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This introduction to Alexey Chervonenkis’s bibliography, which is published next in this
issue, mainly consists of historical notes. The bibliography is doubtless incomplete, and it
is just a first step in compiling more comprehensive ones. En route we also give some basic
information about Alexey as a researcher and person; for further details, see, e.g., the short
biography (Editors, 2015) in the Chervonenkis Festschrift. In this introduction, the numbers
in square brackets refer to Chervonenkis’s bibliography, and the author/year citations refer
to the list of references at the end of this introduction.

Alexey Chervonenkis was born in Moscow in 1938. In 1955 he became a student at
the MIPT, Moscow Institute of Physics and Technology (Faculty 1, Radio Engineering,
nowadays Radio Engineering and Cybernetics). As part of his course of studies at the
MIPT, he was attached to a laboratory at the ICS (the Institute of Control Sciences, called
the Institute of Automation and Remote Control at the time), an institution in a huge
system known as the Soviet Academy of Sciences.

In 1961 Alexey graduated from the MIPT and started his work for the ICS, where he
stayed for the rest of his life. His first project at the ICS was very applied and devoted
to designing a light organ for an exhibition in London (Russian Trade Fair, Earls Court,
1961). After completion of this project, Alexey was given an opportunity to concentrate
on problems of cybernetics, namely pattern recognition; at that time cybernetics became
extremely popular in the USSR, perhaps as a reaction to its earlier perception as a pseudo-
science invented by the capitalist society and a “whore of imperialism” (Novoseltsev, 2015,
p. 43).

In 1962 the joint work of Vapnik and Chervonenkis began. At that time they were
members of the laboratory headed by Aleksandr Lerner, a leading cyberneticist. Lerner’s
laboratory was allowed to work on pattern recognition as a counterbalance to another lab-
oratory, led by Mark Aizerman, which was the first to start work on this topic at the ICS:
it was part of the strategy of Vadim Trapeznikov, the Institute director, to foster rivalry
between different laboratories. Vapnik, a newly admitted PhD student, and Chervonenkis,
hired a few months earlier as an engineer, were supposed to work as a pair. In hindsight,
it appears that it was a perfect match; as Novoseltsev (2015) writes in his reminiscences, it
is said that Vapnik was often inventing new things while Chervonenkis was proving them.

1. Foundations of Statistical Learning

Now Alexey Chervonenkis and Vladimir Vapnik are known, first of all, as the creators of
the statistical theory of machine learning. However, their earliest joint work was devoted
to non-statistical approaches to learning, as Alexey describes in [66]; it appears that this
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work is not reflected at all in their joint publications. It was only in March 1963 that they
brought statistics into their research.

When they started their joint work in Autumn 1962, they were interested in a problem
that had more to do with the power of the teacher than the power of the learner. Suppose
there are N decision rules, and one of them, say F , is used for classifying each point in a
sequence x1, . . . , xl. The question is how small l can be so that there is only one decision
rule (namely, F itself) compatible with the observed sequence x1, . . . , xl and the classes
F (x1), . . . , F (xl). By choosing such a sequence the teacher can teach the learner to classify
new points perfectly.

This problem is somewhat reminiscent of the problem of finding the counterfeit coin in a
pile of N coins all but one of which are genuine. In the latter problem, we can take l of the
order logN , and the hope was that this remains true for the former. However, this is not
the case. Consider N decision rules F1, . . . , FN and N − 1 points x1, . . . , xN−1 such that

Fi(x) :=

{
1 if x = xi

0 if not,
i = 1, . . . , N − 1,

and FN (x) = 0 for all x. If FN is used for classifying the points, seeing a new labelled point
will allow the learner to discard at most one decision rule, and in order to discard all apart
from the true one, we need N − 1 observations. Therefore, the required value of l can be as
large as N−1, which the two young researchers perceived as a failure of their non-statistical
setting.

The statistical approach was first successfully used in [2] and [3]; the latter was prepared
for a conference of young specialists in Spring 1963 (Editors, 2015). It was applicable to
algorithms with full memory, introduced by Vapnik, Lyudmila Dronfort, and Chervonenkis
in 1963, i.e., to algorithms that make no errors on the training set (the term “with full
memory” was coined by Lyudmila). Suppose we are given two parameters, κ (the desired
upper bound on the risk of the chosen decision rule) and η (the desired upper bound on
the probability that the risk will in fact exceed κ). Let the true decision rule be Fi and
the decision rule Fj chosen after l observations have a risk exceeding κ. The probability
of getting all l labels right for Fj is at most (1 − κ)l, and the probability that at least one
decision rule with risk exceeding κ will get all l labels right is at most N(1− κ)l. To ensure
that N(1− κ)l ≤ η it suffices to require

l ≥ log η − logN

log(1− κ)
. (1)

(This is Theorem 1 in [2].) As − log(1− κ) ≥ κ, the simpler inequality

l ≥ logN − log η

κ

is also sufficient (and approximately equivalent to (1) for a small κ).
In might seem strange nowadays, but the presence of N in (1) was a real breakthrough.

In [66] Alexey vividly describes discussions about the necessity of such an adjustment. The
common reasoning among their colleagues (in related contexts) was that, since the proba-
bility of getting all labels right is at most (1 − κ)l for any Fj , this is also true for the Fj

2052



Alexey Chervonenkis’s Bibliography: Comments

actually chosen by the algorithm, and so the fact that Fj is chosen a posteriori is irrelevant.
Their colleagues, some of them very distinguished, could not be impressed by results like
(1) believing that better results could be proved for a continuum of decision rules.

Alexey remembered a heated discussion with Yakov I. Khurgin (Lerner’s friend and
Professor of the Russian State University of Oil and Gas at the time) in Summer 1965.
Khurgin’s argument was, as usual, that a probabilistic statement that is true for all decision
rules must be true for the one that was chosen by the algorithm. Alexey’s counterargument
was “The probability to meet randomly a syphilitic in Moscow is, say, 10−5. But if you went
to a venereal clinic, it is significantly greater, even though it is also in Moscow. Looking for
the best decision rule is like a trip to a venereal clinic.” In the context of infinitely many
decision rules (e.g., linear), Khurgin argued that Vapnik and Chervonenkis were playing on
the non-compactness of the Hilbert ball and, crucially, that they were demanding uniform
convergence. Alexey agreed. This was the first time that the words “uniform convergence”
were mentioned in this context. Later they became part of the titles of the fundamental
papers [10,11,28,57].

Paper [2] applied the general performance guarantee (1) to the problem of classification
of binary vectors of dimension n using perceptrons. For simplicity, in this introduction we
will only discuss binary decision rules, in which case a decision rule can be identified with a
set in the input space, and perceptrons then become half-spaces. The authors bounded above
the number of ways in which an n − 1-dimensional hyperplane can split the n-dimensional
Boolean cube by 2n(n+1)/(n+ 1)!, which gives the sample size

l ≥ log η − n(n+ 1) + log((n+ 1)!)

log(1− κ)
≈ log η − n2

log(1− κ)

for the Boolean input space with n attributes, where log now stands for binary logarithm.
In [5] Vapnik and Chervonenkis introduced a new learning framework, which they called

“extremal imitation teaching”. Suppose we observe a sequence of random pairs (X(k), Y (k)),
k = 1, 2, . . ., generated independently from the same distribution P and also observe, at
each step k, the value g(X(k), Y (k)) of a “reward function” g. For each k, we are allowed to
replace Y (k) by our chosen value Y ∗(k), in which case we observe g(X(k), Y ∗(k)) instead
of g(X(k), Y (k)). This can be a model of, e.g., a chemical process at a chemical plant:
X(k) describes the kth batch of raw materials, Y (k) describes the parameters of the process
(such as temperature, pressure, or reagents) chosen by an experienced plant operator, and
g(X(k), Y (k)) is the quality of the choice (assumed observable and determined by X(k) and
Y (k) alone). It is supposed that g belongs to a known finite set Q of functions, say of size
N , and that it takes values in a known interval [a, b]. The learning problem involves three
positive parameters, ε, κ, and η, and is to find l = l(N, ε, κ, η) (as small as possible) such
that after l steps we can come up with a strategy of choosing Y ∗ as a function of X that
satisfies, with a probability at least 1− η over the training set,

P (g(X,Y ) > g(X,Y ∗) + ε) < κ,

where P is the probability over the random choice of (X,Y ). Vapnik and Chervonenkis’s
proposed strategy is, in their terminology, sequential: first it observes (X(k), Y (k)), k =
1, 2, . . ., and then it “trains”, replacing Y (k) by its own Y ∗(k) from some k on. The strategy
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requires

l = O

(
logN

εκ
(log logN − log ε− log η)

)
,

where the O notation refers to N →∞, η → 0, κ→ 0, and ε→ 0; a and b are regarded as
fixed constants. Namely, the strategy first makes

l1 = O

(
logN − log η

εκ

)
(2)

passive observations, and then it starts d = O((logN)/ε) active training periods of length

l0 = O

(
log logN − log ε− log η

κ

)
each; in each training period it tests a new strategy of choosing Y ∗ until it fails, in some
sense (if it never fails during the l0 steps, training is complete and the learning procedure is
stopped).

They derive a very interesting corollary in the spirit of prediction with expert advice
(Cesa-Bianchi and Lugosi, 2006). Suppose, in the language of our example, we can observe
n experienced plant operators instead of just one. Observing each of the operators for l1
steps (see (2)) and then training as before, our resulting strategy is likely to be competitive
with the best operator at each step: with a probability at least 1− η over the training set,

P

(
max

i=1,...,n
g(X,Y i) > g(X,Y ∗) + ε

)
< κ,

where Y i is the ith operator’s output (being competitive at each step is unusual from the
point of view of prediction with expert advice, where the goal is to be competitive in the
sense of cumulative rewards or losses). Now passively observing takes nl1 steps, whereas
active training still takes l2 := dl0 steps.

In [6] Vapnik and Chervonenkis extended the methods of [5] to limited infinite classes
of reward functions, and in [7] they applied them to the problem of playing an unknown
zero-sum game.

Until Summer 1966 Vapnik and Chervonenkis could prove performance guarantees only
for a finite number of decision rules. At the level of mathematical rigour that they set
for themselves, they could not accept their colleagues’ argument (see above) although they
shared their optimism about, say, the learnability of the linear decision rules in Euclidean
space. The first breakthrough came in July 1966 [66], when they extended their learnability
results to classes of decision rules with a slow growth function (see below), and the second
in September 1966, when they characterized the classes with slow growth functions in terms
of what is now known as VC dimension. The main definitions (very well known by now)
that we will need to talk about these developments are:

• Given a class S of decision rules on (i.e., subsets of) an input spaceX, let ∆S(x1, . . . , xl)
be the number of different restrictions of those decision rules to the finite set {x1, . . . , xl}
in X; Vapnik and Chervonenkis called ∆(x1, . . . , xl) the index of S with respect to
x1, . . . , xl.
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• They called the maximum

mS(l) := max
x1,...,xl

∆S(x1, . . . , xl)

(as function of l) the growth function of S.

• The value
VC(S) := max{l | mS(l) = 2l}

is now known as the VC-dimension of the class S. See Dudley (2015b, Section 4.6) for
a discussion of the origin of the expression “VC-dimension”; the earliest mention of it
seems to be in the article by Blumer et al. (1986) (in the form “Vapnik–Chervonenkis
dimension”, which was abbreviated to “VC dimension” in the journal version), whereas
the abbreviation VC was coined by Dudley himself (Bottou, 2013).

The key fact about the growth function is now known as Sauer’s lemma: if VC(S) = ∞,
mS(l) = 2l for all l; otherwise,

mS(l) ≤
VC(S)∑
j=0

(
l

j

)
= O(lVC(S)) (3)

for all l (the binomial coefficient is defined to be 0 when j > l). Therefore, we have the
Vapnik–Chervonenkis dichotomy : the rate of growth of mS is either exponential or at most
polynomial. Sauer’s lemma is more precise and also gives the degree of the polynomial
(VC(S), which Sauer referred to as the density of S).

The main papers in which the 1966 breakthrough was announced and described were
published in 1968 and 1971:

• In the first 1968 paper [9] Vapnik and Chervonenkis showed that the class S is learn-
able, in the now standard sense, if the rate of growth of mS is polynomial (or slower).

• The second 1968 paper [10] is the famous announcement of their main results ob-
tained during this period; it was “the true beginnings of Statistical Learning Theory”
according to Bottou (2013).

• In [11] (1971), they gave detailed proofs.

• In their other 1971 paper [12] they explained in detail how the results of [11] can be
applied to machine learning.

The results of [9] were obtained in July 1966, as Alexey describes in [66]. At that time Vapnik
and Chervonenkis started to suspect that there are only two kinds of growth functions:
exponential and (at most) polynomial. Vapnik said that even if this were true, it would be
very difficult to prove it, but Chervonenkis presented a proof two months later (Novoseltsev,
2015).

A footnote in [9] says that after the paper had been submitted, the authors discovered
that either mS(l) = 2l for all l or mS(l) ≤ lVC(S)+1 for all l. (This should have said “for all
l > 1”.) The date of submission is given as 20 September 1966.
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Announcement [10] was published in Doklady AN SSSR (usually translated as Proceed-
ings of the USSR Academy of Sciences). This journal only publishes papers presented by
full and corresponding members of the Academy. The announcement stated the Vapnik–
Chervonenkis dichotomy, in the form of the footnote in [9], as Theorem 1. It was first
submitted for publication in 1966. The authors wanted Academician Andrei N. Kolmogorov
to present their note, but submitted it directly to the journal, which forwarded it to Kol-
mogorov, who gave it to Boris V. Gnedenko to read. The authors did not hear from the
journal for a long time, and a chain of enquiries led them to Gnedenko. Gnedenko explained
to the young authors that what they were doing was not statistics; statistics was what Kol-
mogorov, Gnedenko himself, and their students were doing, and there was no chance that
Gnedenko or his students would work in this new area. In the end the note was presented
by the ICS Director Trapeznikov and submitted for publication on the same date, 6 Oc-
tober 1967; as compared to the original 1966 submission the authors only changed 2 lines
in their manuscript: “Presented by Academician A. N. Kolmogorov” became “Presented by
Academician V. A. Trapeznikov”. The topic to which the note was assigned in the journal
changed from “Probability theory” to “Cybernetics”.

In [11], the authors still have Sauer’s lemma with VC(S)+1 instead of VC(S) (for the first
time they will give the optimal exponent VC(S) in (3) in their book [18]). That paper was
written in 1966, at the same time as their Doklady announcement [10], as it was customary
for such announcements to be submitted together with a full paper, so that proofs of their
statements could be checked. The key results of [11] were the VC dichotomy (Theorem 1),
the uniform convergence of frequencies to probabilities over classes with polynomial growth
functions (Theorem 3 and its small-sample counterpart Theorem 2), and an elegant necessary
and sufficient condition for the uniform convergence of frequencies to probabilities in terms
of the entropy HS(l) := E log ∆S(x1, . . . , xl) (Theorem 4).

In the four papers [9–12], Vapnik and Chervonenkis made a great leap forward in math-
ematical rigour. However, the required assumptions of measurability were very subtle, and
even Vapnik and Chervonenkis did not get them quite right. After a modest description of
his own mistakes in related measurability conditions, Dudley (2015a) points out that their
requirement (in the penultimate paragraph of the Introduction to [11]) of

(x1, . . . , xl) 7→ sup
A∈S

∣∣∣ν(l)
A (x1, . . . , xl)− P (A)

∣∣∣ (4)

(where ν(l)
A (x1, . . . , xl) := nA/l and nA is the frequency of A in the sample x1, . . . , xl) being

measurable is not sufficient, as shown in the introduction to Dudley (1999, Chap. 5). The
condition that is actually needed in the proof is that

(x1, . . . , x2l) 7→ sup
A∈S

∣∣∣ν(l)
A (x1, . . . , xl)− ν

(l)
A (xl+1, . . . , x2l)

∣∣∣
be measurable.

The notion of growth function introduced in [9,10] was innovative but had had several
interesting precursors, as described by Dudley (2015b). Already by 1852 Schläfli (1814–
1895) found the growth function for the class S of all half-spaces in Rd containing 0 on their
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boundary,

mS(l) = 2
d−1∑
j=0

(
l − 1

j

)
= O(ld−1) (l→∞). (5)

Schläfli’s memoir containing this result was published only in 1901 despite being written in
1850–1852. Among other fundamental achievements of this memoir were the introduction of
d-dimensional Euclidean geometry (mathematicians had only treated the case d ≤ 3 before)
and the extension of the ancient Greeks’ result that there are only five platonic solids, i.e.,
convex regular polytopes in R3, to the case of Rd with d > 3 (it turned out that for d > 4
there are only three trivial platonic solids, the generalizations of the tetrahedron, cube, and
octahedron, whereas for d = 4 there are six). Cover (1965) pointed out that, using Schläfli’s
method, one can obtain

mS(l) = 2

d∑
j=0

(
l − 1

j

)
= O(ld) (l→∞) (6)

for the class S of all half-spaces in Rd; he also obtained similar results for other classes, such
as the parts of Rd bounded by hyperspheres or hypercones.

Richard Dudley wrote enthusiastic reviews of both [10] and [11] for Mathematical Re-
views; interestingly, his review of [10] was instrumental in obtaining the permission to publish
[11] (Bottou, 2012, with a reference to Vapnik). These reviews attracted attention of some
leading mathematicians, and it seems likely that they were the means through which the
VC dichotomy, in the form of a conjecture, reached the attention of Sauer and another
independent discoverer, Shelah (together with his PhD student Perles).

The first statement of convergence of frequencies of events to their probabilities was
James Bernoulli’s (1713) celebrated law of large numbers, stating that, for all ε > 0, events
A, and probability measures P ,

P l
(∣∣∣ν(l)

A − P (A)
∣∣∣ > ε

)
→ 0 (7)

as l → ∞ (using the notation ν
(l)
A introduced in (4) and under unnecessary but mild re-

strictions on P (A) and ε). Now we know that the convergence (7) is uniform in P , but
Bernoulli did not know that, which might have been one of his reasons for not completing
his manuscript (published in 1713 posthumously by his nephew): if the convergence is uni-
form, we can easily invert (7) to obtain a confidence interval for P (A) given the observed
frequency ν

(l)
A . (This is one of the two reasons put forward by Hald 2003, p. 263; other

authors have come up with more.)
Uspensky (1937) gives a “modernized” version of James Bernoulli’s proof that does give

a uniform convergence in (7) (cf. Hald 2003, p. 268). Nowadays, the most standard proof is
based on Chebyshev’s inequality and immediately gives uniform convergence:

P l
(∣∣∣ν(l)

A − P (A)
∣∣∣ > ε

)
≤ P (A)(1− P (A))

lε2
≤ 1

4lε2
→ 0.

(Although large-deviation inequalities, such as Hoeffding’s, often give better results.)
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Vapnik and Chervonenkis came up with a much deeper, and entirely different, statement
of uniformity: for a fixed P ,

P l

(
sup
A∈S

∣∣∣ν(l)
A − P (A)

∣∣∣ > ε

)
→ 0

for many interesting classes S of events; the requirement of uniformity was again motivated
by statistical applications. If we require uniformity in both A and P ,

sup
P
P l

(
sup
A∈S

∣∣∣ν(l)
A − P (A)

∣∣∣ > ε

)
→ 0

(i.e., that S be a uniformly Glivenko–Cantelli class), the condition VC(S) < ∞ becomes
both necessary and sufficient, for any ε ∈ (0, 1); Vapnik and Chervonenkis understood this
well already in 1966 (Editors, 2015).

In 1974 Vapnik and Chervonenkis published their book [18] in which they gave a survey
of their work so far on the foundations of statistical learning (in Part II) and the method of
generalized portrait (see the next section). They introduced a name for VC(S) (Chapter V,
Section 7), namely the capacity of S (емкость S). The authors sent a copy of the book to
Mathematical Reviews, requesting that it be sent to Richard Dudley to review. Whereas the
papers [10] and [11] were reviewed quickly, in 1969 and 1972, respectively, reviewing [18]
took five years, and Dudley’s review appeared only in 1979. Dudley (2015b) explains this
by the Peter principle: as reviewer, he was promoted to reviewing more and more difficult
publications by Vapnik and Chervonenkis until his knowledge of the Russian language and
pattern recognition became insufficient for the task.

In their book Vapnik and Chervonenkis gave Sauer’s (1972) form of their dichotomy,
which is obviously sharp in general: it suffices to take as S the class of all sets of cardinality
VC(S) in an infinite input space X. For specific classes, however, even very important ones,
the bound can be far from being sharp: e.g., for Schläfli’s and Cover’s cases Sauer’s lemma
only gives

mS(l) ≤
d∑

j=0

(
l

j

)
= Ω(ld) and mS(l) ≤

d+1∑
j=0

(
l

j

)
= Ω(ld+1)

in place of (5) and (6), respectively.
An important contribution of the book [18], alongside with the papers [16,17], was the

introduction of the method of Structural Risk Minimization (in Chapter VI) and its appli-
cation to various specific problems. An appendix to Chapter VI (Section 14) gives lower
bounds for the performance guarantees of learning algorithms in terms of the VC dimension.

In [28] Vapnik and Chervonenkis extended their necessary and sufficient condition of
uniform convergence for classes of events (Theorem 4 of [11]) to classes of functions, defin-
ing the functional analogue of the entropy function HS using Kolmogorov and Tikhomirov’s
ε-entropy. In [38] they found necessary and sufficient conditions for one-sided uniform con-
vergence (Theorem Б of [38], where Б is the second letter of the Russian alphabet), which
is particularly important from the viewpoint of machine learning because of its equivalence
to the consistency of the method of empirical risk minimization (Theorem А of [38], where
А is the first letter of the Russian alphabet).
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Alexey’s last great mathematical achievement [57,58] was the definitive quantitative
form of Michel Talagrand’s result about the existence of “bad sets” in machine learning
(Talagrand, 1987, Theorem 5, and Talagrand, 1996, Theorem 2.1), which he first discovered
just a few year’s after Talagrand discovered his (Talagrand, 2014) but could prove rigorously
only in the last years of his life (see [67], Theorem 13.1). Typically, he did this without any
knowledge of Talagrand’s work (Novoseltsev, 2015). Alexey’s result says that if HS(l)/l→ c
as l → ∞ (the limit always exists), there exists a set E ⊆ X of probability c such that for
any n almost all sequences in En are shattered by S (a sequence x1, . . . , xn is shattered by
S if ∆S(x1, . . . , xn) = 2n). Talagrand’s result only asserts, for c > 0, the existence of E of
positive probability satisfying the last condition. A precursor of this result was stated in
[38] as Theorem В (В being the third letter of the Russian alphabet), and the result found
its way into Vapnik (1998, Theorem 3.6).

Chervonenkis and Talagrand met in Paris in May 2011 and discussed the former’s quan-
titative form of the latter’s result (which Talagrand was really proud of but which, as he
says, would not have been even conceivable without Chervonenkis’s previous contributions).
Chervonenkis asked Talagrand whether the quantitative form should be published. Tala-
grand replied that the quantitative form did not seem to have much use and so discouraged
Chervonenkis from its publication (Talagrand, 2014).

2. Generalized Portrait and Optimal Separating Hyperplane

Vapnik and Chervonenkis’s first joint paper [1] introduced the method of generalized por-
trait, which is a linear precursor of support vector machines, in the case of supervised
learning. The idea of the method itself was first published by Vapnik and Lerner (1963) a
year earlier, and Vapnik, Lerner, and Chervonenkis started discussing the method already in
1962 (see [61], which is an excellent source for the early history of support vector machines).

Vapnik and Lerner (1963) work in the context of unsupervised learning. The starting
point of the early versions of the method of generalized portrait was that patterns were
represented by points on the unit sphere in a Hilbert space. (Vapnik and Lerner consider
a family of mappings from the patterns to the unit sphere, but let us, for simplicity, fix
such a mapping, assume that it is a bijection, and identify patterns with the corresponding
points of the unit sphere.) A set F of patterns divides into n images F1, . . . , Fn (these are
disjoint subsets of F ) if for each Fi there is a point φi on the sphere such that, for all i,
j 6= i, fi ∈ Fi, and fj ∈ Fj , it is true that (φi, fi) > (φi, fj). Under a further restriction (the
images should be “definite”), φi is called a generalized portrait for Fi. In their definition,
Vapnik and Lerner do not specify a precise optimization problem with a unique solution
that generalized portraits are required to solve. Later in the paper they do give two ideas
for such optimization problems:

• In Section 4, they say that, for a given Fi, φi can be defined to maximize the recognition
threshold minf∈Fi

(φi, f). (This is the optimization problem that Alexey describes in
the section devoted to Vapnik and Lerner’s 1963 paper in his historical contribution
to the Vapnik Festschrift: see [61], Section 3.1.1.) The overall optimization problem
(to be solved before dividing F into images), however, remains unspecified.
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• In the concluding Section 5 of their paper, Vapnik and Lerner make the problem
of “self-learning” (unsupervised learning in this context) more precise by requiring
that the generalized portraits φ1, . . . , φn maximize the order of distinguishability 1−
maxi,j(φi, φj). This optimization problem will rarely determine generalized portraits
completely: e.g., in the case of two images, n = 2, this condition only restricts φ1

and φ2 to being anti-collinear. And only rarely will any of its solutions maximize the
recognition thresholds.

In [1] Vapnik and Chervonenkis made several important steps in the development of
the method of generalized portrait; in particular, they defined it in the case of supervised
learning and expressed it as a precise optimization problem. Suppose we are interested in
a class K1 of patterns and K2 is the union of the other classes; these are assumed to be
subsets of the unit sphere in a Hilbert space. The generalized portrait of K1 is defined in
this paper as the unit vector φ solving the optimization problem

(φ,X) ≥ c, ∀X ∈ K1,

(φ, Y ) ≤ c, ∀Y ∈ K2, (8)
c→ max .

When the solution (φ, c) = (φ0, C(φ0)) exists (i.e., when the class K1 is linearly separable
from the rest of data), it is unique, and the vectors X ∈ K1 and Y ∈ K2 satisfying (φ0, X) =
C(φ0) or (φ0, Y ) = C(φ0), respectively, were called themarginal vectors; these are precursors
of support vectors. It was shown that the generalized portrait is a linear combination of
marginal vectors (with nonnegative coefficients if they belong to K1 and nonpositive if not).

Another contribution of [1] was that the method was rewritten in terms of scalar products
between input vectors, which was an important step towards support vector machines. As
it often happens, necessity was the mother of invention ([61], Section 3.3; Editors, 2015).
At that time the ICS only had analogue computers, and inputting data was difficult. The
easiest way was to calculate the scalar products by hand or using calculators, and then input
them into the analogue computers by adjusting corresponding resistors. In 1964 the first
digital computers arrived, and the dual form of the method lost much of its appeal for a few
dozen years.

Vapnik and Chervonenkis kept the name “method of generalized portrait” in [1]. This
might have been the first application of their decision (Novoseltsev, 2015) not to coin a new
name for each new modification of their main recognition method; Vladimir proposed to use
the same name for all modifications, the method of generalized portrait, and Alexey agreed.
(There might have been one exception: it appears that in print the method of optimal
separating hyperplane has not been explicitly referred to as that of “generalized portrait”.
In particular, the methods of generalized portrait and optimal separating hyperplane are
treated as different ones in [61].)

As Alexey discusses in his historical paper [61] (Sections 3.1–3.2), already in 1962 he
and Vladimir considered a more general version of the method, with (φ, Y ) ≤ kc in place of
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(φ, Y ) ≤ c in (8), for a given constant k < 1:

(φ,X) ≥ c, ∀X ∈ K1, (9)
(φ, Y ) ≤ kc, ∀Y ∈ K2, (10)

c→ max . (11)

In the same year they obtained the possibility of decomposition of the generalized portrait
via marginal vectors directly, without the use of the Kuhn–Tucker theorem.

The generalization (9)–(11) was first published in [9], where the assumption that the
training patterns should belong to a unit hypersphere is no longer mentioned. The authors
retained the name “generalized portrait” for this more general setting. Using the Kuhn–
Tucker theorem, they showed that the generalized portrait can be found by minimizing a
quadratic function over the positive quadrant and developed several algorithms for solving
such problems.

Further important developments were made in the 1973 papers [14,15] published in the
same book edited by Vapnik and describing a library of computer programs written by
Zhuravel’ and Glazkova and implementing the method of generalized portrait (improved
versions are described in [18], Chapter XV). In [14], Vapnik, Chervonenkis, and their co-
authors consider the method of generalized portrait (9)–(11), whereas in [15] they consider
a new method, that of optimal separating hyperplane. Given two linearly separable sets
of vectors, X and X̄ (the notation they use for K1 and K2 in this paper), they define the
optimal separating hyperplane as the hyperplane that separates the two sets and is as far as
possible from their convex closures. They notice that the optimal separating hyperplane can
be represented by the equation (ψ, x) = (c1 +c2)/2, where ψ is the shortest vector satisfying
(ψ, z) ≥ 1 for all z of the form z = x− x̄, x ∈ X and x̄ ∈ X̄, and

c1 = min
X

(ψ, x), c2 = max
X̄

(ψ, x̄).

Together with the fact that ψ can be represented as a linear combination of margin vectors,
this serves as the basis of their algorithm GP-4 for finding the optimal separating hyperplane.

The fundamental 1974 book [18] consists of three parts, one of which, Part III, is de-
voted to the methods of generalized portrait and optimal separating hyperplane (Part I
is introductory and Part II is called “Statistical foundations of the theory”). In this part
(Chapter XIV, Section 12) the authors derive another kind of performance guarantees for
the two methods, which, as they say, are much closer to the lower bounds of Section VI.14
(already mentioned in Section 1 above) and so demonstrate special statistical properties of
the method. A simple performance guarantee of this kind is that the (unconditional) proba-
bility of error does not exceed m/(l+1), where l is the length of the training sequence and m
is the expectation of the number of essential support vectors (which they called informative
marginal vectors at the time). Since, in their context, m does not exceed the dimension n
(assumed finite) of the input space, the probability of error is also bounded by n/(l + 1).
This result was obtained by Alexey in June 1966 [66], but Vladimir was reluctant to publish
it as it was embarrassingly simple. Let us call this type of error bounds VC74 bounds and
the type of bounds discussed in the previous section VC68 bounds (following Vovk 2015).
There were hints of VC74 bounds in [9], Section 5.3, and [14], pp. 91–92; however, the first
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precise statements were first published only in the 1974 book [18]. It is interesting that, as
Alexey says at the end of Section 3.6 of [61], VC74 bounds led to the notions of the growth
function and VC dimension and to conditions for uniform convergence; it can be concluded
that VC74 bounds led to VC68 bounds.

At the beginning of Chapter XIV the authors emphasize that in many cases the optimal
separating hyperplane should be constructed not in the original input space but in a feature
space (спрямляемое пространство). They only discuss finite-dimensional feature spaces,
but since they already have the dual form of the optimization problem, there is only one
step to support vector machines: to combine their algorithms with the idea of kernels that
was already used by their competitors in Aizerman’s laboratory (Aizerman et al., 1964); but
this step had to wait for another 20 years.

The book [18] treats the methods of generalized portrait and optimal separating hyper-
plane more or less on equal footing, and studies relations between them, such as the latter
being a special case of the former corresponding to a certain value of k. In the historical
paper [61] Alexey mentions that in his and Vladimir’s experience the number of support
vectors for the optimal separating hyperplane often turned out to be larger than that for the
generalized portrait for other values of k. His suggestion is to return to the method of gener-
alized portrait (surely in combination with kernel methods—Eds.) looking for k providing the
fewest number of support vectors. His intuition was that in the case of two approximately
equal classes the method of optimal separating hyperplane is preferable. However, in the
case where a small class is being separated from a much larger one (such as separating the
letter “a” from the other letters of the English alphabet) the method of generalized portrait
with a constant k close to 1 is preferable.

3. Other Publications

Approximately one half of Alexey’s publications are devoted to applications of machine
learning in various fields, such as natural language systems, geology, and medicine. This
work was mainly done in collaboration with colleagues at the Institute of Control Sciences,
the University of London, and Yandex.

In 1975–1983 Alexey and his colleagues at the ICS published a series of papers [19,21–
27,29] describing their interactive data-retrieval system using a subset of the Russian lan-
guage to control a large sea port. Alexey’s main co-author was Leonid Mikulich, who also
worked in Lerner’s laboratory starting from 1961. In the course of numerous conversations
between them Alexey proposed a formal logical calculus for describing non-trivial linguistic
structures [19]. They also often discussed modelling evolution, and much later they were
surprised to discover that it had become popular under the name of evolutionary and genetic
programming.

Alexey’s next significant area of applied research was geology [30–33,35,37,39–41,43,44].
This work included designing mathematical models for geological processes and non-para-
metric alternatives to the popular method of Kriging for restoring conditional distributions
from empirical data. On the practical side, Alexey created a system for optimal automatic
delineation of ore bodies that has been in operation at the world’s largest gold deposit
Murun-Tau since 1986 (Novoseltsev, 2015). For the creation of this system he was awarded
the State Prize of the USSR (formerly Stalin Prize) in 1987.

2062



Alexey Chervonenkis’s Bibliography: Comments

Alexey’s first work in medicine was done in 1971 [13] jointly with Vapnik and Lerner,
but most of his papers in this area [51,53,56,59,60,68] were written together with his col-
leagues at Royal Holloway, University of London (whose Professor he formally became in
2000). A closely related application area in which Alexey was active is bioinformatics: see
[45–47]. In the course of his work on bioinformatics he independently (albeit significantly
later) rediscovered Watkins’s (2000) and Haussler’s (1999) string kernels. In general, inde-
pendent rediscoveries were a typical feature of his research, arising naturally when a creative
mind does not follow current literature preferring instead to invent new directions for itself
at the risk of “discovering” well-known results and concepts. (A good example of this is
Werner Heisenberg’s rediscovery of matrix algebra in developing his approach to quantum
mechanics.) Another independent rediscovery was his combination of Bayes and maximum
likelihood methods for regression [42], which he later found in the work of David MacKay
and finally [42,52] traced to a 1970 paper (Turchin et al., 1971).

Among Alexey’s other applied papers were those devoted to energy load forecasting [49]
and aircraft engineering [55]. One of Alexey’s last applied research areas was the problem
of optimal placement of advertisements among the results of a web search [63–65], which is
of great interest to Yandex, the Russian analogue of Google, with which he was affiliated
(alongside the ICS and Royal Holloway, University of London) since 2011.

From 2007 Alexey lectured at the School of Data Analysis founded by Yandex, and it
is due to this activity that we owe his excellent textbook [52]. We are also lucky to have
historical papers and notes published or prepared for publication during the last years of his
life, namely the two sets of reminiscences in Vladimir Vapnik’s and his own Festschriften
[61,66] and his review [67] (preceded by the abstract [62]).

A lot remains unwritten or unfinished. Alexey was active, physically and mentally, and
full of ideas until the very moment of his tragic death in the early hours of 22 September
2014 in Elk Island just outside Moscow.
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Figure 1: Alexey Chervonenkis (1938–2014)
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