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Abstract

Within the statistical learning framework, this paper studies the regression model associ-
ated with the correntropy induced losses. The correntropy, as a similarity measure, has
been frequently employed in signal processing and pattern recognition. Motivated by its
empirical successes, this paper aims at presenting some theoretical understanding towards
the maximum correntropy criterion in regression problems. Our focus in this paper is two-
fold: first, we are concerned with the connections between the regression model associated
with the correntropy induced loss and the least squares regression model. Second, we study
its convergence property. A learning theory analysis which is centered around the above
two aspects is conducted. From our analysis, we see that the scale parameter in the loss
function balances the convergence rates of the regression model and its robustness. We then
make some efforts to sketch a general view on robust loss functions when being applied into
the learning for regression problems. Numerical experiments are also implemented to verify
the effectiveness of the model.

Keywords: correntropy, the maximum correntropy criterion, robust regression, robust
loss function, least squares regression, statistical learning theory

1. Introduction and Motivation

Recently, a generalized correlation function named correntropy (see Santamaŕıa et al., 2006)
has drawn much attention in the signal processing and machine learning community (see Liu
et al., 2007; Gunduz and Pŕıncipe, 2009; He et al., 2011a,b). Formally speaking, correntropy
is a generalized similarity measure between two scalar random variables U and V , which
is defined by Vσ(U, V ) = EKσ(U, V ). Here Kσ is a Gaussian kernel given by Kσ(u, v) =
exp

{
−(u− v)2/σ2

}
with the scale parameter σ > 0, (u, v) being a realization of (U, V ).
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In this paper, we are interested in the application of the similarity measure Vσ in re-
gression problems, namely, the maximum correntropy criterion for regression. Therefore,
we first assume that the data generation model is given as

Y = f?(X) + ε, E(ε |X = x) = 0. (1)

In model (1), X is the explanatory variable that takes values in a separable metric space
X and Y ∈ Y = R stands for the response variable. The main purpose of the regression
problem is to estimate f∗ from a set of observations generated by (1). The underlying
unknown probability distribution on Z := X × Y is denoted as ρ.

Under the regression model (1), probably the most widely employed methodology for
quantifying the regression efficiency is the mean squared error. This is the classical tool
that minimizes the variance of ε and belongs to the second-order statistics. The drawback
of the second-order statistics is that its optimality depends heavily on the assumption of
Gaussianity. However, in many real-life applications, data may be contaminated by non-
Gaussian noise or outliers. This motivates the introduction of the maximum correntropy
criterion into the regression problems.

Given a set of i.i.d observations z = {(xi, yi)}mi=1, for any f : X → Y, the empirical
estimator of the correntropy between f(X) and Y is given as

V̂σ,z(f) =
1

m

m∑
i=1

Kσ(yi, f(xi)).

The maximum correntropy criterion for regression models the output function via maximiz-
ing the empirical estimator of Vσ as follows

fz = arg max
f∈H
V̂σ,z(f),

where H is a certain underlying hypothesis space. The maximum correntropy criterion in
regression problems has shown its efficiency for cases when the noises are non-Gaussian,
and also with large outliers (see Santamaŕıa et al., 2006; Liu et al., 2007; Pŕıncipe, 2010;
Wang et al., 2013). It has also succeeded in many real-world applications, e.g., wind power
forecasting (see Bessa et al., 2009) and pattern recognition (see He et al., 2011b).

In this paper, we attempt to present a theoretical understanding on the maximum
correntropy criterion for regression (MCCR) within the statistical learning framework. To
this end, we first generalize the idea of the maximum correntropy criterion in regression
problems using the following supervised regression loss:

Definition 1 The correntropy induced regression loss `σ : R× R→ [0,+∞) is defined as

`σ(y, t) = σ2
(

1− e−
(y−t)2

σ2

)
, y ∈ Y, t ∈ R,

with σ > 0 being a scale parameter.

Figure 1 plots the correntropy induced loss function `σ (the `σ loss for short in what
follows) with different choices of σ. Associated with this regression loss, the MCCR model
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Figure 1: Plots of `σ(y, t) = σ2(1− e−(y−t)2/σ2
) with respect to y − t for different σ values:

σ = 0.6 (the dashed curve), σ = 0.8 (the dotted-dashed curve), and σ = 1.1 (the
dotted curve).

that we will investigate is the following empirical risk minimization (ERM) scheme

fz = arg min
f∈H

1

m

m∑
i=1

`σ(yi, f(xi)), (2)

where, throughout, the hypothesis space H is assumed to be a compact subset of C(X ).
Here C(X ) is the Banach space of continuous functions on X with the norm ‖f‖∞ =
supx∈X |f(x)|. Note that the compactness of H ensures the existence of the empirical target
function fz.

We remark that the `σ loss is in fact a variant of the Welsch function, which was originally
introduced in robust statistics (see Holland and Welsch, 1977; Dennis and Welsch, 1978).
Consequently, the estimator from the MCCR model (2) is essentially a non-parametric M-
estimator. For linear regression models, the robustness and the consistency properties of
the M-estimator induced by the `σ loss have been investigated in Wang et al. (2013). In
Santamaŕıa et al. (2006) and Liu et al. (2007), an information-theoretical interpretation of
the `σ loss by viewing it as a correlation measurement is provided.

However, existing theoretical results on understanding the `σ loss and the MCCR model
are still very limited, the barriers of which lie in their non-convexity properties. From
Taylor’s expansion, it is easy to see that there holds `σ(t) ≈ t2 for sufficiently large σ.
Therefore, in some existing empirical studies, the `σ loss has been roughly taken as the
least squares loss when σ is large enough. However, our studies in this paper suggest
that this is in general not the case. On the other hand, the consistency property and the
convergence rates of the MCCR model are yet unknown, which are the central focuses of
the statistical learning research. In view of the above considerations, in this paper, our
main concerns are the following two aspects:
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- We are concerned with the connections between the `σ loss and the least squares
loss when they are employed in regression problems. Therefore, we will study the
relations between the MCCR model (2) and the ERM-based least squares regression
(LSR) model.

- We are concerned with the approximation ability of the output function fz modeled
by (2). More concretely, we aim at carrying out a learning theory analysis to bound
the difference between fz and f?.

It should be mentioned that our study on the MCCR model (2) is inspired by Hu et al.
(2013), which presented comprehensive and thorough studies on the minimum error entropy
criterion from a learning theory viewpoint. According to Hu et al. (2013), a specific form
of the minimum error entropy criterion for regression (MEECR) can be stated as

f̃z = arg min
f∈H

− σ2

m(m− 1)

m∑
i=1

∑
j 6=i

G

{
[(yi − f(xi))− (yj − f(xj))]

2

2σ2

} ,

where G(·) is a window function and can be chosen as G(t) = exp(−t). Hu et al. (2013,
2014) presented the first results concerning the regression consistency and convergence rates
of the above MEECR model and its regularized variant when σ becomes large. Concerning
the two regression models, we can see that MEECR models the empirical target function
f̃z via a pairwise empirical risk minimization scheme while the MCCR model learns in a
point-wise fashion. More discussions on the two different learning schemes will be provided
in Section 2.

The rest of this paper is organized as follows. In Section 2, results on the convergence
rates of the MCCR model (2) in different situations are provided. Discussions and compar-
isons with related studies will be also presented. Section 3 concerns connections between the
two regression models: MCCR and LSR, which are explored from three aspects. Section 4
is dedicated to analyzing the MCCR model and giving proofs of theoretical results stated in
Section 2. Discussions on the role that the scale parameter σ in the `σ loss plays is given in
Section 5. Section 6 makes some efforts in sketching a general view of learning with robust
regression losses. Numerical experiments are implemented in Section 7. We end this paper
with concluding remarks in Section 8.

2. Theoretical Results on Convergence Rates and Discussions

In this section, we provide theoretical results on the convergence rates of the MCCR model
(2). Explicitly, denoting ρX as the marginal distribution of ρ on X , we are going to bound
‖fz − fρ‖2L2ρX

, where fρ is defined as

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X ,

and is assumed to satisfy that fρ ∈ L∞ρX throughout this paper. Due to the zero-mean noise
assumption in the data generation model (1), almost surely there holds fρ = f?. To analyze
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the convergence of the model, we need to introduce the following target function in H

fH = arg min
f∈H

∫
Z

(f(x)− y)2dρ.

In addition, the convergence rates that we are going to present are obtained by controlling
the complexity of the hypothesis space H. Therefore, we need the following definitions and
assumptions to state our main results.

2.1 Definitions and Assumptions

Definition 2 (Covering Number) The covering number of the hypothesis space H, which
is denoted as N (H, η) with the radius η > 0, is defined as

N (H, η) := inf

{
l ≥ 1 : there exist f1, . . . , fl ∈ H, such that H ⊂

l⋃
i=1

B(fi, η)

}
,

where B(f, η) = {g ∈ H : ‖f − g‖∞ ≤ η} denotes the closed ball in C(X ) with center f ∈ H
and radius η.

Definition 3 (`2-Empirical Covering Number) Let x = {x1, x2, . . . , xn} ⊂ X n. The
`2-empirical covering number of the hypothesis space H, which is denoted as N2 (H, η) with
radius η > 0, is defined by

N2 (H, η) := sup
n∈N

sup
x∈Xn

inf
{
` ∈ N : ∃{fi}`i=1 ⊂ H such that for each f ∈ H, there exists some

i ∈ {1, 2, . . . , `} with
1

n

n∑
j=1

|f(xj)− fi(xj)|2 ≤ η2
}
.

Assumption 1 (Complexity Assumption I) There exist positive constants p and cI,p
such that

logN (H, η) ≤ cI,pη−p, ∀ η > 0.

Assumption 2 (Complexity Assumption II) There exist positive constants s and cII,s
with 0 < s < 2, such that

logN2 (H, η) ≤ cII,sη−s, ∀ η > 0.

In learning theory, the covering number is frequently used to measure the capacity of
the hypothesis spaces (see Anthony and Bartlett, 1999; Zhou, 2002). As explained in Zhou
(2002), the Complexity Assumption I is typical in the statistical learning theory literature.
For instance, it holds whenH is chosen as a ball of reproducing kernel Hilbert spaces induced
by Sobolev smooth kernels. The `2-empirical covering number is another data-dependent
complexity measurement and usually leads to sharper convergence rates. Several examples
of hypothesis spaces satisfying the Complexity Assumption II can be found in Guo and
Zhou (2013).
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Assumption 3 (Moment Assumption) Assume that the tail behavior of the response
variable Y satisfies

∫
Z y

4dρ <∞.

We will give some discussions on the above Moment Assumption in Subsection 2.3. In
our study, the Moment Assumption will be employed to analyze the convergence of the
MCCR model. For some specific situations of the regression model (1), in our study we will
also restrict ourselves to the noise that satisfies the following Noise Assumption.

Assumption 4 (Noise Assumption) The density function of the noise variable ε for
any given X = x, which is denoted as pε|X=x, is symmetric and uniformly bounded by the
interval [−M0,M0] with M0 > 0.

2.2 Theoretical Results on Convergence Rates

We are now ready to state our main results on the convergence rates of the MCCR model
(2). Our first result considers a general case of the regression model (1), where the Moment
Assumption is assumed to hold.

Theorem 4 Assume that the Complexity Assumption I with p > 0 and the Moment As-
sumption hold. Let fz be produced by (2). For any 0 < δ < 1, with confidence 1− δ, there
holds

‖fz − fρ‖2L2ρX ≤ 3 ‖fH − fρ‖2L2ρX
+ CH,ρ log(2/δ)

(
σ−2 + σm−1/(1+p)

)
,

where CH,ρ is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Discussions on the convergence rates established in Theorem 4 are postponed to Sub-
section 2.3. Here we remark that the moment condition in the Moment Assumption which
is used in Theorem 4 can be relaxed to a weaker moment condition, i.e.,

∫
Z |y|

`dρ <
∞ with ` > 2, where meaningful convergence rates can be still derived. Meanwhile, when
the condition in the Moment Assumption is further strengthened, refined convergence rates
can be derived. For instance, when |y| ≤M almost surely for some M > 0, we can get the
following improved convergence rates:

Theorem 5 Assume that the Complexity Assumption II with 0 < s < 2 holds, and |y| ≤M
almost surely for some M > 0. Let fρ ∈ H and fz be produced by (2) with σ = m1/(2+s).
For any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ C
′
H,ρ log(2/δ)m−

2
2+s ,

where C ′H,ρ is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

From Theorem 4 and Theorem 5, we can see that meaningful convergence rates can be
obtained when σ is properly chosen, e.g., σ = O(mα) with some α > 0. That is, σ has
to grow in accordance with the sample size m to ensure non-trivial convergence rates. In
view of this, it is natural to ask whether one can also get consistency properties or even
convergence rates for the MCCR model (2) when σ is fixed. Under certain conditions, we
give a positive answer in the following theorem.
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Theorem 6 Assume that the Complexity Assumption II with 0 < s < 2 and the Noise
Assumption hold. Let fρ ∈ H, fz be produced by (2) with σ being fixed and σ > σH,ρ where

σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ CH,σ,ρ log(1/δ)m−
2

2+s ,

where CH,σ,ρ is a positive constant independent of m or δ and will be given explicitly in the
proof.

Proofs of the above theorems will be given in Subsection 4.3.

2.3 Discussions and Comparisons

We now give some discussions on the obtained convergence rates, the Moment Assumption
and also comparisons with related studies.

2.3.1 Convergence Rates

As shown in Theorem 4, under the Moment Assumption, the convergence rates of the
MCCR model depend on the choice of σ and the regularity of fρ. In the case when fρ ∈ H
and σ = O(m1/(2+2p)), the convergence rate of O(m−2/(3+3p)) can be obtained. We then
show in Theorem 5 and Theorem 6 that under the boundedness assumption on Y , or with
the Noise Assumption, refined convergence rates of O(m−2/(2+s)) can be derived. Note
that when s tends to zero which corresponds to the case where functions in H are smooth
enough, convergence rates established in Theorem 5 and Theorem 6 tend to O(m−1), which
are considered as the optimal rates in learning theory according to the law of large numbers
(see Caponnetto and De Vito, 2007; Steinwart et al., 2009; Mendelson and Neeman, 2010;
Wang and Zhou, 2011). The established convergence rates indicate the feasibility of applying
the `σ loss in regression problems.

2.3.2 Moment Assumption and Related Studies on Robustness

Note that convergence rates in Theorem 4 are obtained under the Moment Assumption,
which restricts the tail behavior of Y . In fact, as commented in Christmann and Steinwart
(2007), tail properties of Y are frequently used in linear regression as well as nonparametric
regression problems. For instance, tail behaviors of Y are usually employed to study the
robustness and the consistency properties of M-estimators in linear regression problems, see
e.g., Hampel et al. (1986); Davies (1993); Audibert and Catoni (2011) and many others. In
the statistical learning literature, some recent studies have also confined the tail properties
of Y to explore the robustness of the kernel-based regression schemes, see e.g., Christmann
and Steinwart (2007); Christmann and Messem (2008); Steinwart and Christmann (2008);
De Brabanter et al. (2009); Debruyne et al. (2010).

Note also that in the statistical learning literature there are many existing studies on
the robust regression problem. For instance, Suykens et al. (2002a,b) presented a weighted
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least squares method to pursue a robust approximation to the regression function. Debruyne
et al. (2008) addressed the model selection problem in kernel-based robust regression. Some
efforts have been made in Steinwart and Christmann (2008) to understand generalization
abilities of regression schemes associated with convex robust loss functions, e.g., Huber’s
loss, which are also conducted by restricting the tail behavior of Y . As shown in Steinwart
and Christmann (2008), under certain conditions, empirical estimators learned from the
ERM schemes associated with certain convex robust loss functions can generalize. How-
ever, this does not directly indicate the regression consistency property of the empirical
estimators, e.g., the convergence from the empirical estimator to the regression function
with respect to the L2ρX -distance. On the other hand, as far as we can see, few studies
can be found in the statistical learning literature towards understanding regression schemes
associated with nonconvex robust loss functions, which are frequently employed in robust
statistics (see Huber, 1981; Hampel et al., 1986).

2.3.3 Comparisons with Related Studies

As mentioned earlier, our study is motivated by recent work towards understanding the
minimum error entropy criterion in regression problems (see Hu et al., 2013). Observing
that when being applied to regression problems, both of the two models aim at modeling an
empirical estimator that approximates the regression function fρ. Therefore, we can give
comparisons on the convergence rates of the two models. Under the same assumptions on
the tail behavior of Y and the Complexity Assumption I, when fρ ∈ H, the convergence
rates established in Hu et al. (2013) are of the type O(m−2/(3+3p)), which are presented
with respect to the variance of f̃z(X) − fρ(X) due to the mean insensitive property of
the MEECR model. In addition, when Y is bounded, under the Complexity Assumption
I, Hu et al. (2013) reported convergence rates of the type O(m−1/(1+p)). In view of the
convergence rates reported in Theorem 4 and Theorem 5, we conclude that the convergence
rates of the two regression models are comparable. This is a nice property of the MCCR
model considering that it has a lower computational complexity.

3. Connections between MCCR and LSR

As aforementioned, it is not suggested to roughly treat the `σ loss as the least squares loss
in regression problems even if σ is sufficiently large. This section is dedicated to explaining
this issue and trying to explore the connections between the two different regression models:
MCCR and LSR.

To this end, we first give some notations. For any measurable function f : X → Y, the
generalization error of f under the `σ loss and the least squares loss are defined, respectively,
as

Eσ(f) =

∫
Z
`σ(y, f(x))dρ(x, y), and E(f) =

∫
Z

(y − f(x))2dρ(x, y).

The corresponding target functions with respect to the hypothesis space H are given, re-
spectively, by

fσH = arg min
f∈H
Eσ(f), and fH = arg min

f∈H
E(f).
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3.1 A Useful Lemma

We first give a lemma which bounds the deviation of the excess risks of f associated with
the `σ loss and the least squares loss for any f ∈ H. It will play an important role in our
following analysis. In this context, the excess risk of f with respect to the `σ loss refers to
the term Eσ(f) − Eσ(fρ) while the excess risk of f with respect to the least squares loss
refers to the term E(f)− E(fρ).

Lemma 7 Assume that the Moment Assumption holds. For any f ∈ H, the deviation of
the two excess risk terms can be bounded as follows∣∣∣ {Eσ(f)− Eσ(fρ)} − {E(f)− E(fρ)}

∣∣∣ ≤ cH,ρ
σ2

,

where cH,ρ is a positive constant given by

cH,ρ = 8

∫
Z
y4dρ+ 4 sup

f∈H
‖f‖4∞ + 4‖fρ‖4∞. (3)

Proof Following the inequality |1− t− e−t| ≤ t2

2 for t > 0, one has∣∣∣∣1− (y − f(x))2

σ2
− exp

{
−(y − f(x))2

σ2

}∣∣∣∣ ≤ (y − f(x))4

2σ4
.

Simple computations show that∣∣∣∣Eσ(f)−
∫
Z

(y − f(x))2dρ

∣∣∣∣ ≤ 1

2σ2

∫
Z

(y − f(x))4dρ. (4)

Since fρ ∈ L∞ρX , the same estimation process can be applied to fρ, which gives∣∣∣∣Eσ(fρ)−
∫
Z

(y − fρ(x))2dρ

∣∣∣∣ ≤ 1

2σ2

∫
Z

(y − fρ(x))4dρ. (5)

Combining estimates in (4) and (5), we come to the following inequality

∣∣∣ {Eσ(f)− Eσ(fρ)} − {E(f)− E(fρ)}
∣∣∣ ≤ 1

σ2

(
8

∫
Z
y4dρ+ 4‖f‖4∞ + 4‖fρ‖4∞

)
,

where the basic inequality (a+ b)4 ≤ 8a4 + 8b4 for a, b ∈ R has been applied. By denoting

cH,ρ = 8

∫
Z
y4dρ+ 4 sup

f∈H
‖f‖4∞ + 4‖fρ‖4∞,

we complete the proof of Lemma 7.
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3.2 An Equivalence Relation between MCCR and LSR

In this part, we proceed with exploring the connections between the two models: MCCR
and LSR. We will show that, when σ is large enough, under certain conditions, there does
exist an equivalence relation between the two regression models. By equivalence, we mean
that the two regression models admit the same target function when working in the same
hypothesis space, i.e., fσH = fH in our study.

Theorem 8 Suppose that the Noise Assumption holds. Under the condition that fρ ∈ H
and σ > σH,ρ with

σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
,

almost surely we have

fσH = fH.

Proof Since fρ ∈ H, it is immediate to see that almost surely we have fH = fρ. To finish
the proof, it remains to show that there holds fσH = fρ. In fact, for any f ∈ H, we know
that

Eσ(f) = σ2
∫
Z

(
1− exp

{
−(y − f(x))2

σ2

})
dρ(x, y) = σ2

∫
X
Fx(f(x)− fρ(x))dρX (x),

where

Fx(u) := 1−
∫ M0

−M0

exp

{
−(t− u)2

σ2

}
pε|X=x(t)dt, x ∈ X .

By taking the derivative of F with respect to u, we get

F ′x(u) = −2

∫ M0

−M0

exp

{
−(t− u)2

σ2

}(
t− u
σ2

)
pε|X=x(t)dt, x ∈ X .

According to the symmetry property of pε|X=x, we know that F ′x(0) = 0. Moreover,

F ′′x (u) = 2

∫ M0

−M0

exp

{
−(t− u)2

σ2

}(
σ2 − 2(t− u)2

σ4

)
pε|X=x(t)dt, x ∈ X .

Obviously, F ′′x (u) > 0 for all x ∈ X when σ > σH,ρ. Consequently, u = 0 is the unique
minimizer of Fx(·) for any x ∈ X . The proof of Theorem 8 can be completed by recalling
the definitions of fσH and fρ.

Theorem 8 provides a situation where the equivalence relation between the two regression
models holds. In the sense of Theorem 8, one can take the `σ loss as the least squares loss
when σ is large enough. However, Theorem 8 also indicates that the equivalence relation
holds when the Noise Assumption is valid, fρ ∈ H and σ is sufficiently large. Note that the
condition fρ ∈ H imposes a regularity requirement on the regression function fρ while the
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Noise Assumption asks for the boundedness and symmetry of the noise. In view of these,
we conclude that one is not suggested to simply treat the `σ loss as the least squares loss
even if σ is sufficiently large.

We remark that Theorem 8 merely provides a sufficient condition to ensure the existence
of the equivalence relation between the two models. It would be meaningful to explore some
other relaxed conditions to get a similar equivalence relation. However, we also remark that
the non-convexity of the `σ loss makes it non-trivial since in this case there exists more than
one local optimum of the MCCR model.

3.3 Comparisons on the Convergence Rates of MCCR and LSR

To further elucidate connections between the two regression models, in this part we move
our attention to comparing the learning performance of their empirical estimators, i.e., the
convergence rates of ‖fz − fρ‖2L2ρX

and ‖f lsz − fρ‖2L2ρX
where f lsz is modeled by the following

ERM scheme

f lsz = arg min
f∈H

1

m

m∑
i=1

(f(xi)− yi)2. (6)

Noticing that due to the assumption that H is a compact subset of C(X ), (6) is in fact a
constrained optimization model. When H is taken as a bounded subset of a certain repro-
ducing kernel Hilbert spaceHK, there exists an equivalence relation between the constrained
optimization model (6) and the following unconstrained model

f lsz,λ = arg min
f∈HK

1

m

m∑
i=1

(f(xi)− yi)2 + λ‖f‖2K, (7)

where λ > 0 is a regularization parameter. Therefore, our comparison will be conducted
between the MCCR model (2) and the regularized least squares regression model (7), which
has been well understood in the statistical learning literature.

When Y is bounded, fρ ∈ H and the Complexity Assumption II with 0 < s < 2
holds, the convergence rate of ‖fz − fρ‖2L2ρX

established in Theorem 5 belongs to the type

of O(m−2/(2+s)), which is the same as that of the regularized LSR (7) under the same
conditions as revealed in Wu et al. (2006). In fact, when H is taken as a bounded subset
of HK and the Mercer kernel K is sufficiently smooth, the constant s in the Complexity
Assumption II can be arbitrarily small. As mentioned earlier, in this case, learning rates
of the type O(m−1) can be derived which are regarded as the optimal learning rates in
learning theory according to the law of large numbers.

On the other hand, due to the non-robustness of the least squares loss, almost all the
existing convergence rates established for (7) are reported under the restriction that the
response variable has a sub-Gaussian tail (see Wu et al., 2006; Caponnetto and De Vito,
2007; Steinwart et al., 2009; Mendelson and Neeman, 2010; Wang and Zhou, 2011). However,
we see from Theorem 4 that for the MCCR model, convergence rates can be obtained under
the Moment Assumption. This shows that the MCCR model can deal with non-Gaussian
noise, which consequently distinguishes the two models in terms of conditions needed to
establish meaningful convergence rates.
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Before ending this section, let us briefly summarize the connections between MCCR and
LSR as follows:

• For any given f ∈ H, the difference between the excess risk of f with respect to the
two regression models can be upper bounded by O(σ−2);

• Under certain conditions, we do see the existence of an equivalence relation between
the two models, as commonly expected when σ is large enough. However, this equiv-
alence relation might hold only under very specific conditions as suggested by our
analysis;

• The MCCR model can deal with the heavy-tailed noise while the LSR model can
only deal with sub-Gaussian noise. Moreover, when being restricted to cases with the
bounded output or with the Gaussian noise, the performance of the two regression
models are comparable. Therefore, in the above sense, we suggest that one can count
on the MCCR model (2) to solve regression problems.

4. Deriving the Convergence Rates

This section presents detailed convergence analysis of the MCCR model (2) and proofs
of theorems given in Section 2. The main difficulty in analyzing the model lies in the
non-convexity of the loss function `σ, which disables usual techniques for analyzing convex
learning models (see Cucker and Zhou, 2007; Steinwart and Christmann, 2008). We over-
come this difficulty by introducing a novel error decomposition strategy with the help of
Lemma 7. Analysis presented in this section is inspired by Cucker and Zhou (2007); Hu
et al. (2013) and Fan et al..

4.1 Decomposing the Error into Bias-Variance Terms

The L2ρX -distance between the empirical target function fz and the regression function fρ
can be decomposed into the bias and the variance terms (see Vapnik, 1998; Cucker and
Zhou, 2007; Steinwart and Christmann, 2008). Roughly speaking, the bias refers to the
data-free error terms while the variance refers to the data-dependent error terms. The
spirit of the learning theory approach to analyzing the convergence of learning models is
trying to find a compromise between bias and variance by controlling the complexity of
the hypothesis space. The following proposition offers a method for such compromise with
respect to the MCCR model (2).

Proposition 9 Assume that the Moment Assumption holds and let fz be produced by (2).
The L2ρX -distance between fz and fρ can be decomposed as follows:

‖fz − fρ‖2L2ρX
≤ AH,σ,ρ +AH,ρ + S1(z) + S2(z),
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where

AH,σ,ρ = 2cH,ρ/σ
2,

AH,ρ = E(fH)− E(fρ),

S1(z) = {Eσz (fσH)− Eσz (fρ)} − {Eσ(fσH)− Eσ(fρ)} ,
S2(z) = {Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)} .

Proof Following from Lemma 7, with simple computations, we see that

‖fz − fρ‖2L2ρX
≤ Eσ(fz)− Eσ(fρ) + cH,ρ/σ

2

≤ {Eσ(fz)− Eσz (fz)}+ {Eσz (fz)− Eσz (fσH)}+ {Eσz (fσH)− Eσ(fσH)} .
+ {Eσ(fσH)− Eσ(fH)}+ {Eσ(fH)− Eσ(fρ)}+ cH,ρ/σ

2

≤ {Eσ(fz)− Eσz (fz)}+ {Eσz (fz)− Eσz (fσH)}+ {Eσz (fσH)− Eσ(fσH)} .
+ {Eσ(fσH)− Eσ(fH)}+ {E(fH)− E(fρ)}+ 2cH,ρ/σ

2.

The definitions of fz, fσH and fH tell us that the second and the fourth terms of right-hand
side of the last inequality are at most zero. By introducing intermediate terms Eσz (fρ),
Eσ(fρ) and corresponding notations, we finish the proof of Proposition 9.

As shown in Proposition 9, the L2ρX -distance between fz and fρ are decomposed into four
error terms: AH,σ,ρ, AH,ρ, S1(z), and S2(z). It is easy to see that the first two error terms are
data-independent and correspond to the bias while the last two terms are data-dependent,
which consequently are referred as the sample error (variance). The quantity AH,ρ can be
translated as the approximation ability of fH to fρ, the estimation of which belongs to
the topics of the approximation theory and has been well conducted. For instance, when
H is chosen as a bounded subset of a certain reproducing kernel Hilbert space (RKHS), a
comprehensive study on this term can be found in Smale and Zhou (2003). On the other
hand, we remind that the bias term AH,σ,ρ is introduced into the above error decomposition
method, which not only depends on the hypothesis space H and the underlying probability
distribution ρ, but also relies on the scale parameter σ. As explained later, this is caused by
the introduction of the robustness into the regression model. This makes the decomposition
strategy for the MCCR model different from those for convex regression models (see Cucker
and Zhou, 2007; Steinwart and Christmann, 2008).

As a consequence of Proposition 9, to bound ‖fz − fρ‖2L2ρX
, it suffices to estimate the

two sample error terms: S1(z) and S2(z), which will be tackled in the next subsection.

4.2 Concentration Estimates of Sample Error Terms

This part presents concentration estimates for the sample error terms S1(z) and S2(z) when
the Moment Assumption is assumed. In learning theory, this is typically done by applying
concentration inequalities to certain random variables that may be function-space valued.

In our study, for this purpose we introduce the following two random variables, ξ1(z)
and ξ2(z) with z ∈ Z, which are defined by

ξ1(z) := −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
,
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and

ξ2(z) := −σ2 exp
{
−(y − fz(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
.

By applying the one-sided Bernstein’s inequality in Lemma 12 to the random variable
ξ1, we can get the concentrated estimate for the sample error term S1(z). However, the
estimation of the sample error term S2(z) requires us to apply concentration inequalities to
the function-space valued random variable ξ2 and consequently depends on the capacity of
the hypothesis space H. This is due to the fact that the random variable ξ2 is dependent
with fz which varies in accordance with the sample z.

Concentrated estimates for S1(z) and S2(z) are presented in the following two proposi-
tions, the proofs of which are given in Subsection 4.3.

Proposition 10 Assume that the Moment Assumption holds. For any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤ 1

2

∥∥fH − fρ∥∥2L2ρX + CH,ρ,1

(
log

2

δ

)(
σ

m
+

1

σ2

)
,

where CH,ρ,1 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Proposition 11 Assume that the Complexity Assumption I with p > 0 and the Moment
Assumption hold. For any 0 < δ < 1, with confidence 1− δ/2, there holds

S2(z) ≤ 1

2
(S1(z) + S2(z)) +

1

2
‖fH − fρ‖2L2ρX

+ CH,ρ,2

(
log

2

δ

){
1

σ2
+

σ

m
1

1+p

}
,

where CH,ρ,2 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

4.3 Proofs

4.3.1 Lemmas

We first list several lemmas that will be used in the proofs. Lemma 12 and Lemma 13 are
one-sided Bernstein’s concentration inequalities, which were introduced in Bernstein (1946)
and can be found in many statistical learning textbooks, see e.g., Cucker and Zhou (2007);
Steinwart and Christmann (2008). Lemma 14 was proved in Wu et al. (2007).

Lemma 12 Let ξ be a random variable on a probability space Z with variance σ2? satisfying
|ξ − Eξ| ≤Mξ almost surely for some constant Mξ and for all z ∈ Z. Then

Probz∈Zm

{
1

m

m∑
i=1

ξ(zi)− Eξ ≥ ε

}
≤ exp

{
− mε2

2(σ2? + 1
3Mξε)

}
.
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Lemma 13 Let ξ be a random variable on a probability space Z with variance σ2? satisfying
|ξ−Eξ| ≤Mξ almost surely for some constant Mξ and for all z ∈ Z. Then for any 0 < δ < 1,
with confidence 1− δ, we have

1

m

m∑
i=1

ξ(zi)− Eξ ≤
2Mξ log 1

δ

3m
+

√
2σ2? log 1

δ

m
.

Lemma 14 Let F be a class of measurable functions on Z. Assume that there are constants
B, c > 0 and θ ∈ [0, 1] such that ‖f‖∞ ≤ B and Ef2 ≤ c(Ef)θ for every f ∈ F . If for some
a > 0 and s ∈ (0, 2),

logN2 (F , η) ≤ aη−s, ∀ η > 0,

then there exists a constant αp depending only on p such that for any t > 0, with probability
at least 1− e−t, there holds

Ef − 1

m

m∑
i=1

f(zi) ≤
1

2
γ1−θ (Ef)θ + αpγ + 2

(
ct

m

) 1
2−θ

+
18Bt

m
, ∀ f ∈ F ,

where

γ := max

{
c

2−s
4−2θ+sθ

( a
m

) 2
4−2θ+sθ

, B
2−s
2+s

( a
m

) 2
2+s

}
.

4.3.2 Proof of Proposition 10

Proof To bound the sample error term S1(z), we apply the one-sided Bernstein’s inequality
in Lemma 13 to the random variable ξ1 introduced in Subsection 4.2. To this end, we need
to verify conditions in Lemma 13.

We first verify the boundedness condition. Recall that the random variable ξ1 is defined
as

ξ1(z) := −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

Introducing the auxiliary function h(t) = exp{−t2} with t ∈ R, it is easy to see that
‖h′‖∞ =

√
2/e. By taking t1 = (y − fσH(x))/σ, t2 = (y − fρ(x))/σ and applying the mean

value theorem to h, we see that

|ξ1(z)| ≤
√

2/eσ|fσH(x)− fρ(x)| ≤
√

2/eσ‖fσH − fρ‖∞, z ∈ Z.

Consequently,

|ξ1 − Eξ1| ≤ 2‖ξ1‖∞ ≤ 2
√

2/eσ‖fσH − fρ‖∞ ≤ 2
√

2/eσ sup
f∈H
‖f − fρ‖∞.

We are now in a position to bound the variance of the random variable ξ1, which is
denoted as var(ξ1). Applying the mean value theorem to the auxiliary function h1(t) =
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exp(−t) at t1 = (y−fσH(x))2/σ2, t2 = (y−fρ(x))2/σ2 and recalling that ‖h′1‖∞ ≤ 1, we get

var(ξ1) = Eξ21 − (Eξ1)2 ≤ Eξ21
≤ E

(
(fσH(x)− fρ(x))2(2y − fσH(x)− fρ(x))2

)
≤
∫
Y

(
12y2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
dρ(y|x)

∫
X

(fσH(x)− fρ(x))2dρX (x)

= cH,ρ,0

∫
X

(fσH(x)− fρ(x))2dρX (x),

where the second inequality is from the elementary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)
for a, b, c ∈ R and the positive constant cH,ρ,0 is denoted as

cH,ρ,0 = 12

∫
Z
y2dρ+ 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞. (8)

Now applying Lemma 13 to the random variable ξ1, we see that for any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤
4
√

2/e supf∈H ‖f − fρ‖∞
3

σ log(2/δ)

m
+

√
2cH,ρ,0 log(2/δ)‖fσH − fρ‖2L2ρX

m
. (9)

The elementary inequality
√
ab ≤ (a+ b)/2 for a, b ≥ 0 gives1√

2cH,ρ,0 log(2/δ)‖fσH − fρ‖2L2ρX
m

≤ 1

2
‖fσH − fρ‖2L2ρX +

cH,ρ,0 log(2/δ)

m
. (10)

In addition, as a consequence of Lemma 7, we have

‖fσH − fρ‖2L2ρX ≤ E
σ(fσH)− Eσ(fρ) + cH,ρ/σ

2

= Eσ(fσH)− Eσ(fH) + Eσ(fH)− Eσ(fρ) + cH,ρ/σ
2

≤ ‖fH − fρ‖2L2ρX + 2cH,ρ/σ
2,

(11)

where the last inequality is due to the fact that fσH is the minimizer of the risk functional
Eσ(·) in H.

Combining estimates in (9), (10), and (11), we come to the conclusion that for any
0 < δ < 1, with confidence 1− δ/2, there holds

S1(z) ≤ 1

2

∥∥fH − fρ∥∥2L2ρX + CH,ρ,1

(
log

2

δ

)(
σ

m
+

1

σ2

)
,

where CH,ρ,1 is a positive constant independent of m, σ or δ and given by

CH,ρ,1 = (4/3)
√

2/e sup
f∈H
‖f − fρ‖∞ + 2cH,ρ + cH,ρ,0.

Thus we have completed the proof of Proposition 10.

1. Refined estimate can be derived here by applying Young’s inequality ab ≤ ta2

2
+ b2

2t
for a, b ∈ R, t > 0.

In our proof, we choose t = 1 for simplification.
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4.3.3 Proof of Proposition 11

To prove Proposition 11, we first need to prove the following intermediate conclusion, which
is in fact a concentrated estimate for function-space valued random variables.

Proposition 15 Assume that the Moment Assumption holds. Let ε satisfy ε ≥ cH,ρ/σ
2.

For any 0 < δ < 1, with confidence 1− δ/2, there holds

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤ N

(
H, ε√

2/eσ

)
exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
,

where cH,ρ is given in (3) and cH,ρ,0 is given in (8), both of which are positive constants
independent of m, σ or δ.

Proof To derive the desired estimate, we will apply the one-sided Bernstein’s inequality
in Lemma 13 to the function set H by taking its capacity into account.

For any f ∈ H, we redefine the random variable ξ2(z) as follows

ξ2(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

Following from the proof of Proposition 10, we know that

‖ξ2‖∞ ≤
√

2/eσ‖f − fρ‖∞ and |ξ2 − Eξ2| ≤ 2
√

2/eσ sup
f∈H
‖f − fρ‖∞.

Meanwhile, we also know from the proof of Proposition 10 that

Eξ22 ≤ cH,ρ,0‖f − fρ‖2L2ρX ,

where the constant cH,ρ,0 is given in (8).

Consider a function set {fj}Jj=1 ⊂ H with J = N (H, ε/(
√

2/eσ)). The compactness of
H ensures the existence and finiteness of J . Now we let

µ =
√
Eσ(fj)− Eσ(fρ) + 2ε,

and choose ε such that ε ≥ cH,ρ/σ2. Applying the one-sided Bernstein’s inequality in Lemma
12 to the following group of random variables

ξ2,j(z) = −σ2 exp
{
−(y − fj(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, j = 1, . . . , J,
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we come to the following conclusion

Probz∈Zm

{
(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√

Eσ(fj)− Eσ(fρ) + 2ε
>
√
ε

}

≤ exp

− 3mεµ2

4
√

2/e‖fj − fρ‖∞
√
εµσ + 6cH,ρ,0‖fj − fρ‖2L2ρX


≤ exp

{
− 3mεµ2

4
√

2/e‖fj − fρ‖∞
√
εµσ + 6cH,ρ,0µ2

}

≤ exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
,

where the last two inequalities follow from the inequality in Lemma 7, the equation that
E(fj)− E(fρ) = ‖fj − fρ‖2L2ρX

, the fact that ε ≥ cH,ρ/σ2 and

µ2 = Eσ(fj)− Eσ(fρ) + 2ε ≥ Eσ(fj)− Eσ(fρ) + cH,ρ/σ
2 + ε ≥ E(fj)− E(fρ) + ε ≥ ε.

From the choice of fj , we know that for each f ∈ H, there exists some j such that ‖f −
fj‖∞ ≤ ε/(

√
2/eσ). Therefore |Eσ(f) − Eσ(fj)| and |Eσz (f) − Eσz (fj)| can be both upper

bounded by ε, which yields

|(Eσz (f)− Eσz (fρ))− (Eσz (fj)− Eσz (fρ))|√
Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε (12)

and

|(Eσ(f)− Eσ(fρ))− (Eσ(fj)− Eσ(fρ))|√
Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε. (13)

The latter inequality together with the fact that ε ≤ Eσ(f)− Eσ(fρ) + 2ε implies

Eσ(fj)− Eσ(fρ) + 2ε = (Eσ(fj)− Eσ(fρ))− (Eσ(f)− Eσ(fρ)) + Eσ(f)− Eσ(fρ) + 2ε

≤
√
ε
√

(Eσ(f)− Eσ(fρ)) + 2ε+ Eσ(f)− Eσ(fρ) + 2ε

≤ 2(Eσ(f)− Eσ(fρ) + 2ε).

(14)

For any f ∈ H, if the following inequality holds

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε,

then combining estimates in (12) and (13) we know that there holds

(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 2
√
ε.
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This together with inequality (14) tells us that the following inequality holds

(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√
Eσ(fj)− Eσ(fρ) + 2ε

>
√
ε.

Consequently, based on the above estimates, we come to the following conclusion

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤
J∑
j=1

Probz∈Zm

{
(Eσ(fj)− Eσ(fρ))− (Eσz (fj)− Eσz (fρ))√

Eσ(fj)− Eσ(fρ) + 2ε
>
√
ε

}

≤ N

(
H, ε√

2/eσ

)
exp

{
− 3mε

4
√

2/e supf∈H ‖f − fρ‖∞σ + 6cH,ρ,0

}
.

This completes the proof of Proposition 15.

Proof [Proof of Proposition 11] From the Complexity Assumption I, we know that

N
(
H, ε

/
(
√

2/eσ)
)
≤ exp

{
cI,p(

√
2/e)pσp/εp

}
.

This in connection with Proposition 15 yields

Probz∈Zm

{
sup
f∈H

(Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ))√
Eσ(f)− Eσ(fρ) + 2ε

> 4
√
ε

}

≤ exp

{
Apσ

p

εp
− mε

σBH,ρ + 2cH,ρ,0

}
,

where Ap and BH,ρ are positive constants given by

Ap = cI,p(
√

2/e)p and BH,ρ = 4
√

2/e sup
f∈H
‖f − fρ‖∞/3.

By setting

exp

{
Apσ

p

εp
− mε

σBH,ρ + 2cH,ρ,0

}
≤ δ

2
,

we obtain

εp+1 −
log(2/δ) (σBH,ρ + 2cH,ρ,0)

m
εp −

Ap (σBH,ρ + 2cH,ρ,0)σ
p

m
≥ 0.

Lemma 7.2 in Cucker and Zhou (2007) tells us that the above inequality holds if

ε ≥ max

{
cH,ρ
σ2

,
2 log(2/δ) (σBH,ρ + 2cH,ρ,0)

m
,

(
2Ap (σBH,ρ + 2cH,ρ,0)σ

p

m

)1/(1+p)
}
.
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In view of the above condition, we choose a sufficient large εH,ρ as follows

εH,ρ = cH,ρ,1 log(2/δ)(σ−2 + σm−1/(1+p)),

where cH,ρ,1 is a positive constant independent of m, σ or δ and given by

cH,ρ,1 = 2cH,ρ + 2(Ap + 1)(BH,ρ + 2cH,ρ,0).

With the above choice of εH,ρ and following the above discussions, we see that for any
0 < δ < 1, with confidence 1− δ/2, there holds

sup
f∈H

{
((Eσ(f)− Eσ(fρ))− (Eσz (f)− Eσz (fρ)))

/√
Eσ(f)− Eσ(fρ) + εH,ρ

}
≤ 4
√
εH,ρ,

which yields

(Eσ(fz)− Eσ(fρ))− (Eσz (fz)− Eσz (fρ)) ≤ 4
√
εH,ρ

√
Eσ(fz)− Eσ(fρ) + 2εH,ρ.

Applying the basic inequality
√
ab ≤ (a+ b)/2 for a, b ≥ 0, we know that for any 0 < δ < 1,

with confidence 1− δ, there holds2

S2(z) = (Eσ(fz)− Eσ(fρ))− (Eσz (fz)− Eσz (fρ)) ≤
1

2
(Eσ(fz)− Eσ(fρ)) + 9εH,ρ. (15)

Proposition 9 tells us that

Eσ(fz)− Eσ(fρ) = Eσ(fz)− Eσ(fσH) + Eσ(fσH)− Eσ(fρ)

≤ S1(z) + S2(z) + ‖fH − fρ‖2L2ρX + cH,ρ/σ
2,

(16)

where the above inequality is due to Lemma 7 and the observation that

Eσ(fσH)− Eσ(fρ) = Eσ(fσH)− Eσ(fH) + Eσ(fH)− Eσ(fρ)

≤ Eσ(fH)− Eσ(fρ)

≤ ‖fH − fρ‖2L2ρX + cH,ρ/σ
2.

Combining estimates in (15) and (16), we come to the conclusion that for any 0 < δ < 1,
with confidence 1− δ/2, there holds

S2(z) ≤ 1

2
(S1(z) + S2(z)) +

1

2
‖fH − fρ‖2L2ρX

+ CH,ρ,2

(
log

2

δ

){
1

σ2
+

σ

m1/(1+p)

}
,

where CH,ρ,2 is a positive constant independent of m, σ or δ and given by CH,ρ,2 =
2cH,ρ + 9cH,ρ,1. This completes the proof of Proposition 11.

2. Similarly, refined estimate can be also derived here by using Young’s inequality ab ≤ ta2

2
+ b2

2t
for a, b ∈ R,

t > 0. In our proof, again we choose t = 1 for simplification.
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4.3.4 Proof of Theorem 4

Proof From Lemma 7 and Proposition 9, we know that

‖fz − fρ‖2L2ρX
≤ S1(z) + S2(z) + ‖fH − fρ‖2L2ρX

+ 2cH,ρ/σ
2. (17)

Combining estimates in Proposition 10 and Proposition 11 for the sample error terms S1(z)
and S2(z), we know that for any 0 < δ < 1, with confidence 1− δ, there holds

S1(z) + S2(z) ≤ 2 ‖fH − fρ‖2L2ρX
+ (2CH,ρ,1 + 4CH,ρ,2) log (2/δ) {σ−2 + σm−1/(1+p)}.

This in connection with the estimate in (17) tells us that for any 0 < δ < 1, with confidence
1− δ, there holds

‖fz − fρ‖2L2ρX
≤ 3 ‖fH − fρ‖2L2ρX

+ CH,ρ log (2/δ) {σ−2 + σm−1/(1+p)},

where CH,ρ = 2CH,ρ,1 + 4CH,ρ,2 + 4cH,ρ. This completes the proof of Theorem 4.

4.3.5 Proof of Theorem 5

The proof of Theorem 5 can be similarly conducted as that of Theorem 4, since the error
decomposition in Proposition 9 holds when Y is bounded. Therefore, we also need to bound
the two sample error terms S1(z) and S1(z), respectively.

Proposition 16 Assume that |y| ≤ M almost surely for some M > 0, and fρ ∈ H. For
any 0 < δ < 1, with confidence 1− δ/2, there holds

S1(z) ≤ C ′H,ρ,1 log(2/δ)(σ−2 +m−1),

where C ′H,ρ,1 is a positive constant that independent of m, σ or δ and will be given explicitly
in the proof.

Proof We will finish the proof by following similar process as done for Proposition 10. We
first introduce the random variable ξ̄1(z) as follows

ξ̄1(z) = −σ2 exp
{
−(y − fσH(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z.

It follows from the proof of Proposition 10 and the boundedness of Y that for any z ∈ Z,
there holds

|ξ̄1(z)| ≤
∣∣(2y − fσH(x)− fρ(x))(fσH(x)− fρ(x))

∣∣
≤
(

2M + ‖fρ‖∞ + sup
f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞.

Consequently, the following estimate holds∣∣ξ̄1 − Eξ̄1
∣∣ ≤ 2

(
2M + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞ := c′H,ρ,0.
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Denote the variance of the random variable ξ̄1 as var(ξ̄1). From the proof of Proposition
10 and the boundedness of Y , we have

var(ξ̄1) = Eξ̄21 − (Eξ̄1)2

≤ Eξ̄21 ≤ E
(
(fσH(x)− fρ(x))2(2y − fσH(x)− fρ(x))2

)
≤
(

12M2 + 3 sup
f∈H
‖f‖2∞ + 3‖fρ‖2∞

)∫
X

(fσH(x)− fρ(x))2dρX (x).

Recalling the fact that fρ ∈ H, as a consequence of Lemma 7, we obtain∫
X

(fσH(x)− fρ(x))2dρX (x) ≤
∫
X

(fH(x)− fρ(x))2dρX (x) +
2cH,ρ
σ2

=
2cH,ρ
σ2

.

Combining the above two estimates, we obtain the following upper bound for the variance
of ξ̄1:

var(ξ̄1) ≤ c′H,ρ,1/σ2 with c′H,ρ,1 = 2cH,ρ

(
12M2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
.

Applying the one-sided Bernstein’s inequality in Lemma 13 to the random variable ξ̄1
and with simple computations, we come to the conclusion that for any 0 < δ < 1, with
confidence 1− δ/2, there holds

S1(z) ≤ C ′H,ρ,1 log(2/δ)(σ−2 +m−1),

where C ′H,ρ,1 is a positive constant independent of m, σ or δ and given by C ′H,ρ,1 =
2 + c′H,ρ,1/2 + 2c′H,ρ,0/3. This completes the proof.

We now turn to bound the sample error term S2(z) when Y is bounded.

Proposition 17 Assume that the Complexity Assumption II with 0 < s < 2 holds, |y| ≤M
almost surely for some M > 0. Let fρ ∈ H and σ ≥ 1. For any f ∈ H and 0 < δ < 1, with
confidence 1− δ/2, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s ,

where C ′H,ρ,2 is a positive constant independent of m, σ or δ and will be given explicitly in
the proof.

Proof To prove the proposition, we apply Lemma 14 to the function set FH, which is
defined as

FH =
{
g
∣∣∣ g(z) = `σ(y, f(x))− `σ(y, fρ(x)) +

cH,ρ
σ2

, f ∈ H, z ∈ Z
}
.

According to the definition of FH, for any g ∈ FH, it can be explicitly expressed as

g(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

,
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with z ∈ Z and f ∈ H. Recalling that |y| ≤ M almost surely and σ ≥ 1, simple computa-
tions show that

‖g‖∞ ≤
(

2M + ‖fρ‖∞ + sup
f∈H
‖f‖∞

)
sup
f∈H
‖f − fρ‖∞ + cH,ρ.

Applying the mean value theorem again as done in the proof of Proposition 10, we get(
−σ2 exp

{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

})2
≤
(
(y − f(x))2 − (y − fρ(x))2

)2
≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
(f(x)− fρ(x))2,

where the last inequality is again due to the boundedness of Y . This in connection with
Lemma 7 tells us that

Eg2 =

∫
Z

(
−σ2 exp

{
−(y − f(x))2

σ2

}
+ σ2 exp

{
−(y − fρ(x))2

σ2

})2

dρ

+
2cH,ρ
σ2

∫
Z

(
−σ2 exp

{
−(y − f(x))2

σ2

}
+ σ2 exp

{
−(y − fρ(x))2

σ2

})
dρ+

c2H,ρ
σ4

≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
(E(f)− E(fρ)) +

2cH,ρ
σ2

(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
≤
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2 (
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
+

2cH,ρ
σ2

(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
=

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+

2cH,ρ
σ2

)(
Eσ(f)− Eσ(fρ) +

cH,ρ
σ2

)
=

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+

2cH,ρ
σ2

)
Eg

≤

((
2M + sup

f∈H
‖f‖∞ + ‖fρ‖∞

)2
+ 2cH,ρ

)
Eg,

where the last inequality is due to the assumption that σ ≥ 1.
For any g1, g2 ∈ FH, there exist f1, f2 ∈ H such that

g1(z) = −σ2 exp
{
−(y − f1(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

and

g2(z) = −σ2 exp
{
−(y − f2(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
+
cH,ρ
σ2

.

Applying the mean value theorem and noticing the boundedness of Y , we have

|g1(z)− g2(z)| ≤ 2
(
M + sup

f∈H
‖f‖∞

)
‖f1 − f2‖∞, z ∈ Z.
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Under the Complexity Assumption II with 0 < s < 2, the following relation between the
`2-empirical covering numbers of FH and H holds

logN2(FH, η) ≤ logN2

(
H, η

/(
2M + 2 sup

f∈H
‖f‖∞

))
≤ cII,s

((
2M + 2 sup

f∈H
‖f‖∞

)/
η
)s
.

For notation simplification, we denote

c′H,ρ,2 =
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)2
+ 2cH,ρ,

B′H,ρ =
(

2M + sup
f∈H
‖f‖∞ + ‖fρ‖∞

)
sup
f∈H
‖f − fρ‖∞ + cH,ρ,

aH,s = cII,s

(
2M + 2 sup

f∈H
‖f‖∞

)s
.

Applying Lemma 14 to the function set FH, with simple computations, we come to the
conclusion that when σ ≥ 1, for any 0 < δ < 1 with confidence 1− δ/2, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s ,

where C ′H,ρ,2 is a positive constant independent of m, σ or δ and given by

C ′H,ρ,2 = 18B′H,ρ + 2c′H,ρ,2 + 2asa
2/(2+s)
H,s (c′H,ρ,2 +B′H,ρ)

(2−s)/(2+s),

and as is a positive constant depending only on s. This completes the proof of Proposition
17.

Proof [Proof of Theorem 5] Following from the estimate in inequality (11), and recalling
that fρ ∈ H, we have

‖fz − fρ‖2L2ρX
≤ S1(z) + S2(z) + 2cH,ρ/σ

2. (18)

As a consequence of Proposition 17, we know that when σ ≥ 1, for any 0 < δ < 1 with
confidence 1− δ/2, there holds

{Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)} ≤
1

2
{Eσ(fz)− Eσ(fρ)}+ C ′H,ρ,2 log(2/δ)m−

2
2+s .

The above inequality together with Lemma 7 yields

S2(z) = {Eσ(fz)− Eσ(fρ)} − {Eσz (fz)− Eσz (fρ)}

≤ 1

2
‖fz − fρ‖2L2ρX +

cH,ρ
2σ2

+ C ′H,ρ,2 log(2/δ)m−
2

2+s .

This in connection with the upper bound for the sample error term S1(z) in Proposition
16 and inequality (18), with the choice σ = m1/(2+s), yields that for any 0 < δ < 1, with
confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ C
′
H,ρ log(2/δ)m−

2
2+s ,

where C ′H,ρ = 2C ′H,ρ,1 + C ′H,ρ,2 + 3cH,ρ. This completes the proof of Theorem 5.
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4.3.6 Proof of Theorem 6

To prove Theorem 6, we first prove the following conclusion.

Lemma 18 Assume that the Noise Assumption holds, and fρ ∈ H. Let σ be fixed and
satisfy

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any f ∈ H, there exists a positive constant cH,σ,ρ ∈ (0, 1), such that

cH,σ,ρ {E(f)− E(fρ)} ≤ Eσ(f)− Eσ(fρ).

Proof Under the Noise Assumption, when σ > σH,ρ, Theorem 8 shows that for any f ∈ H,

Eσ(f)− Eσ(fσH) = Eσ(f)− Eσ(fH) = Eσ(f)− Eσ(fρ).

For any x ∈ X , again we denote Fx(u) = 1−
∫M0

−M0
exp

{
− (t−u)2

σ2

}
pε|X=x(t)dt, then

Eσ(f)− Eσ(fρ) = σ2
∫
X

(Fx(f(x)− fρ(x))− Fx(0)) dρX (x)

= σ2
∫
X

{
F ′x(0)(f(x)− fρ(x)) +

F ′′x (ξx)

2
(f(x)− fρ(x))2

}
dρX (x)

=

∫
X

σ2F ′′x (ξx)

2
(f(x)− fρ(x))2dρX (x),

where the last equality follows from the fact that F ′x(0) = 0 and ξx falls between 0 and
f(x)− fρ(x) for any x ∈ X . It is easy to see that when σ is fixed and σ > σH,ρ, we have

F ′′x (ξx) = 2

∫ M0

−M0

exp

{
−(t− ξx)2

σ2

}(
σ2 − 2(t− ξx)2

σ4

)
pε|X=x(t)dt

≥ (2σ2 − 2σ2H,ρ)/σ
4 exp(−σ2H,ρ/σ2), for any x ∈ X ,

where the last inequality is due to the following fact

|t− ξx| ≤
√

2σH,ρ/2, t ∈ [−M0,M0], x ∈ X .

As a result, we come to the conclusion that

Eσ(f)− Eσ(fρ) ≥ cH,σ,ρ {E(f)− E(fρ)} ,

where cH,σ,ρ = (σ2 − σ2H,ρ)/σ2 exp(−σ2H,ρ/σ2). Noticing that 0 < cH,σ,ρ < 1, we have verified
our assertion.

The proof of Theorem 6 is different from the proofs of Theorem 4 and Theorem 5. This
is because when σ is fixed, σ−1 does not tend to zero and consequently we cannot get
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meaningful convergence rates via the error decomposition in Proposition 9. However, from
Lemma 18, we know that

‖fz − fρ‖2L2ρX ≤ c
−1
H,σ,ρ {Eσ(fz)− Eσ(fρ)} = c−1H,σ,ρ (S1(z) + S2(z)) ,

where the definitions of S1(z) and S2(z) are inherited from Proposition 9.

We notice that under the condition that the Noise Assumption holds, and fρ ∈ H, when
σ is fixed and satisfies

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
,

Theorem 8 tells us that almost surely fσH = fρ. In this situation, almost surely we have
S1(z) = 0. Therefore, to prove Theorem 6, it suffices to bound the sample error term S2(z).
This can be done by applying Lemma 14 to the function set

FH =
{
g
∣∣ g(z) = `σ(y, f(x))− `σ(y, fρ(x)) : f ∈ H, z ∈ Z

}
.

Proposition 19 Assume that the Complexity Assumption II with 0 < s < 2 and the Noise
Assumption hold. Let fρ ∈ H, σ be fixed and satisfy

σ > σH,ρ =
√

2
(
M0 + ‖fρ‖∞ + sup

f∈H
‖f‖∞

)
.

For any f ∈ H and 0 < δ < 1, with confidence 1− δ, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−

2
2+s ,

where CH,σ,ρ,1 is a positive constant independent of m or δ and will be given explicitly in
the proof.

Proof For any g ∈ FH, we know from the definition of FH that g can be expressed as

g(z) = −σ2 exp
{
−(y − f(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
, z ∈ Z,

for some f ∈ H. Following from the proof of Proposition 10, we know that

‖g‖∞ ≤
√

2/eσ sup
f∈H
‖f − fρ‖∞ := BH,σ,ρ.

When the Noise Assumption holds, fρ ∈ H, and σ > σH,ρ, we have

Eg2 ≤ E
(
(f(x)− fρ(x))2(2y − f(x)− fρ(x))2

)
≤
∫
Y

(
12y2 + 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
dρ(y|x)

∫
X

(f(x)− fρ(x))2dρX (x)

≤ c−1H,σ,ρ
(

12

∫
Z
y2dρ+ 3 sup

f∈H
‖f‖2∞ + 3‖fρ‖2∞

)
Eg := cH,σ,ρ,1Eg,
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where the last inequality follows from Lemma 18. For any g1, g2 ∈ FH, there exist f1, f2 ∈ H
such that

g1(z) = −σ2 exp
{
−(y − f1(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
and

g2(z) = −σ2 exp
{
−(y − f2(x))2/σ2

}
+ σ2 exp

{
−(y − fρ(x))2/σ2

}
.

From the proof of Proposition 10, we know that |g1 − g2| ≤
√

2/eσ‖f1 − f2‖∞. This in
connection with the Complexity Assumption II yields

logN2(FH, η) ≤ logN2

(
H, η/(

√
2/eσ)

)
≤ cII,s

(√
2/eσ/η

)s
:= aσ,sη

−s.

Applying Lemma 14 to the function set FH, with simple computations, we see that for any
0 < δ < 1 with confidence 1− δ, there holds

{Eσ(f)− Eσ(fρ)} − {Eσz (f)− Eσz (fρ)} ≤
1

2
{Eσ(f)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−2/(2+s),

where CH,ρ,σ,1 is a positive constant independent of m or δ and given by

CH,ρ,σ,1 = 18BH,σ,ρ + 2cH,σ,ρ,1 + 2a′sa
2/(2+s)
σ,s (cH,σ,ρ,1 +BH,σ,ρ)

(2−s)/(2+s),

and a′s is a positive constant depending only on s. This completes the proof of Proposition
19.

Proof [Proof of Theorem 6] As a consequence of Proposition 19, we see that for any
0 < δ < 1, with confidence 1− δ, there holds

S2(z) ≤ 1

2
{Eσ(fz)− Eσ(fρ)}+ CH,σ,ρ,1 log(1/δ)m−2/(2+s).

Following from Lemma 18 and recalling that S1(z) = 0, we come to the conclusion that for
any 0 < δ < 1, with confidence 1− δ, there holds

‖fz − fρ‖2L2ρX ≤ c
−1
H,σ,ρ {Eσ(fz)− Eσ(fρ)} = c−1H,σ,ρS2(z) ≤ 2c−1H,σ,ρCH,σ,ρ,1 log(1/δ)m−2/(2+s).

By denoting CH,σ,ρ = 2c−1H,σ,ρCH,σ,ρ,1, we complete the proof of Theorem 6.

5. Towards the Role that σ Plays

We now move our attention to discuss the scale parameter σ in the `σ loss by making some
attempts to interpret the role that σ plays from a learning theory viewpoint.

The first observation on the parameter σ in the `σ loss is that it determines the ro-
bustness of the regression models. For linear regression models, this observation has been
quantitatively described in terms of the influence function and finite-sample breakdown
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point in Wang et al. (2013). For nonlinear regression models, similar observations on the
robustness have been also empirically reported. For instance, the robustness of the regres-
sion models induced by the `σ losses can be enhanced with a decreasing value of σ. In
fact, this is reasonable if we look at the `σ loss in which a smaller σ would limit the influ-
ence of the outliers in the response variable. In addition, in the learning theory literature,
the robustness property of kernel-based regression models has been studied by considering
the growth type of the loss function and investigating the existence and boundedness of
the corresponding influence function (see Christmann and Steinwart, 2007; Steinwart and
Christmann, 2008). From Chapter 2 in Steinwart and Christmann (2008), it is easy to check
that the `σ loss is of upper growth type 1 due to its Lipschitz continuity property and con-
sequently can be used to deal with unbounded Y . It would be also worthwhile to derive a
quantitative description on the robustness of the MCCR model (2) in terms of the influence
function as done in Christmann and Steinwart (2007) and Christmann and Messem (2008)
for convex regression models. However, we remark that due to the non-convexity of the `σ
loss, the deduction of the influence function of the MCCR model in H (which is possibly
infinite dimensional) can be much involved and is worthy for further study.

On the other hand, we realize that in the robustness literature, the scale parameter not
only controls the robustness property of the regression model associated with the `σ loss but
also specifies its efficiency and plays a trade-off role. Considering the nonparametric setting
in our study and given that our primary concern is the convergence rates of the MCCR
model (2), we restrict ourselves to discussions of the influence of the scale parameter σ on the
convergence rates. To this end, we recall the following relation from the error decomposition
in Proposition 9:

‖fz − fρ‖2L2ρX
≤
{
Eσ(fz)− Eσ(fσH)

}
+ ‖fH − fρ‖2L2ρX

+AH,σ,ρ.

On the right-hand side of the above inequality, the first term is the excess risk of the
empirical estimator modeled by the MCCR model, the convergence of which can be ensured
by controlling the complexity of the hypothesis space H and confining the tail behavior of
the response variable. The second term ‖fH − fρ‖2L2ρX

represents the approximation error

and is independent of the scale parameter σ. The influence of the scale parameter σ on the
convergence rates can be revealed from the bias term AH,σ,ρ. According to Proposition 9,
we know that AH,σ,ρ = 2cH,ρ/σ

2. Therefore, a decreasing value of σ will lead to increasing
bias and consequently yields slower convergence rates.

From the above discussions, we can see that the parameter σ in the `σ loss balances
the robustness of the MCCR model (2) and its convergence rates. We will continue our
discussion on the role that σ plays by trying to extend our preceding analysis for the `σ loss
to other robust regression loss functions in the next section.

6. Generalization to Other Robust Loss Functions

In the preceding sections, motivated by the information-theoretic interpretation of the max-
imum correntropy criterion and its empirical successes in real-world applications, we gener-
alize the idea of the maximum correntropy criterion in regression with the `σ loss. We then
present a theoretical understanding towards the maximum correntropy criterion in regres-
sion by conducting a learning theory analysis for ‖fz − fρ‖2L2ρX

. We conclude that one can
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rely on the `σ loss to solve regression problems with non-Gaussian as well as Gaussian noise.
However, one may argue that from a regression viewpoint, the `σ loss is merely a special
case of robust loss functions arise in robust statistics. In view of this, in this section we
try to generalize our previous analysis to other robust loss functions and see what happens
when a robust loss function is applied into the learning for regression scenarios.

The robust loss functions refer to those used to obtain robust M-estimators in linear
regression models. As mentioned earlier, the MCCR model can be viewed as a nonpara-
metric M-estimator. Therefore, we first give a glimpse of the robust M-estimation methods
in linear regression models to distinguish them from the robust nonparametric M-estimator
we investigate in this paper. In linear regression models, it is assumed that the observations
z are drawn i.i.d from Z = X × Y with X = Rd and Y = R. In this setting, the regression
function f?(x) := xT θ?, where θ? ∈ Θ := Rd is unknown and one of the main tasks in
linear regression problem is to estimate the regression parameter θ?. A common approach
to obtaining a robust estimator θ̂ for θ? is to solve the following optimization problem

θ̂ = arg min
θ∈Rd

m∑
i=1

φ

(
yi − xTi θ

σ

)
, (19)

where σ > 0 is the scale parameter and φ is a robust loss function that downweights large
residual errors. In fact, by using the above robust loss function φ, concerning the nonlinear
regression model (1), one can also propose the following robust nonparametric ERM-based
regression scheme

f̂z = arg min
f∈H

m∑
i=1

φ

(
yi − f(xi)

σ

)
. (20)

Notice that (19) aims at estimating a vector in Rd while (20) is proposed to estimate
a function in a function space H that can have an infinite dimension. This gives the
main difference between the two models. Denoting φσ(t) := φ(t/σ), besides the `σ loss
investigated in this paper, several frequently employed robust loss functions include:

• Huber’s loss: φσ(t) = t2I{|t|≤σ} + (2σ|t| − σ2)I{|t|>σ};

• Cauchy loss: φσ(t) = σ2 log
(
1 + t2/σ2

)
;

• Tukey’s biweight loss: φσ(t) = (σ2/6)(1− (1− (t/σ)2)3)I{|t|≤σ} + (σ2/6)I{|t|>σ}.

In the above loss functions, IS is an indicator function which takes the value 1 if S is true
and gets the value 0 otherwise.

Recall that our previous analysis on the `σ loss and the MCCR model (2) relies heavily
on Lemma 7. From the proof of Lemma 7, we know that similar analysis can be also applied
to other robust loss functions that are sufficiently smooth and satisfy certain conditions,
e.g., the Cauchy loss given above. On the other hand, although our analysis cannot cover
all the robust loss functions, following from our previous analyzing process, we can still
get a general view on the robust loss functions and see what happens when a robust loss
function is employed from a learning theory viewpoint.
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H

f lsz

fH

fρ

III

Figure 2: The statistical learning approach to bounding the L2ρX -distance between fz and
fρ for the ERM scheme (6), which is induced by the least squares loss.

H

fz

fHfσH

fρ

III
III

Figure 3: The statistical learning approach to bounding the L2ρX -distance between fz and
fρ for the ERM scheme induced by a robust loss function φσ.
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To illustrate this, we first recall that to analyze the convergence of an ERM scheme
associated with the least squares loss (e.g., the unconstrained regression model (6)), a
typical statistical learning approach is proceeded as follows: instead of directly measuring
the L2ρX -distance between f lsz and fρ, one first introduces the projection of fρ in H, i.e., fH.
With the help of fH, one can decompose the distance into sample error and approximation
error as follows:

‖f lsz − fρ‖2L2ρX ≤ ‖f
ls
z − fH‖2L2ρX + ‖fH − fρ‖2L2ρX .

The idea of the above decomposition is depicted in Figure 2, where I represents the sample
error ‖f lsz − fH‖2L2ρX

while II gives the approximation error ‖fH − fρ‖2L2ρX
.

However, situations will be quite different if a robust regression loss φσ is employed. To
explain this, we redefine fσH as the target function of the regression model induced by a
general robust loss φσ and fz as the corresponding empirical target function, definitions of
which are given as follows

fσH = arg min
f∈H

∫
Z
φσ(y − f(x))dρ and fz = arg min

f∈H

1

m

m∑
i=1

φσ(yi − f(xi)).

The analysis in our study indicates that to analyze the convergence of a regression model
induced by a robust loss function φσ, one may proceed via the following decomposition

‖fz − fρ‖2L2ρX ≤ ‖fz − f
σ
H‖2L2ρX + ‖fσH − fH‖2L2ρX + ‖fH − fρ‖2L2ρX .

Figure 3 gives an intuitive description on the above decomposition. Similarly, in Figure 3, I
represents the sample error term ‖fz − fσH‖2L2ρX

, II stands for the approximation error term

‖fH−fρ‖2L2ρX
while III measures the L2ρX -distance between fσH and fH. Notice that the bias

term III is caused by the introduction of the scale parameter σ that delivers the robustness
to the model. Due to the non-robustness of LSR and the fact that fH is the target function
of LSR, again we conclude that the smaller of the L2ρX -distance between fσH and fH is, the
less robustness the regression model associated with the φσ loss possesses.

Taking the `σ loss for example, we know from our previous analysis that under very
specific conditions the two points, fσH and fH, meet and consequently the bias term III
disappears. Technically speaking, a nice point of the `σ loss lies in that it is sufficiently
smooth which makes it possible to bound the L2ρX -distance between fσH and fH explicitly.
For instance, when the Moment Assumption holds and fρ ∈ H, as a consequence of Lemma
7, we see that

‖fσH − fH‖2L2ρX ≤ cH,ρ/σ
2.

As mentioned in the previous section, the above estimate reveals that when the value of σ
decreases, the upper bound of the bias term III increases.

Based on the above discussions, we conclude that when a robust loss function is employed
in nonparametric regression problems, the enhancement of robustness is at the sacrifice of
the convergence rate of the model and what one needs to do is to find a good compromise.
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7. Numerical Experiments

Studies in this paper are motivated by empirical success of the MCCR model. However, for
the sake of completeness, in this section, we carry out numerical experiments on synthetic
and real data sets to show the effectiveness of the MCCR model (2).

7.1 Experimental Setup

Notice that the MCCR model (2) is a constrained optimization model since H is assumed
to be a compact subset of C(X ). As mentioned previously, a typical choice of H is a
bounded subset of a certain reproducing kernel Hilbert space HK induced by some Mercer
kernel K. However, to determine the diameter of this bounded subset in applications, prior
information is usually required. In our experiments, instead of evaluating the optimization
model (2), we focus on its unconstrained version

fz = arg min
f∈HK

1

m

m∑
i=1

`σ(yi, f(xi)) + λ‖f‖2K, (21)

where λ is a positive regularization parameter.
The representer theorem ensures that we can search within the function set HK,z for

the minimizer of the optimization model (21), where

HK,z =

{
m∑
i=1

αiK(x, xi) + b, b ∈ R, αi ∈ R, i = 1, · · · ,m

}
,

with b being an offset. In our experiments, we use the Gaussian kernel

Kh(xi, xj) = exp
(
−‖xi − xj‖2/h2

)
,

with the parameter h to be determined. To show the effectiveness of the MCCR model, we
compare the empirical performance of (21) with other robust regression schemes, including
robust regression models based on the Huber’s loss and the least absolute deviation loss.
These robust regression schemes are obtained by replacing the `σ loss in (21) with the
Huber’s loss and the least absolute deviation loss, respectively. Explicit definitions of the
two loss functions are given as follows:

φHuber
a (u, v) =

{
(u− v)2, if |u− v| ≤ a
2a|u− v|, if |u− v| > a

and φLAD(u, v) = |u− v|, u, v ∈ R.

For notation simplifications, we denote the two robust regression models as Huber and LAD,
respectively.

To solve (21), we apply the iteratively reweighted least squares method (IRLS). The
basic procedure is to iteratively solve the weighted least squares problem and give weights
according to the current solution. Due to the non-convexity of the MCCR model, solving
(21) by using IRLS only guarantees a stationary point. In our experiment, we use the result
of the least squares method as the starting point.

In our experiment, noise added to the toy examples is given as follows

noise := τ1ε1 + τ2ε
p
2, (22)
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where ε1 follows the standard Gaussian distribution and εp2 is an impulse noise (outliers)
defined as

Prob(εp2 = t) =


1− p, t = 0,
p/2, t = 1,
p/2, t = −1.

τ1 and τ2 are introduced to set the variance of the Gaussian noise and the magnitude
of the impulsive noise. In our experiment, we always set p = 0.1, i.e., 10% samples are
contaminated by impulsive noise. In addition, in some of our experiments on synthetic data
sets, we will also consider the noise ε1 that is drawn from the Student’s t-distribution with
3 degrees of freedom, and Cauchy distribution.

7.2 Example of the Noisy Sinc Function

We first choose the sinc function as the regression function. The one-dimension sinc function
is given as

f(x) = sin(πx)/(πx), x ∈ [−4, 4], (23)

which is frequently adopted to illustrate the regression models (see Vapnik, 1998; Suykens
et al., 2002a,b; Schölkopf et al., 2000; Smola and Schölkopf, 2004).

In our experiment, we first draw a training set of size 100 from the sinc function (23)
that are corrupted by the Gaussian noise. We then draw another training set with the same
size corrupted by the Gaussian noise and the outliers. With each training set, the fitting
results of the sinc function are plotted in Figure 4, in which the red dot-dashed curve is the
one reconstructed by MCCR, the blue dashed curve represents the one from Huber while
LAD gives the green dotted curve.

From Figure 4, one can see that all of the three models can fit the curve of the sinc
function well when the data is only contaminated by the Gaussian noise. When the train-
ing data are also corrupted by outliers, all of the three robust regression models can still
successfully reconstruct the curve. However, we can see that MCCR gives the best fitting
results, especially at positions where data are corrupted by outliers.

7.3 Example of the Noisy Friedman’s Benchmark Functions

Our second numerical experiment on toy examples considers multiple dimensional regression
problems. We now use the Friedman’s benchmark functions as our test functions, which were
introduced in Friedman (1991) and have become widely employed models when studying
regression problems (see Tipping, 2001; Brown et al., 2005; Debruyne et al., 2010).

The Friedman’s benchmark functions are listed as follows:

• f1(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5;

• f2(x) =

√
(x1)2 + (x2x3 − 1/(x2x4))2;

• f3(x) = arctan
(
1/x1

(
x2x3 − 1/(x2x4)

))
.
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Figure 4: Sinc function (black solid curves) and the regression results (MCCR: red dot-
dashed curve; Huber: blue dashed curve; LAD: green dotted curve). (top) The
training data (crosses) are corrupted by Gaussian noise; (bottom) Some observed
data are outliers (marked by squares).
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Figure 5: Box-plots of the residuals of Friedman’s benchmark functions for the case of Gaus-
sian noise. Each box-plot features a lower quartile (25 percentile) line, a median
(50 percentile) line and an upper quartile (75 percentile) line for the residuals on
test data.
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For f1, x = (x1, . . . , x10) where each xj , j = 1, . . . , 10, is uniformly distributed in [0, 1] and
x6, . . . , x10 are noisy variables. For f2 and f3, x = (x1, x2, x3, x4) and each is uniformly
distributed in the following intervals: x1 ∈ [0, 100], x2 ∈ [40π, 560π], x3 ∈ [0, 1] and x4 ∈
[1, 11].

For each function, 1000 observations are randomly taken from corresponding domain for
training and cross-validating. Another independent 1000 observations are also randomly
drawn as the test set. Noise and outliers are then added according to (22). For f1, we set
τ1 = 1. For f2 and f3, τ1 is set such that the ratio of the signal power to the power of ε1 is 3.
In the outlier-free cases, we set τ2 = 0. To observe the performance for the three models in
the presence of outliers in the training data sets, we set τ2 = maxx∈D f(x)−minx∈D f(x),
where D is the domain of each benchmark function. For each regression model, the width
of the Gaussian kernel h, the regularization parameter λ and the scale parameter in the loss
function (no scale parameter for the LAD loss) are all tuned via a 10-fold cross-validation
under the mean squared error criterion. The residuals {yi − f(xi)}1000i=1 are recorded. For
the case of Gaussian noise, we boxplot all the residuals in Figure 5. Each box-plot features
a lower quartile (25 percentile) line, a median (50 percentile) line and an upper quartile (75
percentile) line.

In Table 1, we also report the relative sum of squared error (RSSE) on the test data set
T , i.e.,

RSSE(f̂) =
∑
x∈T

(
f(x)− f̂(x)

)2/∑
x∈T

(
f(x)− f̄T

)2
,

where f̄T is the mean value of f(x) on T .

test function noise MCCR Huber LAD

f1 Gaussian noise, no outliers 0.048 0.049 0.103
Gaussian noise, outliers 0.062 0.073 0.157

f2 Gaussian noise, no outliers 0.020 0.021 0.136
Gaussian noise, outliers 0.023 0.032 0.156

f3 Gaussian noise, no outliers 0.091 0.117 0.136
Gaussian noise, outliers 0.062 0.073 0.157

f1 Cauchy noise, no outliers 0.042 0.042 0.116
Cauchy noise, outliers 0.045 0.049 0.089

f2 Cauchy noise, no outliers 0.005 0.005 0.025
Cauchy noise, outliers 0.006 0.006 0.021

f3 Cauchy noise, no outliers 0.180 0.195 0.177
Cauchy noise, outliers 0.219 0.143 0.154

f1 Student noise, no outliers 0.040 0.040 0.101
Student noise, outliers 0.046 0.075 0.092

f2 Student noise, no outliers 0.017 0.017 0.129
Student noise, outliers 0.023 0.024 0.123

f3 Student noise, no outliers 0.423 0.429 0.430
Student noise, outliers 0.471 0.544 0.434

Table 1: The relative sum of squared error on the test data
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7.4 Evaluation on Real Data Sets

We also evaluate the three robust regression models on four real data sets downloaded from
UCI repository of machine learning databases (see Bache and Lichman, 2013): Concrete
Compressive Strength Data Set, Housing Data Set, Yacht Hydrodynamics Data Set and
Airfoil Self-Noise Data Set.

For each data set, two third of the instances are used for training and the remaining are
used for test. We repeat our experiment as done for the Friedman’s benchmark functions
for ten times. The residuals for the three robust regression models are displayed by box-
plots in Figure 6, the accuracy of which are measured by RSSE. Experimental results on
the RSSEs and the details of training data, including the size of features n and the size of
instances m, are reported in Table 2.

data sets n m MCCR Huber LAD

concrete 9 686 0.061 0.061 0.062
house 14 338 0.128 0.126 0.175
yacht-hydrodynamics 7 205 0.022 0.024 0.159
airfoil 6 1000 0.184 0.195 0.238

Table 2: The relative sum of squared error on real data

In the above numerical evaluations on toy examples and real data sets, our experiments
show that when the data is only contaminated by Gaussian noise, a large sigma value in the
MCCR model and a large a value in the regression model based on the Huber’s criterion will
be selected via cross-validation. However, for other noise and in the presence and absence of
outliers, smaller values of the scale parameters in the two regression models will be selected.
These coincide with our understandings on the robust regression models.

From the above experimental results, we can see the effectiveness of MCCR especially
for the cases in the presence of impulsive noise.

8. Concluding Remarks

In this paper, we presented a statistical learning interpretation of the regression model
associated with the correntropy induced regression loss. We investigated its connections
with the least squares regression. We found that the correntropy induced loss could help for
regression with non-Gaussian noise. Meanwhile, comparable performance could be obtained
by applying this regression model when the noise is Gaussian. Convergence rates of the
proposed model under various circumstances were derived explicitly. We showed that the
scale parameter in the loss function balanced the convergence rates and the robustness of
the model. We also made some efforts to extend our analysis to other robust loss functions
and gave a general view on analyzing regression models induced by general robust loss
functions. It is expected that our observations can shed some light towards future real-life
applications.
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Figure 6: Box-plots of the residuals on four real data sets. Each box-plot features a lower
quartile (25 percentile) line, a median (50 percentile) line and an upper quartile
(75 percentile) line for the residuals on test data. (top left) concrete; (top right)
Boston house; (bottom left) yacht hydrodynamics; (bottom right) airfoil.
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