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Abstract

An estimate of the second moment of the regression function is introduced. Its asymptotic
normality is proved such that the asymptotic variance depends neither on the dimension of
the observation vector, nor on the smoothness properties of the regression function. The
asymptotic variance is given explicitly.
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1. Introduction

This paper considers a histogram-based estimate of second moment of the regression func-
tion in multivariate problems. The interest in the second moment is motivated by the fact
that by estimating it one obtains an estimate of the best possible achievable mean squared
error, a quantity of obvious statistical interest. It is shown that the estimate is asymptoti-
cally normally distributed. It is remarkable that the asymptotic variance only depends on
moments of the regression function but neither on its smoothness, nor on the dimension of
the space. The proof relies on a Poissonization technique that has been used successfully
in related problems.

Let Y be a real valued random variable with E{Y 2} <∞ and letX = (X(1), . . . , X(d)) be
a d-dimensional random observational vector. In regression analysis one wishes to estimate
Y given X, i.e., one wants to find a function g defined on the range of X so that g(X) is
“close” to Y . Assume that the main aim of the analysis is to minimize the mean squared
error :

min
g

E{(g(X)− Y )2}.
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As is well-known, this minimum is achieved by the regression function m(x), which is
defined by

m(x) = E{Y | X = x}. (1)

For each measurable function g one has

E{(g(X)− Y )2} = E{(m(X)− Y )2}+ E{(m(X)− g(X))2}

= E{(m(X)− Y )2}+

∫
| m(x)− g(x) |2 µ(dx),

where µ stands for the distribution of the observation X.
It is of great importance to be able to estimate the minimum mean squared error

L∗ = E{(m(X)− Y )2}

accurately, even before a regression estimate is applied: in a standard nonparametric regres-
sion design process, one considers a finite number of real-valued features X(i), i ∈ I, and
evaluates whether these suffice to explain Y . In case they suffice for the given explanatory
task, an estimation method can be applied on the basis of the features already under con-
sideration, if not, more or different features must be considered. The quality of a subvector
{X(i), i ∈ I} of X is measured by the minimum mean squared error

L∗(I) := E
(
Y − E{Y |X(i), i ∈ I}

)2

that can be achieved using the features as explanatory variables. L∗(I) depends upon the
unknown distribution of (Y,X(i) : i ∈ I). The first phase of any regression estimation
process therefore heavily relies on estimates of L∗ (even before a regression estimate is
picked).

Concerning dimension reduction the related testing problem is on the hypothesis

L∗ = L∗(I).

This testing problem can be managed such that we estimate both L∗ and L∗(I), and accept
the hypothesis if the two estimates are close to each other. (Cf. De Brabanter et al. (2014).)

Devroye et al. (2003), Evans and Jones (2008), Liitiäinen et al. (2008), Liitiäinen et al.
(2009), Liitiäinen et al. (2010), and Ferrario and Walk (2012) introduced nearest neighbor
based estimates of L∗, proved strong universal consistency and calculated the (fast) rate of
convergence.

Because of
L∗ = E{Y 2} − E{m(X)2}

and E{Y 2} < ∞, estimating L∗ is equivalent to estimating the second moment S∗ of the
regression function:

S∗ = E{m(X)2} =

∫
m(x)2µ(dx).

In this paper we introduce a partitioning based estimator of S∗, and show its asymptotic
normality. It turns out that the asymptotic variance depends neither on the dimension of
the observation vector, nor on the smoothness properties of the regression function. The
asymptotic variance is given explicitly.
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2. A Splitting Estimate

We suppose that the regression estimation problem is based on a sequence

(X1, Y1), (X2, Y2), . . .

of i.i.d. random vectors distributed as (X,Y ). Let

Pn = {An,j , j = 1, 2, . . .}

be a cubic partition of IRd of size hn > 0.

The partitioning estimator of the regression function m is defined as

mn(x) =
νn(An,j)

µn(An,j)
if x ∈ An,j , (2)

(interpreting 0/0 = 0) with

νn(A) =
1

n

n∑
i=1

I{Xi∈A}Yi

and

µn(A) =
1

n

n∑
i=1

I{Xi∈A}.

(Here I denotes the indicator function.)

If for cubic partition

nhdn →∞ and hn → 0 (3)

as n → ∞, then the partitioning regression estimate (2) is weakly universally consistent,
which means that

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0 (4)

for any distribution of (X,Y ) with E{Y 2} <∞, and for bounded Y it holds

lim
n→∞

∫
(mn(x)−m(x))2µ(dx) = 0 (5)

a.s. (Cf. Theorems 4.2 and 23.1 in Györfi et al. (2002).)

Assume splitting data

Zn = {(X1, Y1), . . . , (Xn, Yn)}

and

D′n = {(X ′1, Y ′1), . . . , (X ′n, Y
′
n)}

such that (X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) are i.i.d.

The splitting data estimate of S∗ is defined as

Sn :=
1

n

n∑
i=1

Y ′imn(X ′i) =
1

n

n∑
i=1

∞∑
j=1

I{X′
i∈An,j}Y

′
i

νn(An,j)

µn(An,j)
.
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Put

ν ′n(A) =
1

n

n∑
i=1

I{X′
i∈A}Y

′
i ,

then Sn has the equivalent form

Sn =

∞∑
j=1

ν ′n(An,j)
νn(An,j)

µn(An,j)
. (6)

Theorem 1 Assume (3) and that µ is non-atomic and has bounded support. Suppose that
there is a finite constant C such that

E{|Y |3 | X} < C. (7)

Then √
n (Sn − E{Sn}) /σ

D→ N(0, 1),

where

σ2 = 2

∫
M2(x)m(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

−
∫
m(x)4µ(dx),

with
M2(X) = E{Y 2 | X}.

The estimation problem is motivated by the above mentioned dimension reduction such
that one estimates S∗ for the original observation vector and for the observation vector
where some components are left out. If the two estimates are ”close” to each other, then
we decide that the left out components are ineffective. Theorem 1 is on the random part of
the estimates. Therefore there is a further need to study the difference of the biases of the
estimates. Under (3) we have

lim
n→∞

E{Sn} = S∗

and for Lipschitz continuous m the rate of convergence can be of order n−1/d for suitable
choice of hn. (Cf. Devroye et al. (2013).) Similarly to De Brabanter et al. (2014) we
conjecture that this difference of the biases has universally a fast rate of convergence.

Obviously, there are several other possibilities for defining partitioning based estimates
and proving their asymptotic normality, for example,

1

n

n∑
i=1

mn(X ′i)
2

or
∞∑
j=1

νn(An,j)
2

µn(An,j)
.

Notice that both estimates have larger bias and variance than our estimate (6) has.
The proof of Theorem 1 works without any major modification for consistent kn nearest

neighbor (kn-NN) estimate mn if kn →∞ and kn/n→ 0. A delicate and important research
problem is the case of non-consistent 1-NN estimate mn, because for 1-NN estimate mn the
bias is smaller. We conjecture that even in this case one has a CLT.

We prove Theorem 1 in the next section.
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3. Proof of Theorem 1

Introduce the notations
Un =

√
n (Sn − E{Sn | Zn})

and
Vn =

√
n (E{Sn | Zn} − E{Sn}) ,

then √
n (Sn − E{Sn}) = Un + Vn.

We prove Theorem 1 by showing that for any u, v ∈ IR

P{Un ≤ u, Vn ≤ v} → Φ

(
u

σ1

)
Φ

(
v

σ2

)
(8)

where Φ denotes the standard normal distribution function, and

σ2
1 =

∫
M2(x)m(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

(9)

and

σ2
2 =

∫
M2(x)m(x)2µ(dx)−

∫
m(x)4µ(dx). (10)

Notice that Vn is measurable with respect to Zn, therefore∣∣∣∣P{Un ≤ u, Vn ≤ v} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
=

∣∣∣∣E{I{Vn≤v}P{Un ≤ u | Zn}} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
≤
∣∣∣∣E{I{Vn≤v}(P{Un ≤ u | Zn} − Φ

(
u

σ1

))}∣∣∣∣
+

∣∣∣∣(P{Vn ≤ v} − Φ

(
v

σ2

))
Φ

(
u

σ1

)∣∣∣∣
≤ E

{∣∣∣∣P{Un ≤ u | Zn} − Φ

(
u

σ1

)∣∣∣∣}+

∣∣∣∣P{Vn ≤ v} − Φ

(
v

σ2

)∣∣∣∣ .
Thus, (8) is satisfied if

P{Un ≤ u | Zn} → Φ

(
u

σ1

)
(11)

in probability and

P{Vn ≤ v} → Φ

(
v

σ2

)
. (12)

Proof of (11).
Let’s start with the representation

Un =
√
n

(
1

n

n∑
i=1

(Y ′imn(X ′i)− E{Y ′imn(X ′i) | Zn})

)

=
1√
n

n∑
i=1

(Y ′imn(X ′i)− E{Y ′imn(X ′i) | Zn}).
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Because of (7) and the Jensen inequality, for any 1 ≤ s ≤ 3, we get

Ms(X) := E{|Y |s | X} = (E{|Y |s | X}1/s)s ≤ (E{|Y |3 | X}1/3)s ≤ Cs/3, (13)

especially, for s = 1
M1(X) = |m(X)| ≤ C1/3

and
E{|Y |3} ≤ C.

Next we apply a Berry-Esseen type central limit theorem (see Theorem 14 in Petrov (1975)).
It implies that∣∣∣∣∣P{Un ≤ u | Zn} − Φ

(
u√

Var(Y ′1mn(X ′1) | Zn)

)∣∣∣∣∣ ≤ c√
n

E{|Y ′1mn(X ′1)|3 | Zn}√
Var(Y ′1mn(X ′1) | Zn)

3

with the universal constant c > 0. Because of

E{Y ′1mn(X ′1) | Zn} =

∫
m(x)mn(x)µ(dx),

we get that

Var(Y ′1mn(X ′1) | Zn) = E{Y ′1
2
mn(X ′1)2 | Zn} − E{Y ′1mn(X ′1) | Zn}2

=

∫
M2(x)mn(x)2µ(dx)−

(∫
m(x)mn(x)µ(dx)

)2

.

Now (4), together with the boundedness of M2 by (13), implies that

Var(Y ′1mn(X ′1) | Zn)→ σ2
1

in probability, where σ2
1 is defined by (9). Further

E{|Y ′1mn(X ′1)|3 | Zn} ≤ C
∫
|mn(x)|3µ(dx).

Put
An(x) = An,j if x ∈ An,j .

Again, applying the Jensen inequality we get

|mn(x)|3 ≤

∣∣∣∣∣
∑n

i=1 I{Xi∈An(x)}|Yi|3/2∑n
i=1 I{Xi∈An(x)}

∣∣∣∣∣
2

,

the right hand side of which is the square of the regression estimate, where Y is replaced
by |Y |3/2. Thus, (4) together with E{|Y |3} <∞ implies that

∫ ∣∣∣∣∣
∑n

i=1 I{Xi∈An(x)}|Yi|3/2∑n
i=1 I{Xi∈An(x)}

∣∣∣∣∣
2

µ(dx)→ E{E{|Y |3/2 | X}2} < C
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in probability. These limit relations imply (11).

Proof of (12).
Assuming that the support S of µ is bounded, let ln be such that S ⊂ ∪lnj=1An,j . Also we
re-index the partition so that

µ(An,j) ≥ µ(An,j+1),

with µ(An,j) > 0 for j ≤ ln, and µ(An,j) = 0 otherwise. Then,

Sn =

ln∑
j=1

ν ′n(An,j)
νn(An,j)

µn(An,j)
, (14)

and
ln ≤

c

hdn
.

The condition nhdn →∞ implies that

ln/n→ 0.

Because of (14) we have that

Vn =
√
n

ln∑
j=1

E{ν ′n(An,j) | Zn}
(
νn(An,j)

µn(An,j)
− E

{
νn(An,j)

µn(An,j)

})

=
√
n

ln∑
j=1

ν(An,j)

(
νn(An,j)

µn(An,j)
− E

{
νn(An,j)

µn(An,j)

})
,

where
ν(A) = E{νn(A)}.

Observe that we have to show the asymptotic normality for a finite sum of dependent
random variables. In order to prove (12), we follow the lines of the proof in Beirlant and
Györfi (1998) and use a Poissonization argument. With this we introduce a modification
Mn of Vn such that

∆n := Vn −Mn → 0,

the proof of which follows, starting from (23).
Now we proceed arguing for Mn. Introduce the notation Nn for a Poisson(n) random

variable independent of (X1, Y1), (X2, Y2), . . .. Moreover put

nν̃n(A) =

Nn∑
i=1

I{Xi∈A}Yi

and

nµ̃n(A) =

Nn∑
i=1

I{Xi∈A}.

The key result in this step is the following property:
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Proposition 2 (Beirlant and Mason (1995), Beirlant et al. (1994).) Put

M̃n =
√
n

ln∑
j=1

ν(An,j)

(
ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
, (15)

and

Mn =
√
n

ln∑
j=1

ν(An,j)

(
νn(An,j)

µn(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
. (16)

Assume that

Φn(t, v) = E
(

exp

(
itM̃n + iv

Nn − n√
n

))
→ e−(t2ρ2+v2)/2

for a constant ρ > 0, where i =
√
−1. Then

Mn/ρ
D→ N(0, 1).

Put

Tn = tM̃n + v
Nn − n√

n
,

for which a central limit result is to hold:

Tn
D→ N

(
0, t2ρ2 + v2

)
(17)

as n→∞. Remark that

Var(Tn) = t2Var(M̃n) + 2tvE
{
M̃n

Nn − n√
n

}
+ v2.

For a cell A = An,j from the partition with µ(A) > 0, let Y (A) be a random variable
such that

P{Y (A) ∈ B} = P{Y ∈ B|X ∈ A},
where B is an arbitrary Borel set.

Introduce the notations

qn,k = P{nµn(A) = k} =

(
n

k

)
µ(A)k(1− µ(A))n−k

and

q̃n,k = P{nµ̃n(A) = k} =
(nµ(A))k

k!
e−nµ(A).

Concerning the expectation, with (Y1(A), Y2(A), . . .) an i.i.d. sequence of random vari-
ables distributed as Y (A) we find that

E
{
ν̃n(A)

µ̃n(A)

}
=

∞∑
k=0

E
{
ν̃n(A)

µ̃n(A)
| nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E

{∑k
i=1 Yi(A)

k

}
q̃n,k

= E {Y1(A)} (1− q̃n,0)

=
ν(A)

µ(A)
(1− q̃n,0), (18)
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further, by (24)

E
{
νn(A)

µn(A)

}
= nE

{
Yn(A)

1 + (n− 1)µn−1(A)

}
=
ν(A)

µ(A)
(1− (1− µ(A))n)), (19)

Moreover,

E
{
ν̃n(A)2

µ̃n(A)2

}
=

∞∑
k=0

E
{
ν̃n(A)2

µ̃n(A)2
| nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E


(∑k

i=1 Yi(A)
)2

k2

 q̃n,k

=
∞∑
k=1

kE
{
Y1(A)2

}
+ k(k − 1)E {Y1(A)}2

k2
q̃n,k

= Var (Y1(A))
∞∑
k=1

1

k
q̃n,k + E {Y1(A)}2 (1− q̃n,0),

and
∞∑
k=1

1

k
q̃n,k =

∞∑
k=1

1

k

(nµ(A))k

k!
e−nµ(A)

=

∞∑
k=1

1

k + 1

(nµ(A))k

k!
e−nµ(A) +

∞∑
k=1

1

k(k + 1)

(nµ(A))k

k!
e−nµ(A)

≤ 1

nµ(A)
(1− q̃n,0) +

3

n2µ(A)2
(1− q̃n,0).

The independence of the Poisson masses over different cells leads to

Var(M̃n) = n

ln∑
j=1

ν(An,j)
2Var

(
ν̃n(An,j)

µ̃n(An,j)

)

≤ n
ln∑
j=1

ν(An,j)
2
(
Var (Y1(An,j))

( 1

nµ(An,j)
(1− e−nµ(An,j))

+
3

n2µ(An,j)2
(1− e−nµ(An,j))

)
+ E {Y1(An,j)}2 (1− e−nµ(An,j))− E {Y1(An,j)}2 (1− e−nµ(An,j))2

)
≤

ln∑
j=1

ν(An,j)
2

µ(An,j)2
Var (Y1(An,j))µ(An,j)

+

ln∑
j=1

3Var (Y1(An,j)) ν(An,j)
2

nµ(An,j)2

+ n

ln∑
j=1

ν(An,j)
2E {Y1(An,j)}2 e−nµ(An,j)

)
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such that the bounding error in these inequalities is of order O(ln/n). (4) together with the
boundedness of M2 and m implies that

ln∑
j=1

ν(An,j)
2

µ(An,j)2
Var (Y1(An,j))µ(An,j)

=

∫ ∫
An(x)M2(z)µ(dz)

µ(An(x))

(∫
An(x)m(z)µ(dz)

µ(An(x))

)2

µ(dx)−
∫ (∫

An(x)m(z)µ(dz)

µ(An(x))

)4

µ(dx)

= σ2
2 + o(1),

where σ2
2 is defined by (10). Moreover,

ln∑
j=1

3Var (Y1(An,j)) ν(An,j)
2

nµ(An,j)2
≤ 3C4/3ln

n
→ 0.

Then

n

ln∑
j=1

ν(An,j)
2E {Y1(An,j)}2 e−nµ(An,j)

=

ln∑
j=1

ν(An,j)
2

µ(An,j)2
E {Y1(An,j)}2 nµ(An,j)e

−nµ(An,j)µ(An,j)

≤ C4/3
ln∑
j=1

nµ(An,j)
2e−nµ(An,j)

≤ C4/3(max
z>0

z2e−z)ln/n→ 0.

So we proved that

Var(M̃n)→ σ2
2.

To complete the asymptotics for Var(Tn), it remains to show that

E
{
M̃n

Nn − n√
n

}
→ 0 as n→∞.

Because of

Nn = n

ln∑
j=1

µ̃n(An,j)

and

n = n

ln∑
j=1

µ(An,j),
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we have that

E
{
M̃n

Nn − n√
n

}
= n

ln∑
j=1

E
{
ν̃n(An,j)

µ̃n(An,j)
ν(An,j)(µ̃n(An,j)− µ(An,j))

}

= n

ln∑
j=1

ν(An,j)

(
E {ν̃n(An,j)} − E

{
ν̃n(An,j)

µ̃n(An,j)

}
µ(An,j))

)

= n

ln∑
j=1

ν(An,j)

(
ν(An,j)−

ν(An,j)

µ(An,j)
(1− e−nµ(An,j))µ(An,j))

)

= n

ln∑
j=1

ν(An,j)
2e−nµ(An,j)

≤ C2/3(max
z>0

z2e−z)ln/n→ 0.

To finish the proof of (17) by Lyapunov’s central limit theorem, it suffices to prove that

n3/2
ln∑
j=1

E
{∣∣t( ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

})
ν(An,j) + v (µ̃n(An,j)− µ(An,j))

∣∣3}→ 0

or, by invoking the c3 inequality |a+ b|3 ≤ 4(|a|3 + |b|3), that

n3/2
ln∑
j=1

E

{∣∣∣∣ ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

}∣∣∣∣3
}
ν(An,j)

3 → 0 (20)

and

n3/2
ln∑
j=1

E
{
|µ̃n(An,j)− µ(An,j)|3

}
→ 0. (21)

In view of (20), because of (13) it suffices to prove

Dn := n3/2
ln∑
j=1

E

{∣∣∣∣ ν̃n(An,j)

µ̃n(An,j)
− E

{
ν̃n(An,j)

µ̃n(An,j)

}∣∣∣∣3
}
µ(An,j)

3 → 0 (22)

For a cell A, (18) implies that

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− E

{
ν̃n(A)

µ̃n(A)

}∣∣∣∣3
}
≤ 4E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3
}

+ 4E

{∣∣∣∣ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0} −

ν(A)

µ(A)
(1− q̃n,0)

∣∣∣∣3
}
.
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On the one hand, (18), (13) and (25) imply that, for a constant K,

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3
}

=

∞∑
k=0

E

{∣∣∣∣ ν̃n(A)

µ̃n(A)
− ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0}

∣∣∣∣3 | nµ̃n(A) = k

}
P{nµ̃n(A) = k}

=
∞∑
k=1

E


∣∣∣∑k

i=1(Yi(A)− E{Yi(A)})
∣∣∣3

k3

 q̃n,k

≤ K
∞∑
k=1

1

k3/2
q̃n,k

≤ c1
1

n3/2µ(A)3/2
,

where we applied the Marcinkiewicz and Zygmund (1937) inequality for absolute central
moments of sums of i.i.d. random variables. On the other hand

E

{∣∣∣∣ν(A)

µ(A)
(1− q̃n,0)I{µ̃n(A)>0} −

ν(A)

µ(A)
(1− q̃n,0)

∣∣∣∣3
}
≤ Cq̃n,0.

Therefore

Dn ≤ n3/2c2

ln∑
j=1

(
1

n3/2µ(An,j)3/2
+ e−nµ(An,j)

)
µ(An,j)

3

≤ c2

 ln∑
j=1

µ(An,j)
3/2 +

ln∑
j=1

n3/2e−nµ(An,j)µ(An,j)
3


≤ c2

ln∑
j=1

µ(An,j)
3/2

(
1 + max

z>0
z3/2e−z

)
= c3

∫
µ(An(x))1/2µ(dx)

→ 0,

where we used the assumption that µ is non-atomic. Thus, (20) is proved.

The proof of (21) is easier. Notice that (21) means

Fn := n−3/2
ln∑
j=1

E


∣∣∣∣∣
Nn∑
i=1

I{Xi∈An,j} − nµ(An,j)

∣∣∣∣∣
3
→ 0.
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One has

E


∣∣∣∣∣
Nn∑
i=1

I{Xi∈An,j} − nµ(An,j)

∣∣∣∣∣
3


≤ 4E


∣∣∣∣∣
Nn∑
i=1

(I{Xi∈An,j} − µ(An,j))

∣∣∣∣∣
3
+ 4E

{
|(Nn − n)µ(An,j)|3

}

≤ c4

( ∞∑
k=1

k3/2µ(An,j)
3/2e−n

nk

k!
+ E

{
|Nn − n|3

}
µ(An,j)

3

)
≤ c5

(
n3/2µ(An,j)

3/2 + n3/2µ(An,j)
3
)
.

Therefore

Fn ≤ 2c5

ln∑
j=1

µ(An,j)
3/2 → 0,

and so (21) is proved, too.

The remaining step in the proof of (12) is to show that

∆n := Vn −Mn = n1/2
ln∑
j=1

(
E
{
ν̃n(An,j)

µ̃n(An,j)

}
− E

{
νn(An,j)

µn(An,j)

})
ν(An,j)→ 0. (23)

By (18) and (19) have that

|∆n| =

∣∣∣∣∣∣n1/2
ln∑
j=1

ν(An,j)

µ(An,j)
(e−nµ(An,j) − (1− µ(An,j))

n)ν(An,j)

∣∣∣∣∣∣
= n1/2

ln∑
j=1

ν(An,j)
2

µ(An,j)2
(e−nµ(An,j) − (1− µ(An,j))

n)µ(An,j)

≤ C2/3n1/2
ln∑
j=1

(e−nµ(An,j) − (1− µ(An,j))
n)µ(An,j).

For 0 ≤ z ≤ 1, using the elementary inequalities

1− z ≤ e−z ≤ 1− z + z2

we have that

e−nz − (1− z)n = (e−z − (1− z))
n−1∑
k=0

e−kz(1− z)n−1−k ≤ nz2e−(n−1)z,

1875



Györfi and Walk

and thus we get that

|∆n| ≤ C2/3n1/2
ln∑
j=1

(e−nµ(An,j) − (1− µ(An,j))
n)µ(An,j)

≤ C2/3n1/2
ln∑
j=1

nµ(An,j)
3e−(n−1)µ(An,j)

≤ C2/3

n1/2

ln∑
j=1

µ(An,j)
(

[nµ(An,j)]
2e−nµ(An,j)

)
e

≤ C2/3

n1/2

ln∑
j=1

µ(An,j) max
z≥0

(z2e−z)e

→ 0.

This ends the proof of (12) and so the proof of Theorem 1 is complete.

Next we give two lemmas, which are used above.

Lemma 3 If B(n, p) is a binomial random variable with parameters (n, p), then

E
{

1

1 +B(n, p)

}
=

1− (1− p)n+1

(n+ 1)p
. (24)

Lemma 4 If Po(λ) is a Poisson random variable with parameter λ, then

E
{

1

Po(λ)3
I{Po(λ)>0}

}
≤ 24

λ3
. (25)
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L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonpara-
metric Regression. Springer–Verlag, New York, 2002.
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