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Abstract

We study the sample complexity of multiclass prediction in several learning settings. For the
PAC setting our analysis reveals a surprising phenomenon: In sharp contrast to binary clas-
sification, we show that there exist multiclass hypothesis classes for which some Empirical
Risk Minimizers (ERM learners) have lower sample complexity than others. Furthermore,
there are classes that are learnable by some ERM learners, while other ERM learners will
fail to learn them. We propose a principle for designing good ERM learners, and use this
principle to prove tight bounds on the sample complexity of learning symmetric multiclass
hypothesis classes—classes that are invariant under permutations of label names. We fur-
ther provide a characterization of mistake and regret bounds for multiclass learning in the
online setting and the bandit setting, using new generalizations of Littlestone’s dimension.
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1. Introduction

Multiclass prediction is the problem of classifying an object into one of several possible
target classes. This task surfaces in many domains. Common practical examples include
document categorization, object recognition in computer vision, and web advertisement.

The centrality of the multiclass learning problem has spurred the development of various
approaches for tackling this task. Most of these approaches fall under the following general
description: There is an instance domain X and a set of possible class labels ). The goal
of the learner is to learn a mapping from instances to labels. The learner receives training
examples, and outputs a predictor which belongs to some hypothesis class # C Y%, where
Y% is the set of all functions from X to ). We study the sample complexity of the task
of learning H, namely, how many random training examples are needed for learning an
accurate predictor from H. This question has been extensively studied and is quite well
understood for the binary case (i.e, where |J| = 2). In contrast, as we shall see, existing
theory of the multiclass case is less complete.
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In the first part of the paper we consider multiclass learning in the classical PAC setting
of Valiant (1984). Since the 1970’s, following Vapnik and Chervonenkis’s seminal work on
binary classification (Vapnik and Chervonenkis, 1971), it was widely believed that exclud-
ing trivialities, if a problem is at all learnable, then uniform convergence holds, and the
problem is also learnable by every Empirical Risk Minimizer (ERM learner). The equiva-
lence between learnability and uniform convergence has been proved for binary classification
and for regression problems (Kearns et al., 1994; Bartlett et al., 1996; Alon et al., 1997).
Recently, Shalev-Shwartz et al. (2010) have shown that in the general setting of learning
of Vapnik (1995), learnability is not equivalent to uniform convergence. Moreover, some
learning problems are learnable, but not with every ERM. In particular, this was shown
for an unsupervised learning problem in the class of stochastic convex learning problems.
The conclusion in Shalev-Shwartz et al. (2010) is that the conditions for learnability in the
general setting are significantly more complex than in supervised learning. In this work
we show that even in multiclass learning, uniform convergence is not equivalent to learn-
ability. We find this result surprising, since multiclass prediction is very similar to binary
classification.

This result raises once more the question of determining the true sample complexity of
multiclass learning, and the optimal learning algorithm in this setting. We provide condi-
tions under which tight characterization of the sample complexity of a multiclass hypothesis
class can be provided. Specifically, we consider the important case of hypothesis classes
which are invariant to renaming of class labels. We term such classes symmetric hypothesis
classes. We show that the sample complexity for symmetric classes is tightly characterized
by a known combinatorial measure called the Natarajan dimension. We conjecture that
this result holds for non-symmetric classes as well.

We further study multiclass sample complexity in other learning models. Overall, we
consider the following categorization of learning models:

e Interaction with the data source (batch vs. online protocols): In the batch protocol,
we assume that the training data is generated i.i.d. by some distribution D over X x ).
The goal is to find, with a high probability over the training samples, a predictor h
such that Pr(, ,y.p(h(z) # y) is as small as possible. In the online protocol we receive
examples one by one, and are asked to predict the label of each given example on the
fly. Our goal is to make as few prediction mistakes as possible in the worst case (see
Littlestone 1987).

e The type of feedback (full information vs. bandits): In the full information setting,
we receive the correct label of every example. In the bandit setting, the learner first
sees an unlabeled example, and then outputs its prediction for the label. Then, a
binary feedback is received, indicating only whether the prediction was correct or not,
but not revealing the correct label in the case of a wrong guess (see for example Auer
et al. 2003, 2002; Kakade et al. 2008).

The batch/full-information model is the standard PAC setting, while the online/full-information

model is the usual online setting. The online/bandits model is the usual multiclass-bandits
setting. We are not aware of a treatment of the batch/bandit model in previous works.
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1.1 Paper Overview

After presenting formal definitions and notations in Section 2, we begin our investigation
of multiclass sample complexity in the classical PAC learning setting. Previous results
have provided upper and lower bounds on the sample complexity of multiclass learning
in this setting when using any ERM algorithm. The lower bounds are controlled by the
Natarajan dimension, a combinatorial measure which generalizes the VC dimension for the
multiclass case, while the upper bounds are controlled by the graph dimension, which is
another generalization of the VC dimension. The ratio between these two measures can be
as large as ©(In(k)), where k = |))| is the number of class labels. In Section 3 we survey
known results, and also present a new improvement for the upper bound in the realizable
case. All the bounds here are uniform, that is, they hold for all ERM learners.

These uniform bounds are the departure point of our research. Our goal is to find a
combinatorial measure, similar to the VC-Dimension, that characterizes the sample com-
plexity of a given class, up to logarithmic factors, independent of the number of classes.
We delve into this challenge in Section 4. First, we show that no uniform bound on arbi-
trary ERM learners can tightly characterize the sample complexity: We describe a family
of concept classes for which there exist ‘good’ ERM learners and ‘bad’ ERM learners, with
a ratio of O(In(k)) between their sample complexities. We further show that if & is infinite,
then there are hypothesis classes that are learnable by some ERM learners but not by other
ERM learners. Moreover, we show that for any hypothesis class, the sample complexity of
the worst ERM learner in the realizable case is characterized by the graph dimension.

These results indicate that classical concepts which are commonly used to provide up-
per bounds for all ERM learners of some hypothesis class, such as the growth function,
cannot lead to tight sample complexity characterization for the multiclass case. We thus
propose algorithmic-dependent versions of these quantities, that allow bounding the sample
complexity of specific ERM learners.

We consider three cases in which we show that the true sample complexity of multiclass
learning in the PAC setting is fully characterized by the Natarajan dimension. The first
case includes any ERM algorithm that does not use too many class labels, in a precise sense
that we define via the new notion of essential range of an algorithm. In particular, the
requirement is satisfied by any ERM learner which only predicts labels that appeared in the
sample. The second case includes any ERM learner for symmetric hypothesis classes. The
third case is the scenario where we have no prior knowledge on the different class labels,
which we defined precisely in Section 4.3.

We conjecture that the upper bound obtained for symmetric classes holds for non-
symmetric classes as well. Such a result cannot be implied by uniform convergence alone,
since, by the results mentioned above, there always exist ERM learners with a sample
complexity that is higher than this conjectured upper bound. It therefore follows that a
proof of our conjecture will require the derivation of new learning rules. We hope that this
would lead to new insights in other statistical learning problems as well.

In Section 5 we study multiclass learnability in the online model and in the bandit
model. We introduce two generalizations of the Littlestone dimension, which characterize
multiclass learnability in each of these models respectively. Our bounds are tight for the
realizable case.
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2. Problem Setting and Notation

Let X be a space, )V a discrete space! and #H a class of functions from X to ). Denote
k = |Y| (note that k can be infinite). For a distribution D over X x ), the error of a function
f X — Y with respect to D is defined as Err(f) = Errp(f) = Pri, )~p(f(z) # y).
The best error achievable by H on D, namely, Errp(H) := inf ey Errp(f), is called the
approximation error of H on D.

In the PAC setting, a learning algorithm for a class H is a function, A : U3 o (X' x V)" —
V¥, We denote a training sequence by S, = {(z1,v1), .., (Zm, ym)}. An ERM learner for
class H is a learning algorithm that for any sample S, returns a function that minimizes
the empirical error relative to any other function in H. Formally, the empirical error of a
function f on a sample S, is

Bre(f) = i € [m) : f(w:) # i}l

A learning algorithm A of class H is an ERM learner if Errg,, (A(Sp)) = minsey Errg,, (f).

The agnostic sample complezity of a learning algorithm A is the function my 4 defined
as follows: For every €,§ > 0, m‘ﬁﬂ(e,cs) is the minimal integer such that for every m >
m% 44(€,0) and every distribution D on X x Y,

P E S, E <. 1
o P (BprAS)) > Br(00) + ) < 1)
Here and in subsequent definitions, we omit the subscript H when it is clear from context.
If there is no integer satisfying the inequality above, define m%(e,d) = oo. H is learnable
with A if for all € and § the agnostic sample complexity is finite. The agnostic sample
complexity of a class H is

maPAC,H(Ev 5) = igf m?‘l,?—[(ev 5) )

where the infimum is taken over all learning algorithms for H. The agnostic ERM sample
complexity of H is the sample complexity that can be guaranteed for any ERM learner. It
is defined by

m%RM{H(Evé): sup m:lA,H(Q(S)’
AEERM

where the supremum is taken over all ERM learners for H. Note that always mpac < mgrwm-.

We say that a distribution D is realizable by a hypothesis class H if there exists some
f € H such that Errp(f) = 0. The realizable sample complexity of an algorithm A for a
class #H, denoted m'y, is the minimal integer such that for every m > m/(e,d) and every
distribution D on X x ) which is realizable by H, Equation (1) holds. The realizable
sample complexity of a class H is mpyc 4(€,6) = inf 4m/y (¢, ), where the infimum is taken
over all learning algorithms for . The realizable ERM sample complexity of a class H is
MErM (€ 6) = Sup gcgrm My (€, 0), where the supremum is taken over all ERM learners
for H.

Given a subset S C X, we denote H|s = {f|s : f € H}, where f|g is the restriction of
f to S, namely, f|g:S — Y is such that for all x € S, f|s(z) = f(x).

1. To avoid measurability issues, we assume that X and ) are countable.
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3. Uniform Sample Complexity Bounds for ERM Learners

We first recall some known results regarding the sample complexity of multiclass learning.
Recall the definition of the Vapnik-Chervonenkis dimension (Vapnik, 1995):

Definition 1 (VC dimension) Let H C {0,1}* be a hypothesis class. A subset S C X is
shattered by H if H|s = {0,1}°. The VC-dimension of H, denoted VC(H), is the mazimal
cardinality of a subset S C X that is shattered by H.

The VC-dimension, a cornerstone in statistical learning theory, characterizes the sample
complexity of learning binary hypothesis classes, as the following bounds suggest.

Theorem 2 (Vapnik, 1995 and Bartlett and Mendelson, 2002) There are absolute
constants C1,Cy > 0 such that for every H C {0, 1}X,

€ €

o (VC(H) +1n(})

) < mpac(e, 6) < mpgp(e, 6) < Co (VC(H) In(1) + ln((ls)) |

and

¢ (W(H)m“‘)) < mhacle,0) < mile,8) < Co (VC(H)W> .

One of the important implications of this result is that in binary classification, all ERM
learners are as good, up to a multiplicative factor of In(1/e).

It is natural to seek a generalization of the VC-dimension to hypothesis classes of non-
binary functions. We recall two generalizations, both introduced by Natarajan (1989). In
both generalizations, shattering of a set S is redefined by requiring that for any partition
of S into T and S \ T, there exists a g € H whose behavior on T' differs from its behavior
on S\ T. The two definitions are distinguished by their definition of “different behavior”.

Definition 3 (Graph dimension) Let H C Y be a hypothesis class and let S C X. We
say that H G-shatters S if there exists an f : S — Y such that for every T C S there is a
g € H such that

Ve eT, g(z) = f(z), and Yo € S\ T, g(x) # f(x).

The graph dimension of H, denoted dg(H), is the maximal cardinality of a set that is
G-shattered by H.

Definition 4 (Natarajan dimension) Let H C VX be a hypothesis class and let S C X.
We say that H N-shatters S if there exist f1, fo : S — Y such that Vy € S, f1(y) # f2(y),
and for every T C S there is a g € H such that

Ve €T, g(z) = fi(z), and Yz € S\ T, g(x) = fa(x).

The Natarajan dimension of H, denoted dn(H), is the maximal cardinality of a set that is
N-shattered by H.
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Both of these dimensions coincide with the VC-dimension for k = 2. Note also that we
always have dy < dg. By reductions to and from the binary case, similarly to Natarajan
(1989) and Ben-David et al. (1995) one can show the following result:

Theorem 5 For the constants Cy,Cy from Theorem 2, for every H C Y* we have

c (dN(H) +1n(d) da(H)In($) +1n(3;)>
1 - ’

€ €

) < mpac(€,0) < mppy(€, ) < Co (

and

€2

a(%mo+mp

€2 ) <mpac(€,6) < migui(e, 0) < Co (dG(H)W) )

Proof (sketch) For the lower bound, let H C VX be a hypothesis class of Natarajan
dimension d and Let H, := {0,1}4. We claim that m}, ACH, < Mpac g and similarly for
the agnostic sample complexity, so the lower bounds are obtained by Theorem 2. Let A be
a learning algorithm for H. Consider the learning algorithm, A, for Hy defined as follows.
Let S = {s1,...,84} € X be a set and let fy, f1 be functions that witness the N-shattering
of H. Given a sample ((z;,v;))™; C [d] x {0,1}, let g = A((8x;, fy;(52:))7). A returns
f:[d] — {0,1} such that f(i) = 1 if and only if g(s;) = fi(s;). It is not hard to see that
mTA,Hd < mly g, thus mpyc 4 < mpyc 5 and similarly for the agnostic case.

For the upper bound, let % C V¥ be a hypothesis class of graph dimension d. For
every f € H define f : X x Y — {0,1} by setting f(z,y) = 1 if and only if f(z) = y
and let H = {f : f € H}. Tt is not hard to see that VC(H) = dg(H). Let A be
an ERM algorithm for H#. Let A be an ERM algorithm for H such that for a sample
(((m4,2:),9:))y € X x Y x{0,1}, if for all i, y; = 1, A returns f, where f = A((z;, 2:)™).
It is easy to check that A is consistent and therefore can be extended to an ERM learner
for 7—2, and that m’;m_[ < mrjﬂ_—[. Thus m”ERM’H < mERMﬂ. The analogous inequalities hold
for the agnostic sample complexity as well. Thus the desired upper bounds follow from
Theorem 2. |

This theorem shows that the finiteness of the Natarajan dimension is a necessary con-
dition for learnability, and the finiteness of the graph dimension is a sufficient condition
for learnability. In Ben-David et al. (1995) it was proved that for every hypotheses class
HCYY,

dn(H) < dg(H) < 4.671ogy(K)dy (H) | (2)

It follows that if £ < oo then the finiteness of the Natarajan dimension is both a necessary
and a sufficient condition for learnability.? Incorporating Equation (2) into Theorem 5, it
can be seen that the Natarajan dimension, as well as the graph dimension, characterize the
sample complexity of # C ¥ up to a multiplicative factor of O(In(k) ln(%)) Precisely, the
following result can be derived:

2. The result of Ben-David et al. (1995) in fact holds also for a rich family of generalizations of the VC
dimension, of which the Graph dimension is one example.
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Theorem 6 There are constants Cy,Cy such that, for every H C Y%,

o (M dy(H)In(k) - In(L) +1n(}5)>

)
€ €

) < mpac(e6) <mppu(e d) < Co (

and

¢, (CW”I“‘)> < miacle,5) < miau(e,) < O (dN(H) i 1“(‘15)) '

3.1 An Improved Upper Bound for the Realizable Case

The following theorem provides a sample complexity upper bound which provides a tighter
dependence on e.

Theorem 7 For every concept class H C Y,

(dN(H) (In(L) + n(k) + In(dn (H))) + ln(§)> |

mgrm(€ 0) = O c

The proof of this theorem is immediate given Theorem 13, which is provided in Section 4.
We give the short proof of this theorem thereafter. While a proof for the Theorem can be
established by a simple adaptation of previous techniques, we find it valuable to present
this result here, as we could not find it in the literature.

4. PAC Sample Complexity with ERM Learners

In this section we study the sample complexity of multiclass ERM learners in the PAC
setting. First, we show that unlike the binary case, in the multiclass setting different ERM
learners can have very different sample complexities.

Example 1 (A Large Gap Between ERM Learners) Let X' be any finite or countable
domain set. Let Pr(X) denote the collection of finite and co-finite subsets A C X. We will
take the label space to be Pr(X) together with a special label, denoted by * (lLe. Y =
Pr(X)U{x}). For every A € Py(X), define fa: X =Y by

A ifze A
fA<x>={ fo e

x  otherwise,

and consider the hypothesis class Hxy = {fa : A € Pp(X)}. It is not hard to see that
dy(Hx) = 1. On the other hand, if X is finite then X is G-shattered using the function fy,
therefore dg(Hx) = |X|. If X is infinite, then every finite subset of X is G-shattered, thus
dg(Hy) = 0.

Consider two ERM algorithms for Hx, Apaa and Ageod, which satisfy the following
properties. For Apaq, whenever a sample of the form Sy, = {(z1,%*), ..., (Tm,*)} is observed,
Abaa returns frp, .z Intuitively, while Aypaq selects a hypothesis that minimizes the
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empirical error, its choice for Sy, seems to be sub-optimal. We will show later, based on
Theorem 9, that the sample complexity of Apaq is €2 (%)

For Agooa, we require that the algorithm only ever returns either fy, or a hypothesis
A such that the label A appeared in the sample—One can easily verify that there exists an
ERM algorithm that satisfies this condition. Specifically, this means that for the sample
Sm = {(x1,%), ..., (Tm, %)}, Agooa necessarily returns fy. We have the following guarantee

for Agooa:

Claim 1 mTAgood:HX(€7 §)<ilni, and mfﬁtgoodﬂx(e,é) < 6% In(3H)ni.
Proof We prove the bound for the realizable case. The bound for the agnostic case will be
immediate using Cor. 15, which we prove later.

Let D be a distribution over X x Y and suppose that the correct labeling for D is fa. Let
m be the size of the sample. For any sample, Agooq returns either fg or fa. If it returns
fa then its error on D is zero. On the other hand, Errp(fy) = Prix y)p(X € A). Thus,
Agood Teturns a hypothesis with error e or more only if Pr(Xy)NfD(X € A) > e and all the
m examples in the sample are from A€. Assume m > %ln(%), then the probability of the
latter event is (P(A))"™ < (1 — )™ < e~ < 4. [ ]

This example shows that the gap between two different ERM learners can be as large
as the gap between the Natarajan dimension and the graph dimension. By considering H y
with an infinite X, we conclude the following corollary.

Corollary 8 There exist sets X, Y and a hypothesis class H C Y%, such that H is learnable
by some ERM learner but is not learnable by some other ERM learner.

In Example 1, the bad ERM indeed requires as many examples as the graph dimension,
while the good ERM requires only as many as the Natarajan dimension. Do such a ‘bad’
ERM and a ‘good” ERM always exist? Our next result answers the question for the ‘bad’
ERM in the affirmative. Indeed, the graph dimension determines the learnability of H using
the worst ERM learner.

Theorem 9 There are constants C1,Cy > 0 such that the following holds. For every
hypothesis class H C y¥ of Graph dimension > 2, there exists an ERM learner Apaq
such that for every e < % and § < ﬁ,

o (dG(’H) +In(})

€

d(H) In(L) + 1n(§)> |

) < MY, (€0) < mpgru(€; ) < Gy (

Proof The upper bound is simply a restatement of Theorem 5. It remains to prove that
1
there exists an ERM learner, Apaq, with m’"Abad(e, 5) > C, (%)

€

First, assume that d = dg(H) < oco. Let S = {xg,...,24-1} € X be a set which is
G-Shattered by H using the function fy. Let Apaq be an ERM learner with the following
property. Upon seeing a sample T' C S which is consistent with fy, Apaq returns a function
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that coincides with fy on 7" and disagrees with fy on S\ 7. Such a function exists since S
is G-shattered using fo.

Fix § < ﬁ and € < 1—12 Note that 1 — 2¢ > e—%¢. Define a distribution on X by setting
Pr(zg) =1—2eand forall 1 <i < d—1, Pr(z;) = 5. Suppose that the correct hypothesis
is fo and let {(X;, fo(X;))}™, be a sample. Clearly, the hypothesis returned by Apaq will err
on all the examples from S which are not in the sample. By Chernoff’s bound, if m < %,
then with probability at least Tio > 6, the sample will include no more than % examples
from S\ {zo}, so that the returned hypothesis will have error at least €. To see that, define
r.v. Y;, 1 <i < m by setting ¥; = 1 if X; # x9 and 0 otherwise. By Chernoft’s bound, if
r =91 then

6e
m d—1 r 12
2
Pr <;1 Y; > —5 ) < Pr < g Y; > 36k> < exp (—3 267‘) < 0.99 .

i=1

Moreover, the probability that the sample includes only zy (and thus Ap,gq will return a
hypothesis with error 2e) is (1 — 2¢)™ > e~4“™ which is more than § if m < L 1In(3). We
therefore obtain that

miy,.  (€,0) > max{d6€1,21€1n(1/5)} > % + iln(l/é) ,
as required.

If dg(H) = o0, let S, n=2,3,... be a sequence of pairwise disjoint shattered sets such
that |S,,| = n. For every n, suppose that f' indicated that S, is G-shattered. Let Apaq
be an ERM learner with the following property. Upon seeing a sample T C .S, labeled by
1o, Abad returns a function that coincides with f§ on 7" and disagrees with fo on S, \ 7T
Repeating the argument of the finite case for .S, instead of S shows that for every e < %

1
and § < ﬁ it holds that m4,,, (¢, ) > C1 (%) Since it holds for every n, we conclude
that m’, (€)= oo. [ |

To get the sample complexity lower bound for the ERM learner Ay,q in Example 1, observe
that this algorithm satisfies the specifications of a bad ERM algorithm from the proof above.

We conclude that for any multiclass learning problem there exists a ‘bad” ERM learner.
The existence of ‘good” ERM learners turns out to be a more involved question. We con-
jecture that for every class there exists a ‘good” ERM learner — that is, a learning al-

gorithm whose realizable sample complexity is O <d?N> (where the O notation may hide

poly-logarithmic factors of %, dn and 1/6 but not of |Y|). As we describe in the rest of this
section, in this work we prove this conjecture for several families of hypothesis classes.

What is the crucial feature that makes Agooq better than Ap,q in Example 17 For
the realizable case, if the correct labeling is fa4 € Hy, then for any sample, Agzy0q would
return only one of at most two functions: either f4 or f. On the other hand, if the correct
labeling is fp, then Ay,q might return every function in Hy. Thus, to return a hypothesis
with error at most €, Agooq Needs to reject at most one hypothesis, while Ap,q might need
to reject many more. Following this intuition, we propose the following rough principle:
A good ERM learner is one that, for every target hypothesis, considers a small number of
hypotheses.
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We would like to use this intuition to design ERMs with a better sample complexity
than the one that can be guaranteed for a general ERM as in Theorem 7. Classical sample
complexity upper bounds that hold for all ERM learners hinge on the notion of a growth
function, which counts the number of different hypotheses induced by the hypothesis class
on a sample of a certain size. To bound the sample complexity of a specific ERM learner,
we define algorithm-dependent variants of the concept of a growth function.

Definition 10 (Algorithm-dependent growth function) Fiz a hypothesis class H C
VX, Let A be a learning algorithm for H. For m >0 and a sample S = ((z;,y:))?™, of size
2m, let Xg = {x1,...,zom}, and define

Fa(S) = {AS)|xs | S € S, |9 =m}.

Let R(H) be the set of samples which are consistent with H, that is S = ((z;, f(z:)))?™ for
some f € H. Define the realizable algorithm-dependent growth function of A by

I (m) = sup  |[Fa(9)]-
SER(H),|S|=2m

Define the agnostic algorithm-dependent growth function of A for sample S by

Mo(m)=  sup  [Fa(S)).
Se(xxy)2m

These definitions enable the use of a ‘double sampling’ argument, similarly to the one
used with the classical growth function (see Anthony and Bartlett, 1999, chapter 4). This
argument is captured by the following lemma.

Lemma 11 (The Double Sampling Lemma) Let A be an ERM learner, and let D be
a distribution over X x Y. Denote € = Errp(A(Sy,)) — Errp(H), and let § € (0,1).

1. If D is realizable by H then with probability at least 1 — 9,

€ < 121In(2I17(m)/0)/m.

2. For any D, with probability at least 1 — 6,

. < \/32 In((411% (m) + 4)/5)

m

Proof The proof idea of the this lemma is similar to the one of the ‘double sampling’
results of Anthony and Bartlett (1999) (see their Theorems 4.3 and 4.8).

For the first part of the claim, let D be a realizable distribution for H. For m < 8, the
claim trivially holds, therefore assume m > 8. Let v = 12In(2II"y(m)/d)/m and assume
w.l.o.g. that v < 1.

Suppose that for some S € (X x V)™, Errp(A(S)) > v. Let T € (X x Y)™ be another
sample drawn from D™, independently from S. We show that Errr(A(S)) > v/2 with
probability at least % For v < %, by Chernoft’s bound, this holds with probability at least
1 — exp(—mwv/16), which is larger than % by the definition of v. For v > %, by Hoeffding’s
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inequality, this holds with probability at least 1 — exp(—mv?/2) > 1 — exp(—m/8), which
is larger than %, since m > 8. It follows that

(Elgr(.A(S)) >v)< Pr (Ejl:r(A(S)) >v/2). (3)

I
S~Dm T (S,T)~D2m

N

Let Z = (z1,...,2m) € R(H), and let o : [2m] — [2m] be a permutation. We write Z}
to mean (24(1), - - -, Zo(m)) and Z2 to mean (Zo(ma1)s -« Zo(2m))-

Similarly to Lemma 4.5 in Anthony and Bartlett (1999), for o drawn uniformly from
the set of permutations,

oD EEAGS)) 2 v/2) = | B, (Pr(E(A(Z})) 2 v/2) (4)

< sup Pr(Err(A(ZL)) > v/2).
ZER(M),|Z|=2m © Z2
To bound the right hand side, note that since A is an ERM algorithm, for any fixed
Z € R(H) and any o, Errz1 (A(Z})) = 0. Thus

I?Tr(%l;r(A(Z;)) >v/2) < f;r(EIh € Fu(2), Eérlr(h) =0 and Eél;r(h) >v/2).
For any fixed h, if the right hand side is not zero, then there exist at least vm/2 elements
(z,y) in Z such that h(x) # y. In the latter case, the probability (over o) that all such
elements are in Z2 is at most 27*"/2. With a union bound over h € F4(Z), we conclude
that for any Z,
Pr(EIT(A(ZY)) 2 v/2) < |Fa(2)2 7"/

Combining with Equation (4) gives

Pr  (Err(A(S)) > v/2) < sup |Fa(2)]277"? = Iy (m)2~V™/2.
(SvT)ED,m( 11(A(5)) 2 v/2) ZGR(H)I u(2)| a(m)

By Equation (3) and the definition of v,

Pr (E > ) < 2017 (m)27V™2 < 6.
P (B(A(S) > v) < 21T (m)2 2 <
This proves the first part of the claim.

For the second part of the claim, let D be a distribution over X x ). Denote ¢* =
Errp(H), and let h* € H such that Errp(h*) = €*.

Let v = \/321n((4nf“(m)+4)/5). Suppose that for some S € (X x Y)™, Errp(A(S)) >

m

e +v. Let T € (X x Y)™ be a random sample drawn from D™ independently from S. By
Hoeffding’s inequality, with probability at least 1 — exp(—muv?/2), which is at least % by
the definition of v2, Errp(A(S)) > €* + /2. It follows that

1

- > ¢* < >€* .

3 L EAS) 2 € 1)< | Pr o (Br(AS)) 2 ¢ + /) (5)
Let Z = (21,...,22m) € (X x Y)?™, and let o : [2m] — [2m] be a permutation. Denote

Z! and Z2 as above.
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Denote Z = {Z € (X x Y)*" | Errz(A(Z})) < ¢* + v/8}. By lemma 4.5 in Anthony
and Bartlett (1999) again, for o drawn uniformly from the set of permutations,

oD EIAS) 2 € 4 v/2) = | B (PrER(AZ) 2 +v/2)  (6)

< E. (gr(EZEr(A(Z;)) >+ V/2)’Z € Z) +Pr(Z ¢ 2).

To bound the right hand side, first note that by Hoeffding’s inequality, the second term is
bounded by
Pr(Z ¢ 2) < exp(—v*m/16). (7)

For the first term, Errz(A(Z))) > € + v/2 implies that unless Erryi(A(Z})) > ¢ +

g
v/4, necessarily Erryz(A(Z})) — Erryi(A(Z))) > v/4. Since A is an ERM algorithm,
Errzi(A(Z,)) > €* 4 v/4 only if also Errzi (h*) > €* 4 v/4. Therefore, for any Z,

Pr(Ex(A(Z}) = € +v/2) <

P;r(Eérlr(h*) > " +v/4) + Pr(Err(A(Z))) — Eérlr(.A(Z;)) > v/4). (8)

O'ZOQ_

Erryi (h*) is an average of m random variables of the form I[h*(z;) # y;], that are sampled
without replacement from the finite population Z, with population average Errz(h*). For
Z € Z, Errz(h*) < €* 4+ v/8. Therefore, by Hoeffding’s inequality for sampling without
replacements from a finite population (Hoeffding, 1963), for Z € Z,

Pr(Eérlr(h*) > e +rv/4) < Pr(]%rlr(h*) - E}r(h*) > v/8) < exp(—v*m/32). 9)
In addition, by the same inequality, and applying the union bound over h € F4(Z), for any
Z
Pr(EérQr(A(Z;)) - EZ)rlr(A(Z;)) >v/4) < Pr(3h € FA(Z),Eégr(h) - FZJrlr(h) > v/4)
< Pr(3h € Fa(2), lggr(h) - Eer(h) >v/8)+Pr(3h € FA(Z),EZrlr(h) — Eer(h) > v/8)
< 211%(m) exp(—v*m/32). (10)
Combined with Equation (8) and Equation (9), it follows that for Z € Z,

Pr(Err(A(Z))) > " +v/2) < (211%(m) + 1) exp(—v*m/32).

o Zg
With Equation (5), Equation (6), and Equation (7), we conclude that

Sl?Drm(Elgr(A(S)) > " +v) < (411%(m) + 4) exp(—v*m/32) = 4.

The claim follows since € = Errp(A(S)) — €*. [ |

As we shall presently see, Lemma 11 can be used to provide better sample complexity
bounds for some ‘good’ ERM learners.
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4.1 Learning with a Small Essential Range

A key tool that we will use for providing better bounds is the notion of essential range,
defined below. The essential range of an algorithm quantifies the number of different labels
that can be emitted by the functions the algorithm might return for samples of a given size.
In this definition we use the notion of the range of a function. Formally, for a function
f: X — ), its range is the set of labels to which it maps X', denoted by range(f) = {f(z) |
x € X}

Definition 12 (Essential range) Let A be a learning algorithm for H C Y*. The real-
izable essential range of A is the function 1’y : N — N, defined as follows.

Mim) = sup |Uges jsrjmm range(A(S))]
SER(H),|S|=2m

The agnostic essential range of A is the function 7% : N — N, defined as follows.

ri(m) = sup |Usrcs, |7j=m range(A(S"))| .
SCXXY,|S|=2m

Intuitively, an algorithm with a small essential range uses a smaller set of labels for any
particular distribution, thus it enjoys better convergence guarantees. This is formally quan-
tified in the following result.

Theorem 13 Let A be an ERM learning algorithm for H C V¥ with essential ranges
r’y(m) and r%(m). Denote € = Errp(A(Sp)) — Errp(H). Then,

o IfD is realizable by H and § < 0.1 then with probability at least 1 — 6,
c<O (dN(H)(ln(m) + In(r7y(m))) + ln(1/6)> .

m

e For any probability distribution D, with probability at least 1 — 9,

(<O (\/dN(%)(ln(m) + In(r%y(m)) +1n(1/5)) |

m

To prove the realizable part of this theorem, we use the following combinatorial lemma
by Natarajan:

Lemma 14 (Natarajan, 1989) For every hypothesis class H C V¥, [H| < | x|~ ()| y|2dn ()

Proof [of Theorem 13| For the realizable sample complexity, the growth function can be
bounded as follows. Let S € R(#H) such that |S| = 2m, and consider the function class
F4(S) (see Definition 10). By definition, the domain of F4(S) is Xg of size 2m, and the
range of F4(S) is of size at most 77j(m). Lastly, the Natarajan dimension of F4(S) is at
most dy(H), since F4(S) C H|s.

Therefore, by Lemma 14, [F4(S)| < (2m)?~ (H)r;‘(m)QdN (1), Taking the supremum over
all such S, we get

7y () < (2m) N 07, ()20 (0,
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The bound on € follows from the first part of Lemma 11.
For the agnostic sample complexity, a similar argument shows that

I (m) < (2m) ™ G (m)in ),

and the bound on € follows from the second part of Lemma 11. |

Theorem 7, which provides an improved bound for the realizable case, now follows from
the fact that the essential range is never more than k. But the essential range can also be
much smaller than k. For example, the essential range of the algorithm from Example 1 is
bounded by 2m + 1 (the 2m labels appearing in the sample together with the * label). In
fact, we can state a more general bound, for any algorithm which never ‘invents’ labels it
did not observe in the sample.

Corollary 15 Let A be an ERM learner for a hypothesis class H C Y. Suppose that for
every sample S, the function A(S) never outputs labels which have not appeared in S. Then

dn(H)(In(2) + In(dn(H))) + ln(};)>

€

miy(e,6) = O (

and

m4(e, ) = O 2

(dN(H)(ln(i) +In(dn (H))) + 1n(§)>
This corollary is immediate from Theorem 13 by setting "y (m) = r%(m) = 2m.

From this corollary, we immediately get that every hypothesis class which admits such
algorithms, and has a large gap between the Natarajan dimension and the graph dimension
realizes a gap between the sample complexities of different ERM learners. Indeed, the graph
dimension can even be unbounded, while the Natarajan dimension is finite and the problem
is learnable. This is demonstrated by the following example.

Example 2 Denote the ball in R™ with center z and radius v by By(z,7) = {x | |z — z|| <
r}. For a given ball B = By (z,7) with z € R™ and r > 0, let hp : R™ — R™ U {x} be the
function defined by hp(x) = z if © € B and hp(x) = * otherwise. Let h, be a hypothesis
that always returns x. Define the hypothesis class H,, of hypotheses from R™ to R™ U {x} by

Hy, ={hp |3z €R" 00 >r >0, such that B= Bp(z,7)} U {h.}.

Relying on the fact that the VC dimension of balls in R™ is n+ 1, it is not hard to see that
da(Hn) = n+ 1. Also, it is easy to see that dy(H,) = 1. It is not hard to see that there
exists an ERM, Agooq, satisfying the requirements of Corollary 15. Thus,

e (05) <0 (1n<1/e> - 1n<1/6>) Cm (€8)<0 <In<1/6>) |

€ €2
On the other hand, Theorem 9 implies that there exists a bad ERM learner, Ap.q with

n+ln(1/5)> |

mi‘bad(e, 5) > mrAbad(e, 0) > Cy < ;
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Our results so far show that whenever an ERM learner with a small essential range
exists, the sample complexity of learning the multiclass problem can be improved over the
worst ERM learner. In the next section we show that this is indeed the case for hypothesis
classes which satisfy a natural condition of symmetry.

4.2 Learning with Symmetric Classes

We say that a hypothesis class H is symmetric if for any f € H and any permutation
¢ Y — Y on labels we have that ¢ o f € H as well. Symmetric classes are a natural
choice if there is no prior knowledge on properties of specific labels in ) (See also the
discussion in Section 4.3.1 below). We now show that for symmetric classes, the Natarajan
dimension characterizes the optimal sample complexity up to logarithmic factors. It follows
that a finite Natarajan dimension is a necessary and sufficient condition for learnability of a
symmetric class. We will make use of the following lemma, which provides a key observation
on symmetric classes.

Lemma 16 Let H C Y% be a symmetric hypothesis class of Natarajan dimension d. Then
any h € H has a range of size at most 2d + 1.

Proof If £k < 2d + 1 we are done. Thus assume that there are 2d + 2 distinct elements
Yy - -5 Y2dr2 € Y. Assume to the contrary that there is a hypothesis h € ‘H with a range
of more than 2d + 1 values. Thus there is a set S = {z1,...,24+1} € X such that h|g
has d + 1 values in its range. Since H is symmetric, we can show that H N-shatters S as
follows: Since H is symmetric, we can rename all the labels in the range of h|g as we please
and get another function in . Thus there are two functions fi, fo € H such that for all
i <d+1, fi(z;) = y; and fa(x;) = Ygs+14i- Now, let S C T'. Since H is symmetric we can
again rename the labels in the range of h|g to get a function g € H such that g(z) = fi(z)
for every z € T and g(z) = fa(x) for every € S\ T. Therefore the set S is shattered, thus
the Natarajan dimension of H is at least d 4 1, contradicting the assumption. |

First, we provide an upper bound on the sample complexity of ERM in the realizable case.

Theorem 17 There are absolute constants C1,Co such that for every symmetric hypothesis
class H C Y+

o (dN(%) +1n(d)

€

) < e < P s 1)
Proof The lower bound is a restatement of Theorem 5. For the upper bound, first note
that if & < 4dy(H) + 2 the upper bound trivially follows from Theorem 7. Thus assume
k > 4dn(H) + 2. We define an ERM learner A with a small essential range, as required
in Theorem 13: Fix a set Z C Y of size |Z] = 2dy(H) + 1. Assume an input sample
(z1, f(z1)),-- -, (Tm, f(xm)), and denote the set of labels that appear in the sample by
L = {f(x;) | i€ [m]}. We require that A return a hypothesis which is consistent with the
sample and has range in L U Z.

To see that such an ERM learner exists, observe that by Lemma 16, the range of f has at
most 2dy (H)+1 distinct labels. Therefore, there is a set R C ) such that |R| < 2dy(H)+1
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and the range of f is L U R. Due to the symmetry of H, we can rename the labels in R
to labels in Z, and get another function g € H, that is consistent with the sample and has
range in L U Z. This function can be returned by A.

The range of A over all samples that are labeled by a fixed function f € H is thus in the
union of Z and the range of f. |Z| < 2dy(H) + 1 and by Lemma 16, the range of f is also
at most 2dy(H) + 1. Therefore the realizable essential range of A is at most 4dy(H) + 2.
The desired bound for the sample complexity of A thus follows from Theorem 13.

We now show that the same bound in fact holds for all ERM learners for H. Suppose
that A" is an ERM learner for which the bound does not hold. Then there is a function
f and a distribution D over X x ) which is consistent with f, and there are m,e and
§ for which m > m"(e,d), such that with probability greater than § over samples S,
Errp(A'(Sy)) — Errp(H) > €. Consider A as defined above, with a set Z that does not
overlap with the range of f. For every sample Sy, consistent with f, denote f = A’(Sp,),
and let A return g which results from renaming the labels in f as follows: For any label that
appeared in S),, the same label is used in g. For any label that did not appear in \S,,, a label
from Z is used instead. Clearly, Errp(A(Sy,)) > Errp(A’(S),)). But this contradicts the
upper bounds on m/,(e,§). We conclude that the upper bound holds for all ERM learners.
|

Second, we have the following upper bound for the agnostic case.

Theorem 18 There are absolute constants C1,Co such that for every symmetric hypothesis
class H C Y+

o (W) < b (e.5) < s (dN(H) ln(min{dej\;(}[),k}) +1n((15)> |

Proof 3 The lower bound is a restatements of Theorem 6. For the upper bound, first
note that if k& < 6dy(H) then the upper bound follows from Theorem 6. Thus assume
k > 6dy(H) > 4dn(H) + 2. Fix a set Z C Y of size |Z| = 4dn(H) + 2. Denote H' =
{feH: f(X)C Z}. By Lemma 16, the range of every function in H contains at most @
elements. Thus, by symmetry, it is easy to see that dg(H) = dg(H') and dy(H) = dy(H').
By equation (2) and the fact that the range of functions in H’ is Z, we conclude that

do(H) = da(H') = O(dn(H') In(|Z]))
= O(dy(H') In(min{dy (H'), k}) = O(dy(H) In(dy(H))).

Using Theorem 5 we obtain the desired upper bounds. |

These results indicate that for symmetric classes, the sample complexity is determined by
the Natarajan dimension up to logarithmic factors. Moreover, the ratio between the sample
complexities of worst ERM and the best ERM in this case is also at most logarithmic in €
and the Natarajan dimension. We present the following open question:

Open question 19 Are there symmetric classes such that there are two different ERM
learners with a sample complexity ratio of Q(In(dy)) between them?

3. We note that this proof show that for symmetric classes dg = O (dn log(dn)). Hence, it can be adopted
to give a simpler proof of Theorem 17, but with a multiplicative (rather than additive) factor of log (%)
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4.3 Learning with No Prior Knowledge on Labels

Suppose we wish to learn some multiclass problem and have some hypothesis class that we
wish to use for learning. The hypothesis class is defined using arbitrary label names, say
Y ={1,...,k} = [k]. In many learning problems, we do not have any prior knowledge on
a preferred mapping between these arbitrary label names and the actual real-world labels
(e.g., names of topics of documents). Thus, any mapping between the real-world class labels
and the arbitrary labels in [k] is as reasonable as any other. We formalize the last assertion
by assuming that this mapping is chosen uniformly at random *. In this section we show
that in this scenario, when k = Q(dn(#H)), it is likely that we will achieve poor classification
accuracy.

Formally, let % C [k]* be a hypothesis class. Let £ be the set of real-world labels,
|£] = k. A mapping of the label names [k] to the true labels £ is a bijection ¢ : [k] — L.
For such ¢ we let Hy = {¢po f: feH}. °

The following theorem lower-bounds the approximation error when ¢ is chosen at ran-
dom. The result holds for any distribution with fairly balanced label frequencies. Formally,
we say that D over X x L is balanced if for any [ € L, the probability that a random pair
drawn from D has label [ is at most 10/k.

Theorem 20 Fix o > 0. There exist a constant Co > 0 such that for any k > 0, any
hypothesis class H C [k]Y such that dy(H) < Cak, and any balanced distribution D over
X x L, with probability at least 1 — o(27%) over the choice of ¢, Errp(Hy) > 1 — .

Remark 21 Theorem 20 is tight, in the sense that a similar proposition cannot be obtained
for all dy < f(k) for some f(k) € w(k). To see this, consider the class H = [k]*], for which
dn(H) = k. For any ¢, Hy = H. Thus, for any distribution such that Errp(H) = 0, we
have Errp(Hy) = 0.

To prove Theorem 20, we prove the following lemma, which provides a lower bound on
the error of any hypothesis with a random bijection.

Lemma 22 Let h: X — [k] and let ¢ : [k] — L be a bijection chosen uniformly at random.

Let S = {(z1,l1), ..., (@m,lm)} C X x L. Denote, forl € L, p; = W Fiz o > 0, and
aQ

let v = m Then

ol
8ke \ 2
Pr[E 1—aol < | — | .
(o) <1-al < (V)
Proof Denote P = /> ., ﬁlg. For a sample S C & x £ and a function f : X — L denote

Gaing(f) = 1 — Errg(f). For [ € £ denote S; = ((24,1;))iz;—1- By Cauchy-Schwartz, we
have

2
Gain(¢ o h) = > b Gglin(¢ oh)<P- | (Gain(¢ o h)> :

Sy
leL leL

4. We note also that choosing this mapping at random is sometimes advocated for multiclass learning,
e.g., for a filter tree Beygelzimer et al. (2007) and for an Error Correcting Output Code (Dietterich and
Bakiri, 1995; Allwein et al., 2000).

5. Several notions, originally defined w.r.t. functions from X to Y (e.g. Errp(h)), can be naturally extended
to functions from X to £. We will freely use these extensions.
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Assume that Errg(¢poh) <1 — . Then

2 .
ZG&IH gZSO h) Z <G§1lin(¢o h)> > (Ga1ns(¢ o h)) > o .

P2 P2
lec lec

Note first that the left hand side is at most k, thus v < k. Since for every [ € L it holds
that 0 < Gaing, (¢ o h) < 1, we conclude that there are at least n = [3] labels I € £ such

that
Gglin(cb oh)> 21

For a fixed set of n labels Iy,...,1, € L, the probability that Vi, Gaingli(¢ oh) > & is at

most
12[ 2k "
k:-f—l—z (k+1-n)y/)

1:1

To see that, suppose that ¢ is sampled by first choosing the value of ¢~1(I;) then ¢—1(I2)
and so on. For every [;, there are at most % values for ¢~1(l;) for which Gaing, (¢oh) >

Thus, after the values of ¢~1(I1),...,¢~ ( i—1) have been determined, the probability that

¢~ 1(1;) is one of these values is at most ﬁ

It follows that the probability that Gaing, (¢ o h) > g for n different labels I is at most
k 2k " ek\" 2k "
I e < (=) f =
n (k+1—n)y - n (k+1—n)y
() (=)
gl (k—=~/2)v
8ke\"
S ?

If Sv—kf > 1 then the bound in the statement of the lemma holds trivially. Otherwise, the
bound follows since n > /2. [ ]

IN

Proof [Proof of Theorem 20| Denote p; = Pr(x,)~p[L = I]. Let S = {(x1,11), ..., (Tm,lm)} C

X x L be an i.i.d. sample drawn according to D. Denote p; = Ha:di=t,
For any fixed bijection ¢, by Theorem 6, with probability 1 — 6 over the choice of 9,

' In(k)dn(H) + In(1/9)
Elgr(’Hd,) > }:QLEI'I‘S(d) oh)—0 <\/ - ) .

Since there are less than k¥ such bijections, we can apply the union bound to get that with
probability 1 — § over the choice of S,

. In(k)dn(H) + kln(k) + 1n(1/9)
Vo, EDrr(Hgb) > éIel’L Errg(¢poh) — O (\/ - ) .
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Assume k > C - dy(H) for some constant C' > 0, and let m = © <k12§k)) such that with
probability at least 3/4,

E > inf E h) — /2. 11
V¢, Err(Hg) 2 if Errs(¢oh) —af (11)
We have
. 1 m m(m—1)100 10 120
21 _ o © 2 <op. (Mm—1)100 10 120
E[;pl] 2m2;(<2>pz+mpz> <2k ( 58 K2 +mk:> <

Thus, by Markov’s inequality, with probability at least % over the samples we have

. 240
> pp < - (12)
lel
Thus, with probability at least 1/4, both (12) and (11) hold. In particular, there exists a sin-
gle sample S for which both (12) and (11) hold. Let us fixsuchan S = {(z1,11),. .., (Tm,lm)}
Assume now that ¢ : ) — L is sampled uniformly. For a fixed h € H and for v =
(/2)?) ¥ 1cp PP > ka? /960, we have, by Lemma 22 that

2
2
Pr [Errs<<z>o h) <1- 9} < (8’?) < (Crhat) =k =,
¢ 2 g
for constants C1,C2 > 0. By Lemma 14, [H[(5, . 23] < (m- k:)sz(H). Thus, with prob-

ability > 1 — (m - k)Zd -1 over the choice of ¢, infyecy Errg(¢p o h) > 1 — § and by (11)
also

EI‘I"D(H¢) Z 1—a. (13)
By our choice of m, and since k > dy(#), for some universal constant C; > 1, m < Cj - 2—2
Considering « a constant, we have, for some constants C; > 0,
(m . k)ZdN(H) < (Cgk)GdN(H) . (C4I<:)_C5k.
By requiring that k > 12dy(H)/Cs, we get that the right hand side is at most o(27%).
|

4.3.1 SYMMETRIZATION

From Theorem 20 it follows that if there is no prior knowledge about the labels, and the
label frequencies are balanced, we must use a class of Natarajan dimension (k) to obtain
reasonable approximation error. As we show next, in this case, there is almost no loss
in the sample complexity if one instead uses the symmetrization of the class, obtained by
considering all the possible label mappings ¢ : [k] — £. Formally, let % C [k]* be some
hypothesis class and let £ be a set with |£| = k. The symmetrization of H is the symmetric
class
Heym = {poh |h e H, ¢:[k] = L is a bijection}.
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Lemma 23 Let H C [k]* be a hypothesis class with Natarajan dimension d. Then
dN(Hsym) = O(max{dlog(d), klog(k)}).

Proof Let dy = dy(Hsym). Let X C X be a set of cardinality d, that is N-shattered by
Heym- By Lemma 14, |H|x| < (dsk?)?. Tt follows that |Hsym|x| < k!(dsk®)?. On the other
hand, since Hgym N-shatters X, [Hsym|x| > 21X = 245, Tt follows that 2% < k!(dsk?)?.
Taking logarithms we obtain that ds < klog(k) 4+ d(In(ds) + 21In(k)). The Lemma follows.
]

5. Other Learning Settings

In this section we consider the characterization of learnability in other learning settings:
The online setting and the bandit setting.

5.1 The Online Model

Learning in the online model is conducted in a sequence of consecutive rounds. On each
round t = 1,2,...,T, the environment presents a sample x; € X, then the algorithm should
predict a value y; € Y, and finally the environment reveals the correct value y; € V. The
prediction at time ¢ can be based only on the examples z1, ..., x; and the previous outcomes
Yl, .-+, Y—1. Our goal is to minimize the number of prediction mistakes in the worst case,
where the number of mistakes on the first T' rounds is Ly = |{t € [T] : §: # y+}|. Assume
a hypothesis class H C Y%, In the realizable setting, we assume that for some function
f € H all the outcomes are evaluations of f, namely, y; = f(x¢).

Learning in the realizable online model has been studied by Littlestone (1987), who
showed that a combinatorial measure, called the Littlestone dimension, characterizes the
min-max optimal number of mistakes for binary hypotheses classes in the realizable case.
We propose a generalization of the Littlestone dimension to multiclass hypotheses classes.

Consider a rooted tree T' whose internal nodes are labeled by elements from X and
whose edges are labeled by elements from ), such that the edges from a single parent to
its child-nodes are each labeled with a different label. The tree T is shattered by H if, for
every path from root to leaf which traverses the nodes x1, ..., xg, there is a function f € ‘H
such that f(z;) is the label of the edge (z;, x;y+1). We define the Littlestone dimension of a
multiclass hypothesis class #H, denoted L-Dim(H), to be the maximal depth of a complete
binary tree that is shattered by H (or oo if there are a shattered trees for arbitrarily large
depth).

As we presently show, the number L-Dim(#) fully characterizes the worst-case mistake
bound for the online model in the realizable setting. The upper bound is achieved using
the following algorithm.

Algorithm: Standard Optimal Algorithm (SOA)
Initialization: Vp = H.
Fort=1,2..

receive Ty
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fory € Y, let V;(y) ={feViei: f(z) =y}
predict ; € argmax, L—Dim(‘/;(y))

receive true answer ¥

update V; = Vt(yt)

Theorem 24 The SOA algorithm makes at most L-Dim(H) mistakes on any realizable
sequence. Furthermore, the worst-case number of mistakes of any deterministic online
algorithm is at least L-Dim(#H). For any randomized online algorithm, the expected number
of mistakes on the worst sequence is at least %L—Dim(”H).

Proof (sketch) First, we show that the SOA algorithm makes at most L-Dim(#) mis-
takes. The proof is a simple adaptation of the proof of the binary case (see Littlestone,
1987; Shalev-Shwartz, 2012). We note that for each ¢ there is at most one y € ) with
L—Dim(‘/;(y)) = L-Dim(V}), and for the rest of the labels we have L—Dim(‘/;(y)) < L-Dim(W)
(otherwise, it is not hard to construct a tree of depth L-Dim(V;) + 1, whose root is x, that
is shattered by V;). Thus, whenever the algorithm errs, the Littlestone dimension of V;
decreases by at least 1, so after L-Dim(#) mistakes, V; is composed of a single function.
For the second part of the theorem, it is not hard to see that, given a shattered tree
of depth L-Dim(H), the environment can force any deterministic online learning algorithm
to make L-Dim(#) mistakes. Note also that allowing the algorithm to make randomized
predictions cannot be too helpful. It is easy to see that given a shattered tree of depth
L-Dim(H), the environment can enforce any randomized online learning algorithm to make
at least L-Dim(#)/2 mistakes on average, by traversing the shattered tree, and providing
at every round the label that the randomized algorithm is less likely to predict. |

In the agnostic case, the sequence of outcomes, 1, ..., ¥m, is not necessarily consistent
with some function f € H. Thus, one wishes to bound the regret of the algorithm, instead
of its absolute number of mistakes. The regret is the difference between the number of
mistakes made by the algorithm and the number of mistakes made by the best-matching
function f € H. The agnostic case for classes of binary-output functions has been studied
in Ben-David et al. (2009). It was shown that, as in the realizable case, the Littlestone
dimension characterizes the optimal regret bound.

We show that the generalized Littlestone dimension characterizes the optimal regret
bound for the multiclass case as well. The proof follows the paradigm of ‘learning with
expert advice’ (see e.g. Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2012), which we now
briefly describe. Suppose that at each step, t, before the algorithm chooses its prediction,
it observes N advices (ff,...,fk) € YN, which can be used to determine its prediction.
We think of f} as the prediction made by the expert i at time ¢ and denote the loss of the
expert i at time T" by L; 7 = [{t € [T] : fit # y¢}| . The goal here it to devise an algorithm
that achieves a loss which is comparable with the loss of the best expert. Given T, the
following algorithm (Cesa-Bianchi and Lugosi, 2006, chapter 2) achieves expected loss at

most min;e(n) L + \/% In(N)T.

Algorithm: Learning with Expert Advice (LEA)
Parameters: Time horizon — T
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Set n = /8In(N)/T

Fort=1,2...,T
receive expert advices (ff,..., f&) € YV
predict y; = f;; with probability proportional to exp(—nL;¢—1)
receive true answer ¥,

We use this algorithm and its guarantee to prove the following theorem.

Theorem 25 In the agnostic online multiclass setting, the expected loss of the optimal

algorithm on the worst-case sequence is at most mingey L1 + \/% L-Dim(H)T log(Tk).

Proof First, we construct an expert for every f € H, whose advice at time ¢ is f(z;). Denote
the loss of the expert corresponding to f at time ¢ by L;;. Running the algorithm LEA
with this set of experts yields an algorithm whose expected error is at most min ey Ly +

$In(|H[)T. Our goal now is to construct a more compact set of experts, which will allow

us to bound the loss in terms of L-Dim(#) instead of In(|H|).

Given time horizon T', let Ar = {A C [T] | |A| < L-Dim(H)}. For every A € Ar
and ¢ : A — Y, we define an expert F4 4. The expert E, 4 imitates the SOA algorithm
when it errs exactly on the examples {x; | t € A} and the true labels of these examples are
determined by ¢. Formally, the expert F4 4 proceeds as follows:

Set Vi = H.
Fort=1,2...,T
Receive x;.
Set Iy = argmax,cy L-Dim({f € V; : f(21) = y}).
If t € A, Predict ¢(t) and update Viy; ={f € Vi : f(z:) = ¢(t)}.
If t ¢ A, Predict l; and update Vi1 = {f € V; : f(z) = I}

The number of experts we constructed is Z?':%imm) (?)(k — 1)/ < (Tk)¥Pm() - Denote
the number of mistakes made by the expert F4 4 after T rounds by Ly 4 7. If we apply the
LEA algorithm with the set of experts we have constructed, the resulting algorithm makes

at most

1
l’ili(;l Lagr+ \/2T L-Dim(#) In(Tk)

[T] the set of rounds in which the SOA algorithm errs when running on the sequence
(z1, f(x1)),...,(xr, f(zr)) and define ¢ : A — Y by ¢(t) = f(z¢). Since the SOA al-
gorithm makes at most L-Dim(#H) mistakes, |A| < L-Dim(#H). It is not hard to see that
the predictions of the expert E, 4 coincide with the predictions of the expert E¢. Thus,

Lagmr= Ly u

mistakes. We claim that ming ¢ La g7 < mingey Ly7: Let f € H. Denote by A C

Adapting the proof of Lemma 14 from Ben-David et al. (2009), we conclude a corre-
sponding lower bound:

2398



MULTICLASS LEARNABILITY AND THE ERM PRINCIPLE

Theorem 26 In the agnostic online multiclass setting, the expected loss of every algorithm

on the worst-case sequence is at least mingey L1 + 1/%L—Dim(’H)T.

We leave as an open question to close the gap between the bounds in the above Theorems.
Note that this gap is analogous to the sample complexity gap for ERM learners in the PAC
setting, seen in Theorem 6.

5.2 The Bandit Setting

So far we have assumed that the label of each training example is fully revealed. In this
section we deal with the bandit setting. In this setting, the learner does not get to see the
correct label of a training example. Instead, the learner first receives an instance x € X,
and should guess a label, . The learner then receives a binary response, which indicates
only whether the guess was correct or not. If the guess is correct then the learner knows
the identity of the correct label. If the guess is wrong, the learner only knows that g is not
the correct label, and not the identity of the correct label.

5.2.1 BANDIT vS. FULL INFORMATION IN THE BATCH MODEL

In this section we consider the bandit setting in the batch model. In this setting the
sample is drawn i.i.d. as before, but the learner first observes only the instances x1, ..., Tp,.
The learner then guesses a label for each of the instances, and receives a binary response
indicating for each label whether it was the correct one.

Let H C Y% be a hypothesis class and let k& = |))|. Our goal is to analyze the realizable
bandit sample complezity of 1, which we denote by mj (e, d), and the agnostic bandit sample
complexity of H, which we denote by mj (e, §). The following theorem provides upper bounds
on the sample complexities.

Theorem 27 Let H C V¥ be a hypothesis class. Then,

de(H) -In (1) + 1n(}5)>

my(€,8) = O (k .

and my(e,0) = O (k : M)

€2

Proof Let Ay be a (full information) ERM learner for H. Consider the following algorithm,
denoted Ay, for the bandit setting: Given a sample (z;,v;)", for each i the algorithm
guesses a label §; € )V drawn uniformly at random. Then the algorithm calls Ay with an
input sample which consists only of the sample pairs for which the binary response indicated
that the guess y; was correct. Thus, the input sample is {(x;,9;) | 9; = vi}. Ap then returns
whatever hypothesis A, returned.

We show that my, (¢,d) < 3k- my, (e,9)+ 3 1log (2) =: m’ and similarly for the agnostic
case, so that the theorem is implied by the bounds in the full information setting (Theo-
rem 5). Indeed, suppose that m examples suffice for A to return a hypothesis with excess
error at most e, with probability at least 1 — %. Let (xl,yl)znzll be a sample for the bandit
algorithm. By Chernoff’s bound, with probability at least 1 — g, Ap guesses correctly the
label of at least m examples. Therefore Ay runs on a sample of at least this size. The
sample that Ay receives is a conditionally i.i.d. sample, given the size of the sample, with
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the same conditional distribution as the one the original sample was sampled from. Thus,
with probability at least 1 — g, Ay (and, consequently, Ap) returns a hypothesis with excess
error at most e. |

An interesting quantity to consider is the price of bandit information in the batch model:
Let H be a hypotheses class, and define PBIy (¢, ) = mZ’H(e, 5)/m£AC’H (e,0). By Theorems
27 and 6 and Equation 2 we see that, PBI(e, ) = O(In(1)kIn(k)). This is essentially tight
since it is not hard to see that if both X', ) are finite and we let H = Y%, then PBIy = Q(k).

Using Theorems 27 and 5 and Equation 2 we can further conclude that, as in the full
information case, the finiteness of the Natarajan dimension is necessary and sufficient for
learnability in the bandit setting as well. However, the ratio between the upper bound
due to Theorem 27 and the lower bound, due to Theorem 5, is Q(In(k) - k). It would be
interesting to find a more tight characterization of the sample complexity in the bandit
setting. This characterization cannot depend solely on the Natarajan dimension, or other
quantities which are strongly related to it (such as the graph dimension or other notion of
dimension defined in Ben-David et al. (1995)): For example, the classes [k]/4 and [2]l% have
the same Natarajan dimension, but their bandit sample complexity differs by a factor of

5.2.2 BANDIT vS. FULL INFORMATION IN THE ONLINE MODEL

We now consider Bandits in the online learning model. We focus on the realizable case, in
which the feedback provided to the learner is consistent with some function fy € H. We
define a new notion of dimension of a class, that determines the sample complexity in this
setting.

As in Section 5.1, consider a rooted tree 7" whose internal nodes are labeled by elements
from X and whose edges are labeled by elements from ), such that the edges from a
single parent to its child-nodes are each labeled with a different label. The tree T is BL-
shattered by H if, for every path from root to leaf z1,..., g, there is a function f € H such
that for every i, f(z;) is different from the label of (x;,2;11). The Bandit-Littlestone
dimension of H, denoted BL-dim(#), is the maximal depth of a complete k-ary tree that
is BL-shattered by H.

Theorem 28 Let H be a hypothesis class with L = BL-Dim(H). Then every deterministic
online bandit learning algorithm for H will make at least L mistakes in the worst case.
Moreover, there is an online learning algorithm that makes at most L mistakes on every
realizable sequence.

Proof First, let T be a BL-shattered tree of depth L. We show that for every deterministic
learning algorithm there is a sequence x1, ...,z and a labeling function fy € H such that
the algorithm makes L mistakes on this sequence. The sequence consists of the instances
attached to nodes of T', when traversing the tree from the root to one of its leaves, such
that the label of each edge (x;,z;11) is equal to the algorithm’s prediction g;. The labeling
function fy € H is one such that for all 7, fy(x;) is different from the label of edge (z;, z;+1).
Such a function exists since T is BL-shattered, and the algorithm will clearly make L
mistakes on this sequence.
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Second, the following online learning algorithm makes at most L mistakes on any real-
izable input sequence.

Algorithm: Bandit Standard Optimal Algorithm (BSOA)
Initialization: Vj = H.
Fort=1,2..

Receive x4

For y € ), let V;(y) ={feViei: f(z) #y}

Predict ; € arg min, BL-Dim(V,*)

Receive an indication whether ¢ = f(x)

If the prediction is wrong, update V; = V;(gt).

To see that BSOA makes at most L mistakes, note that at each time ¢, there is at least one
V;(y) with BL—Dim(Vt(y)) < BL-Dim(V;—1). This can be seen by assuming to the contrary
that this is not so, and concluding that if BL—Dim(V;(y)) = BL-Dim(V;_) for all y € [k],
then one can construct a shattered tree of size BL-Dim(V;_1) + 1 for V;_;, thus reaching a
contradiction.

Thus, whenever the algorithm errs, the dimension of V; decreases by one. Thus, after L
mistakes, the dimension is 0, which means that there is a single function that is consistent
with the sample, so no more mistakes can occur. |

The price of bandit information: Let PBI(#) = BL-Dim(#)/L-Dim(H) and fix
k > 2. How large can PBI(H) be when H is a class of functions from a domain X to a
range ) of cardinality k7 We refer the reader to Daniely and Helbertal (2013), where it is
shown that PBI(H) < 4klog(k). This bound is tight up to the logarithmic factor.

6. Discussion

We have shown in this work that even in the simple case of multiclass learning, different
ERM learners for the same problem can have large gaps in their sample complexities. To
put our results in a more general perspective, consider the General Setting of Learning
introduced by Vapnik (1998). In this setting, a learning problem is a triplet (H, Z,1),
where H is a hypothesis class, Z is a data domain, and [ : H x Z — R is a loss function.
We emphasize that H is not necessarily a class of functions but rather an abstract set of
models. The goal of the learner is, given a sample S € Z™, sampled from some (unknown)
distribution D over Z, to find a hypothesis h € H that minimizes the ezpected loss, [(h) =
E. p[l(h,z)].

The general setting of learning encompasses multiclass learning as follows: given a
hypotheses class H € Y, take Z = X x ) and define [ : H x Z — R by I(h, (z,y)) =
1[h(x) # y]. However, the general learning setting encompasses many other problems as
well, for instance:

e Regression with the squared loss: Here, Z = R" x R, H is a set of real-valued
functions over R™ and I(h, (z,y)) = (h(z) — y)%.

2401



DANIELY, SABATO, BEN-DAVID AND SHALEV-SHWARTZ

e k-means: Here, Z = R", H = (R")* and, for h = (c1,...,cx) € H and = € Z, the
loss is I((c1, . .., cx), @) = minjepy ||¢; — ]

e Density estimation: Here, Z is an arbitrary finite set, H is some set of probability
density functions over Z, and the loss function is the log loss, I(p,z) = — In(p(z)).

A learning problem is learnable in the general setting of learning if there exists a function
A UX_ Z™ — H such that for every € > 0 and § > 0 there exists an m such that for every
distribution D over Z,

szrm <l(.A(S)) > }:gf{l(h) + 6) <0

A learning problem converges uniformly if, for every € > 0,

lim P - -
dim  Pr (zlelg [l(h) —ls(h)| > e) 0

where for S = (21,...,2m) € 2™, ls(h) = L 3™ I(h,2) is the empirical loss of h on
the sample S. An easy observation is that uniform convergence implies learnability, and a
classical result is that for binary classification and for regression (with absolute or squared
loss), the inverse implication also holds. Thus, it was believed that excluding some trivi-
alities, learnability is equivalent to uniform convergence. In Shalev-Shwartz et al. (2010)
it is shown that for stochastic convex optimization, learnability does not imply uniform
convergence, giving an evidence that the above belief might be misleading. Our results in
this work can be seen as another step in this direction, as we have shown that even in mul-
ticlass classification — a simple, natural and popular generalization of binary classification,
the above mentioned equivalence no longer holds.

We conclude with an open question. In view of our results in Section 4, the following
conjecture suggests itself.

Conjecture 29 There exists a constant C' such that, for every hypothesis class H C V¥,
dy(H) In(1) + 1n(g)>

€

mrf’AC(Ev 5) < C (

In light of Theorem 9 and the fact that there are cases where dg > logy(k — 1)dy, the
conjecture can only be proved if this learning rate can be achieved by a learning algorithm
that is not just an arbitrary ERM learner. So far, all the general upper bounds that we are
aware of are valid for any ERM learner. Understanding how to select among ERM learners
is fundamental as it teaches us what is the optimal way to learn. We hope that our examples
from section 4 and our result for symmetric classes will lead to a better understanding of
the optimal learning method.

Remark 30 A subsequent paper (Daniely and Shalev-Shwartz, 2014) established several
results that are highly related to the subject of this paper. First, they have shown that the
ERM rule is suboptimal even for multiclass classification with linear classes. Second, they
have shown that for some classes, an optimal learner must be improper — that is, it must
have the ability to return a hypothesis that does not belong to the learnt class. Finally,
they have show that the one-inclusion algorithm (Rubinstein et al., 2006) is optimal for
multiclass classification. We note that Conjecture 29 is still open.
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