
Journal of Machine Learning Research 16 (2015) 3849-3875 Submitted 9/14; Published 12/15

Marginalizing Stacked Linear Denoising Autoencoders

Minmin Chen M.CHEN@CRITEO.COM
Criteo
Palo Alto, CA 94301, USA

Kilian Q. Weinberger KILIAN@WUSTL.EDU
Zhixiang (Eddie) Xu XUZX@CSE.WUSTL.EDU
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130, USA

Fei Sha FEISHA@USC.EDU

Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA

Editor: Leon Bottou

Abstract

Stacked denoising autoencoders (SDAs) have been successfully used to learn new representations
for domain adaptation. They have attained record accuracy on standard benchmark tasks of senti-
ment analysis across different text domains. SDAs learn robust data representations by reconstruc-
tion, recovering original features from data that are artificially corrupted with noise. In this paper,
we propose marginalized Stacked Linear Denoising Autoencoder (mSLDA) that addresses two
crucial limitations of SDAs: high computational cost and lack of scalability to high-dimensional
features. In contrast to SDAs, our approach of mSLDA marginalizes noise and thus does not re-
quire stochastic gradient descent or other optimization algorithms to learn parameters — in fact,
the linear formulation gives rise to a closed-form solution. Consequently, mSLDA, which can be
implemented in only 20 lines of MATLABTM, is about two orders of magnitude faster than a corre-
sponding SDA. Furthermore, the representations learnt by mSLDA are as effective as the traditional
SDAs, attaining almost identical accuracies in benchmark tasks.

Keywords: domain adaption, fast representation learning, noise marginalization, denoising au-
toencoders

1. Introduction

The goal of domain adaptation (Ben-David et al., 2010; Huang et al., 2006; Weinberger et al.,
2009; Xue et al., 2008) is to generalize a classifier that is trained on a source domain, for which
typically plenty of training data is available, to a target domain, for which data is scarce. Cross-
domain generalization is important in many application areas of machine learning, where such an
imbalance of training data may occur. Examples include computational biology (Liu et al., 2008),
natural language processing (Daume III, 2007; McClosky et al., 2006), computer vision (Saenko
et al., 2010) and web-search ranking (Chapelle et al., 2011).

c©2015 Minmin Chen, Kilian Q. Weinberger, Zhixiang (Eddie) Xu, and Fei Sha.

CHEN, WEINBERGER, XU AND SHA

Adaptation is challenging, because the data in the two domains is not identically distributed and
a classifier trained on source can be expected to perform significantly worse on the target domain.
Recent work has investigated several techniques to reduce this adaptation error:

• instance re-weighting (Huang et al., 2006; Mansour et al., 2009) is an approach to re-weight
source inputs so that the distribution of the reweighed source data matches that of the target
domain; instance weighting strategies assume that the source and target distribution share
the same support and features. It tends to be less effective for tasks of high-dimensional,
sparse features such as text documents and where source and target distributions differ more
drastically.

• joint feature mapping (Blitzer et al., 2006; Gong et al., 2012; Xue et al., 2008; Glorot et al.,
2011) is an approach to learn a new shared representation for the source and target domains,
in which the two data distributions align. These algorithms are designed for highly divergent
domains, which can contain different features, and are more closely related to our work.

• parameter sharing (Daume III, 2007; Chapelle et al., 2011; Weinberger et al., 2009) is an ap-
proach to adapt machine learning classifiers to incorporate shared weights across the two do-
mains. This is arguably the most popular category of domain adaptation algorithms amongst
practitioners, mostly due to their appealing simplicity (Daume III, 2007).

One of the most successful domain adaptation algorithms was introduced by Glorot et al. (2011),
which falls into the second category. The authors use stacked denoising autoencoders (SDA) (Vin-
cent et al., 2008) to learn a joint feature representation that can be shared across multiple domains.
Denoising autoencoders are one-layer neural networks that are optimized to reconstruct input data
from partial and random corruption. These denoisers can be stacked into deep learning architec-
tures, which are then fine-tuned with back-propagation (Vincent et al., 2008). Glorot et al. (2011)
use the internal representation of the intermediate layers of the SDA as input features for linear clas-
sifiers, an idea pioneered by Lee et al. (2009) and Vincent et al. (2010). The authors demonstrate
in their work that such SDA-learned features are very effective for cross-domain generalization,
even with straight-forward linear Support Vector Machines (SVM) (Cortes and Vapnik, 1995). For
example, it yields record adaptation accuracies on the AmazonTM sentiment-analysis benchmark
tasks of predicting review sentiment across product domains (Blitzer et al., 2006).

Although the capabilities of SDAs are remarkable, they are limited by their high computational
cost. Compared with competing approaches (Blitzer et al., 2006; Xue et al., 2008; Chen et al.,
2011b), SDAs are significantly slower to train. This is primarily the case because of the large num-
ber of model parameters in the denoising autoencoders, which are learned with iterative algorithms
for numerical optimization. The challenge is further compounded by the dimensionality of the input
data and the need for computationally intensive model selection procedures to tune hyperparame-
ters. Consequently, even a highly optimized implementation (Bergstra et al., 2010) may require

hours (even days) of training time on the larger Amazon
TM

benchmark data sets.
In this paper, we introduce a variation of SDAs that addresses these shortcomings. The pro-

posed method, which we refer to as marginalized Stacked Linear Denoising Autoencoder (mSLDA),
adopts the greedy layer-by-layer training of SDAs. Similarly, at each layer we learn a denoiser to
recover input data from random corruption. However, a crucial difference is that we use linear de-
noisers as the basic building blocks. This restriction has two important advantages: 1. the random

3850

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

feature corruption can be marginalized out, which alleviates the need to iterate over many corrupted
versions of the data; 2. the weights of the linear denoisers can be computed in closed form, in
very little time (almost instantaneous). Conceptually, marginalizing the corruption is equivalent to
training the model over an infinite number of corrupted versions of the input data.

Although the restriction to only linear denoisers makes mSLDA less expressive than SDA, we
observe that for high dimensional data sets they are sufficient and mSLDA features match the orig-
inal SDA features in quality. This is particularly impressive, as the training of the mSLDA features
is several orders of magnitude faster (reducing training from up to 2 days for SDA to a few minutes
with mSLDA).

Two earlier short paper on this work (Chen et al., 2012; Xu et al., 2012), already introduce this
learning framework, but this longer version provides a significant amount of additional details. In
particular, we provide extensions to different corruption models, further and deeper analysis of the
mSLDA algorithm, additional experiments with different datasets (text documents and images), and
new experimental results in semi-supervised settings. The remaining parts of the paper is organized
as follows. In Section 2 we lay out the problem and review a couple of closely-related prior works.
In Section 3 we introduce the mSLDA framework for learning representations. In Section 4 we
discuss several input corruption models, which fit naturally into the mSLDA framework. In Sec-
tion 5 we propose an extension to scale up our learning framework to inputs of high dimensions. In
Section 7 we present an extensive set of results evaluating mSLDA on several text classification and
object recognition tasks. In Section 8 we provide further analysis of the results and discuss strengths
and limitations of mSLDA.

2. Background and Related Work

We assume that during training we are provided with labeled data from the source domain L =
{x1, . . . ,xm} ⊂ Rd with corresponding labels y1, . . . , ym ⊂ Y . Here, Y can consist of real valued
or categorical labels. We focus on the simple binary case with Y = {+1,−1} throughout this
manuscript, however we would like to emphasize that our proposed feature learning algorithm is
unsupervised and therefore agnostic to the label choice (which only affects the classifier trained on
the learned features). If labeled target data is available, it can be included into L, although in our
setting we do not assume this is the case. We are potentially also provided with unlabeled data
U = {xm+1 . . . ,xm+u} ⊂ Rd, which may be sampled from source, target or other (related) source
distributions. For notational simplicity we define n = m+ u. Although we do assume that any two
domains have some overlap in features, we do not assume that they have identical features. Instead,
we pad all input vectors with zeros to make them of matching dimensionality d. Given this mix of
labeled and unlabeled source and target data, our goal is to train a classifier that accurately predicts
the labels of instances from the target domain T .

In the following, we briefly review work that is most similar to ours, including Structural Cor-
respondence Learning (SCL) (Blitzer et al., 2006), Stacked Denoising Autoencoders (Glorot et al.,
2011) and learning with marginalized corruption (van der Maaten et al., 2013).

2.1 Structural Correspondence Learning

The leaning of joint source / target representations explicitly for domain adaptation was pioneered
by Blitzer et al. (2006) and their Structural Correspondence Learning (SCL) algorithm. SCL as-
sumes a known set of pivot features, which appear frequently in both domains (source and target)

3851

CHEN, WEINBERGER, XU AND SHA

and behave similarly. These are used to put domain specific words in correspondence. The low-rank
representation learned with SCL essentially encodes the covariance between non-pivot features and
the pivot features. As described in detail in Section 3, the single-layer mSLDA also learns the cor-
relations between all the features. In this sense, the resulting feature space is similar to SCL, and
the computation time of SCL and mSLDA are comparable. However, mSLDA introduces recon-
struction from corruption and stacking of multiple denoising layers, which result in superior feature
quality. Further, mSLDA does not require any side information about a pivot features set, which can
be hard to identify (Blitzer et al., 2006).

2.2 Marginalized Corrupted Features

Recently, van der Maaten et al. (2013) proposed the Marginalized Corrupted Features (MCF) learn-
ing framework, which was inspired by our earlier publication of mSLDA (Chen et al., 2012).1 MCF
uses marginalized corruption to improve the generalization performance of linear classifiers, as an
alternative to L2 or L1 norm regularization. MCF is equivalent to first generating infinitely many
corrupted copies of the training data, with a pre-defined corruption distribution, and then training an
unregularized classifier on this (infinite) data set. Training on additional corrupted inputs leads to
substantially more robust classifiers, as has previously been shown by Burges and Schölkopf (1997).
MCF borrows the idea from mSLDA to marginalize out this corruption, which leads to substantial
improvements in speed and accuracy over explicitly corrupting only finitely many copies of the
training data. In a similar spirit, Wang and Manning (2013) introduce marginalized dropout (Hinton
et al., 2012) for logistic regression and show that the marginalized corruption can be interpreted as
active regularization.

2.3 Stacked Denoising Autoencoder

Our work is mostly inspired by Autoencoders. Various forms of autoencoders have been developed
in the machine learning community (Rumelhart et al., 1986; Baldi and Hornik, 1989; Kavukcuoglu
et al., 2009; Lee et al., 2009; Vincent et al., 2008; Rifai et al., 2011). In its simplest form, an autoen-
coder has two components, an encoder h(·) maps an input x ∈Rd to some hidden representation
h(x)∈Rdh , and a decoder g(·) maps this hidden representation back to a reconstructed version of
x, such that g(h(x))≈ x. The parameters of the autoencoders are learned to minimize the recon-
struction error, measured by some loss `(x, g(h(x))). Choices for the loss include squared error or
Kullback-Leibler divergence (when the feature values are in [0, 1].)

Denoising Autoencoders (DAs) incorporate a slight modification to this setup and corrupt the
inputs before mapping them into the hidden representation. They are trained to reconstruct (or
denoise) the original input x from its corrupted version x̃ by minimizing `(x, g(h(x̃))). Typical
choices of corruption include additive isotropic Gaussian noise or binary masking noise. As in Vin-
cent et al. (2008), we primarily use the latter and set a fraction of the features of each input to zero.
This is a natural choice for bag-of-word representations of text documents, where author specific
word preferences can influence the existence or absence of words in the source and target domains.

The stacked denoising autoencoder (SDA) of Vincent et al. (2008) stacks several DAs together
to create higher-level representations, by feeding the hidden representation of the tth DA as input
into the (t+ 1)th DA. The training is performed greedily, layer by layer.

1. In this earlier work we refer to mSLDA as simply marginalized Stacked Denoising Autoencoder (mSDA). Since then
we added the term “Linear” to avoid confusion.

3852

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Feature Generation. Recently, Lee et al. (2009) and Glorot et al. (2011) have identified au-
toencoders as a powerful tool for automatic discovery and extraction of nonlinear features. For
example, Lee et al. (2009) demonstrate that the hidden representations computed by all or par-
tial layers of a convolutional deep belief network (CDBN) make excellent features for classification
with SVMs. The pre-processing with a CDBN improves the generalization by increasing robustness
against noise and label-invariant transformations.

Glorot et al. (2011) successfully apply SDAs to extract features for domain adaptation in doc-
ument sentiment analysis. The authors train an SDA to reconstruct the unlabeled input vectors on
the union of the source and target data. A classifier (e.g. a linear SVM) trained on the resulting
feature representation h(x) transfers significantly better from source to target than one trained on
x directly. Similar to CDBNs, SDAs also combine correlated input dimensions, as they reconstruct
removed feature values from the remaining uncorrupted ones. In fact, Glorot et al. (2011) show that
SDAs are able to disentangle hidden factors, which explain the variations in the input data, and au-
tomatically group features in accordance with their relatedness to these factors. This helps transfer
across domains as these generic concepts are invariant to domain-specific vocabularies.

As an intuitive example, imagine that we classify product reviews according to their sentiments.
The source data consists of book reviews, the target of kitchen appliances. A classifier trained on
the original bag-of-words source never encounters the bigram energy efficient during training and
therefore assigns zero weight to it. In the learned SDA representation, the bigram energy efficient
would tend to reconstruct, and be reconstructed by, co-occurring features, typically of similar senti-
ment (e.g. good or love). The SDA will preform the same reconstruction also on the source data, in
other words, it will “reconstruct” bigrams like energy efficient in book reviews that contain words
with positive sentiment. Thus, the source-trained classifier can assign weights even to features that
never occur in its original domain representation.

Although SDAs generate excellent features for domain adaptation, they have several drawbacks:
1) Training with (stochastic) gradient descent is slow and hard to parallelize, and SDAs take rela-
tively long to train—even with efficient GPU implementations (Bergstra et al., 2010) and recon-
struction sampling for sparse data (Dauphin et al., 2011); 2) There are several hyper-parameters
(learning rate, number of epochs, noise ratio, mini-batch size and network structure), which need
to be set by cross validation—this is particularly expensive as each individual run can take several
hours; 3) The optimization is inherently non-convex and dependent on its initialization.

3. Marginalized Stacked Linear Denoising Autoencoders

In this section we introduce a modified version of SDA, which we refer to as marginalized Stacked
Linear Denoising Autoencoder (mSLDA). In practice if a SDA is trained to learn features (rather
than predict a target label directly), linear autoencoders are typically sufficient. Our proposed algo-
rithm consists of stacked linear denoising autoencoders where the corruption is marginalized out in
closed form — effectively yielding orders of magnitude speedups during training time. In addition,
mSLDA has fewer hyper-parameters, allowing for much faster model-selection, and is layer-wise
convex.

3.1 Noise Model

Similar to SDA, mSLDA learns to reconstruct the original input from its corrupted version. There-
fore, we start by defining a corrupting distribution that specifies how training observations x are

3853

CHEN, WEINBERGER, XU AND SHA

transformed into corrupted versions x̃. Throughout the paper, we assume a corrupting distribution
of the form:

p(x̃|x) =

d∏

α=1

pE(x̃α|xα; ηα). (1)

where ηd is the list of user-defined hyper-parameters for the corrupting distribution. That is, we
assume that 1) each dimension of the input x is corrupted independently; 2) the individual corrupt-
ing distributions have well-defined (finite) mean and variance, such as the Bernoulli, Poisson and
Gaussian distribution. As we are going to explain later, these two assumptions leads to very efficient
optimizations of our models.

For now, we are going to focus on the blank-out noise model (also often referred to as “mask-
out”), which randomly sets each feature to zero with probability pα ≥ 0. More precisely (with
ηα = pα),

pE(x̃α|xα; ηα) =

{
0 with probability pα
xα with probability 1− pα

. (2)

Although our model is more general, for simplification we will assume that the corruption proba-
bility is identical for all features, i.e. pα = p for all dimensions α. In Section 4, we will extend this
model to different corrupting distributions.

3.2 Single-layer Denoiser

The basic building block of mSLDA is a one-layer linear denoising autoencoder. We take the
unlabeled inputs x1, . . . ,xn from L∪U and corrupt them with the blank-out noise, which sets each
feature to 0 with probability p≥0. Let us denote the corrupted version of xi as x̃i. As opposed to
the two-level encoder and decoder in SDA, we reconstruct the corrupted inputs with a single linear
mapping W : Rd→Rd, that minimizes the squared reconstruction loss

1

2n

n∑

i=1

‖xi −Wx̃i‖2. (3)

To simplify notation, we assume that a constant feature is added to the input, xi = [xi; 1], and an
appropriate bias is incorporated within the mapping W = [W,b]. The constant feature is never
corrupted.

The solution to (3) depends on which features of each input are randomly corrupted. To lower
the variance, we perform t passes of corruption and reconstruction over the training set, each time
with new randomly chosen corruptions for each input. We solve for the matrix W that minimizes
the overall squared loss

Ltsq(W) =
1

2nt

n∑

i=1

t∑

j=1

‖xi −Wx̃i,j‖2, (4)

where x̃i,j represents the jth corrupted version of the original input xi.
Let us define the design matrix X = [x1, . . . ,xn] ∈ Rd×n and its t-times repeated version as

X= [X, . . . ,X]. Further, we denote the corrupted version of X as X̃. With this notation, the loss
in eq. (4) can be expressed in matrix form as

Ltsq(W)=
1

2nt
tr
[(

X−WX̃
)> (

X−WX̃
)]
. (5)

3854

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Algorithm 1 mLDA (for blankout corruption) in MATLABTM.
function [W,h]=mLDA(X,p);
X=[X;ones(1,size(X,2))];
d=size(X,1);
q=[ones(d-1,1).*(1-p); 1];
S=X*X’;
Q=S.*(q*q’);
Q(1:d+1:end)=q.*diag(S);
P=S.*repmat(q’,d,1);
W=P(1:end-1,:)/(Q+1e-5*eye(d));
h=tanh(W*X);

Similar to ordinary least squares (Bishop, 2006), it is straight-forward to derive a closed-form solu-
tion to (5):

W = PQ−1 with Q = X̃X̃> and P = XX̃>. (6)

In practice (6) can be computed as a system of linear equations, without the costly matrix inversion.
(The worst-case complexity is still O(n3), but the average runtime is much accelerated.)

3.3 Marginalized Linear Denoising Autoencoder

The larger t is, the more corruptions we average over. Ideally we would like t→∞, effectively
using infinitely many copies of noisy data to compute the denoising transformation W. In this
scenario, as t→∞, the loss Lsq in (4) becomes the expected reconstruction loss under p(x̃i|x)

L∞sq(W) =
1

2n

n∑

i=1

Ep(x̃i|x)
[
‖xi −Wx̃i‖2

]
. (7)

We can expand this equation to obtain

L∞sq(W) =
1

2n

n∑

i=1

(
xix
>
i − 2xiE[x̃i]

>W> + WE[x̃ix̃
>
i]W>

)
, (8)

and, by solving for W, the solution to (7) can then be expressed as

W = E[P]E[Q]−1 with E[Q] =

n∑

i=1

E
[
x̃ix̃
>
i

]
and E[P] =

n∑

i=1

xiE[x̃i]
>. (9)

We refer to this algorithm as marginalized Linear Denoising Autoencoder (mLDA).

3.3.1 BLANKOUT CORRUPTION

As an example, let us consider the blankout corruption,

pE(x̃α|xα; ηα) =

{
0 with probability pα
xα with probability 1− pα

. (10)

3855

CHEN, WEINBERGER, XU AND SHA

For notational convenience, we define a vector q = [1 − p, . . . , 1 − p, 1]> ∈ Rd+1, where qα
represents the probability of a feature α “surviving” the corruption. (As the constant feature is
never corrupted, we have qd+1 = 1.) According to the blank-out noise model defined in (10), the
expected value of the corruption E[x̃i] can be computed as xi · q.2 We further define the scatter
matrix of the original uncorrupted input as S =

∑n
i=1 xix

>
i , and express the expectation E[P] as

E[P] =

n∑

i=1

xi(xi · q)> with E[P]αβ = Sαβqβ. (11)

Similarly, we can compute the expectation

E[Q] =
n∑

i=1

E
[
x̃ix̃
>
i

]
.

An off-diagonal entry in the matrix x̃ix̃
>
i with index (α, β) is uncorrupted if the two features α

and β both “survived” the corruption. This happens with probability (1 − p)2. For the diagonal
entries, this holds with probability 1− p (because it only requires the one corresponding feature to
“survived” the corruption). Thus, we can express the expectation of the matrix Q as

E[Q]α,β =

{
Sαβqαqβ if α 6= β
Sαβqα if α = β

. (12)

With the help of these matrix expectations, we can compute the reconstructive mapping W
directly in closed-form without ever explicitly constructing a single corrupted input x̃i. Algorithm 1
shows a 10-line MATLABTM implementation of mLDA with blankout corruption. The mLDA
has several advantages over traditional denoisers: 1) It requires only a single sweep through the
data to compute the matrices E[Q], E[P]; 2) Training is convex and a globally optimal solution is
guaranteed; 3) The optimization is performed in non-iterative closed-form.

3.4 Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the SDA are its nonlinearity and the stacking
of multiple layers of denoising autoencoders to create a “deep” learning architecture. Our frame-
work has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlinear encoder function h(·), which is
learned together with the reconstruction weights W. Such an approach makes the training procedure
highly non-convex and requires iterative procedures to learn the model parameters. To preserve the
closed-form solution from the linear mapping in equation (5) we insert nonlinearity into our learned
representation after the weights W are computed. A nonlinear squashing-function is applied on the
output of each mLDA. Several choices are possible, including sigmoid, hyperbolic tangent, or the
rectifier function (Nair and Hinton, 2010). Throughout this work, we use the hyperbolic tangent
tanh() function and provide a detailed comparison of various squashing function in Figure 4 in
Section 7.1.2.

Inspired by the layer-wise stacking of SDA, we stack several mLDA layers by feeding the output
of the (t−1)th mLDA (after the squashing function) as the input into the tth mLDA. Let us denote the

2. Here, y = x · z denotes element-wise vector multiplication, i.e. yi = xizi.

3856

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Algorithm 2 mSLDA in MATLABTM.
function [Ws,hs]=mSLDA(X,p,L);
[d,n]=size(X);
Ws=zeros(d,d+1,L);
hs=zeros(d,n,L+1);
hs(:,:,1)=X;
for t=1:L
[Ws(:,:,t), hs(:,:,t+1)]=mLDA(hs(:,:,t),p);

end;

output of the tth mLDA as ht and the original input as h0 =x. The training is performed greedily
layer by layer: each map Wt is learned (in closed-form) to reconstruct the previous mLDA output
ht−1 from all possible corruptions and the output of the tth layer becomes ht = tanh(Wtht−1). In
our experiments, as detailed in in Section 7.1.2, we found that even without the nonlinear squash-
ing function, stacking still improves the performance. However, the nonlinearity improves over the
linear stacking significantly. We refer to the stacked denoising algorithm as marginalized Stacked
Linear Denoising Autoencoders (mSLDA). Algorithm 2 shows a 8-lines MATLABTM implemen-
tation of mSLDA.

3.5 mSLDA for Domain Adaptation

We apply mSLDA to domain adaptation by first learning features in an unsupervised fashion on the
union of the source and target data sets. One observation reported in (Glorot et al., 2011) is that if
multiple domains are available, sharing the unsupervised pre-training of SDA across all domains is
beneficial compared to pre-training on the source and target only. We observe a similar trend with
our approach. The results reported in Section 7 are based on features learned on data from all avail-
able domains. Once a mSLDA is trained, the output of all layers, after squashing (tanh(Wtht−1))
combined with the original features h0, are concatenated and form the new representation. All in-
puts are transformed into the new feature space. A linear Support Vector Machine (SVM) (Chang
and Lin, 2011) is then trained on the transformed source inputs and tested on the target domain.
There are two sets of meta-parameters in mSLDA: the corruption parameters (e.g. p in the case
of blankout corruption) and the number of layers L. In our experiments, both are set with 5-fold
cross validation on the labeled data from the source domain. As the mSLDA training is almost
instantaneous, this grid search is almost entirely dominated by the SVM training time.

4. Corruption beyond blank-out

In the previous section, we introduced mSLDA under the blank-out corruption model and derived
the layer-wise closed form solution W = E[P]E[Q]−1. The derivation up to eq. (9) makes no
explicit assumption on the corruption distribution and holds for any member of the exponential
family with finite mean E[x̃i], and variance V[x̃i]. This can be made explicit by expanding the
terms E[P],E[Q] as

E[P] =
n∑

i=1

xiE[x̃i]
> and E[Q] =

n∑

i=1

E
[
x̃ix̃
>
i

]
=

n∑

i=1

(
E[x̃i]E[x̃i]

> + V[x̃i]
)
. (13)

3857

CHEN, WEINBERGER, XU AND SHA

4.1 Poisson corruption

For discrete feature values (e.g. word counts in a document), one interesting example of a corruption
distribution is the Poisson distribution. Here, the corruption is defined as,

pE(x̃α|xα; ηα) =
xx̃αα e−xα

x̃α!
, α = 1, · · · , d (14)

where the arrival rate ηα is set to xα. In this case, we have E[x] = x, and V[x] = ∆(x).3 Note that
the off-diagonal entries of the variance matrix is zero since we assume that each dimension of the
input is corrupted independently. Plugging the definition (14) into eq. (13) results in

EPoi[P] =
n∑

i=1

xix
>
i = S and EPoi[Q] =

n∑

i=1

xix
>
i +

n∑

i=1

∆(xi) = S + ∆(
n∑

i=1

xi).

Comparing with the blank-out noise, where the corruption simulates the existence or completely
absence of words due to authors’ word preference, the Poisson corruption imitates different appear-
ing frequencies for each word. Since we set the arrival rate of the distribution to be xα, words with
higher frequency in the original input will have less chance to be complete removed. In other words,
we would expect the Poisson corruption to bring in less drastic change to the corrupted input x̃ than
the blank-out noise. As we can see in the experiments, the representations learned with Poisson
corruption is not as robust as those with blank-out noise for domain adaptation where we would
expect some words in the source domain to be completely removed from the target domain and vice
versa.

4.2 Feature dependent blank-out

In Section 3.2, we introduced mLDA under the blank-out corruption model with uniform corruption
rate for individual dimensions of the input. The definition of the corruption models in (1), however,
allows different features to have arbitrarily different corruption rate. This enables us to incorporate
prior knowledge of the corrupting distribution into our model flexibly and randomly blank-out fea-
tures of different dimensions at different rate. The derivation of the two expectations E[P] and E[Q]
is the same as in equation (11) and (12), except that a different corrupting vector q will be used,
where each entry qα can take a different value.

5. Extension to High Dimensional Data

Many data sets (e.g. bag-of-words text documents) are naturally high dimensional and sparse. As
the dimensionality increases, hill-climbing approaches used in SDAs can become prohibitively ex-
pensive. In practice, a work-around is to truncate the input data to the r� d most common fea-
tures (Glorot et al., 2011). Unfortunately, this prevents SDAs from utilizing important information
found in rarer features. (As we show in Section 7, including these rarer features leads to signif-
icantly better results.) High dimensionality also poses a challenge to mSLDA, as the system of
linear equations in (9) of complexity O(d3) becomes too costly. In this section we describe how to
approximate this calculation with a simple division into d

r sub-problems of O(r3).

3. Here, ∆(x) denotes a diagonal square matrix with x along its diagonal.

3858

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

We combine the concept of “pivot features” from Blitzer et al. (2006) and the use of most-
frequent features from Glorot et al. (2011). Instead of learning a single mapping W ∈ Rd×(d+1)

to reconstruct all corrupted features, we learn multiple mappings but only reconstruct the r � d
most frequent features (here, r = 5000). For an input xi we denote the shortened r-dimensional
vector consisting of the r most-frequent features as zi∈Rr. We divide the input features randomly
into S mutually exclusive sub-sets of (roughly) equal size and learn a mapping from each one of
these subsets to zi. Intuitively, this corresponds to “translating” rare features into common features
(this is particularly successful with text documents, where the meaning of infrequent terms can
often be approximated by a more frequent term.) Without loss of generality, we assume that the
feature-dimensions in the input space are in random order and divide up the input vectors as xi =[
x1
i
>
, . . . ,xSi

>
]>

. For each one of these sub-spaces we learn an independent mapping Ws which
minimizes

Ls(Ws) =
1

2n

n∑

i=1

S∑

s=1

‖zi −Wsx̃si‖2. (15)

Each mapping Ws can be solved in closed-form as in eq. (9), following the method described in
section 1. We define the output of the first layer in the resulting mSLDA as the average of all
reconstructions,

h1 = tanh

(
1

S

S∑

s=1

Wsxs

)
. (16)

Once the first layer of dimension r� d is learned no further dimensionality reduction is required
and we can stack subsequent layers using the regular mSLDA as described in Section 3.4 and Al-
gorithm 2. It is worth pointing out that, although features might be separated in different sub-sets
within the first layer, they can still be combined in subsequent layers of the mSLDA.

6. Alternative Formulation

In this section we want to provide the reader briefly with an alternative interpretation of mLDA with
unbiased blank-out noise. Slightly different from the blank-out noise we introduced in Section 3.1,
the unbiased version rescales the uncorrupted features to 1

1−p of their original values. More precisely
(with ηd = p),

pE(x̃α|xα; ηα) =

{
0 with probability p
1

1−pxα with probability 1− p . (17)

Under this specific corruption model, and in the case where all the features are normalized to have
norm 1 across inputs, i.e., ∀α ∈ {1, · · · , d},

∑n
i=1 x

2
iα = 1, we can then re-interpret mLDA recon-

struction in eq. (7) as auto-Ridge Regression,

min
W

1

2n

n∑

i=1

‖xi −Wxi‖2 + λ‖W‖22. (18)

with λ = p
2n(1−p) . In the extreme case of p = 0 and consequently λ = 0, the solution to (18) is

trivially W = I. However, as λ increases, the l2 regularization encourages weights within W to be
of comparable magnitude and reduces large diagonal entries. As p approaches 1 the regularization
trade-off λ becomes ill-defined—corresponding to the pathological case where all the features are

3859

CHEN, WEINBERGER, XU AND SHA

removed in all examples, making it impossible to learn. This alternative interpretation illustrates
the effect of reconstruction from blank-out corruption. Features are reconstructed from themselves
and other co-occurring features and the hyper-parameter p regulates this trade-off. The effect of
applying the learned reconstruction matrix to the original input, i.e., Wx, is a smoothing of related
feature values to increase robustness of the representation. In the case of domain adaptation, this
facilitates some immunity over distribution drift between training and testing.

7. Experimental Results

In this section, we evaluate mSLDA on two real-world domain adaption tasks, as well as a semi-
supervised learning task, and compare it with competing algorithms.

7.1 Domain adaption on text data

First, we consider a domain adaptation task for sentiment analysis. We evaluate mSLDA on the
Amazon reviews benchmark data sets (Blitzer et al., 2006) together with several other algorithms for
representation learning and domain adaptation.

Dataset. The dataset contains more than 340, 000 reviews from 25 different types of products from
Amazon.com. For simplicity (and comparability), we follow the convention of (Chen et al., 2011a;
Glorot et al., 2011) and only consider the binary classification problem whether a review is positive
(higher than 3 stars) or negative (3 stars or lower). As mSLDA and SDA focus on feature learning,
we use the raw bag-of-words (bow) unigram/bigram features as their input. To be fair to other
algorithms that we compare to, we also pre-process with tf-idf (Salton and Buckley, 1988) and use
the transformed feature vectors as their input if that leads to better results. Finally, we remove five
domains which contain less than 1, 000 reviews.

Different domains in the complete set vary substantially in terms of number of instances and
class distribution. Some domains (books and music) have hundreds of thousands of reviews, while
others (food and outdoor) have only a few hundred. The proportion of negative examples in different
domains also differs greatly. There are a total of 380 possible transfer tasks (e.g. Apparel→Baby).
To counter the effect of class- and size-imbalance, a more controlled smaller dataset was created by
Blitzer et al. (2007), which contains reviews of four types of products: books, DVDs, electronics,
and kitchen appliances. Here, each domain consists of 2, 000 labeled inputs and approximately
4, 000 unlabeled ones (varying slightly between domains) and the two classes are exactly balanced.
Table 1 contains the statistics on the complete set as well as the control set. Almost all prior work
provides results only on this smaller set with its more manageable twelve transfer tasks. We focus
most of our comparative analysis on this smaller set but also provide results on the entire data for
completeness.

Methods. As baseline, we train a linear SVM on the raw bag-of-words representation of the la-
beled source and test it on target. We also include the results of the same setup with dense fea-
tures obtained by projecting the entire data set (labeled and unlabeled source+target) onto a low-
dimensional sub-space with PCA (we refer to this setting as PCA). Besides these two baselines, we
evaluate the efficacy of a linear SVM trained on features learned by mSLDA and two alternative
feature learning algorithms, Structural Correspondence Learning (SCL) (Blitzer et al., 2006) and

3860

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

DOMAIN LABELED UNLABELED (TEST) NEG. INPUTS

COMPLETE (LARGE) SET

APPAREL 4470 4470 14.52%
BABY 2046 2045 21.46%
BEAUTY 1314 1314 15.94%
BOOKS 27169 27168 12.09%
CAMERA 2652 2652 16.35%
DVDS 23044 23044 14.16%
ELECTRONICS 10197 10196 21.94%
FOOD 692 691 13.02%
GROCERY 1238 1238 13.57%
HEALTH 3254 3253 21.25%
JEWELRY 982 982 14.82%
KITCHEN 9233 9233 20.96%
MAGAZINES 1195 1195 22.64%
MUSIC 62181 62181 8.33%
OUTDOOR 729 729 20.71%
SOFTWARE 1033 1032 37.72%
SPORTS 2679 2679 18.78%
TOYS 6318 6318 19.67%
VIDEO 8695 8694 13.64%
VIDEOGAME 720 720 17.15%

CONTROLLED (SMALL) SET

BOOKS 2000 4465 50%
DVDS 2000 3586 50%
ELECTRONICS 2000 5681 50%
KITCHEN 2000 5945 50%

Table 1: Statistics of the large and small set of the Amazon review dataset (Blitzer et al., 2007).
.

1-layer4 SDA (Glorot et al., 2011). We also compare against CODA (Chen et al., 2011a), a state-
of-the-art domain adaptation algorithm which is based on sample- and feature-selection, applied to
tf-idf features. Finally, we also include a comparison with learning with Marginalized Corrupted
Features (MCF) (van der Maaten et al., 2013), which also uses data corruption as a tool to improve
generalization. For CODA, SDA, SCL and MCF, we use implementations provided by the authors.
All hyper-parameters are set by 5-fold cross validation on the source training set5.

Metrics. Following Glorot et al. (2011), we evaluate our results with the transfer error e(S, T)
and the in-domain error e(T, T). The transfer error e(S, T) denotes the classification error of a
classifier trained on the labeled source data and tested on the unlabeled target data. The in-domain

4. We were only able to obtain the 1-layer implementation from the authors. Anecdotally, multiple-layer SDA imple-
mentations only lead to small improvements on this benchmark set but increase the training time drastically. The
code we obtained from the authors implements the reconstruction sampling technique that was used to speed up the
training of SDA for sparse inputs. While the original raw bow inputs are sparse, the output of one-layer SDA is no
longer sparse, therefore, it becomes much more expensive to train.

5. We keep the default values of some of the parameters in SCL, e.g. the number of stop-words removed and stemming
parameters — as they were already tuned for this benchmark set by the authors.

3861

CHEN, WEINBERGER, XU AND SHA

D−>B E−>B K−>B B−>D E−>D K−>D B−>E D−>E K−>E B−>K D−>K E−>K
−4

−2

0

2

4

6

8

10

12

D−>B E−>B K−>B B−>D E−>D K−>D B−>E D−>E K−>E B−>K D−>K E−>K
−4

−2

0

2

4

6

8

10

12

Baseline
PCA
SCL (Blitzer et al., 2007)
CODA (Chen et al., 2011)
MCF (Maaten et al., 2012)
SDA (Glorot et al., 2011)
mSLDA (l=5)

Figure 1: Comparison of mSLDA and existing works across all twelve domain adaptation task in
the small Amazon review dataset.

error e(T, T) denotes the classification error of a classifier that is trained on the labeled target data
and tested on the unlabeled target data. Similar to Glorot et al. (2011) we measure the performance
of a domain adaptation algorithm in terms of the transfer loss, defined as e(S, T)−eb(T, T), where
eb(T, T) defines the in-domain error of the baseline (trained on the raw bow inputs). In other words,
the transfer loss measures how much higher the error of an adapted classifier is in comparison to a
linear SVM that is trained on actual labeled target bow data.

The various domain-adaptation tasks vary substantially in difficulty, which is why we do not
average the transfer losses (which would be dominated by a few most difficult tasks). Instead, we
average the transfer ratio, e(S, T)/eb(T, T), the ratio of the transfer error over the in-domain error.
As with the transfer loss, a lower transfer ratio implies better domain adaptation.
Timing. For timing purposes, we ignore the time of the SVM training and only report the mSLDA
or SDA training time.6 As both algorithms are unsupervised, we do not re-train for different transfer
tasks within a benchmark set — instead we learn one representation on the union of all domains.
CODA (Chen et al., 2011b) on the other hand does not take advantage of data besides source and
target. We report the average training time per transfer task.7 All experiments were conducted on
an off-the-shelf desktop with dual 6-core Intel i7 CPUs clocked at 2.66Ghz.

7.1.1 COMPARISON WITH RELATED WORK

In the first set of experiments, we use the setting from (Glorot et al., 2011) on the small Amazon
benchmark set. The input data is reduced to only the 5, 000 most frequent terms of unigrams and
bigrams as features.

6. As the SVM classifier is linear, we can use the extremely efficient LIBLINEAR (Fan et al., 2008) classifier, and the
training time is usually in the order of seconds.

7. In CODA, the feature splitting and classifier training are inseparable and we necessarily include both in our timing.

3862

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Comparison per task. Figure 1 presents a detailed comparison of the transfer loss across the twelve
domain adaptation tasks using the various methods mentioned. The reviews are from the domains
Books, Kitchen appliances, Electronics, DVDs. Linear SVMs trained on the features generated by
SDA and mSLDA clearly outperform all the other methods. Although MCF has been shown to
be an effective approach for countering overfitting using noise corruption, it does not perform as
well under the domain adaptation setting. As it only makes use of the training data from the source
domain, it can not generalize to unseen words (terms) from the target domain. mSLDA and SDA
have the advantage over CODA and MCF algorithm that they can make use of the unlabeled data
from multiple source domains. For several tasks, the transfer loss becomes negative — in other
words, a SVM trained on the transformed source data has higher accuracy than one trained on the
original target data. (This is possible because there is more source data available. In particular,
mSLDA or SDA make use of the abundant unlabeled data from multiple source domains to learn a
more robust representation.) This is a strong indication that the learned new representation bridges
the gap between domains. It is worth pointing out that in ten out of the twelve tasks mSLDA quickly
achieves a lower transfer-loss than one-layer SDA.

Timing. Figure 2 (left) depicts the transfer ratio as a function of training time required for different
algorithms, averaged over 12 tasks. It compares the results of mSLDA with the baseline, PCA, SCL,
CODA and SDA. The time is plotted in log scale. We can make three observations: 1) SDA outper-
forms all other related work in terms of transfer-ratio, but is also the slowest to train. Note that the
code we used for training SDA already implements the reconstruction sampling technique (Dauphin
et al., 2011) that is specially designed to speed up the training of SDA on sparse inputs. However,
as shown in the figure, it still takes more than 5 hours of training time. 2) SCL and PCA are rela-
tively fast, but their features cannot compete in terms of transfer performance. 3) The training time
of mSLDA is two orders of magnitude faster than that of SDA (180× speedup), with comparable
transfer ratio. Training one layer of mLDA on all 27, 677 documents from the small set requires less
than 25 seconds. A 5-layer mSLDA requires less than 2 minutes to train, and the resulting feature
transformation achieves slightly better transfer ratio than a one-layer SDA.

Large scale results. To demonstrate the capabilities of mSLDA to scale to large data sets, we also
evaluate it on the complete set with n=340, 000 reviews from 20 domains and a total of 380 domain
adaptation tasks (see right plot in Figure 2). We compare mSLDA to SDA (1-layer). The large set is
more heterogeneous in terms of the number of domains, domain size and class distribution than the
small set. Nonetheless, a similar trend can be observed. Both the transfer error and transfer ratio are
averaged across 380 tasks. The transfer ratio reported in Figure 2 (right) corresponds to averaged
transfer errors of (baseline) 13.93%, (one-layer SDA) 10.50%, (mSLDA, l= 1) 11.50%, (mSLDA,
l= 3) 10.47%, (mSLDA, l= 5) 10.33%. With only one layer, mSLDA performs a little worse than
SDA but reduces the training time from over two days to about five minutes (700× speedup). With
three layers, mSLDA matches the transfer-error and transfer-ratio of one-layer SDA and still only
requires 14 minutes of training time (230× speedup).

7.1.2 FURTHER ANALYSIS

In addition to comparison with prior work, we also analyze various other aspects of mSLDA.

Word reconstruction As explained in Section 6, applying the learned reconstruction matrix to the
original input amounts to smooth-out related feature values, which in turn helps alleviate the shift

3863

CHEN, WEINBERGER, XU AND SHA

101 102 103 104 1051

1.1

1.2

1.3

1.4

1.5

Baseline
PCA
SCL (Blitzer et. al., 2007)
CODA (Chen et. al., 2011)
SDA (Glorot et. al., 2011)
mSLDA (l=1,2,3,4,5)

101 102 103 104 105 1061

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Baseline
SDA (Glorot et. al., 2011)
mSLDA (l=1,2,3,4,5)

Amazon benchmark (small) Amazon benchmark (complete)
Tr

an
sf

er
 R

at
io

Training time in seconds (log) Training time in seconds (log)

Figure 2: Transfer ratio and training times on the small (left) and full (right) Amazon Benchmark
data. Results are averaged across the twelve and 380 domain adaptation tasks in the
respective data sets (5, 000 features).

between training and testing distributions. In this experiment, we apply the matrix W learned on
the Amazon review dataset, to new input documents of a single word x, and list the terms of the
largest feature values after the smoothing Wx. Each row of Table 2 shows an input document with
a single term, and the reconstructed terms in decreasing order of feature value. As an example (row
1), mLDA smooths out a feature vector with a single entry at the term “great” to a denser version
with values at “great for”, “works great”, “excellent”, etc. In other words, mLDA captures word-
level synonymy. The number in parentheses indicates the frequency of each word in the dataset. We
can see that less frequent terms of similar meaning are reconstructed from the more frequent ones,
and vice versa. As a result, a classifier trained on the smooth version of the feature vectors will be
more robust, especially on rarer terms, comparing to one trained on the original sparse input.

Low-frequency features. Prior work often limits the input data to the most frequent features (Glorot
et al., 2011). However there may be valuable signal in the less frequent features. We use the modi-
fication from section 5 to scale mSLDA (5-layers) up to high dimensions and include less-frequent
uni-grams and bi-grams in the input (small Amazon set). In the case of SDA we make the first
layer a dimensionality reducing transformation from d dimensions to 5000. The left plot in Figure 3
shows the performance of mSLDA and SDA as the input dimensionality increases (words are picked
in decreasing order of their frequency). The transfer ratio is computed relative to the baseline with
d=5000 feature. Clearly, both algorithms benefit from having more features up to 30, 000. mSLDA
matches the transfer-ratio of one-layer SDA consistently and, as the dimensionality increases, gains
even higher speed-up. With 30, 000 input features, SDA requires over one day and mSLDA only 3
minutes (458× speedup).

Effect of different squashing functions. Figure 4 shows the transfer ratio of mSLDA when different
squashing functions are used after applying the mapping W. We explored four different options,
linear (i.e., without applying any squashing function), rectifier squashing (i.e., x → max(0, x)),
upper bounded rectifier units (i.e., x → min(1,max(0, x))) and the hyperbolic tangent function

3864

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

great(7233) great for(484), works great(421), excellent(1697), awesome(457), easy to(1560), love it(517),
great product(318), great price(183), perfect(1252), fantastic(467)

bad(2347) horrible(511), worst(820), a bad(383), stupid(348), awful(353), terrible(593), acting(610),
movie is(654), waste(1189), lame(149)

poor(1144) poor quality(184), poorly(385), very disappointed(284), your money(637), terrible(593), very
difficult(111), save your(251), disappointing(444), returned(552), waste(1189)

return(800) returned(552), defective(263), refund(258), arrived(356), ordered(651), shipping(463), to
amazon(117), i returned(221), the item(185), received(855)

fantastic(467) love it(517), i love(1265), excellent(1697), great(7233), amazing(650), a must(364), highly
recommend(560), awesome(457), i highly(379), wonderful(975), love(3066)

is amazing(141) amazing(650), awesome(457), love it(517), a must(364), fantastic(467), great(7233), incred-
ible(264), a wonderful(294), well worth(234), excellent(1697)

well made(136) sturdy(314), handles(261), kitchen(784), easy to(1560), knife(314), looks great(128),
pleased(503), to clean(607), stainless(320), very nice(247)

informative(133) covers(252), an excellent(440), information(758), sections(126), helpful(368), valuable(145),
guide(268), provides(372), knowledge(288), book(5523)

awkward(119) awkward(119), to hold(309), is too(367), too small(129), disappointing(444), difficult
to(489), useless(398), desk(187), impossible to(238), way too(237)

Table 2: Term reconstruction from the Amazon review dataset. Each row shows a different input
term, along with terms reconstructed from this particular input in decreasing order of fea-
ture value (from left to right). The number in the parentheses indicates the frequency of
each word in the dataset.

102 103 104 105
0.95

0.97

0.99

1.01

1.03

1.05

Training time in seconds (log)

d = 5, 000
d = 5, 000

d = 10, 000
d = 10, 000

d = 20, 000

d = 20, 000
d = 30, 000 d = 30, 000

d = 40, 000 d = 40, 000

Tr
an

sf
er

 R
at

io

1 2 3 4 5 6
1

1.05

1.1

1.15

1.2

mSDA
SDA (Glorot et. al., 2011)

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Proxy A-distance on raw input

Pr
ox

y
A

-d
is

ta
nc

e
on

 m
SD

A

EK

BD

BE
BK

DE
DK

Figure 3: Left: Transfer ratio as a function of the input dimensionality (terms are picked in decreas-
ing order of their frequency). Right: Besides domain adaptation, mSLDA also helps in
domain recognition tasks.

(x → tanh(x)), which we have been using in all other experiments. The blank-out noise is used
in this experiment, with the corruption level cross-validated within [0.1, 0.9] of 0.1 interval. As
shown in the figure, the upper bounded rectifier performs similarly as the tanh() function. For the

3865

CHEN, WEINBERGER, XU AND SHA

1 2 3 4 5
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

linear
rectifier
upperbounded rectifier
tanh

Depth

Tr
an

sf
er

 R
at

io

Figure 4: Transfer ratio with different squashing functions.

unbounded rectifier squashing, the performance first improves as we stack more layers, but deterio-
rates after three layers. The reason is that the function has no effect on large values after applying
the mapping. The loss at the deeper layers is dominated by a few more frequent features while
ignoring other features. One interesting observation is that even without any nonlinear squashing,
the performance of mSLDA still improves as we increase the depth, as shown by the black curve in
the figure.

Effect of the number of the “pivot” features. In this experiment, we investigate how the number of
the “pivot” features, r, in the high-dimensional extension from Section 5 affects the performance
of the algorithm. As we increase r, we would expect the transfer accuracy to be improved as well.
On the other hand, since the algorithm scale cubic in term of r, the time required to solve for the
mapping W will also increases. In the extreme case, when r = d, the extension reduces to our
original algorithm. Figure 5 shows the transfer ratio as a function of the training time as the size of
the “pivot” features increases. We do observe a reduction in transfer ratio as r increases, however,
the improvement becomes marginal when r is sufficiently large (i.e., 5,000). In this case, we can
still finish the training of the model relatively fast (i.e., within a couple of minutes).

Transfer distance. Ben-David et al. (2007) suggest the Proxy-A-distance (PAD) as a measure of
how different two domains are from each other. The metric is defined as 2(1 − 2ε), where ε is the
generalization error of a classifier (a linear SVM in our case) trained on the binary classification
problem to distinguish inputs between the two domains. The right plot in Figure 3 shows the PAD
before and after mSLDA is applied. Surprisingly, the distance increases in the new representation
— i.e. distinguishing between two domains becomes easier with the mSLDA features. We explain
this effect through the fact that mSLDA is unsupervised and learns a generally better representation
for the input data. This helps both tasks, distinguishing between domains and sentiment analysis
(e.g. in the electronic-domain mSLDA might interpolate the feature “dvd player” from “blue ray”,

3866

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

0 500 1000 1500
0.9

0.95

1

1.05

1.1

1.15

Training time in seconds

Tr
an

sf
er

 R
at

io

2,500

5,000
10,000 20,000

Figure 5: High dimensional extension with difference “pivot” feature size.

both are not particularly relevant for sentiment analysis but might help distinguish the review from
the book domain.). Glorot et al. (2011) observe a similar effect with the representations learned
with SDA.

Different noise model. We also apply mSLDA with the Poisson corruption model, and compare it
with the blank-out noise model on the Amazon reviews data set. As shown in Figure 6, the repre-
sentation learned using mSLDA with Poisson corruption also improves over the raw bag-of-word
representation. Intuitively, the Poisson corruption changes the word counts and simulates the case
where the same document was written with a slightly increased or decreased number occurrences
of a particular word. A nice property of this corruption model is that it introduces no additional
hyper-parameters. In comparison with blank-out corruption, the improvement of Poisson corrup-
tion is not as pronounced. While the Poisson corruption allows for small perturbation on the count
of different words employed in the review, the blank-out noise model enables more drastic change,
i.e., directly removing some words. The latter scenario may reflect more closely how documents
vary across domains, which results in a more robust representation. The experiment suggests that
we could explore our prior knowledge on the data to properly choose the corrupting distribution
used in mSLDA for better performance.

7.1.3 GENERAL TRENDS

In summary, we observe a few general trends across all experiments: 1) With one layer, mSLDA is
up to three orders of magnitudes faster but slightly less expressive than the original SDA. This can
be attributed to the fact that mSLDA has no hidden layer. 2) There is a clear trend that additional
“stacked” layers improve the results significantly (here, up to five layers). With additional layers the
mSLDA features reach (and surpass) the accuracy of 1-layer SDA and still obtain a several hundred-
fold speedup. 3) The mSLDA features help diverse classification tasks, domain classification and
sentiment analysis, and can be trained very efficiently on high-dimensional data.

3867

CHEN, WEINBERGER, XU AND SHA

D−>B E−>B K−>B B−>D E−>D K−>D B−>E D−>E K−>E B−>K D−>K E−>K
−4

−2

0

2

4

6

8

10

12

Baseline
SDA (Glorot et al., 2011)
mSLDA (blankout)
mSLDA (poisson)

Tr
an

sf
er

 L
os

s

Figure 6: Comparison of mSLDA with different corruption noise in the small Amazon review
dataset.

7.2 Domain adaptation on images

In this section, we evaluate mSLDA on a dataset collected by Saenko et al. (2010) for studying
domain shifts in visual category recognition tasks, together with several other algorithms designed
for this dataset.

Dataset. The dataset contains a total of 4,652 images of 31 categories from three domains: images
from the web, images from a digital SLR camera, and images from a webcam. As shown in Fig-
ure 7, images from these domains are quite different visually. Images in the first domain are product
shots downloaded from Amazon.com. The images are of medium resolution typically taken in an
environment with studio lighting conditions and from a canonical viewpoint. Each category has
around 90 images, capturing large intra-class variation of these categories. Images from the second
domain are captured using a digital SLR camera in realistic environment with natural lighting con-
dition. Each category has 5 different objects, and on average 3 images are captured for each object
at different viewpoint. Images from the third domain are taken using a webcam. These images are
of low resolution, noisy and suffer from white balance artifacts. Similar as in the second domain, 5
objects for each category are captured from different viewpoints.

Several interesting domain shifts were captured in the datasets. First, it allows us to investigate
the possibility of adapting models learned on web images, which are much easier to obtain, to
images captured with expensive dSLR cameras or webcams (e.g. mounted on robotic platforms).
Second, since the same set of objects are recorded using both high-quality dSLR and the simple
webcam, it allows a controlled examination of the effect of visual shift caused by different sensors.

We used the same image representation as in Saenko et al. (2010). Local scale-invariant interest
points are extracted using SURF detector (Bay et al., 2006). Each image is then represented as a
bag-of-visual-word with a codebook of size d = 800.

Our evaluation also follows the same setup as in Saenko et al. (2010). For the source domain, 8
labels per category for webcam/dSLR and 20 for amazon are available, meanwhile only three labels
from the target domain are used in training as well. Five runs of experiments, each one with a set of
randomly selected labels, are carried out and we report the averaged accuracies.

3868

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Adapting Visual Category Models to New Domains 9

31 categories
� �� �

keyboardheadphonesfile cabinet... laptop letter tray ...

amazon dSLR webcam
...

in
st

an
ce

 1
in

st
an

ce
 2

...

...

...

in
st

an
ce

 5

...

in
st

an
ce

 1
in

st
an

ce
 2

...

...

...

in
st

an
ce

 5

...

� �� �
3 domains

Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.

popular way to acquire data, as it allows for easy access to large amounts of
data that lends itself to learning category models. These images are of products
shot at medium resolution typically taken in an environment with studio lighting
conditions. We collected two datasets: amazon contains 31 categories4 with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the objects only from a canonical viewpoint.
amazonINS contains 17 object instances (e.g. can of Taster’s Choice instant
co↵ee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dslr has images of the 31 object cat-

4 The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, lap-
top, letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer,
projector, puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.

Figure 7: Sample images from the visual shift dataset. Images of objects from 31 categories are
downloaded from the web as well as captured by a high definition and a low definition
camera. (Saenko et al., 2010)

Methods. As baseline, we train a kNN model (with k = 1) on the raw bag-of-word representation
using the source labeled data and test it on target domain (knn(A)). The same model is also trained
on the combination of labeled examples from both source and target domains (knn(A+B)). We also
include the results of a metric learning algorithm using information-theoretic metric learning (Davis
et al., 2007). A kNN model is then trained in the projected feature space, either on all the labeled
data from both domains (ITML(A+B)), or only on B labels (ITML(B)). Besides these two baselines,
we also include the metric learning methods developed in Saenko et al. (2010) and its asymmetric
variant by Kulis et al. (2011). For mSLDA, we present results from training both a kNN model and
a linear SVM model after learning the new representation.

Table 3 summarizes the performance of these algorithms on the three domain adaptation tasks,
i.e., Webcam → dSLR, dSLR → Webcam and Amazon → Webcam. The table shows the
classification test-accuracies in the target domain using various domain adaptation techniques. As
we can see from comparing the two baseline algorithms, the shift between the two domains Dslr
and Webcam is moderate since the images display the same objects and the two domains only vary
in the camera resolution and lightning conditions. The adaptation between the Amazon domain
and Dslr/Webcam involves a more drastic change, and is more challenging. mSLDA performs on
par with the adapted knn methods which were especially designed on this dataset.

3869

CHEN, WEINBERGER, XU AND SHA

BASELINE ITML CONSTRAINED ML MSLDA
SOURCE TARGET KNN(A) KNN(A+B) ITML(A+B) ITML(B) ASYMM SYMM KNN LINEARSVM
WEBCAM DSLR .10 0.19 0.13 0.24 0.23 0.25 0.20 0.23
DSLR WEBCAM .26 0.28 0.20 0.27 0.28 0.29 0.31 0.38
AMAZON WEBCAM 0.08 0.22 0.10 0.28 0.27 0.23 0.28 0.27

Table 3: Domain adaptation results (accuracy) for categories seen during training in the target do-
main.

7.3 Semi-supervised Learning on Text

Although mSLDA was first introduced particularly for domain adaptation, it also applies to semi-
supervised learning tasks. In other words, we can use mSLDA to learn more robust representations
on unlabeled data, and then train a classifier on this learned representation using labeled data only.

Dataset. We use the Reuters RCV1/RCV2 multilingual, multiview text categorization test col-
lection (Amini et al., 2010) for evaluation. The set contains documents written in five different
languages (English, French, German, Spanish and Italian) which share the same set of categories
(C15, CCAT, E21, ECAT, GCAT, M11). In our experiments, we only use the subset of document
that are written in English, which has 18,758 documents of vocabulary size 21,531.

Methods. As baselines, we train a linear SVM on the raw bag-of-words (BOW) and TF-IDF rep-
resentations of the labeled data (Sparck Jones, 1972). In addition, we also compare against Latent
semantic indexing (LSI) (Deerwester et al., 1990). The number of retained eigenvectors was chosen
by cross-validation. For both LSI and mSLDA, we learn a new representation using the full training
set (without labels), and then train a linear SVM classifier on a small subset of labeled examples
using that new representation.

of labeled training data per category

A
cc

ur
ac

y
(%

)

1 2 4 8 16 32 64 128 256 512
10

20

30

40

50

60

70

80

90

BOW
TF−IDF
LSI
mSLDA

Figure 8: Semi-supervised learning results on the Reuters RCV1/RCV2 dataset.

3870

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

As shown in Figure 8, we gradually increase the size of the labeled subset. For each setting,
we average over 10 runs of each algorithm and report the mean accuracy as well as the variance.
mSLDA performs similarly to LSI, and significantly outperform the baseline methods that were
trained without unlabeled data. In summary, mSLDA learns a better representation for sparse BOW
text data — however the improvement is not as pronounced as for domain adaptation. Since learning
mSLDA features is cheap, it can be used as an alternative feature representation for text.

8. Discussion

In this paper we presented, mSLDA, an algorithm that marginalizes out corruption in SDA training.
A key step to making this marginalization tractable, is to limit all layers within the SDA to be linear.
One interesting question is to what degree this limits the expressiveness of mSLDA. As we show
in our empirical results, Section 7, if mSLDA is used for feature learning, this seems to hardly
matter (although more layers are necessary — something that is not really a problem as mSLDA
training is so much faster.) However, the original SDA can also be used for supervised training
(with fine-tuning), which is not possible with the mSLDA formulation. Maybe the fact that mSLDA
works so well for bag-of-words data tells us something about the features learned by SDA. Instead
of uncovering hidden concepts, as pointed out by Vincent et al. (2010), it may be more important
(or simply sufficient) to learn a common feature representation across domains. This representation
translates features from both domains into a joint space and because bag-of-words data is high
dimensional, a linear mapping may just be powerful enough. Recent studies by Chen et al. (2014)
seem to suggest that on more difficult image data sets the non-linear hidden representations are more
important and mSLDA cannot match the performance of the original SDA.

It is an interesting observation that stacking multiple mLDA layers helps to improve these rep-
resentations. One interpretation of mSLDA is to view it as a directed graph algorithm. The weight
matrix W represents the weights of the directed edges, i.e. the edge from feature d to feature b
has weight Wbd. The non-zero entries in the binary document vector x correspond to nodes in
this graph. The transformation Wx takes one step in this graph, starting from the terms in x, and
accumulates the edge weights for every other term/node that is reached with this step. Stacking
multiple mLDA layers is then equivalent to taking multiple consecutive steps in this fashion. Why
is this helpful? Imagine two words have similar meanings but rarely co-occur. For example the
terms Obama and Reagan both refer to presidents of the United States but probably rarely appear
in the same sentence. If we want to perform domain adaptation from articles written in the 1980s
to the 2010s, it would be good to learn that these two words refer to related entities. A single layer
mLDA would learn to reconstruct co-occurring words from the term Reagan, such as White House,
President, United States and it would “reconstruct” these words, but it would not reconstruct the
term Obama. It would however also learn, from the unlabeled target data, that these very same
words co-occur with the term Obama in more recent documents. So in the second layer it will re-
construct the word Obama from the terms it added in the first layer. In the graph view of mSLDA
this means that Reagan and Obama are not connected through heavily weighted direct edges, but
they are connected through heavily weighted two-step paths.

One interesting aspect of mSLDA is that there are only very few hyper parameters. Because
training is so fast, these can be set very efficiently with cross-validation. In contrast, setting the
hyper-parameters of SDA in an optimal fashion is much more time consuming. In our experiments
we did not take this into account, but it is another important factor, as it may make it significantly

3871

CHEN, WEINBERGER, XU AND SHA

easier to actually find the optimal hyper-parameters for mSLDA in practice—something that will
improve testing accuracy and training time alike.

Finally, although in this manuscript we primarily focused on blank-out and Poisson corruption,
our proposed framework is decisively general. Different corruption distributions can be chosen
for different applications, in particular when side information is available. For example, if data
consists of unreliable sensor readings, then blank-out corruption could be used where the probability
of blank-out is fine-tuned for each specific feature —mimicking the actual drop out rate of that
particular sensor. As future work, it is also conceivable that the distribution could be learned with a
generative model from the data directly.

9. Acknowledgements

We would like to thank Laurens van der Maaten for pointing out the alternative Ridge Regression
formulation of mSLDA under blank-out corruption. KQW, ZX, MC were supported by NSF grants
1149882 and 1137211. FS is supported by NSF IIS-0957742, DARPA CSSG N10AP20019 and
D11AP00278. The authors would also like to thank Yoshua Bengio for helpful discussions.

References

Massih R Amini, Nicolas Usunier, and Cyril Goutte. Learning from multiple partially observed
views-an application to multilingual text categorization. In Advances in neural information pro-
cessing systems, volume 1, pages 28–36, 2010.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural Networks, 2(1):53–58, 1989.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In Computer
Vision–ECCV 2006, pages 404–417. Springer, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis of representations
for domain adaptation. Advances in Neural Information Processing Systems, 19:137, 2007.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79(1-2):151–175,
2010.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a cpu and gpu
math expression compiler. In Proceedings of the Python for Scientific Computing Conference
(SciPy), volume 4, page 3. Austin, TX, 2010.

Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with structural correspon-
dence learning. In Conference on Empirical Methods in Natural Language Processing, Sydney,
Australia, 2006.

3872

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Association for Computational Lin-
guistics, 2007.

Christopher JC Burges and Bernhard Schölkopf. Improving the accuracy and speed of support
vector machines. In Advances in Neural Information Processing Systems, pages 375–381, 1997.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Olivier Chapelle, Pannagadatta Shivaswamy, Srinivas Vadrevu, Kilian Weinberger, Ya Zhang, and
Belle Tseng. Boosted multi-task learning. Machine learning, 85(1-2):149–173, 2011.

Minmin Chen, Yixin Chen, and Kilian Q Weinberger. Automatic feature decomposition for single
view co-training. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 953–960, 2011a.

Minmin Chen, Kilian Q Weinberger, and John Blitzer. Co-training for domain adaptation. In
Advances in Neural Information Processing Systems, pages 2456–2464, 2011b.

Minmin Chen, Zhixiang Xu, Fei Sha, and Kilian Q Weinberger. Marginalized denoising autoen-
coders for domain adaptation. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), pages 767–774, 2012.

Minmin Chen, Kilian Q Weinberger, Fei Sha, and Yoshua Bengio. Marginalized denoising auto-
encoders for nonlinear representations. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1476–1484, 2014.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Hal Daume III. Frustratingly easy domain adaptation. In Association for Computational Linguistics,
page 256, 2007.

Yann N Dauphin, Xavier Glorot, and Yoshua Bengio. Large-scale learning of embeddings with re-
construction sampling. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 945–952, 2011.

Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-theoretic
metric learning. In Proceedings of the 24th international conference on Machine learning, pages
209–216. ACM, 2007.

Scott C Deerwester, Susan T Dumais, Thomas K Landauer, George W Furnas, and Richard A
Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information
Science, 41(6):391–407, 1990.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

3873

CHEN, WEINBERGER, XU AND SHA

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 513–520, 2011.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In Computer Vision and Pattern Recognition (CVPR), pages 2066–2073.
IEEE, 2012.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola. Cor-
recting sample selection bias by unlabeled data. In Advances in Neural Information Processing
Systems, pages 601–608, 2006.

Koray Kavukcuoglu, Marc Aurelio Ranzato, Rob Fergus, and Yann Le-Cun. Learning invariant
features through topographic filter maps. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1605–1612. IEEE, 2009.

Brian Kulis, Kate Saenko, and Trevor Darrell. What you saw is not what you get: Domain adaptation
using asymmetric kernel transforms. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 1785–1792. IEEE, 2011.

Honglak Lee, Yan Largman, Peter Pham, and Andrew Y Ng. Unsupervised feature learning for
audio classification using convolutional deep belief networks. Advances in neural information
processing systems, 22:1096–1104, 2009.

Qian Liu, Aaron Mackey, David Roos, and Fernando Pereira. Evigan: a hidden variable model for
integrating gene evidence for eukaryotic gene prediction. Bioinformatics, 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple
sources. In Advances in Neural Information Processing Systems, pages 1041–1048, 2009.

David McClosky, Eugene Charniak, and Mark Johnson. Reranking and self-training for parser
adaptation. In Proceedings of the 44th Association for Computational Linguistics, pages 337–
344. Association for Computational Linguistics, 2006.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages
807–814, 2010.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 833–840, 2011.

David E Rumelhart, Geoffery E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

3874

http://www.ncbi.nlm.nih.gov/pubmed/18187439
http://www.ncbi.nlm.nih.gov/pubmed/18187439

MARGINALIZING STACKED LINEAR DENOISING AUTOENCODERS

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In Computer Vision–ECCV 2010, pages 213–226. Springer, 2010.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513–523, 1988.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21, 1972.

Laurens van der Maaten, Minmin Chen, Stephen Tyree, and Kilian Weinberger. Learning with
marginalized corrupted features. In Proceedings of the International Conference on Machine
Learning, 2013.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103. ACM, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 9999:3371–3408, 2010.

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th Interna-
tional Conference on Machine Learning (ICML-13), pages 118–126, 2013.

Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 1113–1120. ACM, 2009.

Zhixiang Eddie Xu, Minmin Chen, Kilian Weinberger, and Fei Sha. From sbow to dcot marginalized
encoders for text representation. In CIKM, pages 1879–1884, 2012.

Gui-Rong Xue, Wenyuan Dai, Qiang Yang, and Yong Yu. Topic-bridged plsa for cross-domain
text classification. In Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 627–634. ACM, 2008.

3875

	Introduction
	Background and Related Work
	Structural Correspondence Learning
	Marginalized Corrupted Features
	Stacked Denoising Autoencoder

	Marginalized Stacked Linear Denoising Autoencoders
	Noise Model
	Single-layer Denoiser
	Marginalized Linear Denoising Autoencoder
	Blankout corruption

	Nonlinear feature generation and stacking
	mSLDA for Domain Adaptation

	Corruption beyond blank-out
	Poisson corruption
	Feature dependent blank-out

	Extension to High Dimensional Data
	Alternative Formulation
	Experimental Results
	Domain adaption on text data
	Comparison with Related Work
	Further Analysis
	General Trends

	Domain adaptation on images
	Semi-supervised Learning on Text

	Discussion
	Acknowledgements

