
Journal of Machine Learning Research 16 (2015) 3269-3297 Submitted 1/15; Published 12/15

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Ryan R. Curtin ryan@ratml.org
School of Computational Science and Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250, USA

Dongryeol Lee drselee@gmail.com
Yahoo Labs
Sunnyvale, CA 94089

William B. March march@ices.utexas.edu
Institute for Computational Engineering and Sciences
University of Texas, Austin
Austin, TX 78712-1229

Parikshit Ram p.ram@gatech.edu

Skytree, Inc.

Atlanta, GA 30332

Editor: Nando de Freitas

Abstract

Numerous machine learning algorithms contain pairwise statistical problems at their core—
that is, tasks that require computations over all pairs of input points if implemented naively.
Often, tree structures are used to solve these problems efficiently. Dual-tree algorithms can
efficiently solve or approximate many of these problems. Using cover trees, rigorous worst-
case runtime guarantees have been proven for some of these algorithms. In this paper,
we present a problem-independent runtime guarantee for any dual-tree algorithm using the
cover tree, separating out the problem-dependent and the problem-independent elements.
This allows us to just plug in bounds for the problem-dependent elements to get runtime
guarantees for dual-tree algorithms for any pairwise statistical problem without re-deriving
the entire proof. We demonstrate this plug-and-play procedure for nearest-neighbor search
and approximate kernel density estimation to get improved runtime guarantees. Under
mild assumptions, we also present the first linear runtime guarantee for dual-tree based
range search.

Keywords: dual-tree algorithms, adaptive runtime analysis, cover tree, expansion con-
stant, nearest neighbor search, kernel density estimation, range search

1. Dual-tree Algorithms

A surprising number of machine learning algorithms have computational bottlenecks that
can be expressed as pairwise statistical problems. By this, we mean computational tasks
that can be evaluated directly by iterating over all pairs of input points. Nearest neighbor
search is one such problem, since for every query point, we can evaluate its distance to
every reference point and keep the closest one. This naively requires O(N) time to answer
a single query in a reference set of size N ; answering O(N) queries subsequently requires

c©2015 Ryan R. Curtin, Dongryeol Lee, William B. March, Parikshit Ram.

Curtin, Lee, March, and Ram

prohibitive O(N2) time. Kernel density estimation is also a pairwise statistical problem,
since we compute a sum over all reference points for each query point. This again requires
O(N2) time to answer O(N) queries if done directly. The reference set is typically indexed
with spatial data structures to accelerate this type of computation (Finkel and Bentley,
1974; Beygelzimer et al., 2006); these result in O(logN) runtime per query under favorable
conditions.

Building upon this intuition, Gray and Moore (2001) generalized the fast multipole
method from computational physics to obtain dual-tree algorithms. These are extremely
useful when there are large query sets, not just a few query points. Instead of building a tree
on the reference set and searching with each query point separately, Gray and Moore suggest
also building a query tree and traversing both the query and reference trees simultaneously
(a dual-tree traversal, from which the class of algorithms takes its name).

Dual-tree algorithms can be easily understood through the recent framework of Curtin
et al. (2013b): two trees (a query tree and a reference tree) are traversed by a pruning dual-
tree traversal. This traversal visits combinations of nodes from the trees in some sequence
(each combination consisting of a query node and a reference node), calling a problem-
specific Score() function to determine if the node combination can be pruned. If not,
then a problem-specific BaseCase() function is called for each combination of points held
in the query node and reference node. This has significant similarity to the more common
single-tree branch-and-bound algorithms, except that the algorithm must recurse into child
nodes of both the query tree and reference tree.

There exist numerous dual-tree algorithms for problems as diverse as kernel density
estimation (Gray and Moore, 2003), mean shift (Wang et al., 2007), minimum spanning
tree calculation (March et al., 2010), n-point correlation function estimation (March et al.,
2012), max-kernel search (Curtin et al., 2013c), particle smoothing (Klaas et al., 2006),
variational inference (Amizadeh et al., 2012), range search (Gray and Moore, 2001), and
embedding techniques (Van Der Maaten, 2014), to name a few.

Some of these algorithms are derived using the cover tree (Beygelzimer et al., 2006), a
data structure with compelling theoretical qualities. When cover trees are used, dual-tree
all-nearest-neighbor search and approximate kernel density estimation have O(N) runtime
guarantees for O(N) queries (Ram et al., 2009a); minimum spanning tree calculation scales
as O(N logN) (March et al., 2010). Other problems have similar worst-case guarantees
(Curtin and Ram, 2014; March, 2013).

In this work we combine the generalization of Curtin et al. (2013b) with the theoretical
results of Beygelzimer et al. (2006) and others in order to develop a worst-case runtime
bound for any dual-tree algorithm when the cover tree is used.

Section 2 lays out the required background, notation, and introduces the cover tree and
its associated theoretical properties. Readers familiar with the cover tree literature and
dual-tree algorithms (especially Curtin et al., 2013b) may find that section to be review.
Following that, we introduce an intuitive measure of cover tree imbalance, an important
property for understanding the runtime of dual-tree algorithms, in Section 3. This measure
of imbalance is then used to prove the main result of the paper in Section 4, which is a
worst-case runtime bound for generalized dual-tree algorithms. We apply this result to
three specific problems: nearest neighbor search (Section 5), approximate kernel density
estimation (Section 6), and range search / range count (Section 7), showing linear runtime

3270

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Symbol Description
N A tree node
Ci Set of child nodes of Ni

Pi Set of points held in Ni

Dn
i Set of descendant nodes of Ni

Dp
i Set of points contained in Ni and Dn

i

µi Center of Ni

λi Furthest descendant distance from µi

Table 1: Notation for trees. See Curtin et al. (2013b) for details.

bounds for each of those algorithms. Each of these bounds is an improvement on the state-
of-the-art, and in the case of range search, is the first such bound. Despite the intuition
this provides for the scaling properties of all dual-tree algorithms1, it must be kept in mind
that these worst-case bounds only apply to dual-tree algorithms that use the cover tree and
the standard cover tree traversal.

2. Preliminaries

For simplicity, the algorithms considered in this paper will be presented in a tree-independent
context, as in Curtin et al. (2013b), but the only type of tree we will consider is the cover
tree (Beygelzimer et al., 2006), and the only type of traversal we will consider is the cover
tree pruning dual-tree traversal, which we will describe later.

As we will be making heavy use of trees, we must establish notation (taken from Curtin
et al., 2013b). The notation we will be using is defined in Table 1.

2.1 The Cover Tree

The cover tree is a leveled hierarchical data structure originally proposed for the task of
nearest neighbor search by Beygelzimer et al. (2006). Each node Ni in the cover tree is
associated with a single point pi. An adequate description is given in their work (we have
adapted notation slightly):

A cover tree T on a dataset S is a leveled tree where each level is a “cover” for
the level beneath it. Each level is indexed by an integer scale si which decreases
as the tree is descended. Every node in the tree is associated with a point in S.
Each point in S may be associated with multiple nodes in the tree; however, we
require that any point appears at most once in every level. Let Csi denote the
set of points in S associated with the nodes at level si. The cover tree obeys
the following invariants for all si:

1. Dual-tree algorithms using kd-trees and other types of trees have been observed to empirically scale
linearly for tasks that take quadratic time without the use of trees; see the empirical results of Gray and
Moore (2001); March et al. (2010); Vladymyrov and Carreira-Perpinán (2014); Klaas et al. (2006); Gray
and Moore (2003).

3271

Curtin, Lee, March, and Ram

• (Nesting). Csi ⊂ Csi−1. This implies that once a point p ∈ S appears in
Csi then every lower level in the tree has a node associated with p.

• (Covering tree). For every pi ∈ Csi−1, there exists a pj ∈ Csi such that
d(pi, pj) < 2si and the node in level si associated with pj is a parent of the
node in level si − 1 associated with pi.

• (Separation). For all distinct pi, pj ∈ Csi , d(pi, pj) > 2si .

As a consequence of this definition, if there exists a node Ni, containing the point pi
at some scale si, then there will also exist a self-child node Nic containing the point pi at
scale si − 1 which is a child of Ni. In addition, every descendant point of the node Ni is
contained within a ball of radius 2si+1 centered at the point pi; therefore, λi = 2si+1 and
µi = pi (Table 1).

Note that the cover tree may be interpreted as an infinite-leveled tree, with C∞ con-
taining only the root point, C−∞ = S, and all levels between defined as above. Beygelzimer
et al. (2006) find this representation (which they call the implicit representation) easier for
description of their algorithms and some of their proofs. But clearly, this is not suitable for
implementation; hence, there is an explicit representation in which all nodes that have only
a self-child are coalesced upwards (that is, the node’s self-child is removed, and the children
of that self-child are taken to be the children of the node). Figure 1 shows each of the levels
of an example cover tree (in the explicit representation) on a simple six-point dataset.

In this work, we consider only the explicit representation of a cover tree, and do not
concern ourselves with the details of tree construction2.

2.2 Expansion Constant

The explicit representation of a cover tree has a number of useful theoretical properties
based on the expansion constant (Karger and Ruhl, 2002); we restate its definition below.

Definition 1 Let BS(p,∆) be the set of points in S within a closed ball of radius ∆ around
some p ∈ S with respect to a metric d: BS(p,∆) = {r ∈ S : d(p, r) ≤ ∆}. Then, the
expansion constant of S with respect to the metric d is the smallest c ≥ 2 such that

|BS(p, 2∆)| ≤ c|BS(p,∆)| ∀ p ∈ S, ∀ ∆ > 0. (1)

The expansion constant is used heavily in the cover tree literature. It is, in some sense,
a notion of instrinic dimensionality, most useful in scenarios where c is independent of
the number of points in the dataset (Karger and Ruhl, 2002; Beygelzimer et al., 2006;
Krauthgamer and Lee, 2004; Ram et al., 2009a). Note also that if points in S ⊂ H are
being drawn according to a stationary distribution f(x), then c will converge to some finite
value cf as |S| → ∞. To see this, define cf as a generalization of the expansion constant
for distributions. cf ≥ 2 is the smallest value such that∫

BH(p,2∆)
f(x)dx ≤ cf

∫
BH(p,∆)

f(x)dx (2)

2. A batch construction algorithm is given by Beygelzimer et al. (2006), called Construct.

3272

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

p0

p1

p2

p3

p4

p5

4

Na

(a) Root node at scale 1.

p0

p1

p2

p3

p4

p5

2

2

Nb

Nc

(b) Nodes at scale 0.

p0

p1

p2

p3

p4

p5

1

1

Nd

Ne

(c) Nodes at scale −1.

N2 N5 N1 N3

Na

Nb Nc

Nd Ne

N0 N4

scale 1

scale 0

scale −1

scale −∞

(d) Abstract representation.

Figure 1: Example cover tree on six points in R2. (a) Na is centered at p0 with scale 1. (b)
Nb and Nc are centered at p0 and p1, respectively, and have scale 0. (c) Nd and
Ne are centered at p0 and p2, respectively, and have scale −1. The leaves, N0

through N6, are centered at each of the six points, with scale −∞ (and therefore
radius 0). Note that although node Nb in subfigure (b) overlaps node Nc, point
p1 only belongs to Nc, not Nb. Note also that this is only one valid cover tree
that could be built on the data; other configurations are possible; for instance,
selecting a different root point gives different valid cover trees.

3273

Curtin, Lee, March, and Ram

for all p ∈ H and ∆ > 0 such that
∫
BH(p,∆) f(x)dx > 0, and with BH(p,∆) defined as the

closed ball of radius ∆ in the space H.
As a simple example, take f(x) as a uniform spherical distribution inRd: for any |x| ≤ 1,

f(x) is a constant; for |x| > 1, f(x) = 0. It is easy to see that cf in this situation is 2d, and
thus for some dataset S, c must converge to that value as more and more points are added
to S. Closed-form solutions for cf for more complex distributions are less easy to derive;
however, empirical speedup results from Beygelzimer et al. (2006) suggest the existence of
datasets where c is not strongly dependent on d. For instance, the covtype dataset has
54 dimensions but the expansion constant is much smaller than other, lower-dimensional
datasets.

There are some other important observations about the behavior of c. Adding a single
point to S may increase c arbitrarily: consider a set S distributed entirely on the surface
of a unit hypersphere. If one adds a single point at the origin, producing the set S′, then
c explodes to |S′| whereas before it may have been much smaller than |S|. Adding a
single point may also decrease c significantly. Suppose one adds a point arbitrarily close
to the origin to S′; now, the expansion constant will be |S′|/2. Both of these situations
are degenerate cases not commonly encountered in real-world behavior; we discuss them in
order to point out that although we can bound the behavior of c as |S| → ∞ for S from a
stationary distribution, we are not able to easily say much about its convergence behavior.

The expansion constant can be used to show a few useful bounds on various properties
of the cover tree; we restate these results below, given some cover tree built on a dataset S
with expansion constant c and |S| = N :

• Width bound: no cover tree node has more than c4 children (Lemma 4.1, Beygelz-
imer et al., 2006).

• Depth bound: the maximum depth of any node is O(c2 logN) (Lemma 4.3, Beygelz-
imer et al., 2006).

• Space bound: a cover tree has O(N) nodes (Theorem 1, Beygelzimer et al., 2006).

Lastly, we introduce a convenience lemma of our own which is a generalization of the
packing arguments used by Beygelzimer et al. (2006). This is a more flexible version of
their argument.

Lemma 1 Consider a dataset S with expansion constant c and a subset C ⊆ S such that
every two distinct points in C are separated by at least δ. Then, for any point p (which may
or may not be in S), and any radius ρδ > 0:

|BS(p, ρδ) ∩ C| ≤ c2+dlog2 ρe. (3)

Proof The proof is based on the packing argument from Lemma 4.1 in Beygelzimer et al.
(2006). Consider two cases: first, let d(p, pi) > ρδ for any pi ∈ S. In this case, BS(p, ρδ) = ∅
and the lemma holds trivially. Otherwise, let pi ∈ S be a point such that d(p, pi) ≤ ρδ.
Observe that BS(p, ρδ) ⊆ BS(pi, 2ρδ). Also, |BS(pi, 2ρδ)| ≤ c2+dlog2 ρe|BS(pi, δ/2)| by the

3274

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

definition of the expansion constant. Because each point in C is separated by δ, the number
of points in BS(p, ρδ)∩C is bounded by the number of disjoint balls of radius δ/2 that can
be packed into BS(p, ρδ). In the worst case, this packing is perfect, and

|BS(p, ρδ)| ≤ |BS(pi, 2ρδ)|
|BS(pi, δ/2)|

≤ c2+dlog2 ρe. (4)

3. Tree Imbalance

It is well-known that imbalance in trees leads to degradation in performance; for instance,
a kd-tree node with every descendant in its left child except one is effectively useless. A
kd-tree full of nodes like this will perform abysmally for nearest neighbor search, and it is
not hard to generate a pathological dataset that will cause a kd-tree of this sort.

This sort of imbalance applies to all types of trees, not just kd-trees. In our situation, we
are interested in a better understanding of this imbalance for cover trees, and thus endeavor
to introduce a more formal measure of imbalance which is correlated with tree performance.
Numerous measures of tree imbalance have already been established; one example is that
proposed by Colless (1982), and another is Sackin’s index (Sackin, 1972), but we aim to
capture a different measure of imbalance that uses the leveled structure of the cover tree.

We already know each node in a cover tree is indexed with an integer level (or scale).
In the explicit representation of the cover tree, each non-leaf node has children at a lower
level. But these children need not be strictly one level lower; see Figure 2. In Figure 2a,
each cover tree node has children that are strictly one level lower; we will refer to this as
a perfectly balanced cover tree. Figure 2b, on the other hand, contains the node Nm which
has two children with scale two less than sm. We will refer to this as an imbalanced cover
tree. Note that in our definition, the balance of a cover tree has nothing to do with differing
number of descendants in each child branch but instead only missing levels.

An imbalanced cover tree can happen in practice, and in the worst cases, the imbalance
may be far worse than the simple graphs of Figure 2. Consider a dataset with a single

Nh NjNi

NdNcNb

Nk

Na

NgNfNe

sa

sa − 1

sa − 2

(a) Balanced cover tree.

Nr Ns

Nn

Nt

Nm

NqNp

sm

sm − 1

sm − 2

(b) Imbalanced cover tree.

Figure 2: Balanced and imbalanced cover trees.

3275

Curtin, Lee, March, and Ram

outlier

Figure 3: Single-outlier cover tree.

Figure 4: A multiple-outlier cover tree.

outlier which is very far away from all of the other points3. Figure 3 shows what happens in
this situation: the root node has two children; one of these children has only the outlier as
a descendant, and the other child has the rest of the points in the dataset as a descendant.
In fact, it is easy to find datasets with a handful of outliers that give rise to a chain-like
structure at the top of the tree: see Figure 4 for an illustration4.

A tree that has this chain-like structure all the way down, which is similar to the kd-tree
example at the beginning of this section, is going to perform horrendously; motivated by
this observation, we define a measure of tree imbalance.

Definition 2 The cover node imbalance In(Ni) for a cover tree node Ni with scale si in
the cover tree T is defined as the cumulative number of missing levels between the node
and its parent Np (which has scale sp). If the node is a leaf (that is, si = −∞), then the
number of missing levels is defined as the difference between sp and smin − 1 where smin is
the smallest scale of a non-leaf node in T . If Ni is the root of the tree, then the cover node
imbalance is 0. Explicitly written, this calculation is

In(Ni) =


sp − si − 1 if Ni is not a leaf and not the root node

max(sp − smin − 1, 0) if Ni is a leaf

0 if Ni is the root node.

(5)

3. Note also that for an outlier sufficiently far away, the expansion constant is N − 1, so we should expect
poor performance with the cover tree anyway.

4. As a side note, this behavior is not limited to cover trees, and can happen to mean-split kd-trees too,
especially in higher dimensions. In addition, for this scenario to arise with cover trees, it must be true
that c ∼ O(N).

3276

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Imbalance

Dataset d N = 5k N = 50k N = 500k

lcdm 3 4.48 5.15 5.24
sdss 4 2.17 2.81 2.97

power 7 5.41 6.46 4.50
susy 18 0.74 0.76 0.86

randu 10 0.23 0.22 0.59
higgs 29 0.99 1.68 1.56

covertype 54 1.322 1.766 2.495
mnist 784 0.99 1.67 2.09

Table 2: Empirically calculated tree imbalances, normalized by N .

This simple definition of cover node imbalance is easy to calculate, and using it, we can
generalize to a measure of imbalance for the full tree.

Definition 3 The cover tree imbalance It(T) for a cover tree T is defined as the cumula-
tive number of missing levels in the tree. This can be expressed as a function of cover node
imbalances easily:

It(T) =
∑

Ni∈T

In(Ni). (6)

A perfectly balanced cover tree Tb with no missing levels has imbalance It(Tb) = 0 (for
instance, Figure 2a). A worst-case cover tree Tw which is entirely a chain-like structure with
maximum scale smax and minimum scale smin will have imbalance It(Tw) ∼ N(smax−smin).
Because of this chain-like structure, each level has only one node and thus there are at least
N levels; or, smax − smin ≥ N , meaning that in the worst case the imbalance is quadratic
in N .5

However, for most real-world datasets with the cover tree implementation in mlpack
(Curtin et al., 2013a) and the reference implementation (Beygelzimer et al., 2006), the tree
imbalance is near-linear with the number of points. We have constructed cover trees on N
uniformly subsampled points from a variety of datasets and calculated the imbalance; see
Table 2 for the results. Ten trials were performed for each dataset and each N , and the
mean imbalance is given. These results are normalized with respect to N , for which the
values of 5000, 50000, and 500000 were chosen. The ‘power’, ‘susy’, ‘higgs’, and ‘covertype’
datasets are found in the UCI Machine Learning Repository (Bache and Lichman, 2013), the
‘mnist’ dataset is from LeCun et al. (2000), the ‘lcdm‘ and ‘sdss’ datasets are Sloan Digital
Sky Survey data (Adelman-McCarthy et al., 2008), and the ‘randu’ dataset is randomly-
generated uniformly-distributed data in 10 dimensions. The imbalances on each of these
datasets tend to be near-linear.

Currently, no cover tree construction algorithm specifically aims to minimize imbalance.

5. Note that in this situation, c ∼ N also.

3277

Curtin, Lee, March, and Ram

Algorithm 1 The standard pruning dual-tree traversal for cover trees.

1: Input: query node Nq, set of reference nodes R
2: Output: none

3: smax
r ← maxNr∈R sr

4: if (sq < smax
r) then

5: {Perform a reference recursion.}
6: for each Nr ∈ R do
7: BaseCase(pq, pr)
8: end for
9: Rr ← {Nr ∈ R : sr = smax

r }
10: Rr−1 ← {C (Nr) : Nr ∈ Rr} ∪ (R \Rr)
11: R′r−1 ← {Nr ∈ Rr−1 : Score(Nq,Nr) 6=∞}
12: recurse with Nq and R′r−1

13: else
14: {Perform a query recursion.}
15: for each Nqc ∈ C (Nq) do
16: R′ ← {Nr ∈ R : Score(Nqc,Nr) 6=∞}
17: recurse with Nqc and R′

18: end for
19: end if

4. General Runtime Bound

Perhaps more interesting than measures of tree imbalance is the way cover trees are actu-
ally used in dual-tree algorithms. Although cover trees were originally intended for nearest
neighbor search (See Algorithm Find-All-Nearest, Beygelzimer et al., 2006), they can be
adapted to a wide variety of problems: minimum spanning tree calculation (March et al.,
2010), approximate nearest neighbor search (Ram et al., 2009b), Gaussian processes poste-
rior calculation (Moore and Russell, 2014), and max-kernel search (Curtin and Ram, 2014)
are some examples. Further, through the tree-independent dual-tree algorithm abstraction
of Curtin et al. (2013b), other existing dual-tree algorithms can easily be adapted for use
with cover trees.

In the framework of tree-independent dual-tree algorithms, all that is necessary to de-
scribe a dual-tree algorithm is a point-to-point base case function (BaseCase()) and a
node-to-node pruning rule (Score()). These functions, which are often very straightfor-
ward, are then paired with a type of tree and a pruning dual-tree traversal to produce a
working algorithm. In later sections, we will consider specific examples.

When using cover trees, the typical pruning dual-tree traversal is an adapted form of
the original nearest neighbor search algorithm (see Find-All-Nearest, Beygelzimer et al.,
2006); this traversal is implemented in both the cover tree reference implementation and in
the more flexible mlpack library (Curtin et al., 2013a). The problem-independent traversal
is given in Algorithm 1 and was originally presented by Curtin and Ram (2014). Initially,
it is called with the root of the query tree and a reference set R containing only the root of
the reference tree.

3278

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

This dual-tree recursion is a depth-first recursion in the query tree and a breadth-first
recursion in the reference tree; to this end, the recursion maintains one query node Nq and
a reference set R. The set R may contain reference nodes with many different scales; the
maximum scale in the reference set is smax

r (line 3). Each single recursion will descend either
the query tree or the reference tree, not both; the conditional in line 4, which determines
whether the query or reference tree will be recursed, is aimed at keeping the relative scales
of query nodes and reference nodes close.

Keeping the query and reference scales close is both beneficial for the later theory and
intuitively reasonable: recursing too quickly in the either the query or reference node will
unnecessarily duplicate work. Suppose we recurse many levels down the query tree before
recursing down the reference tree, giving us a set of query nodes we are considering. For
each of these query nodes, we will then need to descend the reference tree. Because these
query nodes are close together (with respect to the reference nodes we are considering,
which are of larger scale and thus further apart), the pruning decisions at each level of
recursion are likely to be the same for each query node. Therefore, recursing too far in the
query tree may cause a large amount of duplicated work. The symmetric argument applies
for recursing too far in the reference tree before recursing in the query tree. This justifies
the approach of keeping the query and reference scales approximately equal.

A query recursion (lines 13–18) is straightforward: for each child Nqc of Nq, the node
combinations (Nqc,Nr) are scored for each Nr in the reference set R. If possible, these
combinations are pruned to form the set R′ (line 17) by checking the output of the Score()

function, and then the algorithm recurses with Nqc and R′.
A reference recursion (lines 4–12) is similar to a query recursion, but the pruning strategy

is significantly more complicated. Given R, we calculate Rr, which is the set of nodes in
R that have scale smax

r . We expand each node in Rr to construct Rr−1: this is the set
of children of all nodes in Rr. This set is then combined with R \ Rr (that is, the set of
references nodes not at scale smax

r) to produce Rr−1. Each node in Rr−1 is then scored and
pruned if possible, resulting in the pruned reference set R′r−1. The algorithm then recurses
with Nq and R′r−1.

The reference recursion only recurses into the top-level subset of the reference nodes in
order to preserve the separation invariant. It is easy to show that every pair of points held
in nodes in R is separated by at least 2s

max
r :

Lemma 2 For all distinct nodes Ni,Nj ∈ R (in the context of Algorithm 1) which contain
points pi and pj, respectively, d(pi, pj) > 2s

max
r , with smax

r defined as in line 3.

Proof This proof is by induction. If |R| = 1, such as during the first reference recursion,
the result obviously holds. Now consider any reference set R and assume the statement of
the lemma holds for this set R, and define smax

r as the maximum scale of any node in R.
Construct the set Rr−1 as in line 10 of Algorithm 1; if |Rr−1| ≤ 1, then Rr−1 satisfies the
desired property.

Otherwise, take any Ni,Nj in Rr−1, with points pi and pj , respectively, and scales
si and sj , respectively. Clearly, if si = sj = smax

r − 1, then by the separation invariant
d(pi, pj) > 2s

max
r −1.

Now suppose that si < smax
r − 1. This implies that there exists some implicit cover tree

node with point pi and scale smax
r − 1 (as well as an implicit child of this node pi with scale

3279

Curtin, Lee, March, and Ram

smax
r − 2 and so forth until one of these implicit nodes has child pi with scale si). Because

the separation invariant applies to both implicit and explicit representations of the tree, we
conclude that d(pi, pj) > 2s

max
r − 1. The same argument may be made for the case where

sj < smax
r − 1, with the same conclusion.

We may therefore conclude that each point of each node in Rr−1 is separated by 2s
max
r −1.

Note that R′r−1 ⊆ Rr−1 and that R \Rr−1 ⊆ R in order to see that this condition holds for
all nodes in R′r−1.

Because we have shown that the condition holds for the initial reference set and for
any reference set produced by a reference recursion (which will be R at some other level of
recursion), we have shown that the statement of the lemma is true.

Note that in this proof, we have considered the child reference set Rr−1, not the original
reference set R, and shown that with respect to smax

r as defined by R (not Rr−1), all nodes
are separated by 2s

max
r −1. Then, in the frame of the next recursion where R ← Rr−1, the

lemma will hold, as smax
r will then be the maximum scale present in R.

This observation means that the set of points P held by all nodes in R is always a subset
of Csmax

r
. This fact will be useful in our later runtime proofs.

Next, we develop notions with which to understand the behavior of the cover tree dual-
tree traversal when the datasets are of significantly different scale distributions.

If the datasets are similar in scale distribution (that is, inter-point distances tend to
follow the same distribution), then the recursion will alternate between query recursions and
reference recursions. But if the query set contains points which are, in general, much farther
apart than the reference set, then the recursion will start with many query recursions before
reaching a reference recursion. The converse case also holds. We are interested in formalizing
this notion of scale distribution; therefore, define the following dataset-dependent constants
for the query set Sq and the reference set Sr:

• ηq: the largest pairwise distance in Sq

• δq: the smallest nonzero pairwise distance in Sq

• ηr: the largest pairwise distance in Sr

• δr: the smallest nonzero pairwise distance in Sr

These constants are directly related to the aspect ratio of the datasets; indeed, ηq/δq is
exactly the aspect ratio of Sq. Further, let us define and bound the top and bottom levels
of each tree:

• The top scale sTq of the query tree Tq is such that as dlog2(ηq)e− 1 ≤ sTq ≤ dlog2(ηq)e.

• The minimum scale of the query tree Tq is defined as smin
q = dlog2(δq)e.

• The top scale sTr of the reference tree Tr is such that as dlog2(ηr)e − 1 ≤ sTr ≤
dlog2(ηr)e.

• The minimum scale of the reference tree Tr is defined as smin
r = dlog2(δr)e.

3280

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Note that the minimum scale is not the minimum scale of any cover tree node (that
would be −∞), but the minimum scale of any non-leaf node in the tree.

Suppose that our datasets are of a similar scale distribution: sTq = sTr , and smin
q = smin

r .
In this setting we will have alternating query and reference recursions. But if this is not the
case, then we have extra reference recursions before the first query recursion or after the
last query recursion (situations where both these cases happen are possible). Motivated by
this observation, let us quantify these extra reference recursions:

Lemma 3 For a dual-tree algorithm with |Sq| ∼ |Sr| ∼ O(N) using cover trees and the
traversal given in Algorithm 1, the number of extra reference recursions that happen before
the first query recursion is bounded by

min (O(N), log2(ηr/ηq)− 1) . (7)

Proof The first query recursion happens once sq ≥ smax
r . The number of reference re-

cursions before the first query recursion is then bounded as the number of levels in the
reference tree between sTr and sTq that have at least one explicit node. Because there are
O(N) nodes in the reference tree, the number of levels cannot be greater than O(N) and
thus the result holds.

The second bound holds by applying the definitions of sTr and sTq to the expression

sTr − sTq − 1:

sTr − sTq − 1 ≤ dlog2(ηr)e − (dlog2(ηq)e − 1)− 1 (8)

≤ log2(ηr) + 1− log2(ηq) (9)

which gives the statement of the lemma after applying logarithmic identities.

Note that the O(N) bound may be somewhat loose, but it suffices for our later purposes.
Now let us consider the other case:

Lemma 4 For a dual-tree algorithm with |Sq| ∼ |Sr| ∼ O(N) using cover trees and the
traversal given in Algorithm 1, the number of extra reference recursions that happen after
the last query recursion is bounded by

max
(
min

(
O(N log2(δq/δr)), O(N2)

)
, 0
)
. (10)

For convenience, we define a term that encapsulates this bound.

Definition 4 Define θ as a bound on the number of extra reference recursions that happen
after the last query recursion. Then,

θ = max
{

min
(
O(N log2(δq/δr)), O(N2)

)
, 0
}
. (11)

3281

Curtin, Lee, March, and Ram

Proof Our goal here is to count the number of reference recursions after the final query
recursion at level smin

q ; the first of these reference recursions is at scale smax
r = smin

q . Because
query nodes are not pruned in this traversal, each reference recursion we are counting will
be duplicated over the whole set of O(N) query nodes. The first part of the bound follows
by observing that smin

q − smin
r ≤ dlog2(δq)e − dlog2(δr)e − 1 ≤ log2(δq/δr).

The second part follows by simply observing that there are O(N) reference nodes.

These two previous lemmas allow us a better understanding of what happens as the
reference set and query set become different. Lemma 3 shows that the number of extra
recursions caused by a reference set with larger pairwise distances than the query set (ηr
larger than ηq) is modest; on the other hand, Lemma 4 shows that for each extra level in
the reference tree below smin

q , O(N) extra recursions are required. Using these lemmas and
this intuition, we will prove general runtime bounds for the cover tree traversal.

Theorem 1 Given a reference set Sr of size O(N) with an expansion constant cr and a
set of queries Sq of size O(N), a standard cover tree based dual-tree algorithm (Algorithm
1) takes

O
(
c4
r |R∗|χψ(N + It(Tq) + θ)

)
(12)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-tree
recursion, χ is the maximum possible runtime of BaseCase(), ψ is the maximum possible
runtime of Score(), and θ is defined as in Lemma 4.

Proof First, split the algorithm into two parts: reference recursions (lines 4–12) and query
recursions (lines 13–18). The runtime of the algorithm is the runtime of a reference recursion
times the total number of reference recursions plus the total runtime of all query recursions.

Consider a reference recursion (lines 4–12). Define R∗ to be the largest set R for any
scale smax

r and any query node Nq during the course of the algorithm; then, it is true that
|R| ≤ |R∗|. The work done in the base case loop from lines 6–8 is thus O(χ|R|) ≤ O(χ|R∗|).
Then, lines 10 and 11 take O(c4

rψ|R|) ≤ O(c4
rψ|R∗|) time, because each reference node has

up to c4
r children. So, one full reference recursion takes O(c4

rψχ|R∗|) time.
Now, note that there are O(N) nodes in Tq. Thus, line 17 is visited O(N) times.

The amount of work in line 16, like in the reference recursion, is bounded as O(c4
rψ|R∗|).

Therefore, the total runtime of all query recursions is O(c4
rψ|R∗|N).

Lastly, we must bound the total number of reference recursions. Reference recursions
happen in three cases: (1) smax

r is greater than the scale of the root of the query tree (no
query recursions have happened yet); (2) smax

r is less than or equal to the scale of the root
of the query tree, but is greater than the minimum scale of the query tree that is not −∞;
(3) smax

r is less than the minimum scale of the query tree that is not −∞.
First, consider case (1). Lemma 3 shows that the number of reference recursions of this

type is bounded by O(N). Although there is also a bound that depends on the sizes of the
datasets, we only aim to show a linear runtime bound, so the O(N) bound is sufficient here.

Next, consider case (2). In this situation, each query recursion implies at least one
reference recursion before another query recursion. For some query node Nq, the exact
number of reference recursions before the children of Nq are recursed into is bounded above

3282

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

by In(Nq) + 1: if Nq has imbalance 0, then it is exactly one level below its parent, and
thus there is only one reference recursion. On the other hand, if Nq is many levels below
its parent, then it is possible that a reference recursion may occur for each level in between;
this is a maximum of In(Nq) + 1.

Because each query node in Tq is recursed into once, the total number of reference
recursions before each query recursion is∑

Nq∈Tq

In(Nq) + 1 = It(Tq) +O(N) (13)

since there are O(N) nodes in the query tree.
Lastly, for case (3), we may refer to Lemma 4, giving a bound of θ reference recursions

in this case.
We may now combine these results for the runtime of a query recursions with the total

number of reference recursions in order to give the result of the theorem:

O
(
c4
r |R∗|ψχ (N + It(Tq) + θ)

)
+O

(
c4
r |R∗|ψN

)
∼ O

(
c4
r |R∗|ψχ (N + It(Tq) + θ)

)
. (14)

When we consider the monochromatic case (where Sq = Sr), the results trivially simplify.

Corollary 1 Given the situation of Theorem 1 but with Sq = Sr = S so that cq = cr = c
and Tq = Tr = T , a dual-tree algorithm using the standard cover tree traversal (Algorithm
1) takes

O
(
c4|R∗|χψ (N + It(T))

)
(15)

time, where |R∗| is the maximum size of the reference set R (line 1) during the dual-
tree recursion, χ is the maximum possible runtime of BaseCase(), and ψ is the maximum
possible runtime of Score().

An intuitive understanding of these bounds is best achieved by first considering the
monochromatic case (this case arises, for instance, in all-nearest-neighbor search). The
linear dependence on N arises from the fact that all query nodes must be visited. The
dependence on the reference tree, however, is encapsulated by the term c4|R∗|, with |R∗|
being the maximum size of the reference set R; this value must be derived for each specific
problem. The poor performance of trees on datasets with large c (or, in the worst case,
c ∼ N) is then captured in both of those terms. These datasets for which trees perform
poorly may also have a high cover tree imbalance It(T); the linear dependence of runtime
on imbalance is thus sensible for datasets where trees perform well.

The bichromatic case (Sq 6= Sr) is a slightly more complex result which deserves a bit
more attention. The intuition for all terms except θ remain virtually the same.

The term θ captures the effect of query and reference datasets with different widths, and
has one unfortunate corner case: when δq > ηr, then the query tree must be entirely de-
scended before any reference recursion. This results in a bound of the form O(N log(ηr/δr)),

3283

Curtin, Lee, March, and Ram

or O(N2) (see Lemma 4). This is because the reference tree must be descended separately
for each query point.

The quantity |R∗| bounds the amount of work that needs to be done for each recursion.
In the worst case, |R∗| can be N . However, dual-tree algorithms rely on branch-and-bound
techniques to prune away work (lines 11 and 16 in Algorithm 1). A small value of |R∗| will
imply that the algorithm is extremely successful in pruning away work. An (upper) bound
on |R∗| (and the algorithm’s success in pruning work) will depend on the problem and the
data. As we will show, bounding |R∗| is often possible. For many dual-tree algorithms,
χ ∼ ψ ∼ O(1); often, cached sufficient statistics (Moore, 2000) can enable O(1) runtime
implementations of BaseCase() and Score().

These results hold for any dual-tree algorithm regardless of the problem. Hence, the
runtime of any dual-tree algorithm can be bounded no more tightly than O(N) with our
bound, which matches the intuition that answering O(N) queries will take at least O(N)
time. For a particular problem and data, if cr, |R∗|, χ, and ψ are bounded by constants
independent of N and θ is no more than linear in N (for large enough N), then the dual-tree
algorithm for that problem has a runtime linear in N . Our theoretical result separates out
the problem-dependent and the problem-independent elements of the runtime bound, which
allows us to simply plug in the problem-dependent bounds in order to get runtime bounds
for any dual-tree algorithm without requiring an analysis from scratch.

Our results are similar to that of Ram et al. (2009a), but those results depend on a
quantity called the constant of bichromaticity, denoted κ, which has unclear relation to
cover tree imbalance. The dependence on κ is given as c4κ

q , which is not a good bound,
especially because κ may be much greater than 1 in the bichromatic case (where Sq 6= Sr).

The more recent results of Curtin and Ram (2014) are more related to these results,
but they depend on the inverse constant of bichromaticity ν which suffers from the same
problem as κ. Although the dependence on ν is linear (that is, O(νN)), bounding ν is
difficult and it is not true that ν = 1 in the monochromatic case.

The quantity ν corresponds to the maximum number of reference recursions between
a single query recursion, and κ corresponds to the maximum number of query recursions
between a single reference recursion. The respective proofs that use these constants then
apply them as a worst-case measure for the whole algorithm: when using κ, Ram et al.
(2009a) assume that every reference recursion may be followed by κ query recursions; sim-
ilarly, Curtin and Ram (2014) assume that every query recursion may be followed by ν
reference recursions. Here, we have simply used It(Tq) and θ as an exact summation of the
total extra reference recursions, which gives us a much tighter bound than ν or κ on the
running time of the whole algorithm.

Further, both ν and κ are difficult to empirically calculate and require an entire run of
the dual-tree algorithm. On the other hand, bounding It(Tq) (and θ) can be done in one
pass of the tree (assuming the tree is already built). Thus, not only is our bound tighter
when the cover tree imbalance is sublinear in N , it more closely reflects the actual behavior
of dual-tree algorithms, and the constants which it depends upon are straightforward to
calculate.

In the following sections, we will apply our results to specific problems and show the
utility of our bound in simplifying runtime proofs for dual-tree algorithms.

3284

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Algorithm 2 Nearest neighbor search BaseCase()

Input: query point pq, reference point pr, list of candidate neighbors N and distances D

Output: distance d between pq and pr

if d(pq, pr) < D[pq] and BaseCase(pq, pr) not yet called then
D[pq]← d(pq, pr), and N [pq]← pr

end if
return d(pq, pr)

Algorithm 3 Nearest neighbor search Score()

Input: query node Nq, reference node Nr

Output: a score for the node combination (Nq,Nr), or ∞ if the combination should be
pruned

if dmin(Nq,Nr) < B(Nq) then
return dmin(Nq,Nr)

end if
return ∞

5. Nearest Neighbor Search

The standard task of nearest neighbor search can be simply described: given a query
set Sq and a reference set Sr, for each query point pq ∈ Sq, find the nearest neighbor pr
in the reference set Sr. The task is well-studied and well-known, and there exist numerous
approaches for both exact and approximate nearest neighbor search, including the cover
tree nearest neighbor search algorithm due to Beygelzimer et al. (2006). We will consider
that algorithm, but in a tree-independent sense as given by Curtin et al. (2013b); this
means that to describe the algorithm, we require only a BaseCase() and Score() function;
these are given in Algorithms 2 and 3, respectively. The point-to-point BaseCase() function
compares a query point pq and a reference point pr, updating the list of candidate neighbors
for pq if necessary.

The node-to-node Score() function determines if the entire subtree of nodes under the
reference node Nr can improve the candidate neighbors for all descendant points of the
query node Nq; if not, the node combination is pruned. The Score() function depends on
the function dmin(·, ·), which represents the minimum possible distance between any two
descendants of two nodes. Its definition for cover tree nodes is

dmin(Nq,Nr) = d(pq, pr)− 2sq+1 − 2sr+1. (16)

Given a type of tree and traversal, these two functions store the current nearest neighbor
candidates in the array N and their distances in the array D. (See Curtin et al., 2013b,
for a more complete discussion of how this algorithm works and a proof of correctness.)
The Score() function depends on a bound function B(Nq) which represents the maximum
distance that could possibly improve a nearest neighbor candidate for any descendant point

3285

Curtin, Lee, March, and Ram

of the query node Nq. The standard bound function B(Nq) used for cover trees is adapted
from Beygelzimer et al. (2006):

B(Nq) := D[pq] + 2sq+1 (17)

In this formulation, the query node Nq holds the the query point pq, the quantity
D[pq] is the current nearest neighbor candidate distance for the query point pq, and 2sq+1

corresponds to the furthest descendant distance of Nq. For notational convenience in the
following proof, take cqr = max((maxpq∈Sq c

′
r), cr), where c′r is the expansion constant of

the set Sr ∪ {pq}.

Theorem 2 Using cover trees, the standard cover tree pruning dual-tree traversal, and the
nearest neighbor search BaseCase() and Score() as given in Algorithms 2 and 3, respec-
tively, and also given a reference set Sr of size O(N) with expansion constant cr, and a query
set Sq of size O(N), the running time of the algorithm is bounded by O(c4

rc
5
qr(N+It(Tq)+θ))

with It(Tq) and θ defined as in Definition 3 and Lemma 4, respectively.

Proof The running time of BaseCase() and Score() are clearly O(1). Due to Theorem 1,
we therefore know that the runtime of the algorithm is bounded by O(c4

r |R∗|(N+It(Tq)+θ)).
Thus, the only thing that remains is to bound the maximum size of the reference set, |R∗|.

Assume that when R∗ is encountered, the maximum reference scale is smax
r and the

query node is Nq. Every node Nr ∈ R∗ satisfies the property enforced in line 11 that
dmin(Nq,Nr) ≤ B(Nq). Using the definition of dmin(·, ·) and B(·), we expand the equation.
Note that pq is the point held in Nq and pr is the point held in Nr. Also, take p̂r to be the
current nearest neighbor candidate for pq; that is, D[pq] = d(pq, p̂r) and N [pq] = p̂r. Then,

dmin(Nq,Nr) ≤ B(Nq) (18)

d(pq, pr) ≤ d(pq, p̂r) + 2sq+1 + 2sr+1 + 2sq+1 (19)

≤ d(pq, p̂r) + 2(2s
max
r +1) (20)

where the last step follows because sq + 1 ≤ smax
r and sr ≤ smax

r . Define the set of points
P as the points held in each node in R∗ (that is, P = {pr ∈P(Nr) : Nr ∈ R∗}). Then, we
can write

P ⊆ BSr(pq, d(pq, p̂r) + 2(2s
max
r +1)). (21)

Suppose that the true nearest neighbor is p∗r and d(pq, p
∗
r) > 2s

max
r +1. Then, p∗r must

be held as a descendant point of some node in R∗ which holds some point p̃r. Using the
triangle inequality,

d(pq, p̂r) ≤ d(pq, p̃r) ≤ d(pq, p
∗
r) + d(p̃r, p

∗
r) ≤ d(pq, p

∗
r) + 2s

max
r +1. (22)

This gives that P ⊆ BSr∪{pq}(pq, d(pq, p
∗
r) + 3(2s

max
r +1)). The previous step is necessary:

to apply the definition of the expansion constant, the ball must be centered at a point in
the set; now, the center (pq) is part of the set.

3286

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

|BSr∪{pq}(pq, d(pq, p
∗
r) + 3(2s

max
r +1))| ≤ |BSr∪{pq}(pq, 4d(pq, p

∗
r))| (23)

≤ c3
qr|BSr∪{pq}(pq, d(pq, p

∗
r)/2)| (24)

which follows because the expansion constant of the set Sr ∪ {pq} is bounded above by cqr.
Next, we know that p∗r is the closest point to pq in Sr ∪ {pq}; thus, there cannot exist a
point p′r 6= pq ∈ Sr ∪ {pq} such that p′r ∈ BSqr(pq, d(pq, p

∗
r)/2) because that would imply

that d(pq, p
′
r) < d(pq, p

∗
r), which is a contradiction. Thus, the only point in the ball is pq,

and we have that |BSr∪{pq}(pq, d(pq, p
∗
r)/2)| = 1, giving the result that |R| ≤ c3

qr in this
case.

The other case is when d(pq, p
∗
r) ≤ 2s

max
r +1, which means that d(pq, p̂r) ≤ 2s

max
r +2. Note

that P ∈ Csmax
r

, and therefore

P ⊆ BSr(pq, d(pq, p
∗
r) + 3(2s

max
r +1)) ∩ Csmax

r
(25)

⊆ BSr(pq, 4(2s
max
r +1)) ∩ Csmax

r
. (26)

Every point in Csmax
r

is separated by at least 2s
max
r . Using Lemma 1 with δ = 2s

max
r and

ρ = 8 yields that |P | ≤ c5
r . This gives the result, because c5

r ≤ c5
qr.

In the monochromatic case where Sq = Sr
6, the bound is O(c9(N + It(T)) because

c = cr = cqr and θ = 0. For well-behaved trees where It(Tq) is linear or sublinear in N ,
this represents the current tightest worst-case runtime bound for nearest neighbor search.

6. Approximate Kernel Density Estimation

Ram et al. (2009a) present a clever technique for bounding the running time of approximate
kernel density estimation based on the properties of the kernel, when the kernel is shift-
invariant and satisfies a few assumptions. We will restate these assumptions and provide
an adapted proof using Theorem 1, which gives a tighter bound.

Approximate kernel density estimation is a common application of dual-tree algorithms
(Gray and Moore, 2003, 2001). Given a query set Sq, a reference set Sr of size N , and a
kernel function K(·, ·), the true kernel density estimate for a query point pq is given as

f∗(pq) =
∑
pr∈Sr

K(pq, pr). (27)

In the case of an infinite-tailed kernel K(·, ·), the exact computation cannot be accel-
erated; thus, attention has turned towards tractable approximation schemes. Two simple
schemes for the approximation of f∗(pq) are well-known: absolute value approximation and
relative value approximation. Absolute value approximation requires that each density es-
timate f(pq) is within ε of the true estimate f∗(pq):

|f(pq)− f∗(pq)| < ε ∀pq ∈ Sq. (28)

6. In the monochromatic case, we do not take a point as its own nearest neighbor, so slight modification of
BaseCase() is necessary. The runtime bound result remains unchanged.

3287

Curtin, Lee, March, and Ram

Relative value approximation is a more flexible approximation scheme; given some pa-
rameter ε, the requirement is that each density estimate is within a relative tolerance of
f∗(pq) :

|f(pq)− f∗(pq)|
|f∗(pq)|

< ε ∀pq ∈ Sq. (29)

Kernel density estimation is related to the well-studied problem of kernel summation,
which can also be solved with dual-tree algorithms (Lee and Gray, 2006, 2009). In both of
those problems, regardless of the approximation scheme, simple geometric observations can
be made to accelerate computation: when K(·, ·) is shift-invariant, faraway points have very
small kernel evaluations. Thus, trees can be built on Sq and Sr, and node combinations can
be pruned when the nodes are far apart while still obeying the error bounds.

In the following two subsections, we will separately consider both the absolute value
approximation scheme and the relative value approximation scheme, under the assumption
of a shift-invariant kernel K(pq, pr) = K(‖pq − pr‖) which is monotonically decreasing and
non-negative. In addition, we assume that there exists some bandwidth h such that K(d)
must be concave for d ∈ [0, h] and convex for d ∈ [h,∞). This assumption implies that
the magnitude of the derivative |K′(d)| is maximized at d = h. These are not restrictive
assumptions; most standard kernels fall into this class, including the Gaussian, exponential,
and Epanechnikov kernels.

6.1 Absolute Value Approximation

A tree-independent algorithm for solving approximate kernel density estimation with ab-
solute value approximation under the previous assumptions on the kernel is given as a
BaseCase() function in Algorithm 4 and a Score() function in Algorithm 5 (a correctness
proof can be found in Curtin et al., 2013b). The list fp holds partial kernel density estimates
for each query point, and the list fn holds partial kernel density estimates for each query
node. At the beginning of the dual-tree traversal, the lists fp and fn, which are both of size
O(N), are each initialized to 0. As the traversal proceeds, node combinations are pruned if
the difference between the maximum kernel value K(dmin(Nq,Nr)) and the minimum kernel
value K(dmax(Nq,Nr)) is sufficiently small (line 3). If the node combination can be pruned,
then the partial node estimate is updated (line 4). When node combinations cannot be
pruned, BaseCase() may be called, which simply updates the partial point estimate with
the exact kernel evaluation (line 3).

After the dual-tree traversal, the actual kernel density estimates f must be extracted.
This can be done by traversing the query tree and calculating f(pq) = fp(pq)+

∑
Ni∈T fn(Ni),

where T is the set of nodes in Tq that have pq as a descendant. Each query node needs to
be visited only once to perform this calculation; it may therefore be accomplished in O(N)
time.

Note that this version is far simpler than other dual-tree algorithms that have been pro-
posed for approximate kernel density estimation (see, for instance, Gray and Moore, 2003);
however, this version is sufficient for our runtime analysis. Real-world implementations,
such as the one found in mlpack (Curtin et al., 2013a), tend to be far more complex.

3288

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Algorithm 4 Approximate kernel density estimation BaseCase()

1: Input: query point pq, reference point pr, list of kernel point estimates f̂p
2: Output: kernel value K(pq, pr)

3: fp(pq)← fp(pq) +K(pq, pr)
4: return K(pq, pr)

Algorithm 5 Absolute-value approximate kernel density estimation Score()

1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n
2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should

be pruned

3: if K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) < ε then
4: fn(Nq)← fn(Nq) + |Dp(Nr)| (K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))) / 2
5: return ∞
6: end if
7: return K(dmin(Nq,Nr))−K(dmax(Nq,Nr))

Theorem 3 Assume that K(·, ·) is a kernel with bandwidth h satisfying the assumptions of
the previous subsection. Then, given a query set Sq of size O(N) and a reference set Sr of
size O(N) with expansion constant cr, and using the approximate kernel density estimation
BaseCase() and Score() as given in Algorithms 4 and 5, respectively, with the traversal
given in Algorithm 1, the running time of approximate kernel density estimation for some

error parameter ε is bounded by O(c
8+dlog2 ζe
r (N + It(Tq) + θ)) with ζ = −K′(h)K−1(ε)ε−1,

It(Tq) defined as in Definition 3, and θ defined as in Lemma 4.

Proof It is clear that BaseCase() and Score() both take O(1) time, so Theorem 1 implies
the total runtime of the dual-tree algorithm is bounded by O(c4

r |R∗|(N+It(Tq)+θ)). Thus,
we will bound |R∗| using techniques related to those used by Ram et al. (2009a). The
bounding of |R∗| is split into two sections: first, we show that when the scale smax

r is small
enough, R∗ is empty. Second, we bound R∗ when smax

r is larger.
The Score() function is such that any node in R∗ for a given query node Nq obeys

K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) ≥ ε. (30)

Thus, we are interested in the maximum possible value K(a) − K(b) for a fixed value
of b− a > 0. Due to our assumptions, the maximum value of K′(·) is K′(h); therefore, the
maximum possible value of K(a) − K(b) is when the interval [a, b] is centered on h. This
allows us to say that K(a)−K(b) ≤ ε when (b− a) ≤ (−ε/K′(h)). Note that

dmax(Nq,Nr)− dmin(Nq,Nr) ≤ d(pq, pr) + 2s
max
r +1 − d(pq, pr) + 2s

max
r +1 (31)

≤ 2s
max
r +2. (32)

Therefore, R∗ = ∅ when 2s
max
r +2 ≤ −ε/K′(h), or when smax

r ≤ log2(−ε/K′(h)) − 2.
Consider, then, the case when smax

r > log2(−ε/K′(h)) − 2. Because of the pruning rule,

3289

Curtin, Lee, March, and Ram

for any Nr ∈ R∗, K(dmin(Nq,Nr)) > ε; we may refactor this by applying definitions to
show d(pq, pr) < K−1(ε) + 2s

max
r +1. Therefore, bounding the number of points in the set

BSr(pq,K−1(ε) + 2s
max
r +1) ∩ Csmax

r
is sufficient to bound |R∗|. For notational convenience,

define ω = (K−1(ε)/2s
max
r +1) + 1, and the statement may be more concisely written as

BSr(pq, ω2s
max
r +1) ∩ Csmax

r
.

Using Lemma 1 with δ = 2s
max
r and ρ = 2ω gives |R∗| = c

3+dlog2 ωe
r .

The value ω is maximized when smax
r is minimized. Using the lower bound on smax

r ,
ω is bounded as ω = −2K′(h)K−1(ε)ε−1. Finally, with ζ = −K′(h)K−1(ε)ε−1, we are able

to conclude that |R∗| ≤ c
3+dlog2(2ζ)e
r = c

4+dlog2 ζe
r . Therefore, the entire dual-tree traversal

takes O(c
8+dlog2 ζe
r (N + θ)) time.

The postprocessing step to extract the estimates f(·) requires one traversal of the tree
Tr; the tree has O(N) nodes, so this takes only O(N) time. This is less than the runtime of
the dual-tree traversal, so the runtime of the dual-tree traversal dominates the algorithm’s
runtime, and the theorem holds.

The dependence on ε (through ζ) is expected: as ε→ 0 and the search becomes exact, ζ
diverges both because ε−1 diverges and also because K−1(ε) diverges, and the runtime goes
to the worst-case O(N2); exact kernel density estimation means no nodes can be pruned at
all.

For the Gaussian kernel with bandwidth σ defined by Kg(d) = exp(−d2/(2σ2)), ζ does
not depend on the kernel bandwidth; only the approximation parameter ε. For this kernel,
h = σ and therefore −K′g(h) = σ−1e−1/2. Additionally, K−1

g (ε) = σ
√

2 ln(1/ε). This means

that for the Gaussian kernel, ζ =
√

(−2 ln ε)/(eε2). Again, as ε→ 0, the runtime diverges;
however, note that there is no dependence on the kernel bandwidth σ. To demonstrate
the relationship of runtime to ε, see that for a reasonably chosen ε = 0.05, the runtime is
approximately O(c8.89

r (N +θ)); for ε = 0.01, the runtime is approximately O(c11.52
r (N +θ)).

For very small ε = 0.00001, the runtime is approximately O(c22.15
r (N + θ)).

Next, consider the exponential kernel: Kl(d) = exp(−d/σ). For this kernel, h = 0 (that
is, the kernel is always convex), so then K′l(h) = σ−1. Simple algebraic manipulation gives
K−1
l (ε) = −σ ln ε, resulting in ζ = −K′l(h)K−1

l (ε)ε−1 = ε−1 ln ε. So both the exponential
and Gaussian kernels do not exhibit dependence on the bandwidth.

To understand the lack of dependence on kernel bandwidth more intuitively, consider
that as the kernel bandwidth increases, two things happen: (a) the reference set R becomes
empty at larger scales, and (b) K−1(ε) grows, allowing less pruning at higher levels. These
effects are opposite, and for the Gaussian and exponential kernels they cancel each other
out, giving the same bound regardless of bandwidth.

6.2 Relative Value Approximation

Approximate kernel density estimation using relative-value approximation may be bounded
by reducing the absolute-value approximation algorithm (in linear time or less) to relative-
value approximation. This is the same strategy as performed by Ram et al. (2009a).

3290

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Algorithm 6 Relative-value approximate kernel density estimation Score()

1: Input: query node Nq, reference node Nr, list of node kernel estimates f̂n
2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should

be pruned

3: if K(dmin(Nq,Nr))−K(dmax(Nq,Nr)) < εKmax then
4: fn(Nq)← fn(Nq) + |Dp(Nr)| (K(dmin(Nq,Nr)) +K(dmax(Nq,Nr))) / 2
5: return ∞
6: end if
7: return K(dmin(Nq,Nr))−K(dmax(Nq,Nr))

First, we must establish a Score() function for relative value approximation. The
difference between Equations 28 and 29 is the division by the term |f∗(pq)|. But we can
quickly bound |f∗(pq)|:

|f∗(pq)| ≥ NK
(

max
pr∈Sr

d(pq, pr)

)
. (33)

This is clearly true: each point in Sr must contribute more than K(maxpr∈Sr d(pq, pr))
to f∗(pq). Now, we may revise the relative approximation condition in Equation 29:

|f(pq)− f∗(pq)| ≤ εKmax (34)

where Kmax is lower bounded by K(maxpr∈Sr d(pq, pr)). Assuming we have some estimate
Kmax, this allows us to create a Score() algorithm, given in Algorithm 6.

Using this, we may prove linear runtime bounds for relative value approximate kernel
density estimation.

Theorem 4 Assume that K(·, ·) is a kernel satisfying the same assumptions as Theorem 3.
Then, given a query set Sq and a reference set Sr both of size O(N), it is possible to perform
relative value approximate kernel density estimation (satisfying the condition of Equation
29) in O(N) time, assuming that the expansion constant cr of Sr is not dependent on N .

Proof It is easy to see that Theorem 3 may be adapted to the very slightly different Score()
rule of Algorithm 6 while still providing an O(N) bound. With that Score() function, the
dual-tree algorithm will return relative-value approximate kernel density estimates satisfying
Equation 29.

We now turn to the calculation of Kmax. Given the cover trees Tq and Tr with root
nodes N R

r and N R
r , respectively, we may calculate a suitable Kmax value in constant time:

Kmax = dmax(N R
q ,N R

r) = d(pRq , p
R
r) + 2s

max
q +1 + 2s

max
r +1. (35)

This proves the statement of the theorem.

In this case, we have not shown tighter bounds because the algorithm we have proposed
is not useful in practice. For an example of a better relative-value approximate kernel
density estimation dual-tree algorithm, see the work of Gray and Moore (2003).

3291

Curtin, Lee, March, and Ram

Algorithm 7 Range search BaseCase()

1: Input: query point pq, reference point pr, range sets N [pq] and range [l, u]
2: Output: distance d between pq and pr
3: if d(pq, pr) ∈ [rmin, rmax] and BaseCase(pq, pr) not yet called then
4: S[pq]← S[pq] ∪ {pr}
5: end if
6: return d

Algorithm 8 Range search Score()

1: Input: query node Nq, reference node Nr

2: Output: a score for the node combination (Nq,Nr), or ∞ if the combination should
be pruned

3: if dmin(Nq,Nr) ∈ [l, u] or dmax(Nq,Nr) ∈ [l, u] then
4: return dmin(Nq,Nr)
5: end if
6: return ∞

7. Range Search and Range Count

In the range search problem, the task is to find the set of reference points

S[pq] = {pr ∈ Sr : d(pq, pr) ∈ [l, u]} (36)

for each query point pq, where [l, u] is the given range. The range count problem is practi-
cally identical, but only the size of the set, |S[pq]|, is desired. Our proof works for both of
these algorithms similarly, but we will focus on range search. A BaseCase() and Score()

function are given in Algorithms 7 and 8, respectively (a correctness proof can be found in
Curtin et al., 2013b). The sets N [pq] (for each pq) are initialized to ∅ at the beginning of
the traversal.

In order to bound the running time of dual-tree range search, we require better notions
for understanding the difficulty of the problem. Observe that if the range is sufficiently
large, then for every query point pq, S[pq] = Sr. Clearly, for Sq ∼ Sr ∼ O(N), this cannot
be solved in anything less than quadratic time simply due to the time required to fill each
output array S[pq]. Define the maximum result size for a given query set Sq, reference set
Sr, and range [l, u] as

|Smax| = max
pq∈Sq

|S[pq]|. (37)

Small |Smax| implies an easy problem; large |Smax| implies a difficult problem. For
bounding the running time of range search, we require one more notion of difficulty, related
to how |Smax| changes due to changes in the range [l, u].

Definition 5 For a range search problem with query set Sq, reference set Sr, range [l, u],
and results S[pq] for each query point pq given as

S[pq] = {pr : pr ∈ Sr, l ≤ d(pq, pr) ≤ u}, (38)

3292

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

define the α-expansion of the range set S[pq] as the slightly larger set

Sα[pq] = {pr : pr ∈ Sr, (1− α)l ≤ d(pq, pr) ≤ (1 + α)u}. (39)

When the α-expansion of the set Smax is approximately the same size as Smax, then the
problem would not be significantly more difficult if the range [l, u] was increased slightly.
Using these notions, then, we may now bound the running time of range search.

Theorem 5 Given a reference set Sr of size O(N) with expansion constant cr, and a query
set Sq of size O(N), a search range of [l, u], and using the range search BaseCase() and
Score() as given in Algorithms 7 and 8, respectively, with the standard cover tree pruning
dual-tree traversal as given in Algorithm 1, and also assuming that for some α > 0,

|Sα[pq] \ S[pq]| ≤ C ∀ pq ∈ Sq, (40)

the running time of range search or range count is bounded by

O
(
c4
r max

(
c4+β
r , |Smax|+ C

)
(N + It(Nq) + θ)

)
(41)

with θ defined as in Lemma 4, β = dlog2(1 + α−1)e, and Smax as defined in Equation
37.

Proof Both BaseCase() (Algorithm 7) and Score() (Algorithm 8) take O(1) time.
Therefore, using Lemma 1, we know that the runtime of the algorithm is bounded by
O(c4

r |R∗|(N + It(Nq) + θ)). As with the previous proofs, then, our only task is to bound
the maximum size of the reference set, |R∗|.

By the pruning rule, for a query node Nq, the reference set R∗ is made up of reference
nodes Nr that are within a margin of 2sq+1 + 2sr+1 ≤ 2s

max
r +2 of the range [l, u]. Given that

pr is the point in Nr,

pr ∈
(
BSr(pq, u+ 2s

max
r +2) ∩ Csmax

r

)
\
(
BSr(pq, l − 2s

max
r +2) ∩ Csmax

r

)
. (42)

A bound on the number of elements in this set is a bound on |R∗|. First, consider the
case where u ≤ α−12s

max
r +2. Ignoring the smaller ball, take δ = 2s

max
r and ρ = 4(1 + α−1)

and apply Lemma 1 to produce the bound

|R∗| ≤ c4+dlog2(1+α−1)e
r . (43)

Now, consider the other case: u > α−12s
max
r +1. This means

BSr(pq, u+ 2s
max
r +1) \BSr(pq, l − 2s

max
r +1) ⊆ BSr(pq, (1 + α)u) \BSr(pq, (1− α)l). (44)

This set is necessarily a subset of Sα[pq]; by assumption, the number of points in this
set is bounded above by |Smax| + C. We may then conclude that |R∗| ≤ |Smax| + C. By
taking the maximum of the sizes of |R∗| in both cases above, we obtain the statement of
the theorem.

3293

Curtin, Lee, March, and Ram

This bound displays both the expected dependence on cr and |Smax|. As the largest range
set Smax increases in size (with the worst case being Smax ∼ N), the runtime degenerates
to quadratic. But for adequately small Smax the runtime is instead dependent on cr and
the parameter C of the α-expansion of Smax. This situation leads to a simplification.

Corollary 2 For sufficiently small |Smax| and sufficiently small C, the runtime of range
search under the conditions of Theorem 5 simplifies to

O(c8+β
r (N + It(Nq) + θ)). (45)

In this setting we can more easily consider the relation of the running time to α. Consider
α = (1/3); this yields a running time of O(c8(N+θ)). α = (1/7) yields O(c9(N+It(Nq+θ)),
α = (1/15) yields O(c10(N + It(Nq) + θ)), and so forth. As α gets smaller, the exponent
on c gets larger, and diverges as α→ 0.

For reasonable runtime it is necessary that the α-expansion of Smax be bounded. This is
because the dual-tree recursion must retain reference nodes which may contain descendants
in the range set S[pq] for some query pq. The parameter C of the α-expansion allows us to
bound the number of reference nodes of this type, and if α increases but C remains small
enough that Corollary 2 applies, then we are able to obtain tighter running bounds.

8. Conclusion

We have presented a unified framework for bounding the runtimes of dual-tree algorithms
that use cover trees and the standard cover tree pruning dual-tree traversal (Algorithm 1).
In order to produce an understandable bound, we have introduced the notion of cover tree
imbalance; one possible interesting direction of future work is to empirically and theoreti-
cally minimize this quantity by way of modified tree construction algorithms; this is likely
to provide both tighter runtime bounds and also accelerated empirical results.

Our main result, Theorem 1, allows plug-and-play runtime bounding of these algorithms.
We have shown that Theorem 1 is useful for bounding the runtime of nearest neighbor search
(Theorem 2), approximate kernel density estimation (Theorem 3), exact range count, and
exact range search (Theorem 5). With our contribution, bounding a cover tree dual-tree
algorithm is streamlined and only involves bounding the maximum size of the reference set,
|R∗|.

Acknowledgements

The authors gratefully acknowledge the helpful and insightful comments of the anonymous
reviewers.

References

J.K. Adelman-McCarthy, M.A. Agüeros, S.S. Allam, C.A. Prieto, K.S.J. Anderson, S.F.
Anderson, J. Annis, N.A. Bahcall, C.A.L. Bailer-Jones, I.K. Baldry, et al. The sixth data

3294

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

release of the Sloan Digital Sky Survey. The Astrophysical Journal Supplement Series,
175(2):297, 2008.

S. Amizadeh, B. Thiesson, and M. Hauskrecht. Variational dual-tree framework for large-
scale transition matrix approximation. In Proceedings of the Twenty-Eighth Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-12), pages 64–73, Catalina Island,
2012.

K. Bache and M. Lichman. UCI Machine Learning Repository, 2013. http://archive.

ics.uci.edu/ml.

A. Beygelzimer, S.M. Kakade, and J. Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine Learning (ICML ’06), pages
97–104, Pittsburgh, 2006.

D.H. Colless. Review of ‘Phylogenetics: The Theory and Practice of Phylogenetic System-
atics’, by E.O. Wiley. Systematic Zoology, 31:100–104, 1982.

R.R. Curtin and P. Ram. Dual-tree fast exact max-kernel search. Statistical Analysis and
Data Mining, 7(4):229–253, 2014.

R.R. Curtin, J.R. Cline, N.P. Slagle, W.B. March, P. Ram, N.A. Mehta, and A.G. Gray.
MLPACK: A scalable C++ machine learning library. Journal of Machine Learning Re-
search, 14:801–805, 2013a.

R.R. Curtin, W.B. March, P. Ram, D.V. Anderson, A.G. Gray, and C.L. Isbell Jr. Tree-
independent dual-tree algorithms. In Proceedings of The 30th International Conference
on Machine Learning (ICML ’13), pages 1435–1443, Atlanta, 2013b.

R.R. Curtin, P. Ram, and A.G. Gray. Fast exact max-kernel search. In Proceedings of the
13th SIAM International Conference on Data Mining (SDM ’13), pages 1–9, Philadelphia,
2013c.

R.A. Finkel and J.L. Bentley. Quad trees a data structure for retrieval on composite keys.
Acta Informatica, 4(1):1–9, 1974.

A.G. Gray and A.W. Moore. N-body problems in statistical learning. In Advances in Neural
Information Processing Systems 13 (NIPS 2000), pages 521–527, Vancouver, 2001.

A.G. Gray and A.W. Moore. Nonparametric density estimation: Toward computational
tractability. In Proceedings of the 3rd SIAM International Conference on Data Mining
(SDM ’03), pages 203–211, San Francisco, 2003.

D.R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In Pro-
ceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC
2002), pages 741–750, Montréal, 2002.

M. Klaas, M. Briers, N. De Freitas, A. Doucet, S. Maskell, and D. Lang. Fast particle
smoothing: if I had a million particles. In Proceedings of the 23rd International Conference
on Machine Learning (ICML ’06), pages 25–29, Pittsburgh, 2006.

3295

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Curtin, Lee, March, and Ram

R. Krauthgamer and J.R. Lee. Navigating nets: simple algorithms for proximity search.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA04), pages 798–807, New Orleans, 2004.

Y. LeCun, C. Cortes, and C.J.C. Burges. MNist dataset, 2000. http://yann.lecun.com/
exdb/mnist/.

D. Lee and A.G. Gray. Faster Gaussian summation: Theory and Experiment. In Proceed-
ings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI-06),
pages 281–288, Arlington, 2006.

D. Lee and A.G. Gray. Fast high-dimensional kernel summations using the monte carlo
multipole method. Advances in Neural Information Processing Systems 21 (NIPS 2008),
pages 929–936, 2009.

W.B. March. Multi-tree algorithms for computational statistics and physics. PhD thesis,
Georgia Institute of Technology, 2013.

W.B. March, P. Ram, and A.G. Gray. Fast Euclidean minimum spanning tree: algorithm,
analysis, and applications. In Proceedings of the 16th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD ’10), pages 603–612, Washing-
ton, D.C., 2010.

W.B. March, A.J. Connolly, and A.G. Gray. Fast algorithms for comprehensive n-point
correlation estimates. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’12), pages 1478–1486, Beijing, 2012.

A.W. Moore. The Anchors hierarchy: Using the triangle inequality to survive high di-
mensional data. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI-00), pages 397–405, Stanford, 2000.

D.A. Moore and S.J. Russell. Fast Gaussian process posteriors with product trees. In
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI-
14), Quebec City, July 2014.

P. Ram, D. Lee, W.B. March, and A.G. Gray. Linear-time algorithms for pairwise statistical
problems. Advances in Neural Information Processing Systems 22 (NIPS 2009), pages
1527–1535, 2009a.

P. Ram, D. Lee, H. Ouyang, and A.G. Gray. Rank-approximate nearest neighbor search:
Retaining meaning and speed in high dimensions. In Advances in Neural Information
Processing Systems 22 (NIPS 2009), pages 1536–1544, Vancouver, 2009b.

M.J. Sackin. “Good” and “bad” phenograms. Systematic Biology, 21(2):225–226, 1972.

L. Van Der Maaten. Accelerating t-SNE using tree-based algorithms. The Journal of
Machine Learning Research, 15(1):3221–3245, 2014.

3296

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

M. Vladymyrov and M.A. Carreira-Perpinán. Linear-time training of nonlinear low-
dimensional embeddings. In Proceedings of The Seventeenth International Conference on
Artificial Intelligence and Statistics, JMLR W&CP (AISTATS 2014), volume 33, pages
968–977, 2014.

P. Wang, D. Lee, A.G. Gray, and J.M. Rehg. Fast mean shift with accurate and sta-
ble convergence. In Proceedings of the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS 2007), pages 604–611, San Juan, 2007.

3297

	Dual-tree Algorithms
	Preliminaries
	The Cover Tree
	Expansion Constant

	Tree Imbalance
	General Runtime Bound
	Nearest Neighbor Search
	Approximate Kernel Density Estimation
	Absolute Value Approximation
	Relative Value Approximation

	Range Search and Range Count
	Conclusion

