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Abstract

Matrix completion, i.e., the exact and provable recovery of a low-rank matrix from a small
subset of its elements, is currently only known to be possible if the matrix satisfies a
restrictive structural constraint—known as incoherence—on its row and column spaces. In
these cases, the subset of elements is assumed to be sampled uniformly at random.

In this paper, we show that any rank-r n-by-n matrix can be exactly recovered from
as few as O(nr log2 n) randomly chosen elements, provided this random choice is made
according to a specific biased distribution suitably dependent on the coherence structure
of the matrix: the probability of any element being sampled should be at least a constant
times the sum of the leverage scores of the corresponding row and column. Moreover, we
prove that this specific form of sampling is nearly necessary, in a natural precise sense; this
implies that many other perhaps more intuitive sampling schemes fail.

We further establish three ways to use the above result for the setting when leverage
scores are not known a priori. (a) We describe a provably-correct sampling strategy for
the case when only the column space is incoherent and no assumption or knowledge of the
row space is required. (b) We propose a two-phase sampling procedure for general matrices
that first samples to estimate leverage scores followed by sampling for exact recovery.
These two approaches assume control over the sampling procedure. (c) By using our
main theorem in a reverse direction, we provide an analysis showing the advantages of
the (empirically successful) weighted nuclear/trace-norm minimization approach over the
vanilla un-weighted formulation given non-uniformly distributed observed elements. This
approach does not require controlled sampling or knowledge of the leverage scores.

Keywords: matrix completion, coherence, leverage score, nuclear norm, weighted nuclear
norm
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1. Introduction

Low-rank matrix completion has been the subject of much recent study due to its appli-
cation in myriad tasks: collaborative filtering, dimensionality reduction, clustering, non
negative matrix factorization and localization in sensor networks. Clearly, the problem is
ill-posed in general; correspondingly, analytical work on the subject has focused on the joint
development of algorithms, and sufficient conditions under which such algorithms are able
to recover the matrix.

While they differ in scaling/constant factors, all existing sufficient conditions (Candès
and Recht, 2009; Candès and Tao, 2010; Recht, 2011; Keshavan et al., 2010; Gross, 2011;
Jain et al., 2013; Negahban and Wainwright, 2012)—with a couple of exceptions we describe
in Section 2—require that (a) the subset of observed elements should be uniformly randomly
chosen, independent of the values of the matrix elements, and (b) the low-rank matrix be
“incoherent” or “not spiky”—i.e., its row and column spaces should be diffuse, having low
inner products with the standard basis vectors. Under these conditions, the matrix has been
shown to be provably recoverable—via methods based on convex optimization (Candès and
Recht, 2009), alternating minimization (Jain et al., 2013), iterative thresholding (Cai et al.,
2010), etc.—using as few as Θ(nr log n) observed elements for an n× n matrix of rank r.

Actually, the incoherence assumption is required because of the uniform sampling: co-
herent matrices are those which have most of their mass in a relatively small number of
elements. By sampling entries uniformly and independently at random, most of the mass
of a coherent low-rank matrix will be missed; this could (and does) throw off most existing
methods for exact matrix completion. One could imagine that if the sampling is adapted
to the matrix, roughly in a way that ensures that elements with more mass are more likely
to be observed, then it may be possible for existing methods to recover the full matrix.

In this paper, we show that the incoherence requirement can be eliminated completely,
provided the sampling distribution is dependent on the matrix to be recovered in the right
way. Specifically, we have the following results.

1. If the probability of an element being observed is proportional to the sum of the
corresponding row and column leverage scores (which are local versions of the standard
incoherence parameter) of the underlying matrix, then an arbitrary rank-r matrix
can be exactly recovered from Θ(nr log2 n) observed elements with high probability,
using nuclear norm minimization (Theorem 2 and Corollary 3). In the case when
all leverage scores are uniformly bounded from above, our results reduce to existing
guarantees for incoherent matrices using uniform sampling. Our sample complexity
bound Θ(nr log2 n) is optimal up to a single factor of log2 n, since the degrees of
freedom in an n × n matrix of rank r is in general in the order of nr. Moreover, we
show that to complete a coherent matrix, it is necessary (in certain precise sense) to
sample according to the leverage scores as above (Theorem 6).

2. For a matrix whose column space is incoherent and row space is arbitrarily coherent,
our results immediately lead to a provably correct sampling scheme which requires no
prior knowledge of the leverage scores of the underlying matrix and has near optimal
sample complexity (Corollary 4).
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3. We provide numerical evidence that a two-phase adaptive sampling strategy, which
assumes no prior knowledge about the leverage scores of the underlying matrix, can
perform on par with the optimal sampling strategy in completing coherent matrices,
and significantly outperforms uniform sampling (Section 4). Specifically, we consider
a two-phase sampling strategy whereby given a fixed budget of m samples, we first
draw a fixed proportion of samples uniformly at random, and then draw the remaining
samples according to the leverage scores of the resulting sampled matrix.

4. As a corollary of our main theorem, we are able to obtain the first exact recovery
guarantee for the weighted nuclear norm minimization approach, which can be viewed
as adjusting the leverage scores to align with the given sampling distribution. Our
results provide a strategy for choosing the weights when non-uniformly distributed
samples are given so as to order-wise reduce the sample complexity of the weighted
approach to that of the standard unweighted formulation (Theorem 7). Our theorem
quantifies the benefit of the weighted approach, thus providing theoretical justification
for its good empirical performance observed in Srebro and Salakhutdinov (2010);
Foygel et al. (2011); Negahban and Wainwright (2012).

These results provide a deeper and more general theoretical understanding of the relation
between the sampling procedure and the matrix coherence/leverage-score structure, and
how they affect the recovery performance. While in practice one may not have complete
control over the sampling procedure, or exact knowledge of the matrix leverage scores,
partial control and knowledge are often possible, and we believe our theory provides useful
approximations and insights. We expect that the ideas and results in this paper will serve
as the foundation for developing algorithms for more general settings and applications.

Our theoretical results are achieved by a new analysis based on concentration bounds
involving the weighted `∞,2 matrix norm, defined as the maximum of the appropriately
weighted row and column norms of the matrix. This differs from previous approaches that
use `∞ or unweighted `∞,2 norm bounds (Gross, 2011; Recht, 2011; Chen, 2015). In some
sense, using the weighted `∞,2-type bounds is natural for the analysis of low-rank matrix
recover/approximation when the observations are in the form of entries of rows/columns of
the matrix, because the rank is a property of the rows and columns of the matrix rather
than its individual elements, and the weighted norm captures the relative importance of the
rows/columns. Therefore, our techniques based on the `∞,2 norm might be of independent
interest beyond the specific settings and algorithms considered here.

1.1 Organization

In Section 2 we briefly survey the relevant literature. We present our main results for
coherent matrix completion in Section 3. In Section 4 we propose a two-phase algorithm
that requires no prior knowledge about the underlying matrix’s leverage scores. In Section 5
we provide guarantees for weighted nuclear norm minimization. The paper concludes with
a discussion of future work in Section 6. We provide the proofs of the main theorems in the
appendix.
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2. Related Work

There is now a vast body of literature on matrix completion, and an even bigger body of
literature on matrix approximations; we restrict our literature review here to papers that
are most directly related.

Completion of incoherent and row-coherent matrices: The first algorithm and theoreti-
cal guarantees for exact low-rank matrix completion appeared in Candès and Recht (2009);
there it was shown that nuclear norm minimization works when the low-rank matrix is in-
coherent, and the sampling is uniform random and independent of the matrix. Subsequent
works have refined provable completion results for incoherent matrices under the uniform
random sampling model, both via nuclear norm minimization (Candès and Tao, 2010; Recht,
2011; Gross, 2011; Chen, 2015), and other methods like SVD followed by local descent (Ke-
shavan et al., 2010) and alternating minimization (Jain et al., 2013), etc. The setting with
sparse errors and additive noise is also considered (Candès and Plan, 2010; Chandrasekaran
et al., 2011; Chen et al., 2013; Candès et al., 2011; Negahban and Wainwright, 2012).

The recent work in Krishnamurthy and Singh (2013) considers matrix completion when
the row space is allowed to be coherent but the column space is still required to be inco-
herent with parameter µ0. Their proposed adaptive sampling algorithm selects columns to
observe in their entirety and requires a total of O(µ0r

3/2n log(2r/δ)) observed elements with
a success probability 1− δ, which is superlinear in r. A corollary of our results guarantees
a sample complexity that is linear in r in this row-coherent setting. The sample complexity
was recently improved to O(µ0rn log2(r2/δ)) in Krishnamurthy and Singh (2014).

Matrix approximations via sub-sampling: Weighted sampling methods have been widely
considered in the related context of matrix sparsification, where one aims to approximate
a given large dense matrix with a sparse matrix. The strategy of element-wise matrix
sparsification was introduced in Achlioptas and McSherry (2007). They propose and provide
bounds for the `2 element-wise sampling model, where elements of the matrix are sampled
with probability proportional to their squared magnitude. These bounds were later refined
in Drineas and Zouzias (2011). Alternatively, Arora et al. (2006) propose the `1 element-
wise sampling model, where elements are sampled with probabilities proportional to their
magnitude. This model was further investigated in Achlioptas et al. (2013) and argued to
be almost always preferable to `2 sampling.

Closely related to the matrix sparsification problem is the matrix column selection prob-
lem, where one aims to find the “best” k column subset of a matrix to use as an approx-
imation. State-of-the-art algorithms for column subset selection (Boutsidis et al., 2009;
Mahoney, 2011) involve randomized sampling strategies whereby columns are selected pro-
portionally to their statistical leverage scores—the squared Euclidean norms of projections
of the canonical unit vectors on the column subspaces. The statistical leverage scores
of a matrix can be approximated efficiently, faster than the time needed to compute an
SVD (Drineas et al., 2012). Statistical leverage scores are also used extensively in statis-
tical regression analysis for outlier detection (Chatterjee and Hadi, 1986). More recently,
statistical leverage scores were used in the context of graph sparsification under the name of
graph resistance (Spielman and Srivastava, 2011). The sampling distribution we use for the
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matrix completion guarantees of this paper is elemen-wise and based on statistical leverage
scores. As shown both theoretically (Theorem 6) and empirically (Section 4.1), sampling
as such outperforms both `1 and `2 element-wise sampling, at least in the context of matrix
completion.

Weighted sampling in compressed sensing: This paper is similar in spirit to recent work
in compressed sensing which shows that sparse recovery guarantees traditionally requiring
mutual incoherence can be extended to systems which are only weakly incoherent, without
any loss of approximation power, provided measurements from the sensing basis are sub-
sampled according to their coherence with the sparsity basis. This notion of local coherence
sampling seems to have originated in Rauhut and Ward (2012) in the context of sparse
orthogonal polynomial expansions, and has found applications in uncertainty quantifica-
tion (Yang and Karniadakis, 2013), interpolation with spherical harmonics (Burq et al.,
2012), and MRI compressive imaging (Krahmer and Ward, 2014).

3. Main Results

The results in this paper hold for what is arguably the most popular approach to matrix
completion: nuclear norm minimization. If the true matrix is M with its (i, j)-th element
denoted by Mij , and the set of observed elements is Ω, this method estimates M via the
optimum of the convex program:

min
X

‖X‖∗

s.t. Xij = Mij for (i, j) ∈ Ω.
(1)

where the nuclear norm ‖ · ‖∗ of a matrix is the sum of its singular values.1

We focus on the setting where matrix elements are revealed according an underlying
probability distribution. To introduce the distribution of interest, we first need a definition.

Definition 1 (Leverage Scores) For an n1 × n2 real-valued matrix M of rank r whose
rank-r SVD is given by UΣV >, its (normalized) leverage scores—µi(M) for any row i, and
νj(M) for any column j—are defined as

µi(M) : =
n1

r

∥∥∥U>ei∥∥∥2

2
, i = 1, 2, . . . , n1,

νj(M) : =
n2

r

∥∥∥V >ej∥∥∥2

2
, j = 1, 2, . . . , n2,

(2)

where ei denotes the i-th standard basis element with appropriate dimension.2

Note that the leverage scores are non-negative, and are functions of the column and row
spaces of the matrix M . Since U and V have orthonormal columns, we always have re-
lationship

∑
i µi(M)r/n1 =

∑
j νj(M)r/n2 = r. The standard incoherence parameter µ0

1. This becomes the trace norm for positive-definite matrices. It is now well-recognized to be a convex
surrogate for the rank function (Fazel, 2002).

2. In the matrix sparsification literature (Drineas et al., 2012; Boutsidis et al., 2009) and beyond, the

leverage scores of M often refer to the un-normalized quantities
∥∥U>ei∥∥2

and
∥∥V >ej∥∥2

.
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of M used in the previous literature corresponds to a global upper bound on the leverage
scores:

µ0 ≥ max
i,j
{µi(M), νj(M)}.

Therefore, the leverage scores can be considered as the localized versions of the standard
incoherence parameter.

We are ready to state our main result, the theorem below.

Theorem 2 Let M = (Mij) be an n1 × n2 matrix of rank r, and suppose that its elements
Mij are observed only over a subset of elements Ω ⊂ [n1]×[n2]. There is a universal constant
c0 > 0 such that, if each element (i, j) is independently observed with probability pij, and
pij satisfies

pij ≥ min

{
c0

(µi(M) + νj(M)) r log2(n1 + n2)

min{n1, n2}
, 1

}
, (3)

pij ≥
1

min{n1, n2}10
,

then M is the unique optimal solution to the nuclear norm minimization problem (1) with
probability at least 1− 5(n1 + n2)−10.

We will refer to the sampling strategy (3) as leveraged sampling. Note that the expected
number of observed elements is

∑
i,j pij , and this satisfies

∑
i,j

pij ≥ max

c0
r log2(n1 + n2)

min{n1, n2}
∑
i,j

(µi(M) + νj(M)) ,
∑
i,j

1

min{n1, n2}10


= 2c0 max {n1, n2} r log2(n1 + n2),

which is independent of the leverage scores, or indeed any other property of the matrix.
Hoeffding’s inequality implies that the actual number of observed elements sharply concen-
trates around its expectation, leading to the following corollary:

Corollary 3 Let M = (Mij) be an n1 × n2 matrix of rank r. Draw a subset Ω of its
elements by leveraged sampling according to the procedure described in Theorem 2. There is
a universal constant c0 > 0 such that the following holds with probability at least 1−10(n1 +
n2)−10: the number m of revealed elements is bounded by

|Ω| ≤ 3c0 max {n1, n2} r log2(n1 + n2)

and M is the unique optimal solution to the nuclear norm minimization program (1).

We now provide comments and discussion.
(A) Roughly speaking, the condition given in (3) ensures that elements in important

rows/columns (indicated by large leverage scores µi and νj) of the matrix should be observed
more often. Note that Theorem 2 only stipulates that an inequality relation hold between
pij and {µi(M), νj(M)}. This allows for there to be some discrepancy between the sampling
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distribution and the leverage scores. It also has the natural interpretation that the more
the sampling distribution {pij} is “aligned” to the leverage score pattern of the matrix, the
fewer observations are needed.

(B) Sampling based on leverage scores provides close to the optimal number of sampled
elements required for exact recovery (when sampled with any distribution). In particular,
recall that the number of degrees of freedom of an n× n matrix of rank r is 2nr(1− r/2n),
and knowing the leverage scores of the matrix reduces the degrees of freedom by 2n in
the worst case. Hence, regardless of how the elements are sampled, a minimum of Θ(nr)
elements is required to recover the matrix. Theorem 2 matches this lower bound, with an
additional O(log2(n)) factor.

(C) Our work improves on existing results even in the case of uniform sampling and
uniform incoherence. Recall that the original work of Candès and Recht (2009), and sub-
sequent works (Candès and Tao, 2010; Recht, 2011; Gross, 2011) give recovery guarantees
based on two parameters of the matrix M ∈ Rn×n (assuming its SVD is UΣV >): (a) the
(above-defined) incoherence parameter µ0, which is a uniform bound on the leverage scores,

and (b) a joint incoherence parameter µstr defined by ‖UV >‖∞ =
√

rµstr
n2 . With these def-

initions, the current state of the art states that if the sampling probability is uniform and
satisfies

pij ≡ p ≥ c
max{µ0, µstr}r log2 n

n
, ∀i, j,

where c is a constant, then M will be the unique optimum of (1) with high probability.
A direct corollary of our work improves on this result, by removing the need for extra
constraints on the joint incoherence; in particular, it is easy to see that our theorem implies

that a uniform sampling probability of p ≥ cµ0r log2 n
n —that is, with no µstr—guarantees

recovery of M with high probability. Note that µstr can be as high as µ0r, for example,
in the case when M is positive semi-definite; our corollary thus removes this sub-optimal
dependence on the rank and on the incoherence parameter. This improvement was recently
observed in Chen (2015).

3.1 Knowledge-Free Completion for Row Coherent Matrices

Theorem 2 immediately yields a useful result in scenarios where only the row space of a
matrix is coherent and one has control over the sampling of the matrix. This setting is
considered by Krishnamurthy and Singh (2013).

Suppose the column space of M ∈ Rn×n is incoherent with maxi µi(M) ≤ µ0 and the
row space is arbitrary (we consider square matrix for simplicity). For a number 0 < δ < 1
to be prescribed by the user, We choose each row of M with probability 10µ0r

n log 2r
δ , and

observe all the elements of the chosen rows. We then compute the leverage scores {ν̃j}
of the space spanned by these rows, and use them as estimates for νj(M), the leverage
scores of M . Based on these estimates, we can perform leveraged sampling according to (3)
and then use nuclear norm minimization to recover M . Note that this procedure does not
require any prior knowledge about the leverage scores of M . The following corollary shows
that the procedure is provably correct and exactly recovers M with high probability, using
a near-optimal number of samples.
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Corollary 4 For any number 0 < δ < 1 and some universal constants c0, c1 > 0, the
following holds. With probability at least 1 − δ, the above procedure computes the column
leverage scores of M exactly, i.e., ν̃j = νj(M),∀j ∈ [n]. If we set δ = 4n−10, and further
sample a set Ω of elements of M with probabilities

pij = min

{
c0

(µ0 + ν̃j)r log2 n

n
, 1

}
, ∀i, j,

then with probability at least 1 − 10n−10, M is the unique optimal solution to the nuclear
norm minimization program (1), and we use a total of at most c1µ0rn log2 n samples.

The algorithm proposed in Krishnamurthy and Singh (2013) requires a sample com-
plexity of O(µ0r

3/2n log(2r/δ)) (and guarantees a success probability of 1 − δ). Our re-
sult in the corollary above removes the sub-optimal r3/2 factor in the sample complexity.
Very recently Krishnamurthy and Singh (2014) provide a new sample complexity bound
O(µ0rn log2(r2/δ)) using the same algorithm from their previous paper. We note that our
sampling strategy is different from theirs: we sample entire rows of M , whereas they sample
entire columns.

3.2 Necessity of Leveraged Sampling

In this subsection, we show that the leveraged sampling in (3) is necessary for completing
a coherent matrix in a certain precise sense. For simplicity, we restrict ourselves to square
matrices in Rn×n. Suppose each element (i, j) is observed independently with probability
pij . We consider a family of sampling probabilities {pij} with the following property.

Definition 5 (Location Invariance) {pij} is said to be location-invariant with respect to
the matrix M if the following are satisfied: (1) For any two rows i 6= i′ that are identical,
i.e., Mij = Mi′j for all j, we have pij = pi′j for all j; (2) For any two columns j 6= j′ that
are identical, i.e., Mij = Mij′ for all i, we have pij = pij′ for all i.

In other words, {pij} is location-invariant with respect to M if identical rows (or
columns) of M have identical sampling probabilities. We consider this assumption very
mild, and it covers the leveraged sampling as well as many other typical sampling schemes,
including:

• uniform sampling, where pij ≡ p,

• element-wise magnitude sampling, where pij ∝ |Mij | (`1 sampling) or pij ∝ M2
ij (`2

sampling), and

• row/column-wise magnitude sampling, where pij ∝ f
(
‖Mi·‖2 , ‖M·j‖2

)
for some (usu-

ally coordinate-wise non-decreasing) function f : R2
+ 7→ [0, 1].

Given two n-dimensional vectors ~µ = (µ1, . . . , µn) and ~ν = (ν1, . . . , νn), we use Mr (~µ, ~ν)
to denote the set of rank-r matrices whose leverage scores are bounded by ~µ and ~ν; that is,

Mr (~µ, ~ν) :=
{
M ∈ Rn×n : rank(M) = r;µi(M) ≤ µi, νj(M) ≤ νj ,∀i, j

}
.

We have the following results.
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Theorem 6 Suppose n ≥ r ≥ 2. Given any 2r numbers a1, . . . , ar and b1, . . . , br with
r
4 ≤

∑r
k=1

1
ak
,
∑r

k=1
1
bk
≤ r and 2

r ≤ ak, bk ≤ 2n
r , ∀k ∈ [r], there exist two n-dimensional

vectors ~µ and ~ν and the corresponding set Mr (~µ, ~ν) with the following properties:

1. For each i, j ∈ [n], µi = ak and νj = bk′ for some k, k′ ∈ [r]. That is, the values of
the leverage scores are given by {ak} and {bk′}.

2. There exists a matrix M (0) ∈ Mr (~µ, ~ν) for which the following holds. If {pij} is
location-invariant w.r.t. M (0), and for some (i0, j0),

pi0j0 ≤
µi0 + νj0

4n
· r log

(
2n

(µi0 ∨ νj0)r

)
, 3 (4)

then with probability at least 1
4 , the following conclusion holds: There are infinitely

many matrices M (1) 6= M (0) in Mr (~µ, ~ν) such that {pij} is location-invariant w.r.t.
M (1), and

M
(0)
ij = M

(1)
ij , ∀(i, j) ∈ Ω.

3. If we replace the condition (4) with

pi0j0 ≤
µi0 + νj0

4n
· r log

(n
2

)
, (5)

then the conclusion above holds with probability at least 1
n .

In other words, if (4) holds, then with probability at least 1/4, no method can distinguish
between M (0) and M (1); similarly, if (5) holds, then with probability at least 1/n no method
succeeds. We shall compare these results with Theorem 2, which guarantees that if we use
leveraged sampling,

pij ≥ c0
µi + νj
n

· r log n, ∀i, j

for some universal constant c0, then for any matrix M (0) in Mr (~µ, ~ν), the nuclear norm
minimization approach (1) recovers M (0) from its observed elements with failure probability
no more than 1

n . Therefore, under the setting of Theorem 6, leveraged sampling is suffi-
cient and necessary for matrix completion up to one logarithmic factor for a target failure
probability 1

n (or up to two logarithmic factors for a target failure probability 1
4).

Admittedly, the setting covered by Theorem 6 has several restrictions on the sampling
distributions and the values of the leverage scores. Nevertheless, we believe this result
captures some essential difficulties in recovering general coherent matrices, and highlights
how the sampling probabilities should relate in a specific way to the leverage score structure
of the underlying object.

4. A Two-Phase Sampling Procedure

We have seen that one can exactly recover an arbitrary n×n rank-r matrix using Θ(nr log2 n)
elements if sampled in accordance with the leverage scores. In practical applications of

3. We use the notation a ∨ b = max{a, b}.
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matrix completion, even when the user is free to choose how to sample the matrix elements,
she may not be privy to the leverage scores {µi(M), νj(M)}. In this section we propose a
two-phase sampling procedure, described below and in Algorithm 1, which assumes no a
priori knowledge about the matrix leverage scores, yet is observed to be competitive with
the “oracle” leveraged sampling distribution (3).

Suppose we are given a total budget of m samples. The first step of the algorithm is
to use the first β fraction of the budget to estimate the leverage scores of the underlying
matrix, where β ∈ [0, 1]. Specifically, take a set of indices Ω sampled uniformly without
replacement4 such that |Ω| = βm, and let PΩ(·) be the sampling operator which maps the
matrix elements not in Ω to 0. Take the rank-r SVD of PΩ(M), Ũ Σ̃Ṽ >, where Ũ , Ṽ ∈ Rn×r
and Σ̃ ∈ Rr×r, and then use the leverage scores µ̃i := µi(Ũ Σ̃Ṽ >) and ν̃j := νj(Ũ Σ̃Ṽ >) as
estimates for the column and row leverage scores of M . Now as the second step, generate
the remaining (1 − β)m samples of the matrix M by sampling without replacement with
distribution

p̃ij ∝
(µ̃i + ν̃j)r log2(2n)

n
. (6)

Let Ω̃ denote the new set of samples. Using the combined set of samples PΩ∪Ω̃(M) as

constraints, run the nuclear norm minimization program (1). Let M̂ be the optimum of
this program.

This approach of adjusting the sampling distribution based on leverage scores is relevant
whenever we have some freedom in choosing the observed entries. For example, many
recommendation systems do actively solicit users’ opinions on some items chosen by the
system, e.g., by asking them to fill out a survey or to choose from a list of items. While
our assumptions are not strictly satisfied in practice, they are useful approximations and
provide guidance for designing/analyzing practical systems. For example, in many systems
there exist popular items that are viewed/rated by a large number of users, and ”heavy”
users that view/rate a large number of items. Our row-wise sampling procedure discussed
in Section 3.1 can be viewed as an approximation of such settings.

To understand the performance of the two-phase algorithm, assume that the initial set
of m1 = βm samples PΩ(M) are generated uniformly at random. If the underlying matrix

4. Note that sampling without replacement has lesser failure probability than the equivalent binomial
sampling with replacement (Recht, 2011).

Algorithm 1 Two-phase sampling for coherent matrix completion

input Rank parameter r, sample budget m, and parameter β ∈ [0, 1]
Step 1: Obtain the initial set Ω by sampling uniformly without replacement such that
|Ω| = βm. Compute best rank-r approximation to PΩ(M), Ũ Σ̃Ṽ >, and its leverage scores
{µ̃i} and {ν̃j}.
Step 2: Generate set of (1− β)m new samples Ω̃ by sampling without replacement with
distribution (6). Set

M̂ = arg min
X
‖X‖∗ s.t PΩ∪Ω̃(X) = PΩ∪Ω̃(M).

output Completed matrix M̂ .
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Figure 1: Performance of Algorithm 1 for power-law matrices: We consider rank-5 matrices of the
form M = DUV >D, where elements of the matrices U and V are generated indepen-
dently from a Gaussian distribution N (0, 1) and D is a diagonal matrix with Dii = 1

iα .
Higher values of α correspond to more non-uniform leverage scores and less incoherent
matrices. The above simulations are run with two-phase parameter β = 2/3. Leveraged
sampling (3) gives the best results of successful recovery using roughly 10n log(n) sam-
ples for all values of α in accordance with Theorem 2. Surprisingly, sampling according
to (6) with estimated leverage scores has almost the same sample complexity for α ≤ 0.7.
Uniform sampling and sampling proportional to element and element squared perform
well for low values of α, but their performance degrades quickly for α > 0.6.

M is incoherent, then already the algorithm will recover M if m1 = Θ(nr log2(2n)). On
the other hand, if M is highly coherent, having almost all energy concentrated on just a
few elements, then the estimated leverage scores (6) from uniform sampling in the first step
will be poor and hence the recovery algorithm suffers. Between these two extremes, there
is reason to believe that the two-phase sampling procedure will provide a better estimate
to the underlying matrix than if all m elements were sampled uniformly. Indeed, numeri-
cal experiments suggest that the two-phase procedure can indeed significantly outperform
uniform sampling for completing coherent matrices.

4.1 Numerical Experiments

We now study the performance of the two-phase sampling procedure outlined in Algorithm 1
through numerical experiments. For this, we consider rank-5 matrices of size 500 × 500 of
the form M = DUV >D, where the elements of the matrices U and V are i.i.d. Gaussian
N (0, 1) and D is a diagonal matrix with power-law decay, Dii = i−α, 1 ≤ i ≤ 500. We refer
to such constructions as power-law matrices. The parameter α adjusts the leverage scores
(and hence the coherence level) of M with α = 0 being maximal incoherence µ0 = Θ(1)
and α = 1 corresponding to maximal coherence µ0 = Θ(n).

Figure 1 plots the number of samples required for successful recovery (y-axis) for dif-
ferent values of α (x-axis) and β = 2/3 using Algorithm 1 with the initial samples Ω
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Figure 2: We consider power-law matrices with parameter α = 0.5 and α = 0.7. (a): This plot
shows that Algorithm 1 successfully recovers coherent low-rank matrices with fewest
samples (≈ 10n log(n)) when the proportion of initial samples drawn from the uniform
distribution is in the range β ∈ [0.5, 0.8]. In particular, the sample complexity is signifi-
cantly lower than that for uniform sampling (β = 1). Note the x-axis starts at 0.1. (b):
Even by drawing 90% of the samples uniformly and using the estimated leverage scores
to sample the remaining 10% samples, one observes a marked improvement in the rate
of recovery.

taken uniformly at random. Successful recovery is defined as when at least 95% of trials
have relative errors in the Frobenius norm ‖M − M̂‖F /‖M‖F not exceeding 0.01. To put
the results in perspective, we plot it in Figure 1 against the performance of pure uniform
sampling, as well as other popular sampling distributions from the matrix sparsification lit-
erature (Achlioptas and McSherry, 2007; Achlioptas et al., 2013; Arora et al., 2006; Drineas
and Zouzias, 2011), namely, in step 2 of the algorithm, sampling proportional to element
(p̃ij ∝ |M̃ij |) and sampling proportional to element squared (p̃ij ∝ M̃2

ij), as opposed to

sampling from the distribution (6). In all cases, the estimated matrix M̃ is constructed
from the rank-r SVD of PΩ(M), M̃ = Ũ Σ̃Ṽ >. Performance of nuclear norm minimization
using samples generated according to the “oracle” distribution (3) serves as baseline for the
best possible recovery, as theoretically justified by Theorem 2. We use the Augmented La-
grangian Method (ALM) based solver in Lin et al. (2009) to solve the convex optimization
program (1).

Figure 1 suggests that the two-phase algorithm performs comparably to the theoretically
optimal leverage scores-based distribution (3), despite not having access to the underlying
leverage scores, in the regime of mild to moderate coherence. While the element-wise
sampling strategies perform comparably for low values of α, the number of samples for
successful recovery increases quickly for α > 0.6. Completion from purely uniformly sampled
elements requires significantly more samples at higher values of α.

Choosing β: Recall that the parameter β in Algorithm 1 is the fraction of uniform
samples used to estimate the leverage scores. Figure 2(a) plots the number of samples
required for successful recovery (y-axis) as β (x-axis) varies from 0 to 1 for different values of
α. Setting β = 1 reduces to purely uniform sampling, and for small values of β, the leverage
scores estimated in (6) will be far from the actual leverage scores. Then, as expected, the
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Figure 3: Scaling of sample complexity of Algorithm 1 with n. We consider power-law matrices with
α = 0.5 in plot (a) and 0.7 in plot (b). We set β = 2/3 for this set of simulations. The
plots suggest that the sample complexity of Algorithm 1 scales roughly as Θ(n log(n)).

sample complexity goes up for β near 0 and β = 1. We find the algorithm performs
well for a wide range of β, and setting β ≈ 2/3 results in the lowest sample complexity.
Surprisingly, even taking β = 0.9 as opposed to pure uniform sampling β = 1 results in
a significant decrease in the sample complexity; see Figure 2(b) for more details. That is,
even budgeting just a small fraction of samples to be drawn from the estimated leverage
scores can significantly improve the success rate in low-rank matrix recovery as long as the
underlying matrix is not completely coherent. In applications like collaborative filtering,
this would imply that incentivizing just a small fraction of users to rate a few selected
movies according to the estimated leverage score distribution obtained by previous samples
has the potential to greatly improve the quality of the recovered matrix of preferences.

In Figure 3 we compare the performance of the two-phase algorithm for different values
of the matrix dimension n, and notice for each n a phase transition occurring at Θ(n log(n))
samples. In Figure 4 we consider the scenario where the samples are noisy and compare
the performance of Algorithm 1 to uniform sampling and the theoretically-optimal lever-
aged sampling from Theorem 2. Specifically we assume that the samples are generated
from M + Z where Z is a Gaussian noise matrix. We consider two values for the noise

σ
def
= ‖Z‖F /‖M‖F : σ = 0.1 and σ = 0.2. The figures plot relative error in Frobenius norm

(y-axis), vs total number of samples m (x-axis). These plots demonstrate the robustness of
the algorithm to noise and once again show that sampling with estimated leverage scores
can be as good as sampling with exact leverage scores for matrix recovery using nuclear
norm minimization for α ≤ 0.7.

The empirical results in this section demonstrate the advantage of the two-phase algo-
rithm over uniform sampling. It is an interesting future problem to provide rigorous analysis
on the sample complexity of the algorithm. We note that there is an Ω(n2) lower bound on
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Figure 4: Performance of Algorithm 1 with noisy samples: We consider power-law matrices (with
α = 0.5 in plot (a) and α = 0.7 in plot (b)), perturbed by a Gaussian noise matrix Z with
‖Z‖F /‖M‖F = σ. The plots consider two different noise levels, σ = 0.1 and σ = 0.2.
We compare two-phase sampling (Algorithm 1) with β = 2/3, sampling from the exact
leverage scores, and uniform sampling. Algorithm 1 has relative error almost as low as
the leveraged sampling without requiring any a priori knowledge of the low-rank matrix,
while uniform sampling suffers dramatically.

the sample complexity for algorithms using passive sampling when the underlying matrix
is maximally coherent (Krishnamurthy and Singh, 2014).

5. Weighted Nuclear Norm Minimization

Theorem 2 suggests that the performance of nuclear norm minimization will be better if
the set of observed elements is aligned with the leverage scores of the matrix. Interestingly,
Theorem 2 can also be used in a reverse way: one may adjust the leverage scores to align
with a given set of observed elements. Here we demonstrate an application of this idea in
quantifying the benefit of weighted nuclear norm minimization when the revealed elements
are distributed non-uniformly.

Suppose the underlying matrix of interest is incoherent. In many applications, we do
not have the freedom to choose which elements to observe. Instead, the revealed elements
are given to us, and distributed non-uniformly among the rows and columns. As observed
in Srebro and Salakhutdinov (2010), standard unweighted nuclear norm minimization (1) is
inefficient in this setting. They propose to instead use weighted nuclear norm minimization
for low-rank matrix completion:

X̂ = arg min
X∈Rn1×n2

‖RXC‖∗

s.t. Xij = Mij , for (i, j) ∈ Ω,
(7)

where R = diag(R1, R2, . . . , Rn1) ∈ Rn1×n1 and C = diag(C1, C2, . . . , Cn2) ∈ Rn2×n2 are
user-specified diagonal weight matrices with positive diagonal elements.
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We now provide a theoretical guarantee for this method, and quantify its advantage
over unweighted nuclear norm minimization. Our analysis is based on the observation that
weighted nuclear norm minimization can be viewed as a way of scaling the rows and columns
of the underlying matrix so that its leverage scores are adjusted to reflect the given non-
uniform sampling distributions. Suppose M ∈ Rn1×n2 has rank r and satisfies the standard
incoherence condition maxi,j {µi(M), νj(M)} ≤ µ0. Let bxc denote the largest integer not
exceeding x. Under this setting, we can apply Theorem 2 to establish the following:

Theorem 7 Without loss of generality, assume R1 ≤ R2 ≤ · · · ≤ Rn1 and C1 ≤ C2 ≤
· · · ≤ Cn2. There exists a universal constant c0 such that M is the unique optimum to (7)
with probability at least 1− 5(n1 + n2)−10 provided that for all i, j, pij ≥ 1

min{n1,n2}10 and

pij≥c0

 R2
i∑bn1/(µ0r)c

i′=1 R2
i′

+
C2
j∑bn2/(µ0r)c

j′=1 C2
j′

log2 n. (8)

This theorem is proved by drawing a connection between the weighted nuclear norm
formulation (7) and the leverage scores (2) of the target matrix. Define the scaled matrix
M̄ := RMC. Observe that the weighted program (7) is equivalent to first solving the
following unweighted problem with scaled observations

X̄ = arg min
X
‖X‖∗

s.t. Xij = M̄ij , for (i, j) ∈ Ω,
(9)

and then rescaling the solution X̄ to return X̂ = R−1X̄C−1. In other words, through
the use of the weighted nuclear norm, we convert the problem of completing M to that of
completing the scaled matrix M̄ . This leads to the following observation, which underlines
the proof of Theorem 7:

If we can choose the weights R and C in such a way that the leverage scores
of scaled matrix M̄ , denoted as µ̄i := µi(M̄), ν̄j := νi(M̄), i, j ∈ [n], are aligned
with the given non-uniform observations in a way that roughly satisfies the re-
lation (3), then we gain in sample complexity compared to the unweighted ap-
proach.

We now quantify this observation more precisely for a particular class of matrix completion
problems.

5.1 Comparison to Unweighted Nuclear Norm.

Assume for simplicity n1 = n2 = n and n/(µ0r) is an integer. Suppose the sampling
probabilities have a product form: pij = pr

ip
c
j , with pr

1 ≤ pr
2 ≤ · · · ≤ pr

n and pc
1 ≤ pc

2 ≤

· · · ≤ pc
n. If we choose Ri =

√
1
np

r
i

∑
j′ p

c
j′ and Cj =

√
1
np

c
j

∑
i′ p

r
i′—which is suggested by

the condition (8)—Theorem 7 asserts that the following set of conditions are sufficient for
recovery of M with high probability:

pc
j ·

µ0r

n

n/(µ0r)∑
i=1

pr
i

 &
µ0r

n
log2 n, ∀j; pr

i ·

µ0r

n

n/(µ0r)∑
j=1

pc
j

 &
µ0r

n
log2 n, ∀i. (10)
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We can compare the above condition to the condition for the unweighted approach: by
Theorem 2, the unweighted nuclear norm minimization formulation (1) recovers M if

pr
i · pc

j &
µ0r

n
log2 n, ∀i, j. (11)

Therefore, the weighted nuclear norm approach succeeds under less restrictive conditions:
the condition (11) for the unweighted approach requires a lower bound on minimum sam-
pling probability over the rows and columns, whereas the condition (10) for the weighted ap-
proach involves the average sampling probability of the n/(µ0r) least sampled rows/columns.
This benefit is most significant precisely when the observed samples are very non-uniformly
distributed.

We provide a concrete example of the gain of weighting in Section E.

Our theoretical results are consistent with the empirical study in Srebro and Salakhutdi-
nov (2010); Foygel et al. (2011), which demonstrate the advantage of the weighted approach
with the weights R and C chosen as above (using the empirical sampling distribution). We
remark that Theorem 7 is the first exact recovery guarantee for weighted nuclear norm
minimization. It provides a theoretical explanation, complementary to those in Srebro and
Salakhutdinov (2010); Foygel et al. (2011); Negahban and Wainwright (2012), for why the
weighted approach is advantageous over the unweighted approach for non-uniform observa-
tions. It also serves as a testament to the power of Theorem 2 as a general result on the
relationship between sampling and the coherence/leverage score structure of a matrix.

In Theorem 7 and the discussion above we assume the underlying matrixM is incoherent.
Clearly, one can still use the weighted nuclear norm approach when M is coherent: as long
as the weights are chosen such that the leverage scores of the scaled matrix M̄ are aligned
with the distributions of the revealed entries, Theorem 2 can be applied and we expect
improvements of the recovery performance using the weighted approach. How to choose the
weights in this setting, and how it affects the performance, are left to future work.

6. Conclusion

In this paper we study the problem of matrix completion with no assumptions on the
incoherence of the underlying matrix. We show that if the sampling of entries suitably
depends on leverage scores of the matrix, then it can be recovered from O(nr log2(n))
entries using nuclear norm minimization. We further establish the necessity of leverage
score sampling within the class of location invariant sampling distributions. Based on these
results, we present a new two-phase sampling algorithm which does not require knowledge of
underlying structure of the matrix and provide simulation results to verify its performance.
As a corollary of our main theorem, we provide exact recovery guarantees for the weighted
nuclear norm minimization approach when the observed entries are given and distributed
non-uniformly.

It is an interesting open problem to provide rigorous theoretical analysis of the number
of samples needed by the two-phase sampling algorithm. It is also of interest to develop
and analyze algorithms that sample with more stages and iteratively improve the leverage
score estimates. More generally, it is useful to develop and study other methods for esti-
mating/adjusting the leverage scores and tuning the sampling procedure. Extending the
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results in this paper to other low-rank recovery settings and applications will be of great
value.

Acknowledgments

We would like to thank Petros Drineas, Michael Mahoney and Aarti Singh for helpful
discussions, and the anonymous reviewers for their insightful comments and suggestions.
Y. Chen was supported by NSF grant CIF-31712-23800 and ONR MURI grant N00014-
11-1-0688. R. Ward was supported in part by an NSF CAREER award, AFOSR Young
Investigator Program award, and ONR Grant N00014-12-1-0743. S. Sanghavi would like to
acknowledge NSF grants 1302435, 1320175 and 0954059 for supporting this work.

Appendix A. Proof of Theorem 2

We prove our main result Theorem 2 in this section. The overall outline of the proof is a
standard convex duality argument. The main difference in establishing our results is that,
while other proofs relied on bounding the `∞ norm of certain random matrices, we instead
bound the weighted `∞,2, norm (to be defined).

The high level road map of the proof is a standard one: by convex analysis, to show that
M is the unique optimal solution to (1), it suffices to construct a dual certificate Y obeying
certain sub-gradient optimality conditions. One of the conditions requires the spectral norm

‖Y ‖ to be small. Previous work bounds ‖Y ‖ by the the `∞ norm ‖Y ′‖∞ :=
∑

i,j

∣∣∣Y ′ij∣∣∣ of a

certain matrix Y ′, which gives rise to the standard and joint incoherence conditions involving
uniform bounds by µ0 and µstr. Here, we derive a new bound using the weighted `∞,2 norm
of Y ′, which is the maximum of the weighted row and column norms of Y ′. These bounds
lead to a tighter bound of ‖Y ‖ and hence less restrictive conditions for matrix completion.

We now turn to the details. To simplify the notion, we prove the results for square
matrices (n1 = n2 = n). The results for non-square matrices are proved in exactly the same
fashion. In the sequel by with high probability (w.h.p.) we mean with probability at least
1 − n−20. The proof below involves no more than 5n10 random events, each of which will
be shown to hold with high probability. It follows from the union bound that all the events
simultaneously hold with probability at least 1− 5n−10, which is the success probability in
the statement of Theorem 2.

A few additional notations are needed. We drop the dependence of µi(M) and νj(M) on
M and simply use µi and νj . We use c and its derivatives (c′, c0, etc.) for universal positive
constants, which may differ from place to place. The inner product between two matrices is
given by 〈Y,Z〉 = trace(Y >Z). Recall that U and V are the left and right singular vectors
of the underlying matrix M . We need several standard projection operators for matrices.
The projections PT and PT⊥ are given by

PT (Z) := UU>Z + ZV V > − UU>V ZZ>

and PT⊥(Z) := Z − PT (Z). PΩ(Z) is the matrix with (PΩ(Z))ij = Zij if (i, j) ∈ Ω
and zero otherwise, and PΩc(Z) := Z − PΩ(Z). As usual, ‖z‖2 is the `2 norm of the
vector z, and ‖Z‖F and ‖Z‖ are the Frobenius norm and spectral norm of the matrix
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Z, respectively. For a linear operator R on matrices, its operator norm is defined as
‖R‖op = supX∈Rn×n ‖R(X)‖F / ‖X‖F . For each 1 ≤ i, j ≤ n, we define the random
variable δij := I ((i, j) ∈ Ω), where I(·) is the indicator function. The matrix operator
RΩ : Rn×n 7→ Rn×n is defined as

RΩ(Z) =
∑
i,j

1

pij
δij

〈
eie
>
j , Z

〉
eie
>
j . (12)

A.1 Optimality Condition

Following our proof road map, we now state a sufficient condition for M to be the unique
optimal solution to the optimization problem (1). This is the content of Proposition 8 below
(proved in Section A.7 to follow).

Proposition 8 Suppose pij ≥ 1
n10 . The matrix M is the unique optimal solution to (1) if

the following conditions hold.

1. ‖PTRΩPT − PT ‖op ≤
1
2 .

2. There exists a dual certificate Y ∈ Rn×n which satisfies PΩ(Y ) = Y and

(a)
∥∥PT (Y )− UV >

∥∥
F
≤ 1

4n5 ,

(b) ‖PT⊥(Y )‖ ≤ 1
2 .

A.2 Validating the Optimality Condition

We begin by proving that Condition 1 in Proposition 8 is satisfied under the conditions of
Theorem 2. This is done in the following lemma, which is proved in Section A.8 to follow.
The lemma shows that RΩ is close to the identity operator on T .

Lemma 9 If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all (i, j) and a sufficiently large c0, then
w.h.p.

‖PTRΩPT − PT ‖op ≤
1

2
. (13)

A.3 Constructing the Dual Certificate

It remains to construct a matrix Y (the dual certificate) that satisfies Condition 2 in Propo-
sition 8. We do this using the golfing scheme (Gross, 2011; Candès et al., 2011). Set
k0 := 20 log n. For each k = 1, . . . , k0, let Ωk ⊆ Rn×n be a random set of matrix elements
such that for each (i, j), P [(i, j) ∈ Ωk] = qij := 1− (1−pij)1/k0 , independently of all others.

We may assume that the set Ω of observed elements is generated as Ω =
⋃k0
k=1 Ωk, which is

equivalent to the original Bernoulli sampling model. Let W0 := 0 and for k = 1, . . . , k0,

Wk := Wk−1 +RΩk
PT (UV > − PTWk−1), (14)

where the operator RΩk
is given by

RΩk
(Z) =

∑
i,j

1

qij
I ((i, j) ∈ Ωk)

〈
eie
>
j , Z

〉
eie
>
j .
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The dual certificate is given Y := Wk0 . Clearly PΩ(Y ) = Y by construction. The proof of
Theorem 2 is completed if we show that under the condition in the theorem, Y satisfies
Conditions 2(a) and 2(b) in Proposition 8 w.h.p.

A.4 Concentration Properties

The key step in our proof is to show that Y satisfies Condition 2(b) in Proposition 8, i.e.,
we need to bound ‖PT⊥(Y )‖ . Here our proof departs from existing ones, as we establish
concentration bounds on this quantity in terms of (an appropriately weighted version of)
the `∞,2 norm, which we now define. The µ(∞, 2)-norm of a matrix Z ∈ Rn×n is defined as

‖Z‖µ(∞,2) := max

max
i

√
n

µir

∑
b

Z2
ib,max

j

√
n

νjr

∑
a

Z2
aj

 ,

which is the maximum of the weighted column and row norms of Z. We also need the
µ(∞)-norm of Z, which is a weighted version of the matrix `∞ norm. This is given as

‖Z‖µ(∞) := max
i,j
|Zij |

√
n

µir

√
n

νjr
.

which is the weighted element-wise magnitude of Z. We now state three new lemmas
concerning the concentration properties of these norms. The first lemma is crucial to our
proof; it bounds the spectral norm of (RΩ − I)Z in terms of the µ(∞, 2) and µ(∞) norms
of Z. This obviates the intermediate lemmas required by previous approaches (Candès and
Tao, 2010; Gross, 2011; Recht, 2011; Keshavan et al., 2010) which use the `∞ norm of Z.

Lemma 10 Suppose Z is a fixed n×n matrix. For some universal constant c > 1, we have
w.h.p.

‖(RΩ − I)Z‖ ≤ c

max
i,j

∣∣∣∣Zijpij
∣∣∣∣ log n+

√√√√√max

max
i

n∑
j=1

Z2
ij

pij
,max

j

n∑
i=1

Z2
ij

pij

 log n

 .

If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all (i, j) and a sufficiently large constant c0, then we
further have w.h.p.

‖(RΩ − I)Z‖ ≤ c
√
c0

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
.

The next two lemmas further control the µ(∞, 2) and µ(∞) norms of a matrix after certain
random transformation.

Lemma 11 Suppose Z is a fixed n× n matrix. If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all i, j
and a sufficiently large constant c0, then w.h.p.

‖(PTRΩ − PT )Z‖µ(∞,2) ≤
1

2

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
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Lemma 12 Suppose Z is a fixed n× n matrix. If pij ≥ min{c0
(µi+νj)r

n log n, 1} for all i, j
and a sufficiently large constant c0, then w.h.p.

‖(PTRΩ − PT )Z‖µ(∞) ≤
1

2
‖Z‖µ(∞) .

We prove Lemmas 10–12 in Section A.8. Equipped with the three lemmas above, we are
now ready to validate that Y satisfies Condition 2 in Proposition 8.

A.5 Validating Condition 2(a)

Set ∆k = UV > − PT (Wk) for k = 1, . . . , k0; note that ∆k0 = UV > − PT (Y ). By definition
of Wk, we have

∆k = (PT − PTRΩk
PT ) ∆k−1. (15)

Note that Ωk is independent of ∆k−1 and qij ≥ pij/k0 ≥ c′0(µi + νj)r log(n)/n under the
condition in Theorem 2. Applying Lemma 9 with Ω replaced by Ωk , we obtain that w.h.p.

‖∆k‖F ≤ ‖PT − PTRΩk
PT ‖ ‖∆k−1‖F ≤

1

2
‖∆k−1‖F .

Applying the above inequality recursively with k = k0, k0 − 1, . . . , 1 gives

∥∥∥PT (Y )− UV >
∥∥∥
F

= ‖∆k0‖F ≤
(

1

2

)k0 ∥∥∥UV >∥∥∥
F
≤ 1

4n6
·
√
r ≤ 1

4n5
,

where we use our definition of k0 and
∥∥UV >∥∥

F
=
√
r in the second inequality.

A.6 Validating Condition 2(b)

By definition, Y can be rewritten as Y =
∑k0

k=1RΩk
PT∆k−1. It follows that

‖PT⊥(Y )‖ =

∥∥∥∥∥PT⊥
k0∑
k=1

(RΩk
PT − PT ) ∆k−1

∥∥∥∥∥ ≤
k0∑
k=1

‖(RΩk
− I) ∆k−1‖ .

We apply Lemma 10 with Ω replaced by Ωk to each summand in the last RHS to obtain
w.h.p.

‖PT⊥(Y )‖ ≤ c
√
c0

k0∑
k=1

‖∆k−1‖µ(∞) +
c
√
c0

k0∑
k=1

‖∆k−1‖µ(∞,2) . (16)

We bound each summand in the last RHS. Applying (k−1) times (15) and Lemma 12 (with
Ω replaced by Ωk), we have w.h.p.

‖∆k−1‖µ(∞) =
∥∥(PT − PTRΩk−1

PT
)

∆k−2

∥∥
µ(∞)

≤
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

.
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for each k. Similarly, repeatedly applying (15), Lemma 11 and the inequality we just proved
above, we obtain w.h.p.

‖∆k−1‖µ(∞,2) (17)

=
∥∥(PT − PTRΩk−1

PT
)

∆k−2

∥∥
µ(∞,2)

(18)

≤1

2
‖∆k−2‖µ(∞) +

1

2
‖∆k−2‖µ(∞,2) (19)

≤
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+
1

2
‖∆k−2‖µ(∞,2) (20)

≤k
(

1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+

(
1

2

)k−1

‖UV ‖µ(∞,2) . (21)

It follows that w.h.p.

‖PT⊥(Y )‖ ≤ c
√
c0

k0∑
k=1

(k + 1)

(
1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞)

+
c
√
c0

k0∑
k=1

(
1

2

)k−1 ∥∥∥UV >∥∥∥
µ(∞,2)

(22)

≤ 6c
√
c0

∥∥∥UV >∥∥∥
µ(∞)

+
2c
√
c0

∥∥∥UV >∥∥∥
µ(∞,2)

. (23)

Note that for all (i, j), we have
∣∣∣(UV >)ij∣∣∣ =

∣∣e>i UV >ej∣∣ ≤√µir
n

√
νjr
n ,
∥∥e>i UV >∥∥2

=
√

µir
n

and
∥∥UV >ej∥∥2

=
√

νjr
n . Hence

∥∥UV >∥∥
µ(∞)

≤ 1 and
∥∥UV >∥∥

µ(∞,2)
= 1. We conclude that

‖PT⊥(Y )‖ ≤ 6c
√
c0

+
2c
√
c0
≤ 1

2

provided that the constant c0 in Theorem 2 is sufficiently large. This completes the proof
of Theorem 2.

A.7 Proof of Proposition 8 (Optimality Condition)

Proof Consider any feasible solution X to (1) with PΩ(X) = PΩ(M). Let G be an n× n
matrix which satisfies ‖PT⊥G‖ = 1, and 〈PT⊥G,PT⊥(X −M)〉 = ‖PT⊥(X −M)‖∗. Such G
always exists by duality between the nuclear norm and spectral norm. Because UV >+PT⊥G
is a sub-gradient of the function f(Z) = ‖Z‖∗ at Z = M , we have

‖X‖∗ − ‖M‖∗ ≥
〈
UV > + PT⊥G,X −M

〉
. (24)

But 〈Y,X −M〉 = 〈PΩ(Y ), PΩ(X −M)〉 = 0 since PΩ(Y ) = Y . It follows that

‖X‖∗ − ‖M‖∗ ≥
〈
UV > + PT⊥G− Y,X −M

〉
= ‖PT⊥(X −M)‖∗ +

〈
UV > − PTY,X −M

〉
− 〈PT⊥Y,X −M〉

≥ ‖PT⊥(X −M)‖∗ −
∥∥∥UV > − PTY ∥∥∥

F
‖PT (X −M)‖F − ‖PT⊥Y ‖ ‖PT⊥(X −M)‖∗

≥ 1

2
‖PT⊥(X −M)‖∗ −

1

4n5
‖PT (X −M)‖F ,
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where in the last inequality we use conditions 2a and 2b in the proposition. Using Lemma 13
below, we obtain

‖X‖∗ − ‖M‖∗ ≥
1

2
‖PT⊥(X −M)‖∗ −

1

4n5
·
√

2n5 ‖PT⊥(X −M)‖∗ >
1

8
‖PT⊥(X −M)‖∗ .

The RHS is strictly positive for all X with PΩ(X −M) = 0 and X 6= M . Otherwise we
must have PT (X −M) = X −M and PTPΩPT (X −M) = 0, contradicting the assumption
‖PTRΩPT − PT ‖op ≤

1
2 . This proves that M is the unique optimum.

Lemma 13 If pij ≥ 1
n10 for all (i, j) and ‖PTRΩPT − PT ‖op ≤

1
2 , then we have

‖PTZ‖F ≤
√

2n5 ‖PT⊥(Z)‖∗ , ∀Z ∈ {Z
′ : PΩ(Z ′) = 0}. (25)

Proof Define the operator R
1/2
Ω : Rn×n 7→ Rn×n by

R
1/2
Ω (Z) :=

∑
i,j

1
√
pij
δij

〈
eie
>
j , Z

〉
eie
>
j .

Note that R
1/2
Ω is self-adjoint and satisfies R

1/2
Ω R

1/2
Ω = RΩ. Hence we have∥∥∥R1/2

Ω PT (Z)
∥∥∥
F

=
√
〈PTRΩPTZ,PTZ〉

=
√
〈(PTRΩPT − PT )Z,PT (Z)〉+ 〈PT (Z), PT (Z)〉

≥
√
‖PT (Z)‖2F − ‖PTRΩPT − PT ‖ ‖PT (Z)‖2F

≥ 1√
2
‖PT (Z)‖F ,

where the last inequality follows from the assumption ‖PTRΩPT − PT ‖op ≤
1
2 . On the other

hand, PΩ(Z) = 0 implies 0 = R
1/2
Ω (Z) = R

1/2
Ω PT (Z) +R

1/2
Ω PT⊥(Z) and thus∥∥∥R1/2

Ω PT (Z)
∥∥∥
F

=
∥∥∥−R1/2

Ω PT⊥(Z)
∥∥∥
F
≤
(

max
i,j

1
√
pij

)
‖PT⊥(Z)‖F ≤ n

5 ‖PT⊥(Z)‖F .

Combining the last two display equations gives

‖PT (Z)‖F ≤
√

2n5 ‖PT⊥(Z)‖F ≤
√

2n5 ‖PT⊥(Z)‖∗ .

A.8 Proof of Technical Lemmas

We prove the four technical lemmas that are used in the proof of our main theorem. The
proofs use the matrix Bernstein inequality given as Theorem 16 in Section F. We also make
frequent use of the following facts: for all i and j, we have max

{µir
n ,

νjr
n

}
≤ 1 and

(µi + νj)r

n
≥
∥∥∥PT (eie

>
j )
∥∥∥2

F
. (26)

We also use the shorthand a ∧ b := min{a, b}.
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A.8.1 Proof of Lemma 9

For any matrix Z, we can write

(PTRΩPT − PT )(Z) =
∑
i,j

(
1

pij
δij − 1

)〈
eie
>
j , PT (Z)

〉
PT (eie

>
j ) =:

∑
i,j

Sij(Z).

Note that E [Sij ] = 0 and Sij ’s are independent of each other. For all Z and (i, j), we have

Sij = 0 if pij = 1. On the other hand, when pij ≥ c0
(µi+νj)r logn

n , then it follows from (26)
that

‖Sij(Z)‖F ≤
1

pij

∥∥∥PT (eie
>
j )
∥∥∥2

F
‖Z‖F ≤ max

i,j

{
1

pij

(µi + νj)r

n

}
‖Z‖F ≤

1

c0 log n
‖Z‖F .

Putting together, we have that ‖Sij‖ ≤ 1
c0 logn under the condition of the lemma. On the

other hand, we have∥∥∥∥∥∥
∑
i,j

E
[
S2
ij(Z)

]∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
∑
i,j

E

[(
1

pij
δij − 1

)2 〈
eie
>
j , PT (Z)

〉〈
eie
>
j , PT (eie

>
j )
〉
PT (eie

>
j )

]∥∥∥∥∥∥
F

≤
(

max
i,j

1− pij
pij

∥∥∥PT (eie
>
j )
∥∥∥2

F

)∥∥∥∥∥∥
∑
i,j

〈
eie
>
j , PT (Z)

〉
PT (eie

>
j )

∥∥∥∥∥∥
F

≤ max
i,j

{
1− pij
pij

(µi + νj)r

n

}
‖PT (Z)‖F ,

This implies
∥∥∥∑i,j E

[
S2
ij

]∥∥∥ ≤ 1
c0 logn under the condition of the lemma. Applying the

Matrix Bernstein inequality (Theorem 16), we obtain ‖PTRΩPT − PT ‖ =
∥∥∥∑i,j Sij

∥∥∥ ≤ 1
2

w.h.p. for sufficiently large c0.

A.8.2 Proof of Lemma 10

We can write (RΩ − I)Z as the sum of independent matrices:

(RΩ − I)Z =
∑
i,j

(
1

pij
δij − 1

)
Zijeie

>
j =:

∑
i,j

Sij .

Note that E[Sij ] = 0. For all (i, j), we have Sij = 0 if pij = 1, and

‖Sij‖ ≤
1

pij
|Zij | .

Moreover, we have∥∥∥∥∥∥E
∑
i,j

S>ijSij

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i,j

Z2
ijeie

>
j eje

>
i E
(

1

pij
δij − 1

)2
∥∥∥∥∥∥ = max

i

n∑
j=1

1− pij
pij

Z2
ij .
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The quantity
∥∥∥E [∑i,j SijS

>
ij

]∥∥∥ is bounded by maxj
∑n

i=1(1− pij)Z2
ij/pij in a similar way.

The first part of the lemma then follows from the matrix Bernstein inequality (Theorem 16).

If pij ≥ 1 ∧ c0(µi+νj)r logn
n ≥ 1 ∧ 2c0

√
µir
n ·

νjr
n log n, we have for all i and j,

‖Sij‖ log n ≤ (1− I(pij = 1))
1

pij
|Zij | log n ≤ 1

c0
‖Z‖µ(∞) ,

n∑
i=1

1− pij
pij

Z2
ij log n ≤ 1

c0
‖Z‖2µ(∞,2) ,

n∑
j=1

1− pij
pij

Z2
ij log n ≤ 1

c0
‖Z‖2µ(∞,2) .

The second part of the lemma follows again from applying the matrix Bernstein inequality.

A.8.3 Proof of Lemma 11

Let X = (PTRΩ − PT )Z. By definition we have

‖X‖µ(∞,2) = max
a,b

{√
n

µar
‖Xa·‖2 ,

√
n

νbr
‖X·b‖2

}
,

where Xa· and X·b are the a-th row and b-th column of of X, respectively. We bound each

term in the maximum. Observe that
√

n
νbr
X·b can be written as the sum of independent

column vectors:√
n

νbr
X·b =

∑
i,j

(
1

pij
δij − 1

)
Zij

(
PT (eie

>
j )eb

)√ n

νbr
=:
∑
i,j

Sij ,

where E [Sij ] = 0. To control ‖Sij‖2 and
∥∥∥E [∑i,j S

>
ijSij

]∥∥∥, we first need a bound for∥∥∥PT (eie
>
j )eb

∥∥∥
2
. If j = b, we have

∥∥∥PT (eie
>
j )eb

∥∥∥
2

=

∥∥∥∥UU>ei + (I − UU>)ei

∥∥∥V >eb∥∥∥2

2

∥∥∥∥
2

≤
√
µir

n
+

√
νbr

n
, (27)

where we use the triangle inequality and the definition of µi and νb . Similarly, if j 6= b, we
have ∥∥∥PT (eie

>
j )eb

∥∥∥
2

=
∥∥∥(I − UU>)eie

>
j V V

>eb

∥∥∥
2
≤
∣∣∣e>j V V >eb∣∣∣ . (28)

Now note that ‖Sij‖2 ≤ (1− I(pij = 1)) 1
pij
|Zij |

√
n
νbr

∥∥∥PT (eie
>
j )eb

∥∥∥
2
. Using the bounds (27)

and (28), we obtain that for j = b,

‖Sij‖2 ≤ (1− I(pij = 1))
1

pib
|Zib|

√
n

νbr
·
(√

µir

n
+
νbr

n

)
≤ 2

c0

√
µirνbr
n2 log n

|Zib| ≤
2

c0 log n
‖Z‖µ(∞) ,
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where we use pib ≥ 1∧ c0µir logn
n and pib ≥ 1∧ c0

√
µir
n

νbr
n log n in the second inequality. For

j 6= b, we have

‖Sij‖2 ≤ (1− I(pij = 1))
1

pij
|Zij |

√
n

νbr
·
√
νjr

n

√
νbr

n
≤ 2

c0 log n
‖Z‖µ(∞) ,

where we use pij ≥ 1 ∧ c0

√
µir
n

νjr
n log n. We thus obtain ‖Sij‖2 ≤

2
c0 logn ‖Z‖µ(∞) for all

(i, j).
On the other hand, note that∣∣∣E [∑i,jS

>
ijSij

]∣∣∣ =

∣∣∣∣∑i,jE
[(

1

pij
δij − 1

)
2

]
Z2
ij

∥∥∥PT (eie
>
j )eb

∥∥∥2

2
· n
νbr

∣∣∣∣
=
(∑

j=b,i +
∑

j 6=b,i

) 1− pij
pij

Z2
ij

∥∥∥PT (eie
>
j )eb

∥∥∥2

2
· n
νbr

.

Applying (27), we can bound the first sum by∑
j=b,i

≤
∑
i

1− pib
pib

Z2
ib · 2

(µir
n

+
νbr

n

)
· n
νbr
≤ 2

c0 log n

n

νbr
‖Z·b‖22 ≤

2

c0 log n
‖Z‖2µ(∞,2) ,

where we use pib ≥ 1 ∧ c0(µi+νb)r
n log n in the second inequality. The second sum can be

bounded using (28): ∑
j 6=b,i

≤
∑
j 6=b,i

1− pij
pij

Z2
ij

∣∣∣e>j V V >eb∣∣∣2 n

νbr

=
n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2∑
i

1− pij
pij

Z2
ij

(a)

≤ n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2
(

1

c0 log n

∑
i

Z2
ij

n

νjr

)

≤
(

1

c0 log n
‖Z‖2µ(∞,2)

)
n

νbr

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2
(b)

≤ 1

c0 log n
‖Z‖2µ(∞,2) ,

where we use pij ≥ 1 ∧ c0νjr logn
n in (a) and

∑
j 6=b

∣∣∣e>j V V >eb∣∣∣2 ≤ ∥∥V V >eb∥∥2

2
≤ νbr

n in (b).

Combining the bounds for the two sums, we obtain
∥∥∥E [∑i,j S

>
ijSij

]∥∥∥ ≤ 3
c0 logn ‖Z‖

2
µ(∞,2) .

We can bound
∥∥∥E [∑i,j SijS

>
ij

]∥∥∥ in a similar way. Applying the Matrix Bernstein inequality

in Theorem 16, we have w.h.p.∥∥∥∥√ n

νbr
X·b

∥∥∥∥
2

=
∥∥∥∑i,jSij

∥∥∥
2
≤ 1

2

(
‖Z‖µ(∞) + ‖Z‖µ(∞,2)

)
for c0 sufficiently large. Similarly we can bound

∥∥∥√ n
µar

Xa·

∥∥∥
2

by the same quantity. We

take a union bound over all a and b to obtain the desired results.
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A.8.4 Proof of Lemma 12

Fix a matrix index (a, b) and let wab =
√

µar
n

νbr
n . We can write

[(PTRΩ − PT )Z]ab

√
n

µar

√
n

νbr
=
∑
i,j

(
1

pij
δij − 1

)
Zij

〈
eie
>
j , PT (eae

>
b )
〉 1

wab
=:
∑
i,j

sij ,

which is the sum of independent zero-mean variables. We first compute the following bound:∣∣∣〈eie>j , PT (eae
>
b )
〉∣∣∣

=
∣∣∣e>i UU>eae>b ej + e>i (I − UU>)eae

>
b V V

>ej

∣∣∣
=



∣∣e>a UU>ea + e>a (I − UU>)eae
>
b V V

>eb
∣∣ ≤ µar

n + νbr
n , i = a, j = b,∣∣e>a (I − UU>)eae

>
b V V

>ej
∣∣ ≤ ∣∣e>b V V >ej∣∣ , i = a, j 6= b,∣∣e>i UU>eae>b (I − V V >)eb
∣∣ ≤ ∣∣e>i UU>ea∣∣ , i 6= a, j = b,∣∣e>i UU>eae>b V V >ej∣∣ ≤ ∣∣e>i UU>ea∣∣ ∣∣e>b V V >ej∣∣ , i 6= a, j 6= b,

(29)

where we use the fact that the matrices I − UU> and I − V V > have spectral norm at
most 1. We proceed to bound |sij | . Note that

|sij | ≤ (1− I(pij = 1))
1

pij
· |Zij | ·

∣∣∣〈eie>j , PT (eae
>
b )
〉∣∣∣ · 1

wab
.

We distinguish four cases. When i = a and j = b, we use (29) and pab ≥ 1∧ c0(µa+νb)r log2(n)
n

to obtain |sij | ≤ |Zij | / (wijc0 log n) ≤ ‖Z‖µ(∞) / (c0 log n) . When i = a and j 6= b, we
apply (29) to get

|sij | ≤ (1− I(pij = 1))
|Zaj |
paj

·
√
νbr

n

νjr

n
·
√

n

µar

n

νbr

(a)

≤ |Zaj | ·
√

n

µar

n

νjr

1

c0 log n
≤
‖Z‖µ(∞)

c0 log n
,

where (a) follows from paj ≥ min
{
c0
νjr logn

n , 1
}
. In a similar fashion, we can show that the

same bound holds when i 6= a and j = b. When i 6= a and j 6= b, we use (29) to get

|sij | ≤ (1− I(pij = 1))
|Zij |
pij
·
√
µir

n

µar

n

√
νbr

n

νjr

n
·
√

n

µar

n

νbr

(b)

≤ |Zij | ·
√

n

µir

n

νjr

1

c0 log n
≤
‖Z‖µ(∞)

c0 log n
,

where (b) follows from pij ≥ 1∧ c0

√
µir
n

νjr
n log n and max

{√
µir
n ,
√

νjr
n

}
≤ 1. We conclude

that |sij | ≤ ‖Z‖µ(∞) / (c0 log n) for all (i, j).
On the other hand, note that∣∣∣∣∣∣E

∑
i,j

s2
ij

∣∣∣∣∣∣ =
∑
i,j

E

[(
1

pij
δij − 1

)2
]
Z2
ij

w2
ab

〈
eie
>
j , PT (eae

>
b )
〉2

=
∑

i=a,j=b

+
∑

i=a,j 6=b
+

∑
i 6=a,j=b

+
∑

i 6=a,j 6=b
.

3024



Completing Any Low-rank Matrix, Provably

We bound each of the four sums. By (29) and pab ≥ 1∧ c0(µa+νb)r logn
n ≥ 1∧ c0(µa+νb)2r2 logn

2n2 ,
we have ∑

i=a,j=b

≤ 1− pab
pabw

2
ab

Z2
ab

(µar
n

+
νbr

n

)2
≤

2 ‖Z‖2µ(∞)

c0 log n
.

By (29) and pajw
2
ab ≥ w2

ab ∧
(
c0w

2
aj
νbr
n log n

)
, we have

∑
i=a,j 6=b

≤
∑
,j 6=b

1− paj
pajw2

ab

Z2
aj

∣∣∣e>b V V >ej∣∣∣ ≤ ‖Z‖2µ(∞)

c0 log n
· n
νbr

∑
j 6=b

∣∣∣e>b V V >ej∣∣∣ ,
which implies

∑
i=a,j 6=b ≤ ‖Z‖

2
µ(∞) /(c0 log n). Similarly we can bound

∑
i 6=a,j=b by the

same quantity. Finally, by (29) and pij ≥ 1 ∧
(
c0
µir
n

νjr
n log n

)
, we have

∑
i 6=a,j 6=b

≤ 1

w2
ab

∑
i 6=a,j 6=b

(1− pij)Z2
ij

pij
·
∣∣∣e>i UU>ea∣∣∣ ∣∣∣e>b V V >ej∣∣∣

≤
‖Z‖2µ(∞)

c0 log n
· 1

w2
ab

∑
i 6=a

∣∣∣e>i UU>ea∣∣∣∑
j 6=b

∣∣∣e>b V V >ej∣∣∣ ,
which implies

∑
i 6=a,j 6=b ≤ ‖Z‖

2
µ(∞) /(c0 log n). Combining pieces, we obtain∣∣∣E [∑ijs

2
ij

]∣∣∣ ≤ 5 ‖Z‖2µ(∞) /(c0 log n).

Applying the Bernstein inequality (Theorem 16), we conclude that

∣∣∣∣[(PTRΩPT − PT )Z]ab

√
n

µar

√
n

νbr

∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

sij

∣∣∣∣∣∣ ≤ 1

2
‖Z‖µ(∞)

w.h.p. for c0 sufficiently large. The desired result follows from a union bound over all (a, b).

Appendix B. Proof of Corollary 4

Recall the setting: for each row of M , we pick it with some probability p and observe all
its elements. We need a simple lemma. Let J ⊆ [n] be the (random) set of the indices of
the row picked, and PJ(Z) be the matrix that is obtained from Z by zeroing out the rows
outside J . Recall that UΣV > is the SVD of M .

Lemma 14 If µi(M) := n
r

∥∥U>ei∥∥2 ≤ µ0 for all i ∈ [n], and p ≥ 10µ0rn log 2r
δ , then with

probability at least 1− δ, ∥∥∥U>PJ(U)− Ir×r
∥∥∥ ≤ 1

2
,

where Ir×r is the identity matrix in Rr×r.
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Proof Define the random variable ηj := I(i ∈ J) for i = 1, 2, . . . , n, where I(·) is the
indicator function. Note that

U>PJ(U)− Ir×r = U>PJ(U)− U>U =
n∑
i=1

S(i) :=
n∑
i=1

(
1

p
ηi − 1

)
U>eie

>
i U.

The matrices {S(i)} are mutually independent and satisfy E
[
S(i)

]
= 0,

∥∥S(i)

∥∥ ≤ 1
p

∥∥U>ei∥∥2

2
≤

µ0r
pn , and∥∥∥∥∥E

[
n∑
i=1

S(i)S
>
(i)

]∥∥∥∥∥ =

∥∥∥∥∥E
[

n∑
i=1

S>(i)S(i)

]∥∥∥∥∥ =
1− p
p

∥∥∥∥∥
n∑
i=1

U>eie
>
i UU

>eie
>
i U

∥∥∥∥∥
=

1− p
p

∥∥∥∥∥U>
(

n∑
i=1

eie
>
i

∥∥∥U>ei∥∥∥2

2

)
U

∥∥∥∥∥
≤ 1

p

∥∥∥∥∥
n∑
i=1

eie
>
i

∥∥∥U>ei∥∥∥2

2

∥∥∥∥∥
=

1

p
max
i

∥∥∥U>ei∥∥∥2

2
≤ µ0r

pn
.

Note that S(i) are r × r matrices. It follows from the matrix Bernstein (Theorem 16) that

when p ≥ 10µ0r
n log 2r

δ , we have

P
{∥∥∥U>PJ(U)− Ir×r

∥∥∥ ≥ 1

2

}
≤ 2r exp

(
−(1/2)2/2
µ0r
6pn + µ0r

pn

)
≤ δ.

Note that
∥∥U>PJ(U)− Ir×r

∥∥ ≤ 1
2 implies that U>PJ(U) is invertible, which further

implies PJ(U) ∈ Rn×r has rank-r. The rows picked are PJ(M) = PJ(U)ΣV >, which thus
have full rank-r and their row space must be the same as the row space of M . Therefore,
the leverage scores {ν̃j} of these rows are the same as the row leverage scores {νj(M)} of
M . Also note that we must have µ0 ≥ 1. Setting δ and sampling Ω as described in the
corollary and applying Theorem 2, we are guaranteed to recover M exactly with probability
at least 1− 9n−10. The total number of elements we have observed is

pn+
∑
i,j

pij = 10µ0r log

(
2r

4n−10

)
+ c0(µ0rn+ rn) log2 n ≤ c1µ0rn log2 n

for some sufficiently large universal constant c1, and by Hoeffding’s inequality, the actual
number of observations is at most two times the expectation with probability at least 1−n−10

provided c0 is sufficiently large. The corollary follows from the union bound.

Appendix C. Proof of Theorem 6

We prove the theorem assuming
∑r

k=1
1
ak

=
∑r

k=1
1
bk

= r; extension to the general setting
in the theorem statement will only affect the pre-constant in (4) by a factor of at most 2.
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For each k ∈ [r], let sk := 2n
akr

, tk := 2n
bkr

. We assume the sk’s and tk’s are all integers.

Under the assumption on ak and bk, we have 1 ≤ sk, tk ≤ n and
∑r

k=1 sk =
∑r

k=1 tk = n.

Define the sets Ik :=
{∑r−1

l=1 sl + i : i ∈ [sk]
}

and Jk :=
{∑r−1

l=1 tl + j : j ∈ [tk]
}

; note that⋃r
k=1 Ik =

⋃r
k=1 Jk = [n]. The vectors ~µ and ~ν are given by

µi = ak, ∀k ∈ [r], i ∈ Ik,
νj = bk, ∀k ∈ [r], j ∈ Jk.

It is clear that ~µ and ~ν satisfy the property 1 in the statement of the theorem.
Let the matrix M (0) be given by M (0) = AB>, where A,B ∈ Rn×r are specified below.

• For each k ∈ [r], we set

Aik =

√
1

sk

for all i ∈ Ik. All other elements of A are set to zero. Therefore, the k-th column of A

has sk non-zero elements equal to
√

1
sk

, and the columns of A have disjoint supports.

• Similarly, for each k ∈ [r] , we set

Bjk =

√
1

tk

for all j ∈ Jk. All other elements of B are set to zero.

Observe that A is an orthonormal matrix, so

µi

(
M (0)

)
=
n

r
‖Ai·‖22 =

n

r
· 1

sk
=
ak
2

=
µi
2
≤ µi, ∀k ∈ [r], i ∈ Ik, .

A similar argument shows that νj
(
M (0)

)
≤ νj ,∀j ∈ [n]. Hence M (0) ∈Mr (~µ, ~ν). We note

that M (0) is a block diagonal matrix with r blocks where the k-th block has size sk × tk,
and

∥∥M (0
∥∥
F

=
√
r.

Consider the i0 and j0 in the statement of the theorem. There must exit some k1, k2 ∈ [r]
such that i0 ∈ Ik1 and j0 ∈ Jk2 . Assume w.l.o.g. that sk1 ≥ tk2 . then

pi0j0 ≤
µi0 + νj0

4n
· r log

(
1

η

)
=
ak1 + bk2

4n
· r log

(
1

η

)
=

log (1/η)

4sk1
+

log (1/η)

4tk2
≤ log (1/η)

2tk2
,

where η =
µi0r

2n = 1
sk1

in part 2 of the theorem and η = 2
n in part 3. Because {pij} is

location-invariant w.r.t. M (0), we have

pij = pi0j0 ≤
log (1/η)

2tk2
, ∀i ∈ Ik1 , j ∈ Jk2 .

Let Wi := |({i} × Jk2) ∩ Ω| be the number of observed elements on {i}×Jk2 . Note that
for each i ∈ Ik1 , we have

P [Wi = 0] =
∏
j∈Jk2

(1− pij) ≥
(

1− log(1/η)

2tk2

)tk2
≥ exp (log η) = η,
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where we use 1−x ≥ e−2x, ∀0 ≤ x ≤ 1
2 in the second inequality. Therefore, there must exist

i∗ ∈ Ik1 for which there is no observed element in {i∗} × Jk2 with probability

P [Wi∗ = 0, ∃i∗ ∈ Ik1 ] = 1− P [Wi ≥ 1, ∀i ∈ Ik1 ]

≥ 1− (1− η)sk1 ≥ 1− e−ηsk1 ≥ 1

2
ηsk1 ≥

{
1
2 , η =

µi0r

4n
1
n , η = n

2 .

These are the probabilities that appear in part 2 and part 3 of the theorem statement,
respectively.

Now choose a number s̄ ≥ sk1 . Let M (1) = ĀB>, where B is the same as before and Ā
is given by

Āik =

{√
1
s̄ , i = i∗, k = k2

Aik, otherwise.

By varying s̄ we can construct infinitely many such M (1). Clearly M (1) is rank-r. Observe
that M (1) differs from M (0) only in the elements with indices in {i∗} × Jk2 , which are not
observed, so

M
(0)
ij = M

(1)
ij , ∀(i, j) ∈ Ω.

Also observe that any {pij} that is location-invariant w.r.t.M (0) is also location-invariant
w.r.t. M (1). The following lemma guarantees that M (1) ∈ Mr (~µ, ~ν), which completes the
proof of the theorem.

Lemma 15 The matrix M (1) constructed above satisfies

µi

(
M (1)

)
≤ 2µi

(
M (0)

)
, ∀i ∈ [n],

νj

(
M (1)

)
= νj

(
M (0)

)
, ∀j ∈ [n].

Proof Note that by the definition, the leverage scores of a rank-r matrix M with SVD
M = UΣV > can be expressed as

µi (M) =
n

r

∥∥∥U>ei∥∥∥2

2
=
n

r

∥∥∥UU>ei∥∥∥2

2
=
n

r

∥∥Pcol(M)(ei)
∥∥2

2
,

where col(M) denotes the column space of M and Pcol(M)(·) is the Euclidean projection
onto the column space of M . A similar relation holds for the row leverage scores and the
row space of M . In other words, the column/row leverage scores of a matrix are determined
by its column/row space. Because M (0) and M (1) have the same row space (which is the
span of the columns of B), the second set of equalities in the lemma hold.

It remains to prove the first set of inequalities for the column leverage scores. If k1 = k2,
then the columns of Ā have unit norms and are orthogonal to each other. Using the above
expression for the leverage scores, we have

µi

(
M (1)

)
=
n

r

∥∥∥ĀĀ>ei∥∥∥2

2
=
n

r

∥∥∥Ā>ei∥∥∥2

2
=
n

r

∥∥∥A>ei∥∥∥2

2
= µi

(
M (0)

)
.

If k1 6= k2, we may assume without loss of generality that k1 = 1, k2 = 2 and i∗ = 1. In the
sequel we use Āi to denote the i-th columns of Ā. We now construct two vectors α̃ and β̃
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which have the same span with Ā1 and Ā2. Define two vectors α, β ∈ Rn, such that the first
s1 elements of α and the {s1 + 1, . . . , s1 + s2}-th elements of β are one, the first element of
β is

√
s2
s̄ , and all other elements of α and β are zero. Clearly α =

√
s1Ā1 and β =

√
s2Ā2,

so span(α, β) = span(Ā1, Ā2). We next orthogonalize α and β by letting ᾱ = α and

β̄ = β − 〈α, β〉
‖α‖2

α = β −
√
s2

s1

√
s̄
α =



(s1−1)
√
s2

s1
√
s̄

, i = 1

−
√
s2

s1
√
s̄
, i = 2, . . . , s1

1, i = s1 + 1, . . . , s1 + s2

0, i = s1 + s2 + 1, . . . , n.

Note that span(ᾱ, β̄) = span(α, β) and
〈
ᾱ, β̄

〉
= 0. Simple calculation shows that ‖ᾱ‖22 =

‖α‖22 = s1 and
∥∥β̄∥∥2

2
=
(
s1−1
s1s̄

+ 1
)
s2. Finally, we normalize ᾱ and β̄ by letting α̃ = ᾱ/ ‖ᾱ‖

and β̃ = β̄/
∥∥β̄∥∥. It is clear that span(α̃, β̃) = span(Ā1, Ā2), and

〈
α̃, Āk

〉
=
〈
β̃, Āk

〉
=

0,∀k = 3, . . . , r.

Now consider the matrix Ã ∈ Rn×r obtained from Ā by replacing the first two columns
of Ā with α̃ and β̃, respectively. Because col(Ã) = col(Ā) = col(M (1)), we have

µi

(
M (1)

)
=
n

r

∥∥∥Pcol(Ã) (ei)
∥∥∥2
.

But the columns of Ã have unit norms and are orthogonal to each other. It follows that

µi

(
M (1)

)
=
n

r

∥∥∥ÃÃ>ei∥∥∥2
=
n

r

∥∥∥Ã>ei∥∥∥2
.

For s1 + s2 < i ≤ n, since s̄ ≥ s1 we have
∥∥∥Ã>ei∥∥∥2

=
∥∥Ā>ei∥∥2

=
∥∥A>ei∥∥2

so µi
(
M (1)

)
=

µi
(
M (0)

)
. For i ∈ [s1 + s2], we have

∥∥∥Ã>ei∥∥∥2
= α̃2

i + β̃2
i =


1
s1

+ (s1−1)2

s1(s1−1)+s21s̄
≤ 2

s1
= 2

∥∥A>ei∥∥2
, i = 1

1
s1

+ 1
s1(s1−1)+s21s̄

≤ 2
s1

= 2
∥∥A>ei∥∥2

, i = 2, . . . , s1

s1s̄
(s1−1+s1s̄)s2

≤ 1
s2

=
∥∥A>ei∥∥2

, i = s1 + 1, . . . , s1 + s2.

This means

µi

(
M (1)

)
≤ 2n

r

∥∥∥A>ei∥∥∥2
= 2µi(M

(0)), ∀i ∈ [s1 + s2],

which completes the proof of the lemma.

Appendix D. Proof of Theorem 7

Suppose the rank-r SVD of M̄ is Ū Σ̄V̄ >; so Ū Σ̄V̄ > = RMC = RUΣV >C. By definition,
we have

µ̄ir

n
=
∥∥PŨ (ei)

∥∥2

2
,
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where PŨ (·) denotes the projection onto the column space of Ũ , which is the same as the
column space of RU . This projection has the explicit form

PŨ (ei) = RU
(
U>R2U

)−1
U>Rei.

It follows that

µ̄ir

n
=

∥∥∥∥RU (U>R2U
)−1

U>Rei

∥∥∥∥2

2

= R2
i e
>
i U

(
U>R2U

)−1
U>ei

≤ R2
i [σr (RU)]−2

∥∥∥U>ei∥∥∥2

2

≤ R2
i

µ0r

n
[σr (RU)]−2 , (30)

where σr(·) denotes the r-th singular value and the last inequality follows from the standard
incoherence assumption maxi,j{µi, νj} ≤ µ0. We now bound σr (RU). Since RU has rank r,
we have

σ2
r (RU) = min

‖x‖=1
‖RUx‖22 = min

‖x‖=1

n∑
i=1

R2
i

∣∣∣e>i Ux∣∣∣2 . (31)

If we let zi :=
∣∣e>i Ux∣∣2 for each i ∈ [n], then zi satisfies

n∑
i=1

zi = ‖Ux‖22 = ‖x‖22 = 1

and by the standard incoherence assumption,

zi ≤
∥∥∥U>ei∥∥∥2

2
‖x‖22 ≤

µ0r

n
.

Therefore, the value of the minimization (31) is lower-bounded by the optimal value of the
following program

min
z∈Rn

n∑
i=1

R2
i zi

s.t.
n∑
i=1

zi = 1, 0 ≤ zi ≤
µ0r

n
, i = 1, . . . , n.

(32)

From the theory of linear programming, we know the minimum is achieved at an extreme
point z∗ of the feasible set. Such an extreme point z∗ satisfies z∗i ≥ 0, ∀i and n linear
equalities

n∑
i=1

z∗i = 1,

z∗i = 0, for i ∈ I1,

z∗i =
µ0r

n
, for i ∈ I2
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for some index sets I1 and I2 such that I1 ∩ I2 = φ, |I1|+ |I2| = n− 1. It is easy to see that

we must have |I2| =
⌊
n
µ0r

⌋
. Since R1 ≤ R2 ≤ . . . ≤ Rn, the minimizer z∗ has the form

z∗i =


µ0r
n , i = 1, . . . ,

⌊
n
µ0r

⌋
,

1−
⌊
n
µ0r

⌋
· µ0rn , i =

⌊
n
µ0r

⌋
+ 1,

0, i =
⌊
n
µ0r

⌋
+ 2, . . . , n,

and the value of the minimization (32) is at least

bn/(µ0r)c∑
i=1

R2
i

µ0r

n
.

This proves that σ2
r (RU) ≥ µ0r

n

∑bn/(µ0r)c
i=1 R2

i . Combining with (30), we obtain that

µ̄ir

n
≤ R2

i∑bn/(µ0r)c
i′=1 R2

i

,
ν̄jr

n
≤

C2
j∑bn/(µ0r)c

j′=1 C2
j′

;

the proof for ν̄j is similar. Applying Theorem 2 to the equivalent problem (9) with the
above bounds on µ̄i and ν̄j proves the theorem.

Appendix E. Weighted vs Unweighted Nuclear Norm Minimization for
Non-uniform Sampling

In this section we provide a concrete example of the gain of weighting under the setting of
Section 5.1, where the observed entries are given and distributed non-uniformly. Suppose M
is an n-by-n matrix with rank r, and its incoherence parameter satisfies µ0r = c, where c
is a numerical constant. We assume the sampling probabilities have the form pr

i = pc
i =

min{γ i
0.15 logn
n0.65 , 1} for i = 1, 2, . . . , n; here the minimization ensures pr

ip
c
j is a probability.

Note that the parameter γ determines the expected number of samples
∑

i,j p
r
ip

c
j . For the

condition (11) for the unweighted approach to hold, we need γ2 & n0.3, and thus the the
expected number of samples is at least∑

i,j

pr
ip

c
j ≥

∑
i,j

γ
i0.15

n0.65
· γ j

0.15

n0.65
= Ω(n1.3),

where we use the estimate
∑n

i=1 i
0.15 = Θ(n1.15). On the other hand, the condition (10)

for the weighted approach is satisfied as long as γ2 & n0.15, so the the expected number of
samples satisfies ∑

i,j

pr
ip

c
j ≤

∑
i,j

γ
i0.15

n0.65
· γ j

0.15

n0.65
· log2 n = O(n1.15 log2 n)

when γ2 = Θ(n0.15). Therefore, the number of samples required by the condition (10) for
the weighted approach is order-wise smaller than the unweighted counterpart (11). Note
that the conditions (10) and (11) are the best known sufficient conditions for exact matrix
completion using the weighted and unweighted approaches, respectively, so the comparison
above suggests a significant gain in sample complexity using the weighted approach.
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Appendix F. Matrix Bernstein Inequality

Theorem 16 (Tropp 2012) Let X1, . . . , XN ∈ Rn1×n2 be independent zero mean random
matrices. Suppose

max

{∥∥∥∥∥E
N∑
k=1

XkX
>
k

∥∥∥∥∥ ,
∥∥∥∥∥E

N∑
k=1

X>k Xk

∥∥∥∥∥
}
≤ σ2

and ‖Xk‖ ≤ B almost surely for all k. Then we have

P

{∥∥∥∥∥
N∑
k=1

Xk

∥∥∥∥∥ ≥ t
}
≤ (n1 + n2) exp

(
−t2/2

Bt/3 + σ2

)
As a consequence, for any c > 0, we have∥∥∥∥∥

N∑
k=1

Xk

∥∥∥∥∥ ≤ 2
√
cσ2 log(n1 + n2) + cB log(n1 + n2). (33)

with probability at least 1− (n1 + n2)−(c−1).
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