
Journal of Machine Learning Research 16 (2015) 3035-3078 Submitted 8/14; Revised 3/15; Published 12/15

Eigenwords: Spectral Word Embeddings

Paramveer S. Dhillon∗ dhillon@mit.edu
Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02142, USA

Dean P. Foster foster@wharton.upenn.edu
Department of Statistics
The Wharton School, University of Pennsylvania
Philadelphia, PA 19104, USA

Lyle H. Ungar ungar@cis.upenn.edu
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104, USA

Editor: Ivan Titov

Abstract
Spectral learning algorithms have recently become popular in data-rich domains, driven
in part by recent advances in large scale randomized SVD, and in spectral estimation
of Hidden Markov Models. Extensions of these methods lead to statistical estimation
algorithms which are not only fast, scalable, and useful on real data sets, but are also
provably correct. Following this line of research, we propose four fast and scalable spectral
algorithms for learning word embeddings – low dimensional real vectors (called Eigenwords)
that capture the “meaning” of words from their context. All the proposed algorithms
harness the multi-view nature of text data i.e. the left and right context of each word, are
fast to train and have strong theoretical properties. Some of the variants also have lower
sample complexity and hence higher statistical power for rare words. We provide theory
which establishes relationships between these algorithms and optimality criteria for the
estimates they provide. We also perform thorough qualitative and quantitative evaluation
of Eigenwords showing that simple linear approaches give performance comparable to or
superior than the state-of-the-art non-linear deep learning based methods.
Keywords: spectral learning, CCA, word embeddings, NLP

1. Introduction

In recent years there has been immense interest in learning embeddings for words from
large amounts of raw text1. Word embeddings map each word in text to a ‘k’ dimensional
(∼ 50) real valued vector. They are typically learned in a totally unsupervised manner by
exploiting the co-occurrence structure of words in unlabeled text. Ideally these embeddings
should capture a rich variety of information about that word, including topic, part of speech,

∗. This work was done when PSD was a graduate student at the University of Pennsylvania.
1. This paper is based in part on work in (Dhillon et al., 2011),(Dhillon et al., 2012b).

©2015 Paramveer S. Dhillon, Dean P. Foster and Lyle H. Ungar.

Dhillon, Foster and Ungar

word features such as animacy, sentiment, gender, whether the numbers are years or small
numbers, and the direction of sentiment (happy vs. sad).

The importance of word embeddings has been amplified by the fact that over the past
decade there has been increased interest in using unlabeled data to supplement the la-
beled data in semi-supervised learning. Semi-supervised learning reduces data sparsity and
gives improved generalization accuracies in high dimensional domains like NLP. Approaches
like (Ando and Zhang, 2005; Suzuki and Isozaki, 2008) have been empirically very successful,
achieving excellent accuracies on a variety of NLP tasks. However, it is often difficult to
adapt these approaches to use in conjunction with an existing supervised NLP system as
they enforce a particular choice of model.

An increasingly popular alternative is to learn representational embeddings for words
from a large collection of unlabeled data, either using a generative model or an artificial
neural network, and to use these embeddings to augment the feature set of a supervised
learner, thereby improving the performance of a state-of-the-art NLP system such as a
sentiment analyzer, parser or part of speech tagger.

Word embeddings have proven useful and have given state-of-the-art performance on
many natural language processing tasks e.g. syntactic parsing (Täckström et al., 2012;
Parikh et al., 2014), POS Tagging (Dhillon et al., 2012b; Huang et al., 2013), dependency
parsing (Bansal et al., 2014; Koo et al., 2008; Dhillon et al., 2012a), sentiment analy-
sis (Dhillon et al., 2012b), chunking (Turian et al., 2010; Dhillon et al., 2011), Named Entity
Recognition (NER) (Turian et al., 2010; Dhillon et al., 2011), word analogies (Mikolov et al.,
2013a,b) and word similarity (Huang et al., 2012) to name a few.

These NLP systems use labeled data to learn a model, but there is often only a limited
amount of labeled text available for these tasks. (This is less of a problem for English, but
other languages often have very little labeled data.) Thus, word embeddings, which can be
learned from large amounts of unlabeled data, provide a highly discriminative set of features
which enable the supervised learner to perform better.

As mentioned earlier, embedding methods produce features in low dimensional spaces,
unlike the traditional approach of working in the original high dimensional vocabulary space
with only one dimension “on” at a given time.

Broadly speaking, embedding methods fall into two categories:

1. Clustering based word embeddings: Clustering methods, often hierarchical, are used
to group distributionally similar words based on their contexts. The two dominant
approaches are Brown Clustering (Brown et al., 1992) and (Pereira et al., 1993). As
recently shown, HMMs can also be used to induce a multinomial distribution over
possible clusters (Huang and Yates, 2009).

2. Dense embeddings: These embeddings are dense, low dimensional and real-valued.
Each dimension of these embeddings captures latent information about a combination
of syntactic and semantic word properties. They can either be induced using neural
networks like C&W embeddings (Collobert and Weston, 2008), Hierarchical log-linear
(HLBL) embeddings (Mnih and Hinton, 2007), word2vec embeddings (Mikolov et al.,
2013a,b) or by eigen-decomposition of the word co-occurrence matrix, e.g. Latent
Semantic Analysis/Latent Semantic Indexing (LSA/LSI) (Dumais et al., 1988).

3036

Eigenwords: Spectral Word Embeddings

The most classic and successful algorithm for learning word embeddings is Latent Se-
mantic Analysis (LSA) (Landauer et al., 2008), which works by performing SVD on the
word by document matrix.

Unfortunately, the state-of-the-art embedding methods suffer from a number of short-
comings: 1). They are slow to train (especially, the Deep Learning based approaches (Col-
lobert and Weston, 2008; Mnih and Hinton, 2007). Recently, (Mikolov et al., 2013a,b) have
proposed neural network based embeddings which avoid using the hidden layers which are
typical in Deep Learning. This, coupled with good engineering allows their embeddings to
be trained in minutes. 2). Are sensitive to the scaling of the embeddings (especially `2
based approaches like LSA/PCA). 3). Learn a single embedding for a given word type;
i.e. all the occurrences of the word “bank” will have the same embedding, irrespective of
whether the context of the word suggests it means “a financial institution” or “a river bank.”
Recently, (Huang et al., 2012) have proposed context specific word embeddings, but their
Deep Learning based approach is slow and can not scale to large vocabularies.

In this paper we provide spectral algorithms (based on eigen-decomposition) for learning
word embeddings, as they have been shown to be fast and scalable for learning from large
amounts of unlabeled data (Turney and Pantel, 2010), have a strong theoretical grounding,
and are guaranteed to converge to globally optimal solutions (Hsu et al., 2009). Particularly,
we are interested in Canonical Correlation Analysis (CCA) (Hotelling, 1935) based methods
since:

1. Unlike PCA or LSA based methods, they are scale invariant and

2. Unlike LSA, they can capture multi-view information. In text applications the left
and right contexts of the words provide a natural split into two views which is totally
ignored by LSA as it throws the entire context into a bag of words while constructing
the term-document matrix.

We propose a variety of dense embeddings; they learn real-valued word embeddings by
performing Canonical Correlation Analysis (CCA) (Hotelling, 1935) between the past and
future views of the data. All our embeddings have a number of common characteristics and
address the shortcomings of the current state-of-the-art embeddings. In particular, they are:

1. Fast, scalable and scale invariant.

2. Provide better sample complexity2 for rare words.

3. Can induce context-specific embeddings i.e. different embeddings for “bank” based on
whether it means “a financial institution” or “a river bank.”

4. Have strong theoretical foundations.

Most importantly, in this paper we show that simple linear methods based on eigen-
decomposition of the context matrices at the simplest level give accuracies comparable to or
better than state-of-the-art highly non-linear deep learning based approaches like (Collobert
and Weston, 2008; Mnih and Hinton, 2007; Mikolov et al., 2013a,b).

2. In the sense that relative statistical efficiency is better.

3037

Dhillon, Foster and Ungar

The remainder of the paper is organized as follows. In the next section we give a brief
overview of CCA, which forms the core of our method. The following section describes our
four proposed algorithms. After a brief description of context-specific embeddings and of
the efficient SVD method we use, we present a set of systematic studies. These studies eval-
uate our CCA variants and alternatives including those derived from deep neural networks,
including C&W, HLB, SENNA, and word2vec on problems in POS tagging, word similar-
ity, generalized sentiment classification, NER, cross-lingual WSD and semantic & syntactic
analogies.

2. Brief Review: Canonical Correlation Analysis (CCA)

CCA (Hotelling, 1935) is the analog to Principal Component Analysis (PCA) for pairs of
matrices. PCA computes the directions of maximum covariance between elements in a
single matrix, whereas CCA computes the directions of maximal correlation between a pair
of matrices. Like PCA, CCA can be cast as an eigenvalue problem on a covariance matrix,
but can also be interpreted as deriving from a generative mixture model (Bach and Jordan,
2005). See (Hardoon et al., 2004) for a review of CCA with applications to machine learning.

More specifically, given n i.i.d samples from two sets of multivariate data
Dz = {z1, . . . , zn} ∈ Rm1 and Dw = {w1, . . . , wn} ∈ Rm2 where pairs (z1, w1) have
correspondence and so on, CCA tries to find a pair of linear transformations φz ∈ Rm1×k

and φw ∈ Rm2×k, (where k ≤ m1 ≤ m2) such that the correlation between the projection of
z onto φz and w onto φw is maximized. This can be expressed as the following optimization
problem:

max
φz ,φw

φ>z Czwφw√
φ>z Czzφz

√
φ>wCwwφw

,

where Czw (=
∑n

i=1(zi − µz)
>(wi − µw)), Cww (=

∑n
i=1(wi − µw)>(wi − µw)), and Czz

(=
∑n

i=1(zi − µz)>(zi − µz)), are the sample covariance matrices and µ(·) are the sample
means.

The above optimization problem can be solved via simple eigendecomposition (e.g. using
eig() function in MATLAB or R). The left and right canonical correlates (φz, φw) are the
‘k’ principal eigenvectors corresponding to the λ1 ≥, . . . ,≥ λk eigenvalues of the following
equations:

C−1zz CzwC−1wwCwzφz = λφz,

C−1wwCwzC
−1
zz Czwφw = λφw.

There is an equivalent formulation of CCA which allows us to compute the solution via
SVD of Czz

−1/2CzwCww
−1/2. (See the appendix for proof.)

Czz
−1/2CzwCww

−1/2 = φzΛφ
>
w , (1)

where (φz,φw) are the left and right singular vectors and Λ is the diagonal matrix of singular
values. Finally, the CCA projections are gotten by “de-whitening”3 as φz

proj = C
−1/2
zz φz

and φw
proj = C

−1/2
ww φw.

3. One way to think about CCA is as “whitening” the covariance matrix. Whitening is a decorrelation
transformation that transforms a set of random variables with an arbitrary covariance matrix into a set

3038

Eigenwords: Spectral Word Embeddings

For most of the embeddings proposed in this paper, the SVD formulation (Equation 1)
is preferred since it requires fewer multiplications of large sparse matrices which is an ex-
pensive operation. Hence, we define the operation (φz

proj ,φw
proj) ≡ CCA(Z, W), where

Z (∈ Rn×m1) and W (∈ Rn×m2) are the matrices constructed from the data Dz and Dw
respectively.

2.1 Suitability of CCA for Learning Word Embeddings

Recently, (Foster et al., 2008) showed that CCA can exploit multi-view nature of the data
and provide sufficient conditions for CCA to achieve dimensionality reduction without losing
predictive power. They assume that the data was generated by the model shown in Figure 1.
The two assumptions that they make are that 1) Each of the two views are independent
conditional on a k-dimensional hidden state ~ and that 2) The two views provide a redundant
estimate of the hidden state ~.

These two assumptions are generalization of the assumptions made by co-training (Blum
and Mitchell, 1998) (Figure 2), as co-training conditions on the observed labels y and not
on a more flexible representation i.e. a hidden state ~.

Figure 1: Multi-View Assumption. Grey color indicates that the state is hidden.

Figure 2: Co-training Assumption.

In text and Natural Language Processing (NLP) applications, its typical to assume a
Hidden Markov Model (HMM) as the data generating model (Jurafsky and Martin, 2000).
Its easy to see that a Hidden Markov Model (HMM) satisfies the multi-view assumption.
Hence, the left and right context of a given word provides two natural views and one could
use CCA to estimate the hidden state ~.

of new random variables whose covariance is the identity matrix i.e. they are uncorrelated. De-whitening,
on the other hand, transforms the set of random variables to have a covariance matrix that is not an
identity matrix.

3039

Dhillon, Foster and Ungar

Furthermore, as mentioned earlier, CCA is scale invariant and provides a natural scaling
(inverse or square root of the inverse of the auto-covariance matrix, depending on whether we
use Eigen-decomposition or SVD formation) for the observations. If we further use the SVD
formulation, then it also allows us to harness the recent advances in large scale randomized
SVD (Halko et al., 2011), which allows the embeddings learning algorithms to be fast and
scalable.

The invariance of CCA to linear data transformations allows proofs that keeping the
dominant singular vectors (those with largest singular values) will faithfully capture any
state information (Kakade and Foster, 2007). Also, CCA extends more naturally than LSA
to sequences of words4. Remember that LSA uses “bags of words,” which are good for
capturing topic information, but fail for problems like part of speech (POS) tagging which
need sequence information.

Finally, as we show in the next section the CCA formulation can be naturally extended
to a two step procedure that, while equivalent in the limit of infinite data, gives higher
accuracies for finite corpora and provides better sample complexity.

So, in summary we estimate a hidden state associated with words by computing the dom-
inant canonical correlations between target words and the words in their immediate context.
The main computation, finding the singular value decomposition of a scaled version of the
co-occurrence matrix of counts of words with their contexts, can be done highly efficiently.
Use of CCA also allows us to prove theorems about the optimality of our reconstruction of
the state.

In the next section we show how to efficiently compute a vector that characterizes each
word type by using the left singular values of the above CCA to map from the word space
(size v) to the state space (size k). We call this mapping the eigenword dictionary for
words, as it associates with every word a vector that captures that word’s syntactic and
semantic attributes. As will be made clear below, the eigenword dictionary is arbitrary up
to a rotation, but captures the information needed for any linear model to predict properties
of the words such as part of speech or word sense.

3. Problem Formulation

Our goal is to estimate a vector for each word type that captures the distributional properties
of that word in the form of a low dimensional representation of the correlation between that
word and the words in its immediate context.

More formally, assume a document (in practice a concatenation of a large number of
documents) consisting of n tokens {w1, w2, ..., wn}, each drawn from a vocabulary of v
words. Define the left and right contexts of each token wi as the h words to the left or right
of that token. The context sits in a very high dimensional space, since for a vocabulary
of size v, each of the 2h words in the combined context requires an indicator function of
dimension v. The tokens themselves sit in a v dimensional space of words which we want to
project down to a k dimensional state space. We call the mapping from word types to their
latent vectors the eigenword dictionary.

4. It is important to note that it is possible to come up with PCA variants which take sequence information
into account.

3040

Eigenwords: Spectral Word Embeddings

For a set of documents containing n tokens, define L,R ∈ Rn×vh as the matrices speci-
fying the left and right contexts of the tokens, and W ∈ Rn×v as the matrix of the tokens
themselves. In W, we represent the presence of the jth word type in the ith position in a
document by setting matrix element wij = 1. L and R are similar, but have columns for
each word in each position in the context. (For example, in the sentence “I ate green apples
yesterday.”, for a context of size h = 2, the left context of “green” would be “I ate” and the
right context would be “apples yesterday” and the third row of W would have a “1” in the
column corresponding to the word “green.”)

Define the complete context matrix C as the concatenation [L R]. Thus, for a trigram
representation with vocabulary size v words, history size h = 1, C has 2v columns – one for
each possible word to the left of the target word and one for each possible word to the right
of the target word.

W>C then contains the counts of how often each word w occurs in each context c, the
matrix C>C gives the covariance of the contexts, and W>W, the word covariance matrix,
is a diagonal matrix with the counts of each word on the diagonal5.

All the matrices i.e. L, R, W and C, are instantiations of the underlying multivariate
random variables l, r, w and c of dimensions vh, vh, v and 2vh respectively. We define these
multivariate random variables as we will operate on them to prove the theoretical properties
of some of our algorithms.

We want to find a vector representation of each of the v word types such that words
that are distributionally similar (ones that have similar contexts) have similar state vectors.
We will do this using Canonical Correlation Analysis (CCA) (Hotelling, 1935; Hardoon
and Shawe-Taylor, 2008), by taking the CCA between the combined left and right contexts
C = [L R] and their associated tokens, W.

3.1 One Step CCA (OSCCA)

Using the above, we can define a “One step CCA” (OSCCA), procedure to estimate the
eigenword dictionary as follows:

(φw,φc) = CCA(W,C), (2)

where the v × k matrix φw contains the eigenword dictionary that characterizes each of the
v words in the vocabulary using a k dimensional vector. More generally, the “state” vectors
S for the n tokens can be estimated either from the context as Cφc or (trivially) from the
tokens themselves as Wφw. Its important to note that both these estimation procedures
give a redundant estimate of the same hidden “state.”

The left canonical correlates found by OSCCA give an optimal approximation to the
state of each word, where “optimal” means that it gives the linear model of a given size,
k that is best able to estimate labels that depend linearly on state, subject to only using
the word and not its context. The right canonical correlates similarly give optimal state
estimates given the context.

5. Due to the Zipfian nature of the word distribution, we will pretend that the means are all in fact zero
and refer to these matrices as covariance matrices, when in fact they are second moment matrices.

3041

Dhillon, Foster and Ungar

OSCCA, as defined in Equation 2 thus gives an efficient way to calculate the eigenword
dictionary φw for a set of v words given the context and associated word matrices from a
corpus.

3.1.1 Theoretical Properties

We now discuss how well the hidden state can be estimated from the target word. (A similar
result can be derived for estimating hidden state from the context.) The state estimated is
arbitrary up to any linear transformation, so all our comments address our ability to use
the state to estimate some label which depends linearly on the state.

Keeping the dominant singular vectors in φw and φc provides two different bases for the
estimated state. Each is optimal in its own way, as explained below.

The following Theorem 1 shows that the left canonical correlates give an optimal ap-
proximation to the state of each word (in the sense of being able to estimate an emission or
label y for each state), subject to only using the word and not its context.

Theorem 1 Let {wi, ci, yi} (∈ Rv × Rhv × R) for i = 1 . . . n be n observations of random
variables drawn i.i.d. from some distribution (pdf or pmf) D(w, c, y). We call the pair
(y1 . . . yn, β) a linear context problem if

1. yi is a linear function of the context (i.e. yi = α>ci).

2. β>wi is the best linear estimator of yi given wi, namely β minimizes
∑n

i=1(yi−β>wi)2
and

3. Var(yi) ≤ 1.

Let (φw, φc) ≡ CCA(W, C) where W and C are the matrices constructed from {w}ni=1 and
{c}ni=1 respectively. Also, let φw

i be the ith left singular vector. Then, for all ε > 0 there
exists a k such that for any linear context problem (y1 . . . yn, β), there exists a γ ∈ Rk such
that ŷi =

∑k
j=1 γjφ

ji
w is a good approximation to yi in the sense that

∑n
i=1(ŷi− β>wi)2 ≤ ε.

Please see Appendix A for the proof.

To understand the above theorem, note that we would have liked to have a linear regres-
sion predicting some label y from the original data w. However, the original data is very
high (‘v’) dimensional. Instead, we can first use CCA to map high dimensional vectors w
to lower dimensional vectors φw, from which y can be predicted. For example with a few
labeled examples of the form (w, y), we can recover the γi parameters using linear regression.
The φw subspace is guaranteed to hold a good approximation. A special case of interest
occurs when estimating a label z (= α>c) plus zero mean noise. In this case, one can pick
y = E(z) and proceed as above. This effectively extends the theorem to the case where the
mapping from c to y is random, not deterministic.

Note that if we had used covariance rather than correlation as done by LSA/PCA then
in the worst case, the key singular vectors for predicting state could be those with arbitrarily
small singular values. This corresponds to the fact that for principle component regression
(PCR), there is no guarantee that the largest principle components will prove predictive of
an associated label.

3042

Eigenwords: Spectral Word Embeddings

One can think of Theorem 1 as implicitly estimating a k-dimensional hidden state from
the observed w. This hidden state can be used to estimate y. Note that for Theorem 1, the
state estimate is “trivial” in the sense that because it comes from the words, not the context,
every occurrence of each word must give the same state estimate. This is attractive in that
it associates a latent vector with every word type, but limiting in that it does not allow
for any word ambiguity. The right canonical vectors allow one to estimate state from the
context of a word, giving different state estimates for the same word in different contexts, as
is needed for word sense disambiguation. We relegate that discussion to later in the paper,
when we discuss induction of context-specific word embeddings. For now, we focus on the
simpler use of left canonical covariates to map each word type to a k dimensional vector.

4. Efficient Eigenwords with Better Sample Complexity

OSCCA is optimal only in the limit of infinite data. In practice, data is, of course, always
limited. In languages, lack of data comes about in two ways. Some languages are resource
poor; one just does not have that many tokens of them (especially languages that lack a
significant written literature). Even for most modern languages, many of the individual
words in them are quite rare. Due to the Zipfian distribution of words, many words do not
show up very often. A typical year’s worth of Wall Street Journal text only has “lasagna” or
“backpack” a handful of times and “ziti” at most once or twice. To overcome these issues we
propose a two-step procedure which gives rise to two algorithms, Two Step CCA (TSCCA)
and Low-Rank Multi-View Learning (LR-MVL) that have better sample complexity for rare
words.

4.1 Two Step CCA (TSCCA) for Estimating Eigenword Dictionary

We now introduce our two step procedure TSCCA of computing an eigenword dictionary
and show theoretically that it gives better estimates than the OSCCA method described in
the last section.

In the two-step method, instead of taking the CCA between the combined context [L R]
and the words W, we first take the CCA between the left and right contexts and use the
result of that CCA to estimate the state S (an empirical estimate of the true hidden state
~) of all the tokens in the corpus from their contexts. Note that we get partially redundant
state estimates from the left context and from the right context; these are concatenated to
make combined state estimate. This will contain some redundant information, but will not
lose any of the differences in information from the left and right sides. We then take the
CCA between S and the words W to get our final eigenword dictionary. This is summarized
in Algorithm 1. The first step, the CCA between L and R, must produce at least as many
canonical components as the second step, which produces the final output.

The two step method requires fewer tokens of data to get the same accuracy in estimating
the eigenword dictionary because its final step estimates fewer parameters O(vk) than the
OSCCA does O(v2).

Before stating the theorem, we first explain this intuitively. Predicting each word as a
function of all other word combinations that can occur in the context is far sparser than
predicting low dimensional state from context, and then predicting word from state. Thus,
for relatively infrequent words, OSCCA should have significantly lower accuracy than the

3043

Dhillon, Foster and Ungar

Algorithm 1 Two step CCA
1: Input: L,W,R
2: (φl,φr) = CCA(L,R)
3: S = [Lφl Rφr]
4: (φs,φw) = CCA(S,W)
5: Output: φw, the eigenword dictionary

two step version. Phrased differently, mapping from context to state and then from state
to word (TSCCA) gives a more parsimonious model than mapping directly from context to
word (OSCCA).

The relative ability of OSCCA to estimate hidden state compared to that of TSCCA
can be summarized as follows:

Theorem 2 Given a matrix of words, W and their associated left and right contexts, L and
R with vocabulary size v, context size h, and corpus of n tokens. Consider a linear estimator
built on the state estimates estimated by either TSCCA or OSCCA, then the ratio of their
squared prediction errors (i.e. relative statistical efficiency) is h+k

hv .

Please see Appendix A for the proof.

Since the corpora we care about (i.e. text and language corpora) usually have vh � h+ k,
the TSCCA procedure will in expectation correctly estimate hidden state with a much
smaller number of components k than the one step procedure. Or, equivalently, for an esti-
mated hidden state of given size k, TSCCA will correctly estimate more of the hidden state
components.

As mentioned earlier, words have a Zipfian distribution so most words are rare. For
such rare words, if one does a CCA between them and their contexts, one will have very
few observations, and hence will get a low quality estimate of their eigenword vector. If, on
the other hand, one first estimates a state vector for the rare words, and then does a CCA
between this state vector and the context, the rare words can be thought of as borrowing
strength from more common distributionally similar words. For example, “umbrage” (56,020)
vs. “annoyance” (777,061) or “unmeritorious” (9,947) vs. “undeserving” (85,325). The
numbers in parentheses are the number of occurrences of these words in the Google n-gram
collection used in some of our experiments.

4.2 Low Rank Multi-View Learning (LR-MVL)

The context around a word, consisting of the h words to the right and left of it, sits in a high
dimensional space, since for a vocabulary of size v, each of the h words in the context requires
an indicator function of dimension v. So, we propose an algorithm Low Rank Multi-View
Learning (LR-MVL), where we work in the k dimensional space to begin with.

The key move in LR-MVL is to project the hv-dimensional L and R matrices down to
a k dimensional state space before performing the first CCA. This is where it differs from
TSCCA. Thus, all eigenvector computations are done in a space that is v/k times smaller
than the original space. Since a typical vocabulary contains at least 100, 000 words, and we

3044

Eigenwords: Spectral Word Embeddings

use state spaces of order k ≈ 100 dimensions, this gives a 1,000-fold reduction in the size of
calculations that are needed.

LR-MVL iteratively updates the real-valued state of a token Zt, till convergence. Since,
the state is always real-valued, this also allows us to replace the projected left and right
contexts with exponential smooths (weighted average of the previous (or next) token’s state
i.e. Zt−1 (or Zt+1) and previous (or next) token’s smoothed state i.e. St−1 (or St+1).),
of them at a few different time scales. One could use a mixture of both very short and
very long contexts which capture short and long range dependencies as required by NLP
problems as NER, Chunking, WSD etc. Since exponential smooths are linear, we preserve
the linearity of our method.

We now describe the LR-MVL algorithms.

4.2.1 The LR-MVL Algorithms

Based on our theory (described in next subsection), various algorithms are possible for LR-
MVL. We provide two algorithms, Algorithms 2, 3 (without and with exponential smooths).

Algorithm 2 LR-MVL Algorithm - Learning from Large amounts of Unlabeled Data (no
exponential smooths).
1: Input: Token sequence Wn×v, state space size k.
2: Initialize the eigenfeature dictionary φw to random values N (0, 1).
3: repeat
4: Project the left and right context matrices Ln×vh and Rn×vh down to ‘k’ dimensions and

compute CCA between them. [φl,φr]=CCA(Lφh
w, Rφh

w). //φh
w is the stacked version of φw

matrix as many times as the context length ‘h.’
5: Normalize φ(k)

l and φ(k)
r . //Divide each row by the maximum absolute value in that row

(Scales between -1 and +1).
6: Compute a second CCA between the estimated state and the word itself [φw,φc]=CCA(W,

[Lφh
wφ

(k)
l , Rφh

wφ
(k)
r]).

7: Compute the change in φw from the previous iteration
8: until |∆φh

w| < ε

9: Output: φl, φr, φw .

A few iterations (∼ 10) of the above algorithms are sufficient to converge to the solution6.

4.2.2 Theoretical Properties of LR-MVL

We now present the theory behind the LR-MVL algorithms; particularly we show that the
reduced rank matrix φw allows a significant data reduction while preserving the informa-
tion in our data and the estimated state does the best possible job of capturing any label
information that can be inferred by a linear model.

The key difference from TSCCA is that we can initialize the state of each word randomly
and work in a low (k) dimensional space from the beginning, iteratively refine the state till
convergence and still we can recover the eigenword dictionary φw.

6. Though the optimization problem and our iterative procedure are non-convex, empirically we did not
face any issues with convergence.

3045

Dhillon, Foster and Ungar

Algorithm 3 LR-MVL Algorithm - Learning from Large amounts of Unlabeled Data (with
exponential smooths).
1: Input: Token sequence Wn×v, state space size k, smoothing rates αj

2: Initialize the eigenfeature dictionary φw to random values N (0, 1).
3: repeat
4: Set the state Zt (1 < t ≤ n) of each token wt to the eigenword vector of the corre-

sponding word.
Zt = (φw : w = wt)

5: Smooth the state estimates before and after each token to get a pair of views for each
smoothing rate αj .
S
(l,j)
t = (1− αj)S(l,j)

t−1 + αjZt−1 // left view L

S
(r,j)
t = (1− αj)S(r,j)

t+1 + αjZt+1 // right view R.
where the tth rows of L and R are, respectively, concatenations of the smooths S(l,j)

t

and S(r,j)
t for each of the α(j)s.

6: Find the left and right canonical correlates, which are the eigenvectors φl and φr of
(L>L)−1L>R(R>R)−1R>Lφl = λφl.
(R>R)−1R>L(L>L)−1L>Rφr = λφr.

7: Project the left and right views on to the space spanned by the top k left and right
CCAs respectively

Xl = Lφ
(k/2)
l and Xr = Rφ

(k/2)
r

where φ(k)
l , φ(k)

r are matrices composed of the singular vectors of φl, φr with the k
largest magnitude singular values. Estimate the state for each word wt as the union
of the left and right estimates: Z = [Xl, Xr]

8: Compute a second CCA between the estimated state and the word itself
[φw,φz]=CCA(W, Z).

9: Normalize φw. //Divide each row by the maximum absolute value in that row (Scales
between -1 and +1).

10: Compute the change in φw from the previous iteration.
11: until |∆φw| < ε
12: Output: φkl , φ

k
r , φw .

As earlier, let L be an n×hv matrix giving the words in the left context of each of the n
tokens, where the context is of length h, R be the corresponding n×hv matrix for the right
context, and W be an n × v matrix of indicator functions for the words themselves. Note
that L, R and W are the observed instantiations of the corresponding multivariate random
variables l, r and w.

The theory of LR-MVL hinges on four assumptions which are described in detail in the
appendix. Basically, they entail that there exists a k dimensional linear hidden state for l,
r and w and that they come from a HMM with rank k observation and transition matrices.
It’s further assumed that the pairwise expected correlations between l, r and w, also have
rank k.

3046

Eigenwords: Spectral Word Embeddings

Lemma 3 Define φw as the left singular vectors:

φw ≡ CCA(w, [l r])left.

where CCA(z, w) is defined as in Equation 1 but using population covariance matrices i.e.
Czw = E(z>w), Czz = E(z>z) and Cww = E(w>w).
Under assumptions 2, 3 and 1A(in appendix) such that if (φl,φr) ≡ CCA(l, r) then

φw = CCA(w, [lφl rφr])left.

Please see Appendix A for the proof.
Lemma 3 shows that instead of finding the CCA between the full context and the words,

we can take the CCA between the Left and Right contexts, estimate a k dimensional state
from them, and take the CCA of that state with the words and get the same result. Lemma
3 is similar to Theorem 2, except that it does not provide ratios of the estimated state sizes.

Let φhw denote a matrix formed by stacking h copies of φw on top of each other. Right
multiplying l or r by φhw projects each of the words in that context into the k-dimensional
reduced rank space.

The following theorem addresses the core of the LR-MVL algorithm, showing that there
is an φw which gives the desired dimensionality reduction. Specifically, it shows that the
previous lemma also holds in the reduced rank space.

Theorem 4 Under assumptions 1, 1A and 2 (in appendix) there exists a unique matrix φw
such that if

(φhl ,φ
h
r) ≡ CCA(lφhw, rφ

h
w),

then
φw = CCA(w, [lφhwφ

h
l rφhwφ

h
r])left,

where φhw is the stacked form of φw.

Please see Appendix A for the proof7.
Because of the Zipfian distribution of words, many words are rare or even unique. So, just

as in the case of TSCCA, CCA between the rare words and context will not be informative,
whereas finding the CCA between the projections of left and right contexts gives a good
state vector estimate even for unique words. One can then fruitfully find the CCA between
the contexts and the estimated state vector for their associated words.

5. Generating Context Specific Embeddings

Once we have estimated the CCA model using any of our algorithms (i.e. OSCCA, TSCCA,
LR-MVL), it can be used to generate context specific embeddings for the tokens from train-
ing, development and test sets (as described in Algorithm 4). These embeddings could be

7. It is worth noting that our matrix φw corresponds to the matrix Û used by (Hsu et al., 2009; Siddiqi et al.,
2010). They showed that U is sufficient to compute the probability of a sequence of words generated by
an HMM, our φw provides a more statistically efficient estimate of U than their Û, and hence can also
be used to estimate the sequence probabilities.

3047

Dhillon, Foster and Ungar

further supplemented with other baseline features and used in a supervised learner to predict
the label of the token.

Algorithm 4 Inducing Context Specific Embeddings for Train/Dev/Test Data
1: Input: Model (φk

l , φ
k
r , φw) output from above algorithm and Token sequences Wtrain, (Wdev,

Wtest)
2: Project the left and right views L and R onto the space spanned by the top k left and right

CCAs respectively. If algorithm is Algorithm 3, then, smooth L and R first.
Xl = Lφk

l and Xr = Rφk
r

and the words onto the eigenfeature dictionary Xw = W trainφw

3: Form the final embedding matrix Xtrain:embed by concatenating these three estimates of state
Xtrain:embed = [Xl Xw Xr]

4: Output: The embedding matrices Xtrain:embed, (Xdev:embed, Xtest:embed) with context-
specific representations for the tokens.

Note that we can get context “oblivious” embeddings i.e. one embedding per word type,
just by using the eigenfeature dictionary φw. Later in the experiments section we show that
this approach of inducing context specific embeddings gives results which are similar to a
simpler alternative of just using the context “oblivious” embeddings but augmenting them
with the embeddings of the words in a window of 2 around the current word before using
them in a classifier.

6. Efficient Estimation

As mentioned earlier, CCA can be done by taking the singular value decomposition of a
matrix. For small matrices, this can be done using standard functions in e.g. MATLAB, but
for very large matrices (e.g. for vocabularies of tens or hundreds of thousands of words), it is
important to take advantage of the recent advances in SVD algorithms. For our experiments
we use the method of (Halko et al., 2011), which uses random projections to compute SVD
of large matrices.

The key idea is to find a lower dimensional basis for A, and to then compute the singular
vectors in that lower dimensional basis. The initial basis is generated randomly, and taken
to be slightly larger than the eventual basis. If A is v×hv, and we seek a state of dimension
k, we start with a hv × (k + l) matrix Ω of random numbers, where l is number of “extra”
basis vectors between 0 and k. We then project A onto this matrix and take the SVD
decomposition of the resulting matrix (A ≈ ÛΛ̂V̂>).

Since AΩ is v × (k + l), this is much cheaper than working on the original matrix A.
We keep the largest k components of U and of V, which form a left and a right basis for A
respectively.

This procedure is repeated for a few (∼ 5) iterations. The algorithm is summarized in
Algorithm 5. The runtime of the procedure for projecting a matrix of size m × p down to
a size m × k where p � k is O(mpk) floating point operations, which in our case becomes
O(v2hk).

(Halko et al., 2011) prove a number of nice properties of the above algorithm. In partic-
ular, they guarantee that the algorithm, even without the extra iterations in steps 3 and 6
produces an approximation whose error is bounded by a small polynomial factor times the

3048

Eigenwords: Spectral Word Embeddings

Algorithm 5 Randomized singular value decomposition
1: Input: Matrix A of size v × hv, the desired hidden state dimension k, and the number

of “extra” singular vectors, l
2: Generate a hv × (k + l) random matrix Ω
3: for i =1:5 do
4: M = AΩ.
5: [Q,R]=QR(M) //Find v × (k + l) orthogonal matrix Q.
6: B = Q>A
7: Ω = B
8: end for
9: Find the SVD of B. [Û, Λ̂, V̂>] =SVD(B), and keep the k components of Û with the

largest singular values.
10: Ã = QÛ. //Compute the rank-k projection.
11: Output: The rank-k approximation Ã. (Similar procedure can be repeated to get the

right singular values and the corresponding projections.)

size of the largest singular value whose singular vectors are not part of the approximation,
σk+1. They also show that using a small number of “extra” singular vectors (l) results in a
substantial tightening of the bound, and that the extra iterations, which correspond to power
iteration, drive the error bound exponentially quickly to one times the largest non-included
singular value, σk+1 and also provide better separation between the singular values.

7. Evaluating Eigenwords

In this section we provide qualitative and quantitative evaluation of the various eigenword
algorithms.

The state estimates for words capture a wide range of information about them that can
be used to predict part of speech, linguistic features, and meaning. Before presenting a more
quantitative evaluation of predictive accuracy, we present some qualitative results showing
how word states, when projected in appropriate directions usefully characterize the words.

We compare our approach against several state-of-the-art word embeddings:

1. Turian Embeddings (C&W and HLBL) (Turian et al., 2010).

2. SENNA Embeddings (Collobert et al., 2011).

3. word2vec Embeddings (Mikolov et al., 2013a,b).

We also compare against simple PCA/LSA embeddings and other model based ap-
proaches wherever applicable.

We downloaded the Turian embeddings (C&W and HLBL), from http://metaoptimize.
com/projects/wordreprs and use the best ‘k’ reported in the paper (Turian et al., 2010)
i.e. k=200 and 100 respectively. SENNA embeddings were downloaded from http://ronan.
collobert.com/senna/. word2vec code was downloaded from https://code.google.com/
p/word2vec/. Since they made the code available we could train them on the exact same

3049

http://metaoptimize.com/projects/wordreprs
http://metaoptimize.com/projects/wordreprs
http://ronan.collobert.com/senna/
http://ronan.collobert.com/senna/
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/

Dhillon, Foster and Ungar

corpora, had the exact same context window and vocabulary size as the eigenword em-
beddings. The PCA baseline used is similar to the one that has recently been proposed
by (Lamar et al., 2010) except that here we are interested in supervised accuracy and not
the unsupervised accuracy as in that paper.

In the results presented below (qualitative and quantitative), we trained all the algo-
rithms (including eigenwords) on Reuters RCV1 corpus (Rose et al., 2002) for uniformity of
comparison8. Case was left intact and we did not do any other “cleaning” of data. Tokeniza-
tion was performed using NLTK tokenizer (Bird and Loper, 2004). RCV1 corpus contains
Reuters newswire from Aug ’96 to Aug ’97 and containing about 215 million tokens after
tokenization.

Unless otherwise stated, we consider a fixed window of two words (h=2) on either side
of a given word and a vocabulary of 100,000 most frequent words for all the algorithms9, in
order to ensure fairness of comparison.

Eigenword algorithms are robust to the dimensionality of hidden space (k), so we did not
tune it and fixed it at 200. For other algorithms, we report results using their best hidden
space dimensionality.

Our theory and CCA in general (Bach and Jordan, 2005) rely on normality assump-
tions10, however the words follow Zipfian (heavy tailed) distribution. So, we took the
square root of the word counts in the context matrices (i.e. W>C) before running OS-
CCA, TSCCA and LR-MVL(I). This squishes the word distributions and makes them look
more normal (Gaussian). This idea is not novel and dates back in statistics to Anscombe
Transform (Anscombe, 1948) and has precedents even in word representation learning liter-
ature (Turney and Pantel, 2010).

We ran LR-MVL(I) and LR-MVL(II) for 5 iterations and only used one exponential
smooth of 0.5 for LR-MVL(II). Table 1 shows the details of all the embeddings used in our
experiments.

8. Qualitative Evaluation of OSCCA

To illustrate the sorts of information captured in our state vectors, we present a set of
figures constructed by projecting selected small sets of words onto the space spanned by the
second and third largest principal components of their eigenword dictionary values, which
are simply the left canonical correlates calculated from Equation 2. (The first principle
component generally just separates the selected words from other words, and so is less
interesting here.)

Figure 3 shows plots for three different sets of words. The left column uses the eigen-
word dictionary learned using OSCCA (CCA(W, C), where C=[L R] with h=2 on either
side) (the other eigenword algorithms gave similar results), while the right column uses the
corresponding latent vectors derived using PCA on the same data. In all cases, the 200-

8. word2vec, PCA and Turian (C&W and HLBL) embeddings are all trained on Reuters RCV1, but SENNA
embeddings (training code not available) were trained on a larger Wikipedia corpus.

9. Turian (C&W and HLBL), SENNA embeddings had much bigger vocabulary sizes of 268,000 and 130,000,
though they also use a window of 2 as context.

10. CCA can be thought of as least squares regression (Please see the proof of Theorem 2 in Appendix A.)
and hence has error terms distributed normally.

3050

Eigenwords: Spectral Word Embeddings

Embedding Unlabeled Data
Trained

Window size Vocab. Size Hidden
State
Size

Availability

C&W (Turian) Reuters RCV1
cleaned and lower-
cased (See Turian
et al. 2010.)

2 268,810 200 Only Em-
beddings
available
(No Code).

HLBL (Turian) Reuters RCV1
cleaned and lower-
cased (See Turian
et al. 2010.)

2 268,810 100 Only Em-
beddings
available
(No Code).

SENNA Wikipedia (much
larger than RCV1)
(See Collobert
et al. 2011.)

2 130,000 50 Only Em-
beddings
available
(No Code).

Word2vec (SK-
Continuous Skip-
gram) & (CB-
Continuous Bag-of-
words)

Reuters RCV1 un-
cleaned and case in-
tact

2 100,000 200 Code avail-
able

Eigenwords Reuters RCV1 un-
cleaned and case in-
tact

2 100,000 200 Code
and Em-
beddings
available

Table 1: Details of various embeddings used in the experiments. Note: Eigenwords and
Word2vec provide the most controlled comparison.

dimensional vectors have been projected onto two dimensions (using a second PCA) so that
they can be visualized.

The PCA algorithm differs from CCA based (eigenword) algorithms in that it does not
whiten the matrices via (C−1/2zz and C

−1/2
ww) before performing SVD. In other words, the

PCA algorithm just operates on W>C. If one considers a word and its two grams to the
left and right as a document, then its equivalent to the Latent Semantic Analysis (LSA)
algorithm.

The results for various (handpicked) semantic categories are shown in Figure 3 and 4.
The top row shows a small set of randomly selected nouns and verbs. Note that for

CCA, nouns are on the left, while verbs are on the right. Words that are of similar or
opposite meaning (e.g. “agree” and “disagree”) are distributionally similar, and hence close.
The corresponding plot for PCA shows some structure, but does not give such a clean
separation. This is not surprising; predicting the part of speech of words depends on the
exact order of the words in their context (as we capture in CCA); a PCA-style bag-of-words
can’t capture part of speech well.

The bottom row in Figure 3 shows names of numbers or the numerals representing
numbers and years. Numbers that are close to each other in value tend to be close in the

3051

Dhillon, Foster and Ungar

Center Word OSCCA NN PCA NN
market markets, trade, currency,

sector, activity.
dollar, economy, govern-
ment, sector, industry.

company firm, group, giant, opera-
tor, maker.

government, group, dol-
lar, following, firm.

Ltd Limited, Bhd, Plc, Co,
Inc.

Corp, Plc, Inc, name, sys-
tem.

President Governor, secretary,
Chairman, leader, Direc-
tor.

Commerce, General, fuel,
corn, crude.

Nomura Daiwa, UBS, HSBC,
NatWest, BZW.

Chrysler, Sun, Delta, Bre-
X, Renault.

jump drop, fall, rise, decline,
climb.

surge, stakes, slowdown,
participation, investing.

rupee peso, zloty, crown, pound,
franc.

crown, CAC-40, FTSE,
Nikkei, 30-year.

Table 2: Nearest Neighbors of OSCCA and PCA word embeddings.

plot, thus suggesting that state captures not just classifications, but also more continuous
hidden features.

The plots in Figure 4 show a similar trend i.e., eigenword embeddings are able to provide
a clear separation between different syntactic/semantic categories and capture a rich set of
features characterizing the words, whereas PCA mostly just squishes them together.

Table 2 shows the five nearest neighbors for a few representative words using OSCCA
and PCA. As can be seen, the OSCCA based nearest neighbors capture subtle semantic and
syntactic cues e.g Japanese investment bank (Nomura) having another Japanese investment
bank (Daiwa) as the nearest neighbor, whereas the PCA nearest neighbors are more noisy
and capture mostly syntactic aspects of the word.

9. Quantitative Evaluation

This section describes the performance (accuracy and richness of representation) of various
eigenword algorithms. We evaluate the quality of the eigenword dictionary by using it in a
supervised learning setting to predict a wide variety of labels that can be attached to words.

We perform experiments for a variety of NLP tasks including, Word Similarity, Sentiment
Classification, Named Entity Recognition (NER), chunking, Google semantic and syntactic
analogy tasks and Word Sense Disambiguation (WSD) to demonstrate the richness of the
state learned by eigenwords and that they perform comparably or better than other state-
of-the-art approaches. For these tasks, we report results using the best eigenwords for
compactness, though all the four algorithms gave similar performances.

However, before we proceed to do that, we compare OSCCA against TSCCA, LR-MVL(I)
and LR-MVL(II) embeddings on a set of Part of Speech (POS) tagging problems for different
languages, looking at how the predictive accuracy scales with corpus size for predictions on
a fixed vocabulary. These results use small corpora and demonstrate that TSCCA, LR-
MVL(I) and LR-MVL(II) perform better for rarer words.

3052

Eigenwords: Spectral Word Embeddings

−3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

PC 1

P
C

 2

home

car
house

talk

push
carryagree

truck

river

word

boat

drink
eat

listen
sleep

dog

disagree

cat

−0.02 0.00 0.01 0.02 0.03

−
0

.0
1

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

PC 1

P
C

 2

home

car
house talk

push
carry

agree

truckriverwordboatdrinkeatlistensleepdogdisagreecat

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

PC 1

P
C

 2

car
truck

boat

fruit
motorcycle

cake

apples

pie

oranges

pearspeaches

dessert

plums

−0.025 −0.015 −0.005 0.000−
0

.0
1

5
−

0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

PC 1

P
C

 2
car

truck
boat

fruit

motorcyclecakeapplespieorangespearspeachesdesserplums

−2 −1 0 1 2

−
1

0
1

2

PC 1

P
C

 2

one

1996

1

two

1997

10

2

three

1995

43
8

fivefour
5

six
67

1998

9seveneight

1999

nine

2000200120022007200620042005200320092008

ten

−0.2 0.0 0.2 0.4 0.6

−
0

.2
0

.0
0

.2
0

.4

PC 1

P
C

 2

one
1996

1

two

1997
10

2

three

1995

4

3

8

five
four

5

six

67

1998

9

seveneight
1999

nine
2000200120022007200620042005200320092008ten

Figure 3: Projections onto two dimension of selected words in different categories using both
OSCCA (left) and PCA (Right). Top to bottom: 1). (Nouns vs Verbs): house,
home, dog, truck, boat, word, river, cat, car, sleep, eat, push, drink, listen, carry,
talk, disagree, agree. 2). (Eateries vs vehicles): apples, pears, plums, oranges,
peaches, fruit, cake, pie, dessert, truck, boat, car, motorcycle. 3). (Numerals vs
letter numbers vs years): one, two, three, four, five, six, seven, eight, nine, ten, 1,
2,. . ., 10, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009.

3053

Dhillon, Foster and Ungar

−2 −1 0 1 2 3

−
2

−
1

0
1

2

PC 1

P
C

 2

his
her

myyour

drink
eat

sleep

friday
tuesdaymonday

wednesda

−0.20 −0.15 −0.10 −0.05 0.00

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

PC 1

P
C

 2 his her

my
yourdrinkeatsleepfridaytuesdamondawednesda

−2 −1 0 1 2

−
2

−
1

0
1

2

PC 1

P
C

 2

he

his

they

we

our

them

she

him

you

her

us

i

hers

−0.8 −0.6 −0.4 −0.2 0.0 0.2

−
0

.2
0

.0
0

.2
0

.4
0

.6

PC 1

P
C

 2 he

his

theywe

ourthem
she

him

you

herusihers

−3 −2 −1 0 1 2

−
2

−
1

0
1

2

PC 1

P
C

 2

pressure

poundsbarrels
miles

man
woman

wifelawyer
sonfather

tons

mother
brother

tension

daughter

acres

degrees
husband

doctorboygirl

sister

stress

boss

inches

meters

citizen

farmer

teacher

temperature

guy

gravity

density

uncle

viscosity

bytes

permeability

0.00 0.05 0.10 0.15

−
0

.1
5

−
0

.1
0

−
0

.0
5

0
.0

0

PC 1

P
C

 2

pressure pounds
barrels

miles

manwomanwifelawyersonfathertonsmotherbrothertensiondaughter
acresdegreeshusbanddoctorboygirlsisterstressbossinchesmeterscitizenfarmerteachertemperatureguygravitydensityuncleviscositybytespermeability

Figure 4: Projections onto two dimension of selected words in different categories using
both OSCCA (left) and PCA (Right). Top to bottom: 1). (Weekdays vs verbs vs
pronouns): monday, tuesday, wednesday, sunday, friday, eat, drink, sleep, his, her,
my, your. 2). (Different kinds of pronouns): i, you, he, she, they, we, us, them,
him, her, our, his, hers. 3). (Nouns vs Adjectives vs Units of measurement):
man, woman boy, girl, lawyer, doctor, guy, farmer, teacher, citizen, mother, wife,
father, son, husband, brother, daughter, sister, boss, uncle, pressure, temperature,
permeability, density, stress, viscosity, gravity, tension, miles, pounds, degrees,
inches, barrels, tons, acres, meters, bytes.

3054

Eigenwords: Spectral Word Embeddings

Language Number of POS tags Number of tokens
English 17 100311
Danish 25 100238

Bulgarian 12 100489
Portuguese 22 100367

Table 3: Description of the POS tagging data sets

9.1 Part of Speech (POS) Tagging

In this experiment we compare the performance of various eigenword algorithms on the
task of non-disambiguating POS tagging for four languages; i.e., each word type has a
single POS tag. Table 2 provides statistics on all the corpora used, namely: the Wall Street
Journal portion of the Penn treebank (Marcus et al., 1993) (we consider the 17 tags of (PTB
17) (Smith and Eisner, 2005)), the Bosque subset of the Portuguese Floresta Sinta(c)tica
Treebank (Afonso et al., 2002), the Bulgarian BulTreeBank (Simov et al., 2002) (with only
the 12 coarse tags), and the Danish Dependency Treebank (DDT) (Kromann, 2003).

Note the corpora range widely in size; English has ∼ 1 million tokens whereas Danish
only has ∼ 100k tokens. To address this data imbalance we kept only the first ∼ 100k tokens
of the larger corpora so as to perform a uniform evaluation across all corpora.

The goal of this experiment is see to how the eigenword dictionary estimates for the
word types (for a fixed vocabulary) improve with increased training data.

Theorem 2 implies that the difference between OSCCA and TSCCA/LR-MVL(I)/LR-
MVL(II) should be more pronounced at smaller sample sizes, where the errors are higher
and that they should have similar predictive power in the limit of large training data. We
therefore evaluate the performance of the methods on varying data sizes ranging from 5k to
the entire 100k tokens.

When varying the unlabeled data from 5k to 100k we made sure that they had the exact
same vocabulary to assure that the performance improvement is not coming from word types
not present in the 5k tokens but present in the total 100k. This gives a clear picture of the
effect of varying training set size.

To evaluate the predictive accuracy of the descriptors learned using different amounts
of unlabeled data, we learn a multi-class logistic regression to predict the POS tag of each
type. We trained using 80% of the word types chosen randomly and then tested on the
remaining 20% types. This procedure was repeated 10 times. Note that our train and test
sets do not contain any of the same word types11.

The accuracy of using OSCCA, TSCCA, LR-MVL(I), LR-MVL(II) and PCA features
in a supervised learner are shown in Figure 5 for the task of POS tagging. As can be seen
from the results, eigenword embeddings are significantly better (5% significance level in a
paired t-test) than the PCA-based supervised learner. Among the eigenwords, TSCCA,
LR-MVL(I) and LR-MVL(II) are significantly better than OSCCA for small amounts of
data and, as predicted by theory, the two become comparable in accuracy as the amount of
unlabeled data used to learn the CCAs becomes large.

11. As noted, we are doing non-disambiguating POS tagging so that each word type has a single POS tag,
so if the same word type occurred in both the training and testing data, a learning algorithm that just
memorized the training set would perform reasonably well.

3055

Dhillon, Foster and Ungar

Figure 5: Plots showing accuracy as a function of number of tokens used to train the
PCA/eigenwords for various languages. Note: The results are averaged over
10 random, 80 : 20 splits of word types.

9.2 Word Similarity Task (WordSim-353)

A standard data set for evaluating vector-space models is the WordSim-353 data set (Finkel-
stein et al., 2001), which consists of 353 pairs of nouns. Each pair is presented without
context and associated with 13 to 16 human judgments on similarity and relatedness on a
scale from 0 to 10. For example, (professor, student) received an average score of 6.81, while
(professor, cucumber) received an average score of 0.31.

For this task, it is interesting to see how well the cosine similarity between the word
embeddings correlates with the human judgment of similarity between the same two words.
The results in Table 4 show the Spearman’s correlation between the cosine similarity of the
respective word embeddings and the human judgments.

As can be seen, eigenwords are statistically significantly (computed using resampled
bootstrap) better than all embeddings except SENNA.

3056

Eigenwords: Spectral Word Embeddings

Model ρ× 100
PCA 30.25

Turian (C&W) 28.08
Turian (HLBL) 35.24

SENNA 44.32
word2vec (SK) 42.73
word2vec (CB) 42.97

eigenwords (OSCCA) 43.00
eigenwords (TSCCA) 44.85

eigenwords (LR-MVL(I)) 43.83
eigenwords (LR-MVL(II)) 37.92

Table 4: Table showing the Spearman correlation between the word embeddings based sim-
ilarity and human judgment based similarity. Note that the numbers for word2vec
are different from the ones reported elsewhere, which is due to the fact that we
considered a 100,000 vocabulary and a context window of 2 just like eigenwords,
in order to make a fair comparison.

9.3 Sentiment Classification

It is often useful to group words into semantic classes such as colors or numbers, profession-
als or disciplines, happy or sad words, words of encouragement or discouragement, and, of
course, words indicating positive or negative sentiment. Substantial effort has gone into cre-
ating hand-curated words that can be used to capture a variety of opinions about different
products, papers, or people. To pick one example, (Teufel, 2010) contains dozens of carefully
constructed lists of words that she uses to categorize what authors say about other scientific
papers. Her categories include “problem nouns” (caveat, challenge, complication, contradic-
tion,. . .), “comparison nouns” (accuracy, baseline, comparison, evaluation,. . .), “work nouns”
(account, analysis, approach,. . .) as well as more standard sets of positive, negative, and
comparative adjectives.

Psychologists, in particular, have created many such hand curated lists of words, such
as the widely used LIWC collection (Pennebaker et al., 2001), which has a heterogeneous
set of word lists ranging from “positive emotion” to “pronouns,” “swear words” and “body
parts.” In the example below, we use words from a more homogeneous psychology collection,
a set of five dimensions that have been identified in positive psychology under the acronym
PERMA (Seligman, 2011):

• Positive emotion (aglow, awesome, bliss, . . .),

• Engagement (absorbed, attentive, busy, . . .),

• Relationships (admiring, agreeable, . . .),

• Meaning (aspire, belong, . . .)

• Achievement (accomplish, achieve, attain, . . .).

3057

Dhillon, Foster and Ungar

Word sets Number of observations
Class I Class II

Positive emotion or not 81 162
Meaningful life or not 246 46
Achievement or not 159 70
Engagement or not 208 93
Relationship or not 236 204

Table 5: Description of the data sets used. All the data was collected from the PERMA
lexicon.

For each of these five categories, we have both positive words – ones that connote,
for example, achievement, and negative words, for example, un-achievement (amateurish,
blundering, bungling, . . .). We would hope (and we show below that this is in fact true),
that we can use eigenwords not only to distinguish between different PERMA categories,
but also to address the harder task of distinguishing between positive and negative terms
in the same category. (The latter task is harder because words that are opposites, such as
“large” and “small,” often are distributionally similar.)

The description of the PERMA data sets is given in Table 5 and Table 6 shows results
for the five PERMA categories. As earlier, we used logistic regression for the supervised
binary classification.

As can be seen from the plots, the eigenwords perform significantly (5% significance level
in a paired t-test) better than all other embeddings in 3/5 cases and for the remaining 2
cases they perform significantly better than all embeddings except word2vec.

9.4 Named Entity Recognition (NER) & Chunking

In this section we present the experimental results of eigenwords on Named Entity Recog-
nition (NER) and chunking. For the previous evaluation tasks we were performing classifi-
cation of individual words in isolation, however NER and chunking tasks involve assigning
tasks to running text. This allows us to induce context specific embeddings i.e. a different
embedding for a word based on its context.

9.4.1 Datasets and Experimental Setup

For the NER experiments we used the data from CoNLL 2003 shared task and for chunk-
ing experiments we used the CoNLL 2000 shared task data12 with standard training, de-
velopment and testing set splits. The CoNLL ’03 and the CoNLL ’00 data sets had
∼ 204K/51K/46K and ∼ 212K/− /47K tokens respectively for Train/Dev./Test sets.
Named Entity Recognition (NER): We use the same set of baseline features as used

by (Zhang and Johnson, 2003; Turian et al., 2010) in their experiments. The detailed list of
features is as below:

• Current Word wi; Its type information: all-capitalized, is-capitalized, all-digits and so
on; Prefixes and suffixes of wi

12. More details about the data and competition are available at http://www.cnts.ua.ac.be/conll2003/
ner/ and http://www.cnts.ua.ac.be/conll2000/chunking/.

3058

http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2003/ner/
http://www.cnts.ua.ac.be/conll2000/chunking/.

Eigenwords: Spectral Word Embeddings

ei
ge
nw

or
ds

(O
SC

C
A
)

ei
ge
nw

or
ds

(T
SC

C
A
)

ei
ge
nw

or
ds

(L
R
-

M
V
L(

I)
)

ei
ge
nw

or
ds

(L
R
-

M
V
L(

II
))

P
C
A

T
ur
ia
n

(C
&
W

)
T
ur
ia
n

(H
LB

L)
SE

N
N
A

w
or
d2

ve
c

(S
K
)

w
or
d2

ve
c

(C
B
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

(µ
±
σ
)

P
os
it
iv
e

25
.8
±

6.
9

24
.5
±

6.
3

26
.4
±

7.
0

29
.9
±

6.
5

33
.1
±

5.
8

32
.6
±

6.
3

30
.0
±

6.
4

29
.9
±

5.
1

24
.5
±

8.
3

27
.6
±

7.
0

E
ng

ag
em

en
t

18
.8
±

5.
0

16
.1
±

4.
4

17
.4
±

4.
5

19
.6
±

4.
5

29
.6
±

5.
2

25
.9
±

5.
1

23
.2
±

5.
1

20
.9
±

5.
1

17
.2
±

5.
0

20
.4
±

5.
3

R
el
at
io
ns
hi
p

16
.3
±

3.
9

12
.2
±

3.
4

15
.6
±

4.
1

15
.9
±

3.
8

46
.6
±

5.
4

36
.1
±

5.
0

28
.3
±

4.
4

18
.9
±

3.
4

14
.9
±

4.
0

15
.0
±

3.
9

M
ea
ni
ng

fu
l

10
.9
±

3.
9

8.
9±

3.
7

9.
5
±

3.
7

9.
9
±

4.
0

15
.7
±

3.
9

16
.1
±

4.
0

15
.9
±

4.
0

14
.6
±

3.
5

11
.1
±

4.
1

14
.2
±

4.
5

A
ch
ie
ve
m
en
t

15
.7
±

5.
4

14
.6
±

5.
3

17
.5
±

5.
7

19
.0
±

6.
0

30
.4
±

6.
0

29
.2
±

6.
2

23
.0
±

5.
7

20
.4
±

4.
9

23
.2
±

7
.7

27
.6
±

6.
8

T
ab

le
6:

B
in
ar
y
C
la
ss
ifi
ca
ti
on

%
te
st

er
ro
rs

(∑ n i=
1
I[
y
i
6=
ŷ
i
]

n
)
av
er
ag

ed
ov
er

10
0
ra
nd

om
80

/2
0
tr
ai
n/

te
st

sp
lit
s
fo
r
se
nt
im

en
t
cl
as
-

si
fic

at
io
n.

B
ol
d
(3
/5

ca
se
s)

in
di
ca
te
s
th
e
ca
se
s
w
he

re
ei
ge
nw

or
ds

ar
e
si
gn

ifi
ca
nt
ly

be
tt
er

(5
%

le
ve
l
in

a
pa

ir
ed

t-
te
st
)

co
m
pa

re
d
to

al
l
ot
he
r
em

be
dd

in
gs
.
In

th
e
re
m
ai
ni
ng

2/
5
ca
se
s
ei
ge
nw

or
ds

ar
e
si
gn

ifi
ca
nt
ly

be
tt
er

th
an

al
l
em

be
dd

in
gs

ex
ce
pt

w
or
d2

ve
c.

3059

Dhillon, Foster and Ungar

• Word tokens in window of 2 around the current word i.e. d = (wi−2, wi−1, wi, wi+1, wi+2);
and capitalization pattern in the window.

• Previous two predictions yi−1 and yi−2 and conjunction of d and yi−1

• Embedding features (eigenwords, C&W, HLBL, Brown etc.) in a window of 2 around
the current word including the current word (when applicable).

Following (Ratinov and Roth, 2009) we use a regularized averaged perceptron model with
the above set of baseline features for the NER task. We also used their BILOU text chunk
representation and fast greedy inference, as it was shown to give superior performance.

We also augment the above set of baseline features with gazetteers, as is standard practice
in NER experiments. We also benchmark the performance of eigenwords on MUC7 out-of-
domain dataset which had 59K words. MUC7 uses a different annotation and has some
different Named Entity types that are not present in the CoNLL ’03 dataset, so it provides
a good test bed for eigenwords. As earlier, we performed the same preprocessing for this
dataset as done by (Turian et al., 2010).
Chunking: For our chunking experiments we use a similar base set of features as above:

• Current Word wi and word tokens in window of 2 around the current word i.e. d =
(wi−2, wi−1, wi, wi+1, wi+2);

• POS tags ti in a window of 2 around the current word.

• Word conjunction features wi∩wi+1, i ∈ {−1, 0} and Tag conjunction features ti∩ti+1,
i ∈ {−2,−1, 0, 1} and ti ∩ ti+1 ∩ ti+2, i ∈ {−2,−1, 0}.

• Embedding features in a window of 2 around the current word including the current
word (when applicable).

Since the CoNLL ’00 chunking data does not have a development set, we randomly sampled
1000 sentences from the training data (8936 sentences) for development. So, we trained our
chunking models on 7936 training sentences and evaluated their F1 score on the 1000 devel-
opment sentences and used a CRF13 as the supervised classifier. We tuned the magnitude
of the `2 regularization penalty in CRF on the development set. The regularization penalty
that gave best performance on development set was 2. Finally, we trained the CRF on the
entire (“original”) training data i.e. 8936 sentences.

9.4.2 Results

The results for NER and chunking are shown in Tables 7 and 8, respectively, which show
that eigenwords perform significantly better than state-of-the-art competing methods on
both NER and chunking tasks.

9.5 Cross Lingual Word Sense Disambiguation: SEMEVAL 2013

In cross-lingual word sense disambiguation (WSD) tasks, ambiguous English words are given
in context as input, and translations of these words into one or more target languages are

13. http://www.chokkan.org/software/crfsuite/

3060

http://www.chokkan.org/software/crfsuite/

Eigenwords: Spectral Word Embeddings

F1-Score
Embedding/Model Dev. Set Test Set MUC7
Baseline

No Gazetteers

90.03 84.39 67.48
Brown 1000 clusters 92.32 88.52 78.84
Turian (C&W) 92.46 87.46 75.51
Turian (HLBL) 92.00 88.13 75.25
SENNA - 88.67 -
word2vec (SK) 92.54 89.40 76.21
word2vec (CB) 92.08 89.20 76.55
eigenwords (OSCCA) 92.94 89.67 79.85
eigenwords (TSCCA) 93.19 89.99 80.99
eigenwords (LR-MVL(I)) 92.82 89.85 78.60
eigenwords (LR-MVL(II)) 92.73 89.87 78.71
Brown, 1000 clusters

With Gazetteers

93.25 89.41 82.71
Turian (C&W) 92.98 88.88 81.44
Turian (HLBL) 92.91 89.35 79.29
SENNA - 89.59 -
word2vec (SK) 92.99 89.69 79.55
word2vec (CB) 92.93 89.89 79.94
eigenwords (OSCCA) 93.21 90.28 81.59
eigenwords (TSCCA) 93.96 90.59 82.42
eigenwords (LR-MVL(I)) 93.50 90.33 81.15
eigenwords (LR-MVL(II)) 93.49 90.10 80.34

Table 7: NER Results. Note: F1-score= Harmonic Mean of Precision and Recall. Note
that the numbers reported for eigenwords here are different than those in (Dhillon
et al., 2011) as we use a different vocabulary size and different dimensionality than
there.

Embedding/Model Test Set F1-Score
Baseline 93.79
Brown 3200 Clusters 94.11
Turian (HLBL) 94.00
Turian (C&W) 94.10
SENNA 93.94
word2vec (SK) 94.02
word2vec (CB) 94.16
eigenwords (OSCCA) 94.02
eigenwords (TSCCA) 94.23
eigenwords (LR-MVL(I)) 93.97
eigenwords (LR-MVL(II)) 94.13

Table 8: Chunking Results. Note that the numbers reported for eigenwords here are different
than those in (Dhillon et al., 2011) as we use a different vocabulary size and different
dimensionality than there.

3061

Dhillon, Foster and Ungar

produced as output. This can be seen in contrast with more traditional monolingual WSD
tasks, in which word senses are instead chosen from a pre-determined sense inventory such
as WordNet (Fellbaum, 1998). By framing the problem in a multilingual setting, several
important issues are addressed at once. First, by using foreign words rather than human-
defined sense labels to resolve ambiguities, WSD systems can more directly be integrated
into machine translation and multilingual information retrieval systems, two major areas of
application. Moreover, such systems are generalizable to any languages for which sufficient
parallel data exists, and do not require the manual construction of sense inventories or
sense-tagged corpora for training.

9.5.1 Task Description

We focus on the SemEval 2013 cross-lingual WSD task (Lefever and Hoste, 2013), for which
20 English nouns were chosen for disambiguation. This was framed as an unsupervised
task, in which the only provided training data was a sentence-aligned subset of the Europarl
parallel corpus (Koehn, 2005). Six languages were included: the source language, English,
and the five target languages, namely Spanish, Dutch, German, Italian, and French.

To evaluate a system’s output, its answers were compared against the gold standard
translations, and corresponding precision and recall scores were computed.

Two evaluation schemes were used in this Semeval task: a Best evaluation metric and
an Out-of-Five evaluation metric. For the Best metric, systems could propose multiple
sense labels, but the resulting scores were divided by the number of guesses. For the Out-
of-Five metric, systems could propose up to five translations without penalty. Further
details about this task’s evaluation metric can be found in Section 4.1 of Lefever and Hoste
(2013).

9.5.2 System Description

Our baseline system was an adaptation of the layer one (L1) classifier described in Section
2 of Rudnick et al. (2013), which was one of the top-scoring systems in the SemEval 2013
cross-lingual WSD task. This system used a maximum entropy model trained on monolin-
gual features from the English source text, incorporating words, lemmas, parts of speech,
etc. within a small window of the ambiguous word being classified (Please see Figure 1 of
Rudnick et al. (2013) for a detailed list of features). Training instances were extracted pro-
grammatically from the provided Europarl subcorpus, using the code made publicly available
on the group’s GitHub repository14.

The MEGA Model Optimization Package (MegaM) (Daumé III, 2004) and its NLTK
interface (Bird et al., 2009) were used for training the models and producing output for the
test sentences.

Using the L1 classifier as a starting point, we began by making two minor modifications
to make the system more amenable to further changes. First, regularization was introduced
in the form of a Gaussian prior by setting the sigma parameter in NLTK’s MegaM interface
to a nonzero value. Second, “always-on” features were enabled, allowing the classifier to
explicitly model the prior probabilities of each output label. Building on this system, we
then introduced a variety of embeddings to accompany the existing lexical features. Each

14. https://github.com/hltdi/semeval2013

3062

Eigenwords: Spectral Word Embeddings

Best Spanish Dutch German Italian French
Most-Frequent Baseline 23.23 20.66 17.43 20.21 25.74
Original L1 System 28.67 21.37 20.64 23.34 27.75
C&W 29.76 25.17 22.47 23.59 30.20
HLBL 28.34 24.60 22.35 23.13 29.54
SENNA 30.78 24.06 22.39 25.28 30.13
Word2Vec (CB) 29.59 25.07 22.73 23.34 30.23
Word2Vec (SK) 29.34 25.04 22.49 23.64 30.09
eigenwords (OSCCA) 30.10 24.58 22.79 24.53 30.37
eigenwords (TSCCA) 30.76 24.56 22.68 24.61 30.55
eigenwords (LR-MVL(I)) 30.36 24.51 22.92 24.17 30.30
eigenwords (LR-MVL(II)) 30.72 24.83 22.97 24.85 30.39

Table 9: Best metric F-scores averaged over the twenty English test words.

class of features was included independently of the others in a separate experiment to allow
for a direct comparison of the results.

9.5.3 Results

Our experiments were performed using the trial and test data sets from the SemEval 2010
competition, which were released as the trial data for the SemEval 2013 competition. Since
the same ambiguous English nouns were tested in both competitions, few changes to the
training process were required. The SemEval 2010 trial data was used to select appropriate
regularization parameters, and the SemEval 2010 test data was used for the final evaluations.

We used the most frequent translation of an ambiguous word in the training corpus to
obtain a baseline score for the Best evaluation metric, and the five most frequent transla-
tions to obtain a baseline score for the Out-of-Five evaluation metric. These scores are
presented alongside the results of the original L1 classifier and its extensions in Tables 9 and
10. All reported scores are macro averages of the F-scores for the twenty test words from
the SemEval 2010 test data. The best score in each category is bolded for emphasis.

We observe that in all cases, the top-scoring system includes some form of vector word
embeddings, indicating that these features indeed provide useful information beyond the lexi-
cal features from which they are derived. Moreover, the systems using eigenword embeddings
outperform the other systems in a majority of cases for both the Best and Out-of-Five
evaluation metrics.

9.5.4 Context Specific Embeddings?

The embeddings that we used above for the tasks of NER, Chunking and cross-lingual WSD
were the context “oblivious” embeddings i.e. we just used the φw matrix. As described in
Section 5 one could induce context specific embeddings also, which help in disambiguating
polysemous words. However it turns out that for the tasks of NER, Chunking and WSD
they did not give any additional improvement in accuracy. This is due to the fact that in
addition to the embedding of the current word we also use the embeddings of words in a
window of 2 around the current word as features. They serve as a proxy for the context

3063

Dhillon, Foster and Ungar

Out-of-Five Spanish Dutch German Italian French
Most-Frequent Baseline 53.07 43.59 38.86 42.63 51.36
Original L1 System 60.93 46.12 43.40 51.89 57.91
C&W 62.07 48.81 45.06 55.42 63.21
HLBL 61.11 47.25 44.51 55.16 61.19
SENNA 62.88 49.15 45.22 55.92 62.28
Word2Vec (CB) 62.32 48.74 45.51 56.04 62.64
Word2Vec (SK) 61.97 48.35 45.42 56.04 62.55
eigenwords (OSCCA) 62.46 49.85 46.34 56.36 62.98
eigenwords (TSCCA) 62.99 49.53 46.60 55.91 63.37
eigenwords (LR-MVL(I)) 62.81 49.63 47.03 56.40 63.12
eigenwords (LR-MVL(II)) 63.05 49.58 46.86 56.23 63.51

Table 10: Out-of-Five metric F-scores averaged over the twenty English test words.

specific embeddings and capture similar discriminative context information as the context
specific embeddings do. However, if one only uses the embeddings of the current word
as features, then context specific embeddings give improved performance compared to the
context oblivious embeddings and the improvement is similar to using the context oblivious
embeddings and the embeddings of words in a window of 2 around that word as features.

9.6 Google Semantic and Syntactic Relations Task

(Mikolov et al., 2013a,b) present new syntactic and semantic relation data sets composed of
analogous word pairs. The syntactic relations dataset contains word pairs that are different
syntactic forms of a given word e.g. write : writes :: eat : eats There are nine such different
kinds of relations: adjective-adverb, opposites, comparative, superlative, present participle,
nation-nationality, past tense, plural nouns and plural verbs

The semantic relations dataset contains pairs of tuples of word relations that follow a
common semantic relation e.g. in Athens : Greece :: Canberra : Australia, where the two
given pairs of words follow the country-capital relation. There are three other such kinds of
relations: country-currency, man-woman, city-in-state and overall 8869 such pairs of words.
The task here is to find a word d that best fits the following relationship: a : b :: c : d
given a, b and c. They use the vector offset method, which assumes that the words can
be represented as vectors in vector space and computes the offset vector: yd = ea − eb + ec
where ea, eb and ec are the vector embeddings for the words a, b and c. Then, the best
estimate of d is the word in the entire vocabulary whose embedding has the highest cosine
similarity with yd. Note that this is a hard problem as it is a v class problem, where v is
the vocabulary size.

Table 11 shows the performance of various embeddings for semantic and syntactic relation
tasks. Here, as earlier, we trained eigenwords on a Reuters RCV1 with a window size of
2, however as can be seen it performed significantly better compared to all the embeddings
except word2vec. We conjectured that it could be due to the fact that we were taking too
small a context window which mostly captures syntactic information, which was sufficient
for the earlier tasks. So, we experimented with a window size of 10 with the hope that

3064

Eigenwords: Spectral Word Embeddings

a broader context window should be able to capture semantic and topic information. For
this configuration, the eigenwords’ performance was comparable to word2vec and as we had
intuited most of the improvement in performance took place on the semantic relation task 15.

Embedding/Model Semantic
Relation

Syntactic
Relation

Total Accu-
racy

Turian (C&W) 1.41 2.20 1.84
Turian (HLBL) 3.33 13.21 8.80
SENNA 9.33 12.35 10.98
eigenwords (Window size= 2) (Best) 12.41 30.27 22.28
word2vec (Window size= 10) (SK) 33.91 32.81 33.30
word2vec (Window size= 10) (CB) 31.05 36.21 33.90
eigenwords (Window size= 10) (OSCCA) 34.79 31.01 32.70
eigenwords (Window size= 10) (TSCCA) 6.06 10.19 8.34
eigenwords (Window size= 10) (LR-MVL(I)) 35.43 32.12 33.60
eigenwords (LR-MVL(II)) 5.41 19.20 13.03

Table 11: Accuracies for Semantic, Syntactic Relation Tasks and total accuracies.

9.6.1 Which Eigenword Embeddings to Use?

We proposed four algorithms for learning word embeddings and from a practitioners point
of view it is natural to ask: Which embedding do I use for my supervised NLP task? Based
on the experiments and our experience we found that OSCCA = TSCCA > LR-MVL (I) >
LR-MVL(II). In other words, OSCCA and TSCCA work remarkably well out-of-the-box and
are robust to the choice of the hidden state dimensionality (k) or the context size (h). Also,
since they are not iterative algorithms, they are faster to run than the LR-MVL algorithms.
LR-MVL(I) trails the OSCCA and TSCCA algorithms only slightly (not significantly) in
terms of performance and sometimes gave better performance than them e.g. on the Google
analogy tasks.

The LR-MVL algorithms are different in spirit than OSCCA and TSCCA as they involve
an iterative procedure. Unfortunately, since the algorithms involve a CCA operation, they
are non-convex and hence there are no convergence guarantees. It might be possible to
borrow some theoretical machinery from the alternating minimization literature (Netrapalli
et al., 2013) to get convergence bounds, but it is beyond the scope of this paper and we
leave it for future work. That said, empirically we never faced any issues regarding multiple
local-optima, convergence or matrix inversions. We repeated the process 20 times and both
the LR-MVL algorithms gave similar answers.

We found the LR-MVL(II) algorithm to be the least robust and highly sensitive to the
values and amounts of smooths used. Its behavior can be explained by its genesis and
our motivation for proposing it. LR-MVL(II)) is based on modeling language data using
time-series models (in fact exponential smoothing is an ARIMA(0,1,1) process). So, from
a modeling perspective LR-MVL(II) has a mature story but still empirically it performs
worse than simpler models like OSCCA and TSCCA. This, itself sheds some light on the
task of word embedding learning in that simple models work really well and are hard to

15. Note that here TSCCA’s performance is significantly worse than other algorithms. This should not be
entirely surprising as the theoretical analysis of TSCCA assumes squared loss and those guarantees need
not hold after performing vector arithmetic.

3065

Dhillon, Foster and Ungar

beat. Perhaps, its so because the text data is not fully amenable to exponential smoothing,
like financial or economic time series data and too small or too big smooths scramble the
signal provided by the Zipfian distributed words. Also, since it performs smoothing on one
document at a time and is iterative, it can be significantly slower to run.

10. Conclusion & Future Work

In this paper we made two main contributions. First, we proposed four algorithms for
learning word embeddings (eigenwords) which are fast to train, have strong theoretical
properties, can induce context specific embeddings and have better sample complexity for
rare words. All the algorithms had a Canonical Correlation Analysis (CCA) style eigen-
decomposition at their core. We performed a thorough evaluation of eigenwords learned
using these algorithms, and showed that they were comparable to or better than other state-
of-the-art algorithms when used as features in a set of NLP classification tasks. Eigenwords
are able to capture nuanced syntactic and semantic information about the words. They
also have a clearer theoretical foundation than the competing algorithms, which allows us
to bound their error rate in recovering the true hidden state under linearity assumptions.

Second, we showed that linear models help us attain state-of-the-art performance on
text applications and there is no need to move to more complex non-linear models, e.g.
Deep Learning based models. In addition, spectral learning methods are highly scalable
and parallelizable and can incorporate the latest advances in numerical linear algebra as
black-box routines.

There are many open avenues for future research building on the above spectral methods.

1. Our word embeddings are based on modeling individual words based on their contexts;
it will be interesting to induce embeddings for entire phrases or sentences. There are
multiple possibilities here. One could directly model phrases by considering a phrase
as a “unit” rather than a word, perhaps taking the context of a word or phrase from
connected elements in a dependency or constituency parse tree. Another possibility is
to learn embeddings for individual words but then combine them in some manner to
get an embedding for a phrase or a sentence; some relevant work on this problem has
been done by (Socher et al., 2012, 2013).

2. Closely related is the idea of semantic composition. Recent advances in spectral learn-
ing for tree structures e.g. (Dhillon et al., 2012a; Cohen et al., 2012) may be able to
be extended to provide scalable principled alternative methods to the recursive neural
networks of (Socher et al., 2012, 2013).

3. Also it will be fruitful to study embeddings where the contexts are left and right
dependencies of a word rather than the neighboring words in the surface structure of
the sentence. This might give more precise embeddings with smaller data sets.

4. It will also be interesting to incorporate more domain knowledge into the learning of
eigenwords. For example, one could envision using ontologies like WordNet (Fellbaum,
1998) as priors in an otherwise data-driven embedding learning.

3066

Eigenwords: Spectral Word Embeddings

Appendix A.

CCA by SVD. Proof of Equation 1:
Proof Assuming W is the n × v word matrix and C is the n × hv context matrix where
n is the number of tokens in the corpus, h is the context size and v is the vocabulary
size. Further Cwc = W>C, Ccc = C>C and Cww = W>W. The CCA objective is to
find vectors φw and φc such that the linear combinations sw = φ>wW and scc = φ>c C are
maximally correlated i.e.

max
φw,φc

φw
>Cwcφc√

φw
>Cwwφw

√
φc
>Cccφc

.

This is equivalent to
max
φw,φc

φw
>Cwcφc,

subject to unit-norm constraints φw>Cwwφw = I and φc>Cccφc = I.
Then, performing full SVD on Cww and Ccc, we get

Cww = VwΛwV>w ,

Ccc = VcΛcV
>
c ,

where V>wVw = Iv×v and V>c Vc = Ihv×hv.
Define change of basis as

uw = Λ−1/2w V>wW,

ucc = Λ−1/2c V>c C,

Now, in this new transformed basis:
E[u>wuw] = Λ

−1/2
w V>wWV>wΛwVwVwΛ

−1/2
w = Iv×v and similarly E[u>ccucc] = Ihv×hv, as

desired.
Transform the coefficients φw and φc, so that sw and scc can be expressed as linear

combination in the new basis:

sw = φ>wW = g>φwuw

scc = φ>c C = g>φcucc

where gφw = ΛwVwφw and gφc = ΛcVcφc.
So, the CCA optimization problem can be cast as the following maximization criteria

max
gφw ,gφc

g>φwDwcgφc

subject to unit-norm constraints g>φwgφw = I and g>φcgφc = I, where Dwc = Λ
−1/2
w V>wCwcVcΛ

−1/2
c .

The solution to above is nothing but the SVD of Dwc.

3067

Dhillon, Foster and Ungar

Finally, we can construct the original coefficient matrices φw and φc as φw = VwΛ
−1/2
w Gφw

and φc = VcΛ
−1/2
c Gφc , where Gφw and Gφc are the matrices corresponding to the vectors

gφw and gφc respectively.
Now, in our case Cww = W>W is the diagonal word occurrence matrix with the words

counts in the corpus on the diagonal, so Λ
−1/2
w is nothing but C

−1/2
ww and Vw = I.

The context matrix Ccc = C>C, though is not diagonal but it can be approximated by
its diagonal. One could also approximate it as a diagonal matrix plus its first order Tay-
lor’s expansion, but it would make the resulting matrix substantially more dense and hence
the computations intense. In our experiments we found no improvement in prediction ac-
curacy by adding the first order Taylor’s term, so we approximate Ccc just by its diagonal.

Proof of Theorem 1:
Proof Without loss of generality, we can assume that W and C have been transformed
to their canonical correlations coordinate space. So V ar(W) is the identity and V ar(C) is
the identity, and the Cov(W,C) is a diagonal with non-increasing values ρi on the diagonal
(namely the correlations / singular values). We can write α and β in this coordinate system.
By orthogonality we now have βi = ρiαi. So, E(Y − βW)2 is simply

∑
(αi − βiρi)2. Which

is
∑
α2
i (1 − ρ2i). Our estimator will then have γi = βi for i smaller than k and γi = 0

otherwise. Hence (Ŷ − β>W)2 =
∑∞

i=k+1 β
2
i .

So if we pick k to include all terms which have ρi ≥
√
ε our error will be less than

ε
∑∞

i=k+1 α
2
i ≤ ε.

Proof of Theorem 2:
Proof The key is that CCA can be understood using the same machinery as is used for
analyzing linear regression. In this context we want to recover the word of length v given
its context which can be expressed in terms of regression. For a more in-depth discussion
of how CCA relates to regression, see (Glahn, 1968), for example. Thus, consider the case
of predicting a vector y of length v (the word) from a vector x (the context, which is of
dimension 2hv in the one step CCA case and dimension 2k in the two step CCA). We
consider the linear model

y = xβ + ε.

Note that, we are predicting only one dimension of our v-dimensional vector y at a time.
We want to understand the variance of our prediction of a word given the context. As

is typical in regression, we calculate a standard error for each coefficient in our contexts,
≈ O(1√

n
). In the one step CCA, X = [L R], and running a regression we will get a

prediction error on order of hvn , but since we have v such y’s we get a total prediction error
on the order of hv

2

n .
For the two-step case we take X = [LφL RφR]. As mentioned earlier, note that now

we are working with about 2k predictors instead of 2hv predictors. If we knew the true φL
and φR, and thus the true subspace covered by our predictors, the regression error would
be on the order of kvn (again, since there are v entries in our vector y). Instead, we have an
estimation of φL and φR. If these were computed on infinite amounts of data (and hence

3068

Eigenwords: Spectral Word Embeddings

we would be arbitrarily close to the true subspace)–we would be done. However since they
come from a sample, we are using φ̂L and φ̂R which are approximation to the ideal φL and
φR. So our task is to understand the error introduced by this sample approximation of the
true CCA. First, we develop some notation and concepts found in (Stewart, 1990).

Consider two subspaces V and V̂ and respective matrices containing an orthonormal
basis for these subspaces V and V̂. Let γ1, γ2, . . . be the singular values of the matrix V>V̂,
then define

θi = cos−1 γi,

and define the canonical angle matrix Θ = diag(θ1, . . . , θk).
These values of Θ capture the effect of using estimated singular vectors, V̂ to form an

underlying subspace, as compared to the true subspace formed by the true singular vectors V
stemming from infinite data. The largest canonical angle captures the largest angle between
any two vectors- one from the perturbed subspace and one from the true subspace. The
second largest canonical angle captures the second largest angle between any two vectors
given that they are orthogonal to the original two, and so on. In this proof we will only make
use of the largest canonical angle to provide a loose upper bound on the error stemming
from the imperfect estimation of the true subspace.

Now, consider a matrix Â = A + E and take the thin singular value decomposition of
A and Â (and here we take the liberty of applying diag in a block matrix sense)

A = [U1U2]diag(Λ1,Λ2)[V1V2]>

Â = [Û1Û2]diag(Λ̂1, Λ̂2)[V̂1V̂2]>

In our case we have that λi = 0 for all λi ∈ Λ2.
From (Stewart and Sun, 1990), we have that

max{|| sin Θ||2, || sin Ψ||2} ≤ c||E||2, (3)

for some constant c where here Θ is the matrix of canonical angles formed from the subspaces
of U and Û, and Ψ is the matrix of canonical angles formed between the subspaces of V
and V̂. Note that since Θ and Ψ are diagonal matrices the induced norms || · ||2 recover the
largest canonical angle of each subspace, and hence we can simultaneously derive an upper
bound for the largest canonical angle of either subspace.

We have now developed the machinery we need to analyze the two step CCA.
Without loss of generality, assume that L>L = R>R = I (Even if it is not, we can always

rotate L and R such that L>L = R>R = I and since PCA/CCA are only identifiable up to
a rotation, we would get the same answer.), then ultimately we are interested in projection
onto the subspace spanned by B = [LU1 RV1]. Note that because of our assumption
the projection onto LU1 is LU1U>1 L> and similarly for RV1. Furthermore, note from our
assumptions that LU1 forms an orthonormal basis for the space spanned by LU1 (since

(LU1)>(LU1) = U>1 L>LU1 = I,

and similarly for LÛ1, RV1, and RV̂1).
Lastly, and critically, the singular values of U>1 L>LÛ1 are identical to those of U>1 Û1

(similarly for RV1 etc.) and so from above we have that the matrix of canonical angles

3069

Dhillon, Foster and Ungar

between the subspaces LU1 and LÛ1 are identical to Θ, the matrix of canonical angles
between U1 and Û1, and likewise the matrix of canonical angles between the subspaces
RV1 and RV̂1 are identical to Ψ, the matrix of canonical angles between V1 and V̂1, and
thus the maximal angle enjoys the same bound derived above. If we can get a handle on
the spectral norm of E, which will come directly from random matrix theory, then we can
bound the largest canonical angle of our two subspaces.

We know that E is a random matrix of iid Gaussian entries with variance 1
n , and that the

largest singular value of a matrix is the spectral norm of the matrix. From random matrix
theory we know that the square of the spectral norm of E is O(

√
hv√
n

), from say (Rudelson
and Vershynin, 2010).

The strategy will be to divide the variance in the prediction of y into two separate parts.
First the variance that comes from predicting using the incorrect subspace, and then the
variance from regression (as stated above) if we had the correct subspace.

Let X̂ = [Lφ̂L Rφ̂R] (i.e. the incorrect subspace) and X = [LφL RφR] (the true
version). To get a handle on predicting with the incorrect subspace (we will consider the
subspaces LφL and RφR separately here, but note that from (3) the angles between the
subspaces and their respective perturbed subspaces are bounded by a common bound) we
note that, for the regression of Y on X we have

β|X̂ =
Cov(Y, X̂)

Var(X̂)
,

and

β|X =
Cov(Y,X)

Var(X)
,

and

Cov(Y,X) = Cov(Y, X̂),

so trivially,

β|X̂ = β|X ∗ Var(X)

VarX̂

= β|X ∗ Var(X)

Var(X) + Var(X− X̂)
.

Let ŷ be the the estimate of y from the true subspace, and ˆ̂y be the estimate from the
perturbed subspace. For the first part of our strategy, bounding the error that comes from
predicting with the incorrect subspace, we want to bound E(ŷ − ˆ̂y)2.

3070

Eigenwords: Spectral Word Embeddings

We have, [
ŷ − ˆ̂y

]2
=
[
β|X ∗ x− β|X̂ ∗ x

]2
,

=
[
(β|X− β|X̂) ∗ x

]2
,

=

[(
β|X− β|X Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
,

=

[
β|X

(
1− Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2
,

=

[
β|X ∗ x

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2
,

=

[
ŷ ∗

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2
. (4)

Because we are working with a ratio of variances instead of actual variances, then without
loss of generality we can set Var(X̂) = 1 for all predictors.

Now, we don’t really care what the exact ‘true’ X’s are (formed with the true singular
vectors), because we only care about predicting y and not actually recovering the true β’s
associated with our SVD. This means we do not suffer from the usual constraints imposed
on the erratic behavior of singular vectors. Usually one must handle this kind of error
with respect to the entire subspace since singular vectors are highly unstable. In our case,
however, we are free to compare to any ‘true’ vectors we like from the correct subspace, as
long as they span the entire true subspace (and nothing more).

We will define a theoretical set of predictors to compare with, then. We are doing this
to obtain an upper bound for the total possible variance of Var(x − x̂) for any acceptable
set of x’s in the true underlying subspace (where we take acceptable to mean that the x’s
span the true subspace and nothing more).

We handle each subspace LÛ1 and RV̂1 separately. The construction is to take our first
vector and choose a vector from the true subspace that lies such that the angle between the
two vectors is the maximal canonical angle between the true and perturbed subspaces.

We proceed to our second predictor and choose a vector from the true subspace such the
second ‘true’ predictor is orthogonal to the first. Note that the angle between our second
observed x̂ and the second chosen x is at most the maximal canonical angle by assumption.
Again, because we don’t care about the β’s associated with our true singular vectors, but
only about prediction quality of our perturbed subspace, we need not be worried that our
chosen vectors might not be the true singular vectors. We continue in this manner until we
have expired all of our predictors from both sets of spaces.

We know from above that the sine of the maximal angle of of both sets of subspaces is
O
(√

hv√
n

)
and so we have that the maximal variation

Var(X− X̂)

Var(X̂)
∼ O

(√
hv√
n

)
,

3071

Dhillon, Foster and Ungar

and so from 4 we have

E(ŷ − ˆ̂y)2 = E

[
ŷ ∗O

(√
hv√
n

)]2
≈ O

(
hv

n
∗ 1

v

)
= O

(
h

n

)
.

We have v of these to predict, so we have a total error attributable to subspace estima-
tion on the order of hvn . Adding regression error as we did from above, which is on the order
of kv

n we get a total error of (h+k)v
n . We recall that the error from the one step CCA is on

the order of hv
2

n which yields an error ratio of h+khv .

Proof of Lemma 3 and Theorem 4:
Proof Our goal is to find a v×k matrix φw that maps each of the v words in the vocabulary
to a k-dimensional state vector. We will show that the φw we find preserves the information
in our data and allows a significant data reduction.

Let L be an n× hv matrix giving the words in the left context of each of the n tokens,
where the context is of length h, R be the corresponding n×hv matrix for the right context,
and W be an n × v matrix of indicator functions for the words themselves. Also, let l, r
and w be the underlying multivariate random variables from which the “observed” matrices
L, R and W were generated by the data generating process.

We will use three assumptions at various points in our proof:

Assumption 1 l, r and w come from a rank k HMM i.e it has a rank k observation matrix
and a rank k transition matrix both of which have the same domain.

For example, if the dimension of the hidden state is k and the vocabulary size is v then the
observation matrix, which is k × v, has rank k. This rank condition is similar to the one
used by (Siddiqi et al., 2010).

Assumption 1A 1 For the three views, l, r and w assume that there exists a k dimensional
“hidden state ~”, such that E(l|~) = ~β>l and E(r|~) = ~β>r and E(w|~) = ~β>w where all
β’s are of rank k.

This assumption actually follows from the previous one.

Assumption 2 ρ(l, w), ρ(l, r) and ρ(w, r) all have rank k, where ρ(a, b) is the expected
correlation between the random vectors a and b.

This is a rank condition similar to that in (Hsu et al., 2009).

Assumption 3 ρ([l r], w) has k distinct singular values.

This assumption just makes the proof a little cleaner, since if there are repeated singular
values, then the singular vectors are not unique. Without it, we would have to phrase results
in terms of subspaces with identical singular values.

We also need to define the CCA function that computes the left and right singular vectors
for a pair of matrices:

3072

Eigenwords: Spectral Word Embeddings

Definition 1 (CCA) Compute the CCA between multivariate random vectors z and x.
Let φz be a matrix containing the d largest singular vectors for z (sorted from the largest
on down) and likewise for x. Define the function CCA(z, x) ≡ [φz,φx]. When we want
just one of these φ’s, we will use CCA(z, x)left = φz for the left singular vectors and
CCA(z, x)right = φx for the right singular vectors.

Note that the resulting singular vectors, [φz,φx] can be used to give two redundant
estimates, zφz and xφx of the “hidden” state relating z and x, if such a hidden state exists.

Lemma 3 Define φw by the following right singular vectors:

CCA([l r], w)right ≡ φw.

Under assumptions 2, 3 and 1A, such that if CCA(l, r) ≡ [φl,φr] then we have

CCA([lφl rφr], w)right = φw.

This lemma shows that instead of finding the CCA between the full context and the
words, we can take the CCA between the Left and Right contexts, estimate a k dimensional
state from them, and take the CCA of that state with the words and get the same result.
Proof:
Proof By Assumption 1A, we see that:

E(lβl|~) = ~β>l βl,

and
E(rβr|~) = ~β>r βr,

Since, again by assumption 1Aboth of the β matrices have full rank, β>l βl is a k × k
matrix of rank k, and likewise for β>r βr. So

E(β>r r
>lβl|~) = β>r βr~>~βLβ>r ,

i.e.,
β>r E(r>l)βl = β>r βrE(~>~)βlβ

>
l ,

since β>r βr, E(~>~) and β>l βl are all k × k full rank matrices, βr and βl span the same
subspace as the singular values of the CCA between l and r since by Assumption 2 they
also have rank k. Similar arguments hold when relating l with w and when relating r with
w. Thus if CCA([l r], w) ≡ [φl, φr],

CCA(lφl, rφr)right = CCA([lβl rβr], w)right,

(where we have used Assumption 3 to ensure that not only are the subspaces the same, but
that the actual singular vectors are the same.)

Finally by Assumption 3 we know that the rank of CCA([l r], w)right is k, we see that

CCA([lβl rβr], w)right = CCA([l r], w)right.

3073

Dhillon, Foster and Ungar

Calling this common equality φw yields our result.

Let φhw denote a matrix formed by stacking h copies of φw on top of each other. Right
multiplying l or r by φhw projects each of the words in that context into the k-dimensional
reduced rank space.

The following theorem addresses the core of the LR-MVL(II) algorithm, showing that
there is an φw which gives the desired dimensionality reduction. Specifically, it shows that
the previous lemma also holds in the reduced rank space.

Theorem 4 Under assumptions 1, 2 and 3 there exists a unique matrix φw such that if

[φhl ,φ
h
r] ≡ CCA(lφhw, rφ

h
w),

then
φw = CCA([lφhwφ

h
l rφhwφ

h
l], w)right,

where φhw is the stacked form of φw.

Proof: We start by noting that Assumption 1 implies Assumption 1A. Thus, the previous
lemma follows. So, we know

CCA([l r], w)right = CCA([lφl rφr], w)right.

Let’s define this common quantity as φw. This φw has the property that the rank of
CCA(wφw, ~)left is the same as CCA(w, ~)left where ~ is the hidden state process asso-
ciated with our data. Hence anything which is not in the domain of φw won’t have any
correlation with ~ and hence no correlation with other observed states. So l and lφhw have
the same “information” (predictive power of a linear estimator based on them). More pre-
cisely, [φhwφ

h
l ,φ

h
wφ

h
r] = CCA(l, r). Putting this together with the first equation gives the

desired result.

References

S. Afonso, E. Bick, R. Haber, and D. Santos. Floresta sinta(c)tica: a treebank for portuguese.
In Proceedings of LREC, pages 1698–1703, 2002.

R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning Research, 6:1817–1853, 2005.

F. Anscombe. The Transformation of Poisson, Binomial and Negative-Binomial data.
Biometrika, pages 246–254, 1948.

F. Bach and M. Jordan. A probabilistic interpretation of canonical correlation analysis. In
TR 688, University of California, Berkeley, 2005.

3074

Eigenwords: Spectral Word Embeddings

M. Bansal, K. Gimpel, and K. Livescu. Tailoring continuous word representations for de-
pendency parsing. In Proceedings of ACL, 2014.

S. Bird and E. Loper. NLTK: The natural language toolkit. In Proceedings of the ACL
2004 on Interactive Poster and Demonstration Sessions, ACLdemo ’04, Stroudsburg, PA,
USA, 2004. Association for Computational Linguistics.

S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly Media,
2009.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In In
Proceedings of COLT, pages 92–100, 1998.

P. Brown, P.. deSouza, R. Mercer, V. Della Pietra, and J. Lai. Class-based n-gram models
of natural language. Computational Linguistics, 18:467–479, December 1992. ISSN 0891-
2017.

S. Cohen, K. Stratos, M. Collins, D. Foster, and L. Ungar. Spectral learning of latent-variable
pcfgs. In Proceedings of the ACL: Long Papers-Volume 1, pages 223–231. Association for
Computational Linguistics, 2012.

R. Collobert and J. Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of ICML, pages 160–167, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12:
2493–2537, 2011.

H. Daumé III. Notes on CG and LM-BFGS Optimization of Logistic Regression. Paper
available at http://pub.hal3.name#daume04cg-bfgs, implementation available at http:
//hal3.name/megam/, August 2004.

P. Dhillon, D. Foster, and L. Ungar. Multi-view learning of word embeddings via CCA. In
Proceedings of NIPS, volume 24, 2011.

P. Dhillon, J. Rodu, M. Collins, D. Foster, and L. Ungar. Spectral dependency parsing with
latent variables. In Proceedings of EMNLP-CoNLL, 2012a.

P. Dhillon, J. Rodu, D. Foster, and L. Ungar. Two Step CCA: A New Spectral Method for
Estimating Vector Models of Words. In Proceedings of ICML, 2012b.

S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. Using latent semantic
analysis to improve access to textual information. In Proceedings of SIGCHI Conference
on Human Factors in Computing Systems, pages 281–285. ACM, 1988.

C. Fellbaum. WordNet. Wiley Online Library, 1998.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin.
Placing search in context: The concept revisited. In Proceedings of WWW, pages 406–414.
ACM, 2001.

3075

http://pub.hal3.name#daume04cg-bfgs
http://hal3.name/megam/
http://hal3.name/megam/

Dhillon, Foster and Ungar

D. Foster, S. Kakade, and T. Zhang. Multi-view dimensionality reduction via canonical
correlation analysis. Technical report, Technical Report TR-2008-4, TTI-Chicago, 2008.

H. Glahn. Canonical Correlation and Its Relationship to Discriminant Analysis and Multiple
Regression. Journal of the Atmospheric Sciences, 25(1):23–31, January 1968.

N. Halko, P-G. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 2011.

D. Hardoon and J. Shawe-Taylor. Sparse cca for bilingual word generation. In EURO Mini
Conference, Continuous Optimization and Knowledge-Based Technologies, 2008.

D. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview
with application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

H. Hotelling. Canonical correlation analysis (CCA). Journal of Educational Psychology,
1935.

D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models.
In Proceedings of COLT, 2009.

E. Huang, R. Socher, C. Manning, and A. Ng. Improving Word Representations via Global
Context and Multiple Word Prototypes. In Proceedings of ACL:Long Papers-Volume 1,
pages 873–882. Association for Computational Linguistics, 2012.

F. Huang and A. Yates. Distributional representations for handling sparsity in supervised
sequence-labeling. In Proceedings of ACL, pages 495–503, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics. ISBN 978-1-932432-45-9.

F. Huang, A. Ahuja, D. Downey, Y. Yang, Y. Guo, and A. Yates. Learning representations
for weakly supervised natural language processing tasks. Computational Linguistics, 2013.

D. Jurafsky and J. Martin. Speech & Language Processing. Pearson Education India, 2000.

S. Kakade and D. Foster. Multi-view regression via canonical correlation analysis. In
Nader H. Bshouty and Claudio Gentile, editors, In Proceedings of COLT, volume 4539 of
Lecture Notes in Computer Science, pages 82–96. Springer, 2007.

P. Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Summit, pages 79–86, Phuket, Thailand, 2005.
AAMT. URL http://mt-archive.info/MTS-2005-Koehn.pdf.

T. Koo, X. Carreras, and M. Collins. Simple semi-supervised dependency parsing. In
Proceedings of ACL, 2008.

M. Kromann. The Danish Dependency Treebank and the Underlying Linguistic Theory. In
Proceedings of LREC, pages 217–220, 2003.

M. Lamar, Y. Maron, M. Johnson, and E. Bienenstock. Svd and clustering for unsupervised
pos tagging. In Proceedings of ACL Short, pages 215–219, Stroudsburg, PA, USA, 2010.
Association for Computational Linguistics.

3076

http://mt-archive.info/MTS-2005-Koehn.pdf

Eigenwords: Spectral Word Embeddings

T. Landauer, P. Foltz, and D. Laham. An introduction to latent semantic analysis. In
Discourse processes, 2008.

E. Lefever and V. Hoste. SemEval-2013 Task 10: Cross-Lingual Word Sense Disambiguation.
In In Proceedings of SemEval 2013, Atlanta, USA, 2013.

M. Marcus, M. Marcinkiewicz, and B. Santorini. Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics, 19:313–330, June 1993. ISSN
0891-2017.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Proceedings of NIPS, pages 3111–3119,
2013b.

A. Mnih and G. Hinton. Three new graphical models for statistical language modelling.
In Proceedings of ICML, pages 641–648, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-793-3. doi: http://doi.acm.org/10.1145/1273496.1273577. URL http://doi.acm.
org/10.1145/1273496.1273577.

P. Netrapalli, P. Jain, and S. Sanghavi. Phase Retrieval using Alternating Minimization. In
Proceedings of NIPS, pages 2796–2804, 2013.

A. Parikh, S. Cohen, and E. Xing. Spectral unsupervised parsing with additive tree metrics.
In Proceedings of ACL, 2014.

J. Pennebaker, M. Francis, and R. Booth. Linguistic inquiry and word count: LIWC 2001.
Mahway: Lawrence Erlbaum Associates, 71:2001, 2001.

F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In In Proceed-
ings of ACL, pages 183–190, 1993.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition.
In Proceedings of CONLL, pages 147–155, 2009.

T. Rose, M. Stevenson, and M. Whitehead. The reuters corpus volume 1-from yesterday’s
news to tomorrow’s language resources. In Proceedings of LREC, volume 2, pages 827–832,
2002.

M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: extreme
singular values, 2010. URL http://www.citebase.org/abstract?id=oai:arXiv.org:
1003.2990.

A. Rudnick, C. Liu, and M. Gasser. HLTDI: CL-WSD Using Markov Random Fields for
SemEval-2013 Task 10. In Proceedings of SemEval 2013, 2013.

M. Seligman. Flourish: A Visionary New Understanding of Happiness and Well-being. Free
Press, 2011.

3077

http://doi.acm.org/10.1145/1273496.1273577
http://doi.acm.org/10.1145/1273496.1273577
http://www.citebase.org/abstract?id=oai:arXiv.org:1003.2990
http://www.citebase.org/abstract?id=oai:arXiv.org:1003.2990

Dhillon, Foster and Ungar

S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov models. In Proceedings
of AISTATS, 2010.

K. Simov, P. Osenova, M. Slavcheva, S. Kolkovska, E. Balabanova, D. Doikoff, K. Ivanova,
A. Simov, E. Simov, and M. Kouylekov. Building a linguistically interpreted corpus of
bulgarian: the bultreebank. In Proceedings of LREC, 2002.

N. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled
data. In Proceedings of ACL, pages 354–362. Association for Computational Linguistics,
2005.

R. Socher, B. Huval, C. Manning, and A. Ng. Semantic compositionality through recursive
matrix-vector spaces. In Proceedings of the EMNLP-CoNLL, pages 1201–1211. Association
for Computational Linguistics, 2012.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Recursive
deep models for semantic compositionality over a sentiment treebank. In Proceedings of
EMNLP, pages 1631–1642. Citeseer, 2013.

G. Stewart. Perturbation theory for the singular value decomposition. In SVD and Signal
Processing, II: Algoritms, Analysis and Applications, pages 99–109. Elsevier, 1990.

G. Stewart and J. Sun. Matrix perturbation theory. Computer science and scientific com-
puting. Academic Press, 1990. ISBN 9780126702309. URL http://books.google.com/
books?id=l78PAQAAMAAJ.

J. Suzuki and H. Isozaki. Semi-supervised sequential labeling and segmentation using giga-
word scale unlabeled data. In Proceedings of ACL, 2008.

O. Täckström, R. McDonald, and J. Uszkoreit. Cross-lingual word clusters for direct transfer
of linguistic structure. In Proceedings of NAACL-HLT, pages 477–487. Association for
Computational Linguistics, 2012.

S. Teufel. The structure of scientific articles. CSLI Publications, 2010.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general method
for semi-supervised learning. In Proceedings of ACL, pages 384–394, Stroudsburg, PA,
USA, 2010. Association for Computational Linguistics. URL http://portal.acm.org/
citation.cfm?id=1858681.1858721.

P. Turney and P. Pantel. From frequency to meaning: vector space models of semantics.
Journal of Artificial Intelligence Research, 37:141–188, 2010.

T. Zhang and D. Johnson. A robust risk minimization based named entity recognition
system. In Proceedings of CONLL, pages 204–207, 2003.

3078

http://books.google.com/books?id=l78PAQAAMAAJ
http://books.google.com/books?id=l78PAQAAMAAJ
http://portal.acm.org/citation.cfm?id=1858681.1858721
http://portal.acm.org/citation.cfm?id=1858681.1858721

	Introduction
	Brief Review: Canonical Correlation Analysis (CCA)
	Suitability of CCA for Learning Word Embeddings

	Problem Formulation
	One Step CCA (OSCCA)
	Theoretical Properties

	Efficient Eigenwords with Better Sample Complexity
	Two Step CCA (TSCCA) for Estimating Eigenword Dictionary
	Low Rank Multi-View Learning (LR-MVL)
	The LR-MVL Algorithms
	Theoretical Properties of LR-MVL

	Generating Context Specific Embeddings
	Efficient Estimation
	Evaluating Eigenwords
	Qualitative Evaluation of OSCCA
	Quantitative Evaluation
	Part of Speech (POS) Tagging
	Word Similarity Task (WordSim-353)
	Sentiment Classification
	Named Entity Recognition (NER) & Chunking
	Datasets and Experimental Setup
	Results

	Cross Lingual Word Sense Disambiguation: SEMEVAL 2013
	Task Description
	System Description
	Results
	Context Specific Embeddings?

	Google Semantic and Syntactic Relations Task
	Which Eigenword Embeddings to Use?

	 Conclusion & Future Work
	

