putation time, under this specific setting, we have: (i) Our method outperforms the ridge
method even if we do not parallelly compute it; (ii) When there are no less than 8 cores,
our method outperforms the lasso method. Here the ridge method is very slow because it
involves calculating the inverse of a large matrix.

To further study the advantage of parallel computing when the number of lags, p, grows,
we provide another experiment focusing on models with varying lags. More specifically, we
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Figure 3: Computation time v.s number of available cores. The computation time for the
ridge and lasso methods are 5.843s and 0.153s, which do not change with number
of available cores. The computation time here is the averaged elapsed time (in
seconds) of 100 replicates of a single experiment.
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lasso method our method (with # of available cores)

p N/A 1 5 10 20 30 40 50

1 0.260 1.277 0.261 0.132 0.067 0.048 0.033 0.029
2 0.664 2.732 0.553 0.280 0.141 0.098 0.073 0.059
3 1.034 8.945 1.792 0.897 0.455 0.299 0.230 0.181
4 1.538 18.278 3.695 1.844 0.920 0.620 0.466 0.366
5 1.946 35.609 7.130 3.890 1.781 1.189 0.870 0.719

Table 13: A comparison of computation time with increasing number of lags p: lasso method
v.s our method. The computation time for the lasso method does not change with
number of available cores. The computation time here is the averaged elapsed
time (in seconds) of 100 replicates of a single experiment.

set the time series length T = 100 and the dimension d = 50. The transition matrices
A1, . . . , Ap are created according to the pattern “random”, and then rescaled such that

‖Ai‖2 = 0.1 for i = 1, . . . , p. The error covariance matrix Ψ and the covariance matrix Σ̃
are generated in the same way as in Section 5.2.2. With {Ai}pi=1, Σ̃, and Ψ determined, we
simulate a time series (X1, . . . , XT )T ∈ RT×d according to the model described in (2). We
then solve (11) using parallel computing based on 1 to 50 cores.

Table 13 lists the averaged elapsed time of 100 replicates of one single experiment. Here
for each replication, the parameters (A1, . . . , Ap,Ψ, Σ̃) in the experiment are regenerated.
It illustrates that, in terms of saving the computation time, under this specific setting, we
have: (i) When there is only one core, the lasso method outperforms our method. But
when there are no less than 20 cores, our method outperforms the lasso method for all lags
p = 1, 2, 3, 4, 5; (ii) As p grows, the advantage of parallel computing will be less significant
(The ratio of computation time between our method at the maximum number of available
cores and the lasso method tends to increase). We also observe from Table 13 that: (iii)
The computation time of our method is approximately increasing quadratically with regard
to the lag p, while the computation time of the lasso method is approximately increasing
linearly with regard to the lag p.

Similarly, to study the advantage of parallel computing when the dimension d grows,
we provide an experiment focusing on models with varying dimensions. We consider the
settings where the length T = 100, the lag p = 1, and the dimension d varies from 10 to 200.
The transition matrix A1 is created according to the pattern “random”, and then rescaled
such that ‖A1‖2 = 0.5. The covariance matrix Σ is generated as in (22), and Ψ is generated
by stationary condition. We then solve (11) using parallel computing based on 1 to 200
cores.

Similar to Table 13, Table 14 lists the computation time. It illustrates that, in terms of
saving the computation time, under this specific setting, we have: (i) When there is only one
core, the lasso method outperforms our method. But when using the maximum number of
cores (i.e., d cores), our method outperforms the lasso method for all lags p = 1, 2, 3, 4, 5; (ii)
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lasso method our method (with # of available cores)

d N/A 1 5 10 20 50 100 200

10 0.022 0.074 0.015 0.008 N/A N/A N/A N/A
20 0.048 0.265 0.055 0.027 0.014 N/A N/A N/A
50 0.153 1.164 0.234 0.120 0.061 0.027 N/A N/A
100 0.468 6.354 1.281 0.649 0.318 0.131 0.067 N/A
200 2.320 21.503 4.304 2.157 1.111 0.448 0.219 0.108

Table 14: A comparison of computation time with increasing dimension d: lasso method v.s
our method. The computation time for the lasso method does not change with
number of available cores. The computation time here is the averaged elapsed
time (in seconds) of 100 replicates of a single experiment.

As d grows, the advantage of parallel computing will be more significant (The ratio between
our method at the maximum number of available cores and the lasso method decreases).

Tables 13 and 14 illustrate that, when p or d grows, the advantage of parallel computing
becomes less or more significant respectively. Such results are reasonable because (3.4)
can be decomposed to at most d subproblems in a columnwise way, and solved in parallel.
As the dimension d grows, the maximum number of decomposed subproblems accordingly
grows, and hence the gain in parallel computing will be more significant. In comparison, as
p grows (while d is fixed), the maximum number of subproblems does not grow, and hence
the advantage of parallel computing is less significant.

Secondly, we show the memory usage of our method. By converting the time series
from VAR(1) to VAR(p) or increasing the dimension d, the memory usage increases. For
investigating the memory usage, we conduct an empirical study. Specifically, first, we
choose the lag p to be 1, 2, . . . , 9, the time series length T = 100, and the dimension d = 50.
Transition matrices A1, . . . , Ap are created according to the “random” pattern, and then
rescaled such that ‖Ai‖2 = 0.1 for i = 1, . . . , p. Ψ is set as Id for simplicity. With {Ai}pi=1

and Ψ, we simulate a time series (X1, . . . , XT )T ∈ RT×d according to (2) with lag p ≥ 1.
The first two rows in Table 15 reports the averaged memory usage of 100 replicates of one
single experiment in megabytes (Mb). Here for each replication, the parameters in the
experiment are regenerated.

Secondly, we choose the lag p = 1, the time series length T = 100, the dimension d = 50,
and the transition matrix A1 to be created according to the “random” pattern, and then
rescaled such that ‖A1‖2 = 0.1. Ψ is set as Id for simplicity. With A1 and Ψ, we simulate
a time series (X1, . . . , XT )T ∈ RT×d according to (2). The second two rows in Table 15
reports the memory usage.

Table 15 shows that, under this setting, the memory usage is approximately increasing
linearly with regard to p; On the other hand, the memory usage is approximately increasing
quadratically with regard to d, and this pattern becomes clearer when d is larger.
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Lag of model (p) 1 2 3 4 5 6 7 8 9

Mem. Use (Mb) 5.566 8.724 11.862 14.999 18.135 21.272 24.406 27.540 30.673

Dimension (d) 10 20 30 40 50 75 100 150 200

Mem. Use (Mb) 1.649 2.235 3.083 4.194 5.566 10.150 16.390 33.754 57.678

Table 15: Memory usage v.s lag of model and dimension: The result shown below is the
averaged memory usage (in Mb) of 100 replicates of one single experiment, with
the lag p changing from 1 to 9 or dimension changing from 10 to 200. The pattern
of the transition matrices {Ai}pi=1 is “random”.

5.3 Real Data

We further compare the three methods on the equity data collected from Yahoo! Finance.
The task is to predict the stock prices. We collect the daily closing prices for 91 stocks that
are consistently in the S&P 100 index between January 1, 2003 and January 1, 2008. This
gives us altogether 1,258 data points, each of which corresponds to the vector of closing
prices on a trading day.

We first provide comparison on averaged prediction errors for using different lag p on
this data set. Let E = (Et,j) ∈ R1258×91 with Et,j denoting the closing price of the stock
j on day t. We screen out all the stocks with low marginal standard deviations and only
keep 50 stocks which vary the most. We center the data so that the marginal mean of each
time series is zero. The resulting data matrix is denoted by Ē ∈ R1258×50. We apply the
three methods on Ē with different lag p changing from 1 to 9. To evaluate the performance
of the three methods, for t = 1248, . . . , 1257, we select the data set ĒJt,∗, where we have
Jt = {j : t − 100 ≤ j ≤ t − 1}, as the training set. Then for each p and λ, based on the
training set ĒJt,∗, we calculate the transition matrix estimates Ât1(p, λ), . . . , Âtp(p, λ). We
then use the obtained estimates to predict the stock price in day t. The averaged prediction
error for each specific λ and p is calculated as

Err(p, λ) =
1

10

10∑
t=1

‖Ēt,∗ −
p∑

k=1

Âtk(p, λ)TĒt−k,∗‖2.

In Table 16, we present the minimized averaged prediction errors minλ Err(p, λ) for the
three methods with different lag p. The standard deviations of the prediction errors are
presented in the parentheses. Our method outperforms the two competing methods in terms
of prediction accuracy.

Secondly, we provide the prediction error on day t = 1258 based on the selected (p, λ)
using cross-validation. By observing Table 16, we select the lag p = 1 and the corresponding
λ for our method. The prediction error is 7.62 for our method. In comparison, the lasso
method and ridge method have the prediction errors 11.11 and 11.94 separately.

3139



Han, Lu, and Liu

lag ridge method lasso method our method

p=1 17.68 (2.49) 15.67 (2.74) 11.88 (3.34)
p=2 15.63 (3.01) 15.69 (2.84) 12.01 (3.41)
p=3 15.17 (3.53) 15.76 (2.83) 12.04 (3.42)
p=4 14.90 (3.69) 15.68 (2.76) 12.02 (3.41)
p=5 14.73 (3.66) 15.62 (2.55) 12.08 (3.29)
p=6 14.58 (3.57) 15.51 (2.58) 12.09 (3.15)
p=7 14.42 (3.49) 15.45 (2.59) 12.21 (3.16)
p=8 14.36 (3.42) 15.40 (2.57) 12.25 (3.16)
p=9 14.20 (3.31) 15.28 (2.46) 12.24 (3.06)

Table 16: The optimized averaged prediction errors for the three methods on the equity
data, under different lags p from 1 to 9. The standard deviations are present in
the parentheses. The smallest prediction error within each column is bolded.

6. Discussions

Estimation of the vector autoregressive model is an interesting problem and has been in-
vestigated for a long time. This problem is intrinsically linked to the regression problem
with multiple responses. Accordingly (penalized) least squares estimates, which has the
maximum likelihood interpretation behind it, look like reasonable solutions. However, high
dimensionality brings significantly new challenges and viewpoints to this classic problem.
In parallel to the Dantzig selector proposed by Candes and Tao (2007) in cracking the or-
dinary linear regression model, we advocate borrowing the strength of the linear program
in estimating the VAR model. As has been repeatedly stated in the main text, this new
formulation brings some advantages over the least square estimates. Moreover, our theo-
retical analysis brings new insights into the problem of transition matrix estimation, and
we highlight the role of ‖A1‖2 in evaluating the estimation accuracy of the estimator.

In the main text we do not discuss estimating the covariance matrix Σ and Ψ. Lemma
1 builds the Lmax convergence result for estimating Σ. If we further suppose that the
covariance matrix Σ is sparse in some sense, then we can exploit the well developed results
in covariance matrix estimation (including “banding”, Bickel and Levina, 2008b, “tapering”,
Cai et al., 2010, and “thresholding”, Bickel and Levina, 2008a) to estimate the covariance
matrix Σ and establish the consistency result with regard to the matrix L1 and L2 norms.
With both Σ and A estimated by some constant estimator Σ̂, an estimator Ψ̂ of Ψ can be
obtained under the VAR model (with lag one) as

Ψ̂ = Σ̂− ÂT
1 Σ̂Â1,

and a similar estimator can be built for lag p VAR model using the augmented formulation
shown in Equation (4).

In this manuscript we focus on the stationary vector autoregressive model and our
method is designed for such stationary process. The stationary requirement is a common
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assumption in analysis and is adopted by most recent works, for example, Kock and Callot
(2015) and Song and Bickel (2011). We notice that there are works in handling unstable
VAR models, checking for example Song et al. (2014) and Kock (2012). We would like
to explore this problem in the future. Another unexplored region is how to determine
the order (lag) of the vector autoregression aside from using the cross-validation approach.
There have been results in this area (e.g., Song and Bickel, 2011) and we are also interested
in finding whether the linear program can also be exploited in determining the order of the
VAR model.
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Appendix A. Proofs of Main Results

In this section we provide the proofs of the main results in the manuscript.

A.1 Proof of Theorem 1

Before proving the main result in Theorem 1, we first establish several lemmas. In the
sequel, because we only focus on the lag 1 autoregressive model, for notation simplicity, in
Σi({(Xt)}) we remove {(Xt)} and simply denote the lag i covariance matrix to be Σi.

The following lemma describes the Lmax rate of convergence S to Σ. This result gener-
alizes the upper bound derived when data are independently generated (see, for example,
Bickel and Levina, 2008a).

Lemma 1 Letting S be the marginal sample covariance matrix defined in (7), when T ≥
max(6 log d, 1), we have, with probability no smaller than 1− 6d−1,

‖S − Σ‖max ≤
16‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
6 log d

T

)1/2

+ 2

(
1

T

)1/2
}
.

Proof [Proof] For any j, k ∈ {1, 2, . . . , d}, we have

P(|Sjk − Σjk| > η) = P

(∣∣∣∣∣ 1

T

T∑
t=1

Xtj Xtk − Σjk

∣∣∣∣∣ > η

)
.
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Letting Yt = {Xt1(Σ11)
−1/2, . . . , Xtd(Σdd)

−1/2}T for t = 1, . . . , T and ρjk = Σjk(ΣjjΣkk)
−1/2,

we have

P(|Sjk − Σjk| > η) = P

{∣∣∣∣∣ 1

T

T∑
t=1

YtjYtk − ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

= P

{∣∣∣∣∣
∑T

t=1(Ytj + Ytk)
2 −

∑T
t=1(Ytj − Ytk)2

4T
− ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

≤ P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj + Ytk)
2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

+ P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj − Ytk)2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}
. (23)

Using the property of Gaussian distribution, we have (Y1j+Y1k, . . . , YTj+YTk)
T ∼ NT (0, Q)

for some positive definite matrix Q. In particular, we have

|Qil| = |Cov(Yij+Yik, Ylj+Ylk)|= |Cov(Yij , Ylj)+Cov(Yij , Ylk)+Cov(Yik, Ylk)+Cov(Yik, Ylj)|

≤ 1

minj(Σjj)
|Cov(Xij , Xlj) + Cov(Xij , Xlk) + Cov(Xik, Xlk) + Cov(Xik, Xlj)|

≤ 4

minj(Σjj)
‖Σl−i‖max ≤

8‖Σ‖2‖A1‖|l−i|2

minj(Σjj)
,

where the last inequality follows from (3).

Therefore, using the matrix norm inequality,

‖Q‖2 ≤ max
1≤i≤T

T∑
l=1

|Qil| ≤
8‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
.

Then applying Lemma 3 to (23), we have

P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj + Ytk)
2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

≤ 2 exp

[
−T

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
− 2T−1/2

}2
]

+ 2 exp

(
−T

2

)
. (24)

Using a similar argument, we have

P

{∣∣∣∣∣ 1

T

T∑
t=1

(Ytj − Ytk)2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

}

≤ 2 exp

[
−T

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
− 2T−1/2

}2
]

+ 2 exp

(
−T

2

)
. (25)
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Combining (24) and (25), then applying the union bound, we have

P(‖S−Σ‖max>η)

≤ 3d2 exp

(
−T

2

)
+3d2 exp

−T
2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2 maxj(Σjj)
−2

(
1

T

)−1/2}2
 .

The proof thus completes by choosing η as the described form.

In the next lemma we try to quantify the difference between S1 and Σ1 with respect to
the matrix Lmax norm. Remind that Σ1{(Xt)} is simplified to be Σ1.

Lemma 2 Letting S1 be the lag 1 sample covariance matrix, when T ≥ max(6 log d+ 1, 2),
we have, with probability no smaller than 1− 8d−1,

‖S1 − Σ1‖max ≤
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
3 log d

T

)1/2

+

(
2

T

)1/2
}
.

Proof [Proof] We have, for any j, k ∈ {1, 2, . . . , d},

P(|(S1)jk − (Σ1)jk| > η) = P

(∣∣∣∣∣ 1

T − 1

T−1∑
t=1

XtjX(t+1)k − (Σ1)jk

∣∣∣∣∣ > η

)
.

Letting Yt = {Xt1(Σ11)
−1/2, . . . , Xtd(Σdd)

−1/2}T and ρjk = (Σ1)jk(ΣjjΣkk)
−1/2, we have

P(|(S1)jk − (Σ1)jk| > η) = P

{∣∣∣∣∣ 1

T − 1

T−1∑
t=1

YtjY(t+1)k − ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

}

= P

[∣∣∣∣∣
∑T−1

t=1 {Ytj + Y(t+1)k}2 −
∑T−1

t=1 {Ytj − Y(t+1)k}2

4(T − 1)
− ρjk

∣∣∣∣∣ > η(ΣjjΣkk)
−1/2

]

≤ P

[∣∣∣∣∣
∑T−1

t=1 {Ytj + Y(t+1)k}2

T − 1
− 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]

+ P

[∣∣∣∣∣
∑T−1

t=1 {Ytj − Y(t+1)k}2

T − 1
− 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
. (26)

Using the property of Gaussian distribution, we have {Y1j + Y2k, . . . , Y(T−1)j + YTk}T ∼
NT−1(0, Q), for some positive definite matrix Q. In particular, we have

|Qil| = |Cov{Yij + Y(i+1)k, Ylj + Y(l+1)k}|
= |Cov(Yij , Ylj) + Cov{Yij , Y(l+1)k}+ Cov{Y(i+1)k, Ylj}+ Cov{Y(i+1)k, Y(l+1)k}|

≤ 1

minj(Σjj)
|Cov(Xij , Xlj)+Cov{Xij , X(l+1)k}+Cov{X(i+1)k, Xlj}+Cov{X(i+1)k, X(l+1)j}|

≤ 2‖Σl−i‖max + ‖Σl+1−i‖max + ‖Σl−1−i‖max

minj(Σjj)

≤ ‖Σ‖2(2‖A1‖|l−i|2 + ‖A1‖|l+1−i|
2 + ‖A1‖|l−1−i|2 )

minj(Σjj)
.
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Therefore, using the matrix norm inequality,

‖Q‖2 ≤ max
1≤i≤(T−1)

T−1∑
l=1

|Qil| ≤
8‖Σ‖2

minj(Σjj)(1− ‖A1‖2)
.

Then applying Lemma 3 to (26), we have

P

[∣∣∣∣∣ 1

T − 1

T−1∑
t=1

{Ytj + Y(t+1)k}2 − 2(1 + ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
≤

2 exp

[
−(T − 1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
−2(T − 1)−1/2

}2
]

+2 exp

(
−T − 1

2

)
. (27)

Using a similar technique, we have

P

[∣∣∣∣∣ 1

T − 1

T−1∑
t=1

{Ytj − Y(t+1)k}2 − 2(1− ρjk)

∣∣∣∣∣ > 2η(ΣjjΣkk)
−1/2

]
≤

2 exp

[
−(T − 1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2(ΣjjΣkk)1/2
−2(T − 1)−1/2

}2
]

+2 exp

(
−T − 1

2

)
. (28)

Combining (27) and (28), and applying the union bound across all pairs (j, k), we have

P(‖S1 − Σ1‖max > η) ≤

4d2 exp

[
−(T−1)

2

{
ηminj(Σjj)(1− ‖A1‖2)

16‖Σ‖2 maxj(Σjj)
−2(T−1)−1/2

}2
]

+4d2 exp

(
−T−1

2

)
.

Finally noting that when T ≥ 3, we have 1/(T − 1) < 2/T . The proof thus completes by
choosing η as stated.

Using the above two technical lemmas, we can then proceed to the proof of the main
results in Theorem 1.

Proof [Proof of Theorem 1] With Lemmas 1 and 2, we proceed to prove Theorem 1.
We first denote

ζ1 =
16‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖2)

{(
6 log d

T

)1/2

+ 2

(
1

T

)1/2
}
,

ζ2 =
32‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A1‖)2

{(
3 log d

T

)1/2

+

(
2

T

)1/2
}
.

Using Lemmas 1 and 2, we have, with probability no smaller than 1− 14d−1,

‖S − Σ‖max ≤ ζ1, ‖S1 − Σ1‖max ≤ ζ2.
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We firstly prove that population quantity A1 is a feasible solution to the optimization
problem in (10) with probability no smaller than 1− 14d−1

‖SA1 − S1‖max = ‖SΣ−1Σ1 − S1‖max

= ‖SΣ−1ΣT
1 − Σ1 + Σ1 − S1‖max

≤ ‖(SΣ−1 − Id)Σ1‖max + ‖Σ1 − S1‖max

≤ ‖(S − Σ)Σ−1Σ1‖max + ζ2

≤ ζ1‖A1‖1 + ζ2

≤ λ0.

The last inequality holds by using the condition that d ≥ 8 implies that 1/T ≤ log d/(2T ).
Therefore, A1 is feasible in the optimization equation, by checking the equivalence between
(10) and (11), we have ‖Ω̂‖1 ≤ ‖A1‖1 with probability no smaller than 1− 14d−1. We then
have

‖Ω̂−A1‖max = ‖Ω̂− Σ−1Σ1‖max

= ‖Σ−1(ΣΩ̂− Σ1)‖max

= ‖Σ−1(ΣΩ̂− S1 + S1 − Σ1)‖max

= ‖Σ−1(ΣΩ̂− SΩ̂ + SΩ̂− S1) + Σ−1(S1 − Σ1)‖max

≤ ‖(Id − Σ−1S)Ω̂‖max + ‖Σ−1(SΩ̂− S1)‖max + ‖Σ−1(S1 − Σ1)‖max

≤ ‖Σ−1‖1‖(Σ− S)Ω̂‖max + ‖Σ−1‖1‖SΩ̂− S1‖max + ‖Σ−1‖1‖S1 − Σ1‖max

≤ ‖Σ−1‖1(‖A1‖1ζ1 + λ0 + ζ2)

= 2λ0‖Σ−1‖1.

Let λ1 be a threshold level and we define

s1 = max
1≤j≤d

d∑
i=1

min {|(A1)ij |/λ1, 1} , Tj = {i : |(A1)ij | ≥ λ1} .

We have, with probability no smaller than 1− 14d−1, for all j ∈ {1, . . . , d},

‖Ω̂∗,j − (A1)∗,j‖1 ≤ ‖Ω̂T c
j ,j
‖1 + ‖(A1)T c

j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

= ‖Ω̂∗,j‖1 − ‖Ω̂Tj ,j‖1 + ‖(A1)T c
j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ ‖(A1)∗,j‖1 − ‖Ω̂Tj ,j‖1 + ‖(A1)T c
j ,j
‖1 + ‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ 2‖(A1)T c
j ,j
‖1 + 2‖Ω̂Tj ,j − (A1)Tj ,j‖1

≤ 2‖(A1)T c
j ,j
‖1 + 4λ0‖Σ−1‖1|Tj |

≤ (2λ1 + 4λ0‖Σ−1‖1)s1.

Suppose maxj
∑d

i=1 |(A1)ij |q ≤ s and setting λ1 = 2λ0‖Σ−1‖1, we have

λ1s1 = max
1≤j≤d

d∑
i=1

min{|(A1)ij |, λ1} ≤ λ1 max
1≤j≤d

d∑
i=1

min {|(A1)ij |q/λq1, 1} ≤ λ
1−q
1 s.
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Therefore, we have

‖Ω̂∗,j − (A1)∗,j‖1≤ 4λ1s1 ≤ 4λ1−q1 s = 4s(2λ0‖Σ−1‖1)1−q.

Noting that when the lag of the time series p = 1, by definition in (12), we have Ω̂ = Â1.
This completes the proof.

A.2 Proof of the Rest Results

Proof [Proof of Corollary 1] Corollary 1 directly follows from Theorem 1, so its proofs
is omitted.

Proof [Proof of Corollary 2] Using the generating model described in Equation (2), we
have

‖XT+1 − ÂT
1XT ‖∞ =‖(AT

1 − ÂT
1 )XT + ZT+1‖∞

≤‖AT
1 − ÂT

1‖∞‖XT ‖∞ + ‖ZT+1‖∞
=‖A1 − Â1‖1‖XT ‖∞ + ‖ZT+1‖∞

Using Lemma 4 in Appendix B, we have

P(‖XT ‖∞ ≤ (Σmax·α log d)1/2, ‖ZT+1‖∞ ≤ (Ψmax·α log d)1/2) ≥ 1−2(dα/2−1
√
π/2 · α log d})−1.

This, combined with Theorem 1, gives Equation (20).

Proof [Proof of Corollary 3] Similar as the proof in Corollary 2, we have

‖XT+1 − ĀT
1XT ‖2 =‖(AT

1 − ĀT
1 )XT + ZT+1‖2

≤‖A1 − Ā1‖2‖XT ‖2 + ‖ZT+1‖2.

For any Gaussian random vector Y ∼ Nd(0, Q), we have Y =
√
QY0 where Y0 ∼ Nd(0, Id).

Using the concentration inequality for Lipschitz functions of standard Gaussian random
vector (see, for example, Theorem 3.4 in Massart, 2007), we have

P(|‖Y ‖2 − E‖Y ‖2| ≥ t) =P(|‖
√
QY0‖2 − E‖

√
QY0‖2| ≥ t)

≤2 exp

(
− t2

2‖Q‖2

)
. (29)

Here the inequality exploits the fact that for any vectors x, y ∈ Rd,

|‖
√
Qx‖2 − ‖

√
Qy‖2| ≤ ‖

√
Q(x− y)‖2 ≤ ‖

√
Q‖2‖x− y‖2,

and accordingly the function x→ ‖
√
Qx‖2 has the Lipschitz norm no greater than

√
‖Q‖2.

Using Equation (29), we then have

P(‖XT ‖2 ≤
√

2‖Σ‖2 log d+ E‖XT ‖2, ‖ZT+1‖2 ≤
√

2‖Ψ‖2 log d+ E‖ZT+1‖2) ≥ 1− 4d−1.
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Finally, we have
(E‖Y ‖2)2 ≤ E‖Y ‖22 = tr(Q).

Combined with Theorem 1 and the fact that ‖A1− Ā1‖2 ≤ ‖A1− Ā1‖1, we have the desired
result.

Appendix B. Supporting Lemmas

Lemma 3 (Negahban and Wainwright, 2011) Suppose that Y ∼ NT (0, Q) is a Gaus-
sian random vector. We have, for η > 2T−1/2,

P
{∣∣‖Y ‖22 − E(‖Y ‖22)

∣∣ > 4Tη‖Q‖2
}
≤ 2 exp

{
−T (η − 2T−1/2)2/2

}
+ 2 exp(−T/2).

Proof [Proof] This can be proved by first using the concentration inequality for the Lips-
chitz functions ‖Y ‖2 of Gaussian random variables Y . Then combining with the result

‖Y ‖22 − E(‖Y ‖22) ≤ (‖Y ‖2 − E‖Y ‖2) · (‖Y ‖2 + E‖Y ‖2),

we have the desired concentration inequality.

Lemma 4 Suppose that Z = (Z1, . . . , Zd)
T ∈ Nd(0, Q) is a Gaussian random vector. Let-

ting Qmax := maxi(Qii), we have

P{‖Z‖∞ > (Qmax · α log d)1/2} ≤
(
dα/2−1

√
π/2 · α log d

)−1
.

Proof [Proof] Simply using the Gaussian tail probability, we have

P(‖Z‖∞ > t) ≤
d∑
i=1

P(|Zi| ·Q−1/2ii > t ·Q−1/2ii ) ≤
d∑
i=1

2 exp(−t2/2Qii)
t ·Q−1/2ii ·

√
2π
≤ 2d exp(−t2/2Qmax)

t ·Q−1/2max ·
√

2π
.

Taking t = (Qmax · α log d)1/2 into the upper equation, we have the desired result.
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