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Abstract

We consider the problem of stratified sampling for Monte Carlo integration of a random
variable. We model this problem in a K-armed bandit, where the arms represent the K
strata. The goal is to estimate the integral mean, that is a weighted average of the mean
values of the arms. The learner is allowed to sample the variable n times, but it can decide
on-line which stratum to sample next. We propose an UCB-type strategy that samples the
arms according to an upper bound on their estimated standard deviations. We compare its
performance to an ideal sample allocation that knows the standard deviations of the arms.
For sub-Gaussian arm distributions, we provide bounds on the total regret: a distribution-
dependent bound of order poly(λ−1

min)Õ(n−3/2)1 that depends on a measure of the disparity

λmin of the per stratum variances and a distribution-free bound poly(K)Õ(n−7/6) that does
not. We give similar, but somewhat sharper bounds on a proxy of the regret. The problem-
independent bound for this proxy matches its recent minimax lower bound in terms of n
up to a log n factor.

Keywords: adaptive sampling, bandit theory, stratified Monte Carlo, minimax strategies,
active learning

1. Introduction

Estimation of mean values (or, especially, probabilities) can be considered as a special
case of most problems in stochastic machine learning (e.g., regression function estimation,
classification, clustering), thus understanding all of its aspects is crucial to tackle more

∗. Also affiliated to Inria Lille - Nord Europe, France
†. During parts of this work he was with the Computer and Automation Research Institute of the Hungarian

Academy of Sciences, Budapest, Hungary.
1. The notation an = poly(bn) means that there exist C,α > 0 such that an ≤ Cbαn for n large enough.

Moreover, an = Õ(bn) means that an/bn = poly(logn) for n large enough.
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complex problems. Consider a polling institute that has to estimate as accurately as possible
the average income of a country, given a finite budget for polls. The institute has call centers
in every region in the country, and gives a part of the total sampling budget to each center
so that they can call random people in the area and ask about their income. A naive method
would allocate a budget proportionally to the number of people in each area. However some
regions show a high variability in the income of their inhabitants whereas others are very
homogeneous. Now if the polling institute knows the level of variability within each region,
it could adjust the budget allocated to each region in a more clever way (allocating more
polls to regions with high variability) in order to reduce the final estimation error.

This example is just one of many for which an efficient method of sampling a function
with natural strata (i.e., the regions) is of great importance. Note that even in the case
that there are no natural strata, it is always a good strategy to design arbitrary strata and
allocate a budget to each stratum that is proportional to the size of the stratum, compared
to a crude Monte Carlo. There are many good surveys on the topic of stratified sampling
for Monte Carlo (Glasserman, 2004; Rubinstein and Kroese, 2008, Subsection 5.5). It is
sometimes used in conjunction with other variance reduction techniques, such as importance
sampling, antithetic sampling, or control-variables. However, in contrast with those men-
tioned above, stratified sampling can be used even without substantial knowledge about the
function to be evaluated or the sampling distribution (though, to construct effective strata,
some knowledge on the variance on different domain areas is better).

The main problem for performing an efficient sampling is that the variances within
the strata (in the previous example, the income variability per region) are unknown. One
possibility is to estimate the variances online while sampling the strata. There is some
interesting research along this direction (Arouna, 2004; Etoré and Jourdain, 2010; Kawai,
2010). The work of Etoré and Jourdain (2010) matches exactly our problem of designing
an efficient adaptive sampling strategy. In this paper, they propose to sample according
to the empirical estimates of the standard deviations of the strata, whereas Kawai (2010)
addresses a computational complexity problem which is slightly different from ours. The
recent work of Etoré et al. (2011) describes a strategy that enables to sample asymptotically
according to the (unknown) standard deviations of the strata and at the same time adapts
the shape (and number) of the strata online. This is a very difficult problem, especially in
high dimension, that we will not address here, although we think this is a very interesting
and promising direction for further research.

These works provide asymptotic convergence of the variance of the estimate to the
targeted stratified variance divided by the sample size (Rubinstein and Kroese, 2008, Sub-
section 5.5), see also (5) in this paper. They also prove that the number of pulls within
each stratum converges asymptotically to the desired number of pulls, that is, the optimal
allocation if the variances per stratum were known. Like Etoré and Jourdain (2010), we
consider a stratified Monte Carlo setting with fixed strata. Our contribution is to design a
sampling strategy for which we can derive a finite-time analysis (where ’time’ refers to the
number of samples). This enables us to predict the quality of our estimate for any given
budget n.

We model this problem using the setting of multi-armed bandits where our goal is to
estimate a weighted average of the mean values of the arms. For quite complete surveys on
the classical bandit setting, see for example, the surveys of Cesa-Bianchi and Lugosi (2006);
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Bubeck and Cesa-Bianchi (2012), and see also the seminal papers of Lai and Robbins (1985),
and Auer et al. (2002). Although our goal is different from a usual bandit problem where
the objective is to play the best arm as often as possible, this problem also exhibits an
exploration-exploitation trade-off. The arms have to be pulled both in order to estimate the
initially unknown variability of the arms (exploration) and to allocate correctly the budget
according to our current knowledge of the variability (exploitation).

This topic has already been formalized in terms of a bandit problem in the master
thesis of Grover (2009), where an algorithm named GAFS-WL (Greedy Allocation with
Forced Selection - Weighted Loss) is presented. It deals with stratified sampling, that is,
it targets an allocation which is proportional to the standard deviation (and not to the
variance) of a stratum times its size, see the book of Rubinstein and Kroese (2008) and
also as explained later on in this paper. Grover (2009) defines a proxy on the overall mean
squared error (MSE, defined in Equation 1 below), the weighted sum of the per stratum
MSE’s (defined in Equation 3 below), that he calls loss. He proves that the difference
between this loss of GAFS-WL and the optimal static loss is of order poly(K)Õ(n−3/2),
where the Õ(·) depends of the arm distributions. Another approach for this problem, still
with a bandit formalism, can be found in the paper of Carpentier and Munos (2011), where
another algorithm, based on Upper-Confidence-Bounds (UCB) on the standard deviations,
was proposed. This algorithm is inspired by the celebrated UCB strategy (Auer et al.,
2002), that is designed for the classical bandit setting. The algorithm, called MC-UCB,
samples the arms proportionally to an UCB on the standard deviation times the size of the
stratum. The authors provided finite-time, problem-dependent and problem-independent
bounds for the weighted MSE loss of this algorithm. The first one corresponds to the bound
in the work of Grover (2009), the latter one differs from it. Finally, Carpentier and Munos
(2012) developed a lower bound for this problem, stating that the pseudo-regret (defined
in Section 2 below) of any algorithm for this problem cannot be significantly smaller in a

problem-independent minimax sense than K1/3

n4/3 . In addition, they prove that the problem-
independent upper bound on the pseudo-regret of MC-UCB matches this bound up to some
log n factor.

Note that a different, but closely analogous problem is when, instead of a weighted sum
of the per arm MSE’s, the maximum of these MSE’s have to be minimized (e.g., because the
weights are unknown). This is dealt with by Carpentier et al. (2011, 2015) for UCB-type
algorithms (CH-AS, B-AS) and by Antos et al. (2010) for GAFS-type algorithm (GAFS-
MAX).

Recall that in our original stratified sampling problem, however, the natural intuitive
measure of performance is not the weighted MSE loss defined by Grover (2009); Carpentier
and Munos (2011, 2012), but the total MSE of estimating the weighted average of the mean
values of the strata. It is a very important open question to link this total MSE loss to the
weighted MSE loss. Without this link, the theoretical analyses which are provided do not
give bounds in terms of the natural performance measure.

Contributions. In this paper we extend the analysis of MC-UCB by Carpentier and Munos
(2011). Our contributions are the following:

• We provide finite-time bounds on the MSE of the estimate of the mean value. To the
best of our knowledge, these are the first finite-time results for the problem of adaptive
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stratified Monte Carlo which target directly a usual loss measure (i.e., the total MSE).
These consist of: (i) A distribution-dependent bound of order poly(λ−1

min)Õ(n−3/2)
that depends on the disparity λmin of the strata (a measure of the problem complexity
defined in Equation 6 below), and which corresponds to a stationary regime where the
budget n is large compared to this complexity. (ii) A distribution-free bound of order
poly(K)Õ(n−7/6) that does not depend on the disparity of the strata, and corresponds
to a transitory regime where n is small compared to the problem complexity. (iii) The
latter bound is sharpened to order poly(K)Õ(n−4/3) when each arm distribution is
symmetric. Notably, all these bounds yield o(1/n) regret rate.

• We detail the proofs of Carpentier and Munos (2011), which have not been published in
full version due to space constraints. They correspond to two pseudo-regret bounds:

a distribution-dependent one of order λ
−3/2
min Õ(n−3/2) and a distribution-free one of

order K1/3Õ(n−4/3).

The rest of the paper is organized as follows. In Section 2 we formalize the problem
and introduce the notations used throughout the paper. Section 3 introduces the MC-
UCB algorithm and reports performance bounds on the number of pulls, the weighted MSE
loss, the total MSE loss, and the pseudo-loss under sub-Gaussian assumption on the arm
distributions. We then discuss the results in Section 4. Finally, Section 5 concludes the
paper and suggests future works. The appendices contain useful lemmata and the proofs.

2. Preliminaries

The allocation problem mentioned in the previous section is formalized as a K-armed bandit
problem where each arm (stratum) k = 1, . . . ,K is characterized by a distribution νk with
mean value µk and variance σ2

k. At each round t ≥ 1, an allocation strategy (or algorithm)
A selects an arm kt adaptively based on past samples, and then receives a sample drawn
from νkt that is conditionally independent of the past samples given kt. Let (wk)k=1,...,K

denote a known set of positive weights (measure of stratum i) which sum to 1. The goal
is to define a strategy that estimates as precisely as possible µ =

∑K
k=1wkµk using a total

budget of n samples.
Let I{E} be the indicator variable of event E, that is, I{E} = 1 if and only if E holds,

otherwise I{E} = 0. Let us write Tk,t =
∑t

s=1 I{ks = k} for the number of times arm k has

been pulled up to time t and µ̂k,t = 1
Tk,t

∑Tk,t
s=1Xk,s for the empirical estimate of the mean

µk at time t, where Xk,s denotes the sample received when pulling arm k for the sth time.
After n rounds, an algorithm A returns the empirical estimate µ̂k,n of µk for each arm and

also their weighted average µ̂n =
∑K

k=1wkµ̂k,n as the empirical estimate of µ.
For any algorithm A, we use the total mean (expected) squared error (MSE) loss of µ̂n

as performance measure in estimating µ:

L̄n(A) = E
[
(µ̂n − µ)2

]
= E

[( K∑
k=1

wk(µ̂k,n − µk)
)2
]
, (1)

where E[·] is the expectation integrated over all the samples of all arms. The goal is to
define an allocation strategy that minimizes the total MSE loss defined by (1). The total
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MSE loss can be decomposed as

L̄n(A) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
︸ ︷︷ ︸

Ln(A)

+
K∑
k=1

∑
k′ 6=k

wkwk′E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
. (2)

Here the weighted MSE loss

Ln(A) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
(3)

is equal to the loss defined by Grover (2009); Carpentier and Munos (2011). Thus our
analysis for stratified sampling problem implicitly covers the other problem, where instead
of estimating µ, the goal is estimating all µk simultaneously under a weighted MSE loss
L′n(A) =

∑K
k=1 pk(µ̂k,n−µk)2, since this loss is essentially the same as Ln(A). Such a setting

is referred to sometimes as an active learning (or active regression estimation) problem in
the literature (e.g., Grover, 2009). This case is even simpler in the sense that we do not
have to bother with the cross product-terms in (2).

Note that if all the Tk,n are deterministic, then in the cross product-terms

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
= E

[
(µ̂k,n − µk)

]
E
[
(µ̂k′,n − µk′)

]
= 0 · 0 = 0,

and also E
[
(µ̂k,n − µk)2

]
= σ2

k/Tk,n. This implies that in this case

L̄n(A) = Ln(A) =

K∑
k=1

w2
k

σ2
k

Tk,n
. (4)

This gives rise to the definition of

L̃n(A) =
K∑
k=1

w2
kE
[
σ2
k

Tk,n

]
for any algorithm A (with sample dependent Tk,n’s) as an alternative performance measure.

We call L̃n(A) pseudo-loss, as it is a proxy of L̄n(A) and Ln(A). It is obviously equal to
them for deterministic Tk,n’s.

2.1 Optimal Allocation

Although (4) does not hold when the numbers of pulls of an adaptive algorithm depend on
the observed samples and thus are random, it holds when each arm is pulled a deterministic
number of times. Thus if the variances of the arms were known in advance, one could design
an optimal deterministic (i.e., static, non-adaptive) allocation strategy A∗ by choosing
Tk,n = T ∗k,n such that they minimize L̄n under the constraint

∑K
k=1 T

∗
k,n = n. This optimal

deterministic allocation of A∗ is to pull each arm k proportionally to wkσk (up to rounding
effects), that is, given by

T ∗k,n =
wkσk∑K
i=1wiσi

n.
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This achieves the loss

L̄n(A∗) = Ln(A∗) = L̃n(A∗) =
Σ2
w

n
, (5)

where Σw
def
=
∑K

k=1wkσk. We assume in the sequel that Σw > 0, that is, ∃k that σk > 0.

We define also Σ̄
def
= maxk σk. In the following, we write

λk
def
=

T ∗k,n
n

=
wkσk
Σw

for the optimal allocation proportion for arm k and

λmin
def
= min

1≤k≤K
λk , w

def
= min

1≤k≤K
wk. (6)

Note that a small λmin means a large disparity of the quantities {wkσk}k≤K . It will turn
out that λmin seems to characterize the hardness of a problem.

2.2 Uniform Allocation

Another possible deterministic allocation is the proportional or uniform strategy Au which
assumes uniform standard deviations (e.g., since the σk’s are unknown and thus the optimal
allocation is out of reach), that is, allocates such that T uk = wk∑K

i=1 wi
n = wkn. Its loss is

L̄n(Au) = Ln(Au) = L̃n(Au) =
K∑
k=1

wkσ
2
k

n
=

Σw,2

n
,

where Σw,2 =
∑K

k=1wkσ
2
k. Note that using either Jensen’s or Cauchy-Schwarz’s inequality,

we can see that Σ2
w ≤ Σw,2 with equality if and only if all the σk’s are equal. Thus A∗ is

always at least as good as Au. In addition, since
∑

k wk = 1, we have

Σw,2 − Σ2
w =

∑
k

wk(σk − Σw)2.

The difference between those two quantities is the weighted quadratic variation of the σk’s
(1 ≤ k ≤ K) around their weighted mean Σw. As a result the gain of A∗ compared to Au
grows with the disparity of the σk’s.

We would like to do better than the uniform strategy by considering an adaptive strategy
A that would estimate all σk at the same time as it tries to implement an allocation strategy
as close as possible to the optimal allocation algorithm A∗. This introduces a natural trade-
off between exploration needed to improve the estimates of the variances and exploitation
of the current estimates to allocate the pulls near optimally.

2.3 Definition of Regret

In order to assess how well A solves the exploration-exploitation trade-off above and man-
ages to sample according to the true standard deviations without knowing them in advance,
we compare its performance to that of the optimal allocation strategy A∗. For this purpose
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we define the notion of total/weighted MSE regret of an adaptive algorithm A as the differ-
ence between the total/weighted MSE loss incurred by A and the optimal loss, respectively:

R̄n(A) = L̄n(A)− Σ2
w

n
, Rn(A) = Ln(A)− Σ2

w

n
.

The total MSE regret indicates how much we loose in terms of MSE by not knowing in
advance the standard deviations σk. Note that since L̄n(A∗) ∝ 1/n by (5), a consistent
strategy, that is, one which is asymptotically equivalent to the optimal strategy, is obtained
whenever its regret is negligible compared to 1/n.

We also define the pseudo-regret, a proxy for the MSE regret, as the difference between
the pseudo-loss incurred by the algorithm and the optimal loss:

R̃n(A) = L̃n(A)− Σ2
w

n
.

It is important to derive bounds for R̄n(A) when Tk,n’s are random. Taking the decom-
position (2), a natural way to proceed is to prove that both
(i) Rn(A) is small and
(ii) the cross product-terms E

[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
are small.

Note that for K = 1, for any A, T1,n = T ∗1,n = n and R̄n(A) = Rn(A) = R̃n(A) = 0,
thus we assume K ≥ 2 from now on.

3. Allocation Based on Monte Carlo Upper Confidence Bound

We now describe the main algorithm and the associated bounds.

3.1 The Algorithm

In this section, we introduce our adaptive algorithm for the allocation problem, called Monte
Carlo Upper Confidence Bound (MC-UCB). The algorithm computes a high-probability
bound on the standard deviation of each arm and samples the arms proportionally to their
bounds times the corresponding weights. The MC-UCB algorithm, AMC-UCB, is described
in Figure 1. It requires a parameter β as input, which should be chosen as explained below
after Assumption 1.

Input: β
Initialize: Pull each arm twice.
for t = 2K + 1, . . . , n do

Compute Bk,t using (7) for each arm 1 ≤ k ≤ K
Pull an arm kt ∈ arg max1≤k≤K Bk,t

end for
Output: µ̂k,n for each arm 1 ≤ k ≤ K and µ̂n

Figure 1: The pseudo-code of the MC-UCB algorithm.
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The algorithm starts by pulling each arm twice in rounds t = 1 to 2K. From round
t = 2K + 1 on, it computes an upper confidence bound

Bk,t =
wk

Tk,t−1

(
σ̂k,t−1 +

2β√
Tk,t−1

)
(7)

on the standard deviation σk for each arm k, and then pulls the one with largest Bk,t. The
bounds Bk,t are built by using Lemma 10 (and Corollary 16) and based on the empirical
standard deviation σ̂k,t−1:

σ̂2
k,t−1 =

1

Tk,t−1 − 1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, (8)

where Xk,i is the i-th sample received when pulling arm k and Tk,t−1 is the number of pulls
allocated to arm k up to time t− 1. After n rounds, AMC-UCB returns the empirical mean
µ̂k,n for each arm 1 ≤ k ≤ K and also their weighted average µ̂n.

The motivation to use such an adaptive algorithm instead of classical strategies using,
for example, a limited pre-run to get preliminary estimates of the variances is that the latter
needs to know the sample size in advance, and will not be able to adapt the length of the
exploration phase to the difficulty of the problem. For instance, a strategy that uses e.g.,
≈ n2/3 samples for variance estimation will have minimax-optimal problem-independent rate
(up to a log factor) but will display a suboptimal problem-dependent regret rate, i.e., n−4/3.
On the other hand, a strategy that uses e.g., ≈ n/ log n samples for variance estimation will
have an optimal problem-dependent regret (of order n−3/2 up to a log factor). The main
advantage of adaptive strategies such as the one we provide is that it adapts the length of
exploration phase to the difficulty of the problem.

We are giving two analyses of AMC-UCB, a problem-dependent and a problem-independent
one, which are interesting in the stationary and the transitory regimes of the run time of
the algorithm, respectively. We will comment on this later in Section 4.

3.2 Assumption on the Arm Distributions and Setting β

Before stating the main results of this section, we state the assumption that the distributions
are sub-Gaussian, which includes, for example, Gaussian or bounded distributions. See the
paper of Buldygin and Kozachenko (1980) for more precision.

Assumption 1 There exist c1, c2 > 0 such that for all 1 ≤ k ≤ K and any ε > 0,

PX∼νk(|X − µk| ≥ ε) ≤ c2 exp(−ε2/c1). (9)

The parameters c1 and c2 characterize the maximal heaviness of the tails of the arm distri-
butions. Since (9) is equivalent to

P
(
|Xk,t − µk| ≥

√
c1 log(c2/δ)

)
≤ δ for any 0 < δ < c2,√

c1 log(c2/δ) can be seen as a high probability bound on the centered samples.
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For bounded arm distributions, parameter β of AMC-UCB should be generally set as
c
√

log(2/δ), where c is the maximum range of the distributions and δ is a chosen significance
level corresponding to the estimation of the standard deviations (see Theorem 12). In
particular, δ will be chosen as an appropriate decreasing function of n (here n−9/2) giving
β = βn ∝ c

√
log n.

For unbounded distributions satisfying Assumption 1, the role of c is taken by ∝√
c1 log(c2/δ), and the expressions become more involved. Then β will be set as the follow-

ing function of c1, c2, δ, and the total sample size n

β = βn(δ)
def
= 2

√
c1 log(c2/δ) log(2/δ) +

√
c1nδ log(ec2/δ)

2(1− δ)
. (10)

This particular form comes from the way we extend a tail inequality for sub-Gaussian
random variables in Proposition 14 of Appendix B. In particular, substituting δ = n−9/2

into (10) β = βn will be set as the following function of n, c1, and c2

βn
def
=
√
c1 log(c2

2n
9) log(4n9) +

√
c1 log(ec2n4.5)

2(1− n−4.5)n7/4
. (11)

To help the reader, subscript n will be used after this substitution. Moreover, note that
Bk,t, kt, Tk,t, µ̂k,t, and σ̂k,t, beside depending on the time step t ≤ n, depend, possibly in an
indirect way, also on β, and so on δ, the budget n, c1, and c2. An accurate notation would
denote also these in some indices to avoid confusion. However, since we consider mostly
fixed n, δ, c1, and c2, we keep the lighter notations above for the sake of concision.

3.3 High-Probability Bounds on the Number of Pulls

For 2 ≤ t ≤ n, 1 ≤ k ≤ K, write

ŝ2
k,t

def
=

1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
t′=1

Xk,t′

)2
(12)

for the unbiased empirical variances corresponding to the first t samples from arm k and

also ŝk,t
def
=
√
ŝ2
k,t. Then we have σ̂k,t = ŝk,Tk,t as computed in (8).

To conduct our analysis, first we state upper and lower bounds on the difference between
the allocation Tk,n implemented by the MC-UCB algorithm run by parameter β and the
optimal allocation T ∗k,n for each arm which hold on the event that all standard deviation
estimations ŝk,t are quite accurate, namely on

ξ = ξK,n(δ)
def
=

⋂
1≤k≤K, 2≤t≤n

{
|ŝk,t − σk| ≤

2β√
t

}
, (13)

where β is given by (10). Later Corollary 16 will show that a small δ implies a high
probability P(ξ) under Assumption 1, thus we can use these results to derive the various
regret bounds in Subsections 3.4–3.7 for the algorithm. The proofs of Lemma 1 and 2 are
in Appendix A.
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Problem-dependent bound. All of our problem-dependent bounds (Lemma 1, Proposi-
tions 3, 8, partially Proposition 6 and Theorem 7) contain 1/λmin and so become void
(actually trivial) if λmin = 0.2 Thus we assume λmin > 0 in their proofs.

Lemma 1 Let Assumption 1 hold. For any 0 < δ ≤ 1, n ≥ 4K, and any arm 1 ≤ p ≤ K,
on ξ, the allocation Tp,n implemented by AMC-UCB satisfies

wpσp
Tp,n

≤ Σw

n
+

12β

n3/2λ
3/2
min

+
4KΣw

n2
, (14)

and consequently Tp,n − T ∗p,n satisfies

−4λp

(
3β

Σwλ
3/2
min

√
n+K

)
≤ Tp,n − T ∗p,n ≤ 4

(
3β

Σwλ
3/2
min

√
n+K

)
, (15)

where β is given by (10).

In (15), |Tp,n − T ∗p,n| is bounded by a quantity of order
√
n. This is directly linked to the

parametric rate of convergence of the estimation of σk, which is of order 1/
√
n. Note that

(15) also shows the inverse dependency on the smallest optimal allocation proportion λmin.

Problem-independent bound.

Lemma 2 Let Assumption 1 hold. For any 0 < δ ≤ 1, n ≥ 4K, and any arm 1 ≤ p ≤ K,
on ξ, the allocation Tp,n implemented by AMC-UCB satisfies

Tp,n ≥
(wpn)2/3

γ2
and (16)

wpσp
Tp,n

≤ Σw

n
+

12K1/3βγ

n4/3
+

4KΣw

n2
, (17)

and consequently Tp,n − T ∗p,n satisfies

−4λp

(
3K1/3βγ

Σw
n2/3 +K

)
≤ Tp,n − T ∗p,n ≤ 4

(
3K1/3βγ

Σw
n2/3 +K

)
,

where β is given by (10) and γ = γn(δ)
def
= (Σ̄/β +

√
8)1/3.

Unlike in the bounds proved in Lemma 1, here |Tp,n − T ∗p,n| is bounded by a quantity of

order n2/3 without any inverse dependency on λmin.

2. There are good chances in this case that by refined analyses and setting λmin = min1≤k≤K:λk>0 λk (that
is > 0), the same formulae can be proven giving finite bounds.
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3.4 Bounds on the Weighted MSE Regret of AMC-UCB

To simplify our bounds, we introduce

Cβ = Cβ,n
def
=
√
c1(9 log n+ 1.6 log(c2 + 1)) and (18)

Cξ = Cξ,n
def
= c1 log(ec2n

7/2/2K) (19)

( < c1(7 log n/2 + log c2) for K ≥ 2 ),

which depend only polynomially on log n,
√
c1, and log c2. We now report the bounds on

Rn(AMC-UCB). The proofs are given in Appendix D.

Problem-dependent bound. This result depends crucially on λ−1
min which is a measure of

the disparity of the products of the standard deviations and the weights. For this reason
we refer to it as “distribution-dependent” result. Its proof relies on the upper- and lower
bounds on Tk,t − T ∗k,t in Lemma 1.

Proposition 3 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given
by (11), then for n ≥ 4K it holds for AMC-UCB that

Rn(AMC-UCB) ≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+

√
KCξ + 32KΣ2

w

2n2
,

where Cβ and Cξ are given by (18) and (19).

Problem-independent bound. Now we report our second bound on Rn(AMC-UCB) that does
not depend on λ−1

min at all. This is obtained at the price of the worse rate K1/3Õ(n−4/3).
Its proof relies on the upper- and lower bounds on Tk,t − T ∗k,t in Lemma 2.

Proposition 4 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given
by (11), then for n ≥ 4K it holds for AMC-UCB that

Rn(AMC-UCB) ≤
36K1/3ΣwCβ

n4/3
+
K2/3(2058C2

β + 32Σ2
w) +K1/6Cξ

(2n)5/3
,

where Cβ and Cξ are given by (18) and (19).

Note that this bound is not entirely distribution free, since Σw appears. But, as proven in
Appendix B.3 using Assumption 1, Σ2

w ≤ c1 log(ec2).
For Gaussian distributions with variance 1, we can take c1 = c2 = 1, and the main

coefficient of log n/(nλmin)3/2 in Proposition 3 and of K1/3 log n/n4/3 in Proposition 4 are
upper bounded by 216 and 324, respectively.

3.5 Bounds on the Cross Product-Terms

The difficulty in bounding the cross product-terms, that is, the second term in the right-hand
side of (2), comes from the fact that the (Tk,n)k≤K depend on the samples (in particular,
for AMC-UCB, on the empirical standard deviations (σ̂k,t)k≤K,t≤n). This dependence can
make correlation between µ̂k,n and µ̂k′,n. Thus, for general distributions, we cannot see
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obvious, direct reason why a cross product-term should be equal to the product of the
corresponding biases, and so be close to 0. We give three results for these cross product-
terms. The first one corresponds to the specific case where the distributions of the arms are
symmetric. The next two provide a problem-dependent and a problem-independent bound
in the general case. All these are partial results for proving bounds on R̄n(AMC-UCB) and
proven in Appendix E.

Arms with symmetric distributions. The first result holds in the specific case of symmetric
distributions. Intuitively speaking, in this setting, conditioning on the empirical standard
deviations does not change the mean of the samples (and sample averages). This implies
that for k 6= k′, µ̂k,n − µk and µ̂k′,n − µk′ are conditionally uncorrelated. From that we
deduce the following result.

Proposition 5 Assume that each distribution νk is symmetric around µk, respectively. For
AMC-UCB launched with any parameter βn, we have that

K∑
k=1

∑
k′ 6=k

wkwk′E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
= 0.

Though mostly of theoretical interest, the significance of this result is its indication that
the rate might be improvable for other distributions, as well.

Problem-dependent and problem-independent bound in general. The following proposition
gives bounds on the cross product-terms. This can be seen as an intermediary step in linking
the weighted MSE regret and the true regret. Its proof relies on the specific structure of
AMC-UCB through the use of Lemma 1 and 2.

Proposition 6 Let Assumption 1 be verified for two parameters c1, c2 ≥ 1. If βn is given by
(11), then (for n large enough compared to K, c1, log c2, and 1/Σw) the cross product-terms
for AMC-UCB are bounded as

K∑
k=1

∑
q 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ poly(Σwc1 log c2/λmin)Õ(n−3/2),

and
K∑
k=1

∑
q 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ poly(KΣwc1 log c2/w)Õ(n−7/6),

where w is given by (6) (and Õ(·) does not depend on λmin).

Note that the latter bound, depending on w, is not really problem-independent (considering
wk’s to be part of the problem), but it is independent of the arm distributions, particularly
of λmin.
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3.6 Bounds on the Total-Regret

From the decomposition (2) for AMC-UCB and Propositions 3, 4, 6, and 5, we can deduce
our main result, a bound on the true regret R̄n(AMC-UCB):

Theorem 7 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is given
by (11), then (for n large enough compared to K, c1, log c2, and 1/Σw) the true regret of
AMC-UCB is bounded as

R̄n(AMC-UCB) = poly(Σwc1 log c2/λmin)Õ(n−3/2),

and
R̄n(AMC-UCB) = poly(KΣwc1 log c2/w)Õ(n−7/6)

(thus, in particular, R̄n = o(1/n)). If each distribution νk is symmetric around µk, then
the cross product-terms are 0, and the following tighter problem-independent bound holds

R̄n(AMC-UCB) = Rn(AMC-UCB) = poly(KΣwc1 log c2)Õ(n−4/3).

3.7 Bounds on the Pseudo-Regret

We bound R̃n(AMC-UCB) by a problem-dependent and a problem-independent upper bound
that are of the same order in n as the bounds in Propositions 3 and 4, respectively. The
proofs are given in Appendix C.

Problem-dependent bound.

Proposition 8 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is
given by (11), then the pseudo-regret of AMC-UCB launched with n ≥ 4K is bounded as

R̃n(AMC-UCB) ≤
12ΣwCβ

n3/2λ
3/2
min

+
(4K +

√
2/16)Σ2

w

n2
,

where Cβ is given by (18).

Problem-independent bound.

Proposition 9 Let Assumption 1 be verified for two parameters c1 > 0, c2 ≥ 1. If βn is
given by (11), then the pseudo-regret of AMC-UCB launched with n ≥ 4K is bounded as

R̃n(AMC-UCB) ≤
18K1/3ΣwCβ

n4/3
+

(4K +
√

2/16)Σ2
w

n2
,

where Cβ is given by (18).

For Gaussian distributions with variance 1, we can consider c1 = c2 = 1, and the main
coefficient of log n/(nλmin)3/2 in Proposition 8 and of K1/3 log n/n4/3 in Proposition 9 are
upper bounded by 108 and 162, respectively.

4. Discussion on the Results

We make several comments on the algorithm MC-UCB in this section.
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4.1 Problem-Dependent and -Independent Bounds on Rn(A) and R̃n(A)

Our problem-dependent λ−3
minÕ(n−3/2) upper bound on Rn(AMC-UCB) in Proposition 3 is

similar and comparable to the one provided for GAFS-WL by Grover (2009), where the loss
measure is Ln(AGAFS-WL). Beside this λmin-dependent bound for AMC-UCB, Propositions 4
gives a λmin-independent bound of order K1/3Õ(n−4/3). (Note however, that when there
is an arm with 0 variance, GAFS-WL is likely to perform better than MC-UCB, as it
will only sample this arm O(

√
n) times, while MC-UCB usually samples it Ω(n2/3) times.)

Similarly, Proposition 8 provides a pseudo-regret bound of order λ
−3/2
min Õ(n−3/2), whereas

Proposition 9 gives a λmin-independently bound of order K1/3Õ(n−4/3).

Hence, for a given problem, that is, a given λmin, the distribution-free results of Proposi-
tion 4 and 9 are more informative than the distribution-dependent results of Proposition 3
and 8, respectively, in the transitory regime, that is, when n is small compared to λ−1

min.
Proposition 3 and 8 is better in the stationary regime, that is, for n large enough. This dis-
tinction reminds us of the difference between distribution-dependent and distribution-free
bounds for the UCB algorithm in usual multi-armed bandits. In that setting, the distri-
bution dependent bound is in O(K log n/∆), where ∆ is the difference between the mean
value of the two best arms, and the distribution-free bound is in O(

√
Kn) as explained by

Auer et al. (2002); Audibert and Bubeck (2009). In many works, these two types of results
are called individual and uniform bounds. For several models, the two bounds correspond
with each other, at least in their convergence rates in the sample size for the best possible
algorithms (i.e., in some minimax sense). See the thesis of Antos (1999) for a discussion.
Our results and proofs suggest that our stratified sampling model is another interesting
exception, where these two types of rates must be different.

At first sight, the problem of Monte Carlo integration seems to be more related to
the problem of pure exploration (Bubeck et al., 2011; Audibert et al., 2010) than to the
usual bandit setting: indeed, similarly to the setting of pure exploration, an intermediate
objective (linked to the overall objective) is to allocate the number of pulls of the arms
proportionally to some unknown problem-dependent quantities. However, we believe that
our problem is actually more related to the standard bandit problem, since it gives rise to
an exploration-exploitation trade-off.

4.2 The Parameter β of the Algorithm

We saw in (11) that the parameter βn of AMC-UCB should depend on n, c1, c2. It is actually
such that βn ≈ c′ log n, where c′ can be interpreted as a high probability bound on the range
of the samples. We thus simply require a rough bound on the magnitude of the samples. As
we saw, in the case of bounded distributions, βn can be chosen as βn = c

√
5 log n, where c is

a true bound on the range of the variables. This is easy to deduce by comparing Corollary 13
and Proposition 14 in Appendix B. The interpretation of this parameter β is quite similar
to the interpretation of the parameter in the UCB algorithm of Auer et al. (2002), and its
order of magnitude is roughly the same. (In that paper, it is assumed that the distributions
of the arms are bounded.) On the other hand, the interpretation of this quantity is quite
different from the interpretation of the parameter a of the algorithm UCB-E of Audibert
et al. (2010), which characterizes here the complexity of the problem. This is yet another
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illustration from the fact that this problem is somehow more related to the standard bandit
problem than to the problem of pure exploration.

4.3 Finite-Time Bounds for R̄n(AMC-UCB) and Asymptotic Optimality

The first result in Theorem 7 states that R̄n(AMC-UCB) is of order poly(λ−1
min)Õ(n−3/2). This

corresponds to the λmin-dependent bound on Rn(AMC-UCB). Theorem 7 also states that
an upper bound on R̄n(AMC-UCB) is of order poly(K)Õ(n−7/6). This corresponds to the
λmin-independent bound on Rn(AMC-UCB). Unfortunately, in this case, we do not obtain
the same order for R̄n(AMC-UCB) as for Rn(AMC-UCB), that is, poly(K)Õ(n−4/3). This
comes from the fact that the bound on the cross product-terms in Proposition 6 is of order
poly(K/w)Õ(n−7/6). Whether this bound is tight or not is an open problem.

As we bound R̄n(AMC-UCB) as o(1/n), L̄n(AMC-UCB) is asymptotically not more than
L̄n(A∗) = Σ2

w/n for any problem satisfying Assumption 1. This can be said as AMC-UCB is
(weakly) consistent; just like the algorithms of Kawai (2010); Etoré and Jourdain (2010).

Note also that whenever there is some disparity among the arms, that is, when Σ2
w <

Σ2,w, AMC-UCB is asymptotically strictly more efficient than the uniform strategy.

4.4 Pseudo-Regret of AMC-UCB and the Lower Bound

Carpentier and Munos (2012) provided a λmin-independent minimax lower bound for R̃n(A)
that is of order K1/3Ω(n−4/3). An important achievement is that the λmin-independent
upper bound on R̃n(AMC-UCB) in Proposition 9 is of the same order up to a logarithmic
factor. Thus, regarding R̃n(A), it is impossible to improve this strategy uniformly for every
sub-Gaussian problem more than by a log factor.

Although we do not have a λmin-dependent lower bound on R̃n(A) yet, we believe that
the Õ(n−3/2) rate of Proposition 8 cannot be improved in n for general distributions. As it
seems from the proofs in Appendix A and C, this rate is a direct consequence of the high
probability bounds on the estimates of the standard deviations of the arms which are in
O(1/

√
n), and those bounds are tight. Because of the minimax lower bound that is of order

K1/3Ω(n−4/3), it is however clear that there exists no algorithm with a regret of order n−3/2

without any dependence on λ−1
min (or another related problem-dependent quantity).

4.5 Making AMC-UCB Anytime

An interesting question is whether and how it is possible to make AMC-UCB anytime, that
is, not requiring the knowledge of the sample horizon n in advance. Although we will not
provide formal proofs of this result in this paper, we believe that setting a δ that evolves
with the current time as δt = t−9/2, is sufficient to make all the regret bounds of this paper
hold with slightly modified constants. Some ideas on how to prove these results can be
found in the literature (Grover, 2009; Antos et al., 2010; Auer et al., 2002).

4.6 Domains of Application

Monte Carlo integration has many relevant applications in machine learning. Being able to
compute precisely an integral is a prerequisite in many methods or algorithms in this field.
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Some examples of possible application of the stratified Monte Carlo technique are listed
below.

• There are more and more applications in machine learning that are targeting the
allocation and placement of various kinds of sensors (as e.g., pollution sensors, tem-
perature sensors, cameras of various kinds, network sensors, etc.). It is a challenge
to find a way to place them efficiently, or choose at which frequency to observe their
output. The placement of these sensors should depend of the objective that they have
to fulfill. In some cases, one wants to use these sensors to compute an integral (for
instance, the average pollution level or temperature in a region, the average amount
of traffic at a certain time, the average number of customers in a given place in a
supermarket, or the average amount of exchange in a network, etc.). The approach of
this paper can be used to decide adaptively how to place these sensors, how frequently
to inspect them, or how many of them to put depending on the area. In some other
cases, the objective is that the sensors provide a good estimate of what they measure
in each zone (e.g., local water pressure on a dyke). As mentioned earlier, our algorithm
minimizes, with respect to the sample allocation, a weighted (over the strata) mean
squared error of estimations. Therefore, our approach also provides good results in
such a setting where the objective is to estimate the mean value in each zone, rather
than an overall integral.

• A huge domain that is commonly handled in the machine learning community, and
in which the aim is often to compute precisely integrals is Bayesian methodology.
Indeed, expectations under the posterior distribution are often good estimators for
some relevant parameters of the model. Being able to compute these expectations
(which are well defined integrals) fast and precisely is both desirable and challenging,
and our method provides an alternative for MCMC methods in the computation of
such integrals.

• There are many applications in mathematical finance, for example, in the domain
of pricing (which essentially sums up to the computation of a complex stochastic
integral).

As mentioned below (3), omitting the cross product-terms and focusing on the weighted
MSE loss our setting can be interpreted as an active learning framework. This can be a
suitable model also in production quality testing, adaptive study design, drug discovery,
crowd-sourcing, etc.

5. Conclusions

We provide a finite-time analysis for stratified sampling for Monte Carlo in the case of fixed
strata with sub-Gaussian distributions. We report two bounds on the weighted MSE regret:
(i) a distribution dependent bound of order poly(λ−1

min)Õ(n−3/2) which is of interest when
n is large compared to a measure of disparity λ−1

min of the standard deviations (stationary

regime), and (ii) a distribution free bound of order Õ(K1/3n−4/3) which is of interest when
n is small compared to λ−1

min (transitory regime). We also link the weighted MSE loss to
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the total MSE loss of algorithm MC-UCB, that is the natural measure of performance for
the problem. We provide poly(λ−1

min)Õ(n−3/2) problem-dependent and poly(K)Õ(n−7/6)
problem-independent bounds for the total MSE regret, as well. In case of symmetric
arm distributions, the latter rate is improved to poly(K)Õ(n−4/3). We give a distribu-
tion dependent bound of order poly(λ−1

min)Õ(n−3/2) and a distribution free bound of order

Õ(K1/3n−4/3) also on the pseudo-regret. The latter matches its minimax lower bound in
terms of n up to a log n factor.

Possible directions for future work include: (i) making the MC-UCB algorithm anytime
(i.e., not requiring the knowledge of n in advance) and (ii) deriving distribution-dependent
lower bound for this problem determining the necessary dependence on λmin.

Acknowledgements This research was partially supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 270327 (Com-
pLACS).

Appendices

These appendices contain the proofs of the theorems in the paper. Their organization is as
follows.

• Appendix A contains the proofs of the (problem-dependent) Lemma 1) and the
(problem-independent) Lemma 2) stating that the number of pulls of any arm is
not too far from the optimal allocation for that arm on event ξ.

• Appendix B states some preliminary results which are useful in the regret bound
proofs. It first gives (conditional) variance bound for sub-Gaussian random variables.
Then it shows that ξ has high probability. It also contains the proof that for any
t ≤ n, Tk,t is a stopping time, and applies Wald’s identity to the samples from an
arm. Next, it states bounds on some other technical quantities outside ξ that are
used afterwards. Finally, it gives bounds on the parameters βn and γn.3

• Appendix C contains the proofs of the (problem-dependent) Proposition 8 and the
(problem-independent) Proposition 9 upper bounding R̃n(AMC-UCB) based on Lemma 1
and 2, respectively. These proofs are simpler than those in Appendix D and can serve
as an introduction for the latter.

• Appendix D contains the proofs of the (problem-dependent) Proposition 3 and the
(problem-independent) Proposition 4 upper boundingRn(AMC-UCB) based on Lemma 1
and 2, respectively. These proofs are quite similar to the ones for bounding R̃n(AMC-UCB)
in Appendix C. However, those have to be extended by additional technical steps, for
example, using Wald’s second identity for sums with random number of terms, to
bound Rn(AMC-UCB) with a quantity reminding to R̃n(AMC-UCB).

• Appendix E provides the proofs of the three bounds on the cross product-terms. The
first one holds when the arm distributions are symmetric: then the cross product-terms
are exactly 0. The two other bounds, a problem-dependent and a problem-independent

3. As for β, γn will be used for γ after this substituting δ = n−9/2.
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one, concern the general sub-Gaussian case. These bounds rely on Lemma 1 and 2.
Using these together with the results in Appendix D gives bounds on the total regret.

• Appendix F provides the proof of some general technical lemmata.

Appendix A. Proof of the Bounds on the Number of Pulls of the Arms

In this section, we prove Lemma 1 and 2. Recall that their statements hold on the event ξ.
This event plays an important role in the proofs of the regret bounds; several statements
will be proven on ξ. We transcribe the definition (13) of ξ into the following lemma when
the number of samples Tk,t are random.

Lemma 10 For k = 1, . . . ,K and t = 2K, . . . , n, let Tk,t be any random variable taking
values in {2, . . . , n}. Let σ̂2

k,t be the empirical variance computed from (8) and β be given
by (10). Then, on ξ, we have:

|σ̂k,t − σk| ≤
2β√
Tk,t

.

All statements in the proofs of this section are meant to hold on ξ.

A.1 Problem-Dependent Bound; Proof of Lemma 1

Proof of Lemma 1 The proof consists of the following three main steps.

Step 1. Properties of the algorithm. Recall the definition of the upper bound used in
AMC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +

2β√
Tq,t

)
, 1 ≤ q ≤ K.

From Lemma 10, we obtain the following upper and lower bounds for Bq,t+1 on ξ:

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
. (20)

Note that as n ≥ 4K, there exists an arm pulled after the initialization. Let k be such
an arm and t + 1 > 2K be the time step when k is pulled for the last time, that is,
Tk,t = Tk,n − 1 ≥ 2 and Tk,t+1 = Tk,n. Since arm k is chosen at time t+ 1, we have for any
arm p

Bp,t+1 ≤ Bk,t+1. (21)

From (20) and the fact that Tk,t = Tk,n − 1, we obtain on ξ

Bk,t+1 ≤
wk
Tk,t

(
σk +

4β√
Tk,t

)
=

wk
Tk,n − 1

(
σk +

4β√
Tk,n − 1

)
. (22)

Using the lower bound in (20) and the fact that Tp,t ≤ Tp,n, we may lower bound Bp,t+1 on
ξ as

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (23)
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Combining (21), (22), and (23), we obtain on ξ

wpσp
Tp,n

≤ wk
Tk,n − 1

(
σk +

4β√
Tk,n − 1

)
. (24)

Note that at this point there is no dependency on t, and on ξ, (24) holds for any p and for
any k such that Tk,n > 2.

Step 2. Lower bound on Tp,n. From the constraints
∑

k(Tk,n−2) = n−2K and
∑

k λk = 1,
we can deduce (by indirect proof) that there exists an arm k with Tk,n−2 ≥ λk(n−2K) > 0,
that is, Tk,n > 2. Thus k satisfies (24). Using (24), Tk,n−1 > λk(n−2K), and λk = wkσk/Σw

implies for any arm p

wpσp
Tp,n

<
wk
nλk

1

1− 2K/n

(
σk +

4β√
nλk(1− 2K/n)

)
≤ Σw

n
+

4KΣw

n2
+

8
√

2β

n3/2λ
3/2
k

,

because n ≥ 4K. The previous inequality combined with the fact that λk ≥ λmin gives the
first inequality (14) of the lemma

wpσp
Tp,n

≤ Σw

n
+

12β

n3/2λ
3/2
min

+
4KΣw

n2
.

By rearranging it, we obtain the lower bound on Tp,n in (15)

Tp,n ≥
wpσp

Σw
n + 12β

n3/2λ
3/2
min

+ 4KΣw
n2

≥ T ∗p,n − 4λp

(
3β

Σwλ
3/2
min

√
n+K

)
, (25)

where in the second inequality we use 1/(1 + x) ≥ 1− x (for x > −1). Note that the lower
bound holds on ξ for any arm p.

Step 3. Upper bound on Tp,n. Using (25) and the fact that
∑

k Tk,n = n, we obtain

Tp,n = n−
∑
k 6=p

Tk,n ≤
(
n−

∑
k 6=p

T ∗k,n

)
+
∑
k 6=p

4λk

(
3β

Σwλ
3/2
min

√
n+K

)
.

Since
∑

k 6=p λk ≤ 1 and
∑

k T
∗
k,n = n, we deduce

Tp,n ≤ T ∗p,n + 4

(
3β

Σwλ
3/2
min

√
n+K

)
. (26)

The lemma follows by combining the lower and upper bounds in (25) and (26).

A.2 Problem-Independent Bound; Proof of Lemma 2
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Proof of Lemma 2

Step 1. Lower bound of order Ω(n2/3). Recall the definition of the upper bound Bq,t+1

used in AMC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +

2β√
Tq,t

)
, 1 ≤ q ≤ K.

Using Lemma 10 it follows that on ξ, for any q such that Tq,t ≥ 2,

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
. (27)

Let k be the index of an arm that is such that Tk,n− 2 ≥ wk(n− 2K). Such an arm always
exists for any possible allocation strategy, as n− 2K =

∑
q(Tq,n − 2) and

∑
q wq = 1. This

implies Tk,n ≥ 3 as n ≥ 4K, thus arm k is pulled after the initialization. Let t + 1 ≤ n be
the last time at which it was pulled, that is, Tk,t = Tk,n − 1 and Tk,t+1 = Tk,n. From (27)
and the fact that Tk,t > wk(n− 2K) and Tk,t ≥ 2, we obtain on ξ

Bk,t+1 ≤
wk
Tk,t

(
σk +

4β√
Tk,t

)
<

maxp σp +
√

8β

n− 2K
. (28)

Since at time t+ 1 the arm k has been pulled, then for any arm q, we have

Bq,t+1 ≤ Bk,t+1. (29)

From the definition of Bq,t+1, and also using the fact that Tq,t ≤ Tq,n, we deduce on ξ that

Bq,t+1 ≥
2βwq

T
3/2
q,t

≥ 2βwq

T
3/2
q,n

. (30)

Combining (28)–(30), we obtain on ξ

2βwq

T
3/2
q,n

<
maxp σp +

√
8β

n− 2K
=

Σ̄ +
√

8β

n− 2K
.

Finally, this implies on ξ that for any q,

Tq,n ≥
(

2βwq(n− 2K)

Σ̄ +
√

8β

)2/3

=

(
2− 4K/n

Σ̄/β +
√

8
wqn

)2/3

≥ (wqn)2/3

(Σ̄/β +
√

8)2/3
=

(wqn)2/3

γ2

recalling γ = (Σ̄/β +
√

8)1/3, which proves (16).

Step 2. Properties of the algorithm. We follow a similar analysis to Step 1 of the proof of
Lemma 1. Note that as n ≥ 4K, there exists an arm pulled after the initialization. Let q
be any such arm and t + 1 > 2K be the time step when q is pulled for the last time, that
is, Tq,t = Tq,n − 1 ≥ 2 and Tq,t+1 = Tq,n. Since arm q is chosen at time t + 1, we have for
any arm p

Bp,t+1 ≤ Bq,t+1. (31)
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From (27) and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq +

4β√
Tq,t

)
=

wq
Tq,n − 1

(
σq +

4β√
Tq,n − 1

)
. (32)

Furthermore, since Tp,t ≤ Tp,n and Tp,t ≥ 2 (as t ≥ 2K), then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (33)

Combining (31)–(33), we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq +

4β√
Tq,n − 1

)
.

Note that this inequality holds on ξ for any p and for any q such that Tq,n ≥ 3. Summing
over all such q on both sides, we obtain on ξ for any arm p

wpσp
Tp,n

∑
q:Tq,n≥3

(Tq,n − 1) ≤
∑

q:Tq,n≥3

wq

(
σq +

4β√
Tq,n − 1

)
.

This implies

wpσp
Tp,n

(n− 2K) ≤
K∑
q=1

wq

(
σq +

4β√
Tq,n − 1

)
, (34)

because
∑

q:Tq,n≥3(Tq,n − 1) = n−K −
∑

q:Tq,n≤2(Tq,n − 1) ≥ n−K −K = n− 2K.

Step 3. Lower bound. Plugging (16) into (34),

wpσp
Tp,n

(n− 2K) ≤
∑
q

wq

(
σq +

4β√
Tq,n − 1

)

≤
∑
q

wq

(
σq + 4β

√
2γ2

(wqn)2/3

)

≤ Σw +
4
√

2βγ

n1/3

∑
q

w2/3
q ≤ Σw +

6βγK1/3

n1/3
,

on ξ, since Tq,n−1 ≥ Tq,n
2 (as Tq,n ≥ 2) and because

∑
q w

2/3
q ≤ K1/3 by Jensen’s inequality.

Finally as n ≥ 4K, we obtain on ξ the first inequality (17) of the lemma

wpσp
Tp,n

≤ Σw

n
+

12K1/3βγ

n4/3
+

4KΣw

n2
.

We now invert this bound and obtain on ξ the final lower bound on Tp,n as follows

Tp,n ≥
wpσp

Σw
n + 12K1/3βγn−4/3 + 4KΣw

n2

≥ T ∗p,n − 4λp

(
3K1/3βγ

Σw
n2/3 +K

)
,
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as 1
1+x ≥ 1− x. Note that this lower bound holds with high probability for any arm p.

Step 4. Upper bound. An upper bound on Tp,n on ξ follows by using Tp,n = n−
∑

q 6=p Tq,n
and the previous lower bound, that is

Tp,n ≤ n−
∑
q 6=p

T ∗q,n +
∑
q 6=p

4λq

(
3K1/3βγ

Σw
n2/3 +K

)
≤ T ∗p,n + 4

(
3K1/3βγ

Σw
n2/3 +K

)
,

because
∑

q 6=p λq ≤ 1.

Appendix B. Main Tools for the Bounds on the Regrets

In this section, we first give a high probability uniform upper bound on the estimation errors
of the unbiased empirical standard deviations for sub-Gaussian random variables, then
describe other technical tools, properties, and inequalities. Several of these use the following
simple lemma giving (conditional) variance bound for sub-Gaussian random variables proven
in Appendix F:

Lemma 11 Let A be an event with P(A) ≤ δ. Let X have a distribution with µ
def
= EX

satisfying (9) of Assumption 1 with c1 > 0, c2 ≥ δ, and any ε > 0. Then

E
[
|X − µ|2I{A}

]
≤ δc1 log(ec2/δ).

Particularly, the case P(A) = δ = 1 gives VarX ≤ c1 log(ec2) if c2 ≥ 1.

B.1 High Probability Uniform Upper Bound on the Variance Estimation
Errors

In this subsection, let n ≥ 2, X1, . . . , Xn be i.i.d. random variables with mean µ, variance
σ2, and unbiased empirical variances

ŝ2
t =

1

t− 1

t∑
i=1

(
Xi −

1

t

t∑
t′=1

Xt′

)2
(35)

corresponding to the first t variables, and also ŝt =
√
ŝ2
t (2 ≤ t ≤ n).

The upper confidence bounds Bk,t used in the MC-UCB algorithm is motivated by the
following theorem of Maurer and Pontil (2009) (see also the paper of Audibert et al., 2009,
for a variant), that gives a high probability bound on the estimation error of ŝt:

Theorem 12 (Theorem 10 of Maurer and Pontil, 2009) If ∀t ≤ n, Xt ∈ [a, a + c],
then for 0 < δ ≤ 2, with probability at least 1− δ

|ŝn − σ| ≤ c
√

2 log(2/δ)

n− 1
.

Using the union bound and t/(t−1) ≤ 2 for t ≥ 2 this implies the following uniform bound:
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Corollary 13 If ∀t ≤ n, Xt ∈ [a, a+ c], then for 0 < δ ≤ 2, the event

⋂
2≤t≤n

{
|ŝt − σ| ≤ 2c

√
log(2/δ)

t

}
.

has probability at least 1− nδ.

We extend this result to sub-Gaussian random variables:

Proposition 14 Let the distribution of Xt’s satisfy (9) of Assumption 1 with c1 > 0,
c2 ≥ 1, and any ε > 0. Define the following event for any 0 < δ < 1/e

ξn(δ) =
⋂

2≤t≤n

{
|ŝt − σ| ≤

2β√
t

}
,

where β is given by (10). Then P(ξn(δ)) ≥ (1− nδ)2.

Proof of Proposition 14 Step 1. Truncating sub-Gaussian variables. Let the conditional

variance of Xt be σ̃2 def
= Var[Xt|(Xt−µ)2 ≤ c1 log(c2/δ)]. We characterize σ̃ by the following

lemma (proven in Appendix F):

Lemma 15 Let X have a distribution with µ
def
= EX and σ2 def

= VarX satisfying (9) of

Assumption 1 with c1 > 0, c2 ≥ 1, and any ε > 0. Let 0 < δ < 1/e, A
def
= {|X − µ|2 ≤

c1 log(c2/δ)}, and σ̃2 def
= Var[X|A]. Then P(AC) ≤ δ and

0 ≤ σ − σ̃ ≤
√
c1δ log(ec2/δ)

1− δ
.

Step 2. Application of tail inequalities. Define the event

ξ1 = ξ1,n(δ) =
⋂

1≤t≤n

{
|Xt − µ|2 ≤ c1 log(c2/δ)

}
.

We have that P(ξC1 ) ≤ nδ using the union bound and (9). Given ξ1, (Xt)1≤t≤n are n i.i.d.
bounded random variables with common conditional variance σ̃2.

Now let ξ2 = ξ2,n(δ) be the event:

ξ2 =
⋂

2≤t≤n

{
|ŝt − σ̃| ≤ 4

√
c1 log(c2/δ)

log(2/δ)

t

}
.

Using Corollary 13, we deduce that P(ξ2|ξ1) ≥ 1− nδ, and thus

P(ξ1 ∩ ξ2) = P(ξ2|ξ1)P(ξ1) ≥ (1− nδ)2.

Moreover, from Lemma 15, we have 0 ≤ σ − σ̃ ≤
√
c1δ log(ec2/δ)

1−δ , and thus on ξ2, for all
2 ≤ t ≤ n:

|ŝt − σ| ≤ |ŝt − σ̃|+ |σ̃ − σ| ≤ 4

√
c1 log(c2/δ)

log(2/δ)

t
+

√
c1δ log(ec2/δ)

1− δ
≤ 2β√

t
,
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implying ξ2 ⊆ ξn(δ). From this, we deduce

P(ξn(δ)) ≥ P(ξ2) ≥ P(ξ1 ∩ ξ2) ≥ (1− nδ)2

proving the proposition.

Corollary 16 Let n ≥ 2. Let Assumption 1 hold with c1 > 0, c2 ≥ 1, and any ε > 0. For
any 0 < δ < 1/e and for event ξ defined by (13), P(ξ) ≥ (1− nδ)2K ≥ 1− 2nKδ.

Proof of Corollary 16 Since for each 1 ≤ k ≤ K, Proposition 14 implies that the
probability of ⋂

2≤t≤n

{
|ŝk,t − σk| ≤

2β√
t

}
is at least (1−nδ)2, the intersection of these independent events, ξ, has probability at least
(1− nδ)2K . The last inequality comes from the convexity of (1− x)2K .

B.2 Tk,t is Stopping Time, Wald’s Identity for the Variance of the Sum of Tk,t
Centered Samples of One Arm

For a given k, let (F (k)
t )t≤n be the filtration associated to the process (Xk,t)t≤n, and E−k =

E−k,n be the σ-algebra generated by (Xk′,t′)t′≤n,k′ 6=k (“environment”). Define the filtration

(G(k)
t )t≤n by

G(k)
t = G(k,n)

t
def
= σ(F (k)

t , E−k).

Tk,t is a stopping time. We prove the following proposition.

Proposition 17 For each 1 ≤ n′ ≤ n, Tk,n′ is a stopping time w.r.t. (G(k)
t )t≤n.

Proof We prove the statement for fixed budget n by induction for n′ = 1, . . . , n.
For n′ ≤ 2K (initialization), Tk,n′ is deterministic, so for any t, {Tk,n′ ≤ t} is either the

empty set or the whole probability space (and is thus measurable according to G(k)
t ).

Let us now assume that for a given time step 2K ≤ n′ < n, and for any t, {Tk,n′ ≤ t}
is G(k)

t -measurable. We consider now time step n′ + 1. Note first that for t = 0, {Tk,n′+1 ≤
t} = {Tk,n′+1 ≤ 0} is the empty set and is thus G(k)

t -measurable. If t > 0, then

{Tk,n′+1 ≤ t} =
(
{Tk,n′ = t} ∩ {kn′+1 6= k}

)
∪ {Tk,n′ ≤ t− 1}. (36)

By induction assumption, {Tk,n′ = t} and {Tk,n′ ≤ t − 1} are G(k)
t -measurable (since for

any t′, {Tk,n′ ≤ t′} is G(k)
t′ -measurable). On {Tk,n′ = t}, kn′+1 is also G(k)

t -measurable since
it is determined only by the values of the upper bounds {Bq,n′+1}1≤q≤K (which depend
only on {Xk′,t′}t′≤n,k′ 6=k and on (Xk,1, . . . , Xk,t)). Hence, {Tk,n′ = t} ∩ {kn′+1 6= k} is

G(k)
t -measurable, and thus using (36), we have that {Tk,n′+1 ≤ t} is G(k)

t -measurable, as
well.
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We have thus proved by induction that Tk,n′ is a stopping time w.r.t. the filtration

(G(k)
t )t≤n.

Wald’s second identity for the variance. We also need to express the variance of the sum
of random number of centered terms when this random number is a stopping time. Thus,
we recall the following theorem from Athreya and Lahiri (2006) (this variant is quoted from
Lemma 10 of Antos et al. (2010))

Proposition 18 (Theorem 13.2.14 of Athreya and Lahiri (2006)) Let (Ft)t=1,...,n be
a filtration and (Xt)t=1,...,n be an Ft adapted sequence of i.i.d. random variables with finite
expectation µ and variance σ2. Assume that Ft and σ({Xs : s ≥ t + 1}) are independent
for any t ≤ n, and let T (≤ n) be a stopping time w.r.t. Ft. Then

E

[( T∑
t=1

(Xt − µ)

)2
]

= E[T ]σ2.

Application to arm k and samples (Xk,t)t≤n.

Corollary 19 For any 1 ≤ k ≤ K and n′ ≤ n,

E

( Tk,n′∑
t=1

(Xk,t − µk)
)2

 = E[Tk,n′ ]σ
2
k.

Proof Proposition 17, the fact that G
(k)
t and σ({Xk,s : s ≥ t+ 1}) are independent for any

t ≤ n, and Tk,n′ ≤ n guarantee that we can apply Proposition 18 with filtration (G(k)
t )t≤n,

(Xk,t)t≤n, and Tk,n′ leading to the equality.

B.3 Other Technical Inequalities

Now we state and prove some further technical inequalities.

Bounds on the loss and the variance of the sum of the centered samples of one arm on event
ξC .

Lemma 20 Let n ≥ 2 and 0 < δ < 1/e. Let Assumption 1 hold with c2 ≥ max(1, 2nKδ).
Then for each arm k,

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤ Kn2δCξ(δ) and

E

( Tk,n∑
t=1

(Xk,t − µk)
)2

I
{
ξC
} ≤ 2Kn3δCξ(δ),
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where Cξ(δ) = Cξ,n(δ)
def
= c1 log(ec2/2nKδ). Consequently, for every arms k and q,∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤ Kn2δCξ(δ) and∣∣∣∣∣∣E

( Tk,n∑
t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I
{
ξC
}∣∣∣∣∣∣ ≤ 2Kn3δCξ(δ).

Proof of Lemma 20 c2 ≥ 1 and Corollary 16 imply P(ξC) ≤ 2nKδ. Due to this, c2 ≥
2nKδ, and Assumption 1, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, Lemma 11 implies

E
[
(Xk,t − µk)2I

{
ξC
}]
≤ 2nKδc1 log(ec2/2nKδ) = 2KnδCξ(δ).

The first claim follows from the fact that

E
[
(µ̂k,n − µk)2I

{
ξC
}]
≤ E

[∑Tk,n
t=1 (Xk,t − µk)2

Tk,n
I
{
ξC
}]

≤
n∑
t=1

E
[
(Xk,t − µk)2I

{
ξC
}]

2
≤ Kn2δCξ(δ).

The second claim follows from the fact that( Tk,n∑
t=1

(Xk,t − µk)
)2

≤
( n∑
t=1

|Xk,t − µk|
)2

≤ n
n∑
t=1

(Xk,t − µk)2,

and so

E
[( Tk,n∑

t=1

(Xk,t − µk)
)2

I
{
ξC
} ]
≤ n

n∑
t=1

E
[
(Xk,t − µk)2I

{
ξC
} ]
≤ 2Kn3δCξ(δ).

The third claim follows from the first one by Cauchy-Schwarzs inequality∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤√E[(µ̂k,n − µk)2I{ξC}]
√

E[(µ̂q,n − µq)2I{ξC}],

and the fourth one follows from the second one, analogously.

We get the following corollary by substituting δ = n−9/2:

Corollary 21 Let n ≥ K ≥ 2. Let Assumption 1 hold with c2 ≥ 1. Then for each arm k,

E
[
|µ̂k,n − µk|2I

{
ξC
} ]
≤
KCξ

n5/2
and

E

( Tk,n∑
t=1

(Xk,t − µk)
)2

I
{
ξC
} ≤ 2KCξ

n3/2
.
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where Cξ = Cξ(n
−9/2) = c1 log(ec2n

7/2/2K) as in (19). Consequently, for every arms k
and q,

∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{ξC} ]∣∣ ≤ KCξ

n5/2
and∣∣∣∣∣∣E

( Tk,n∑
t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I
{
ξC
}∣∣∣∣∣∣ ≤ 2KCξ

n3/2
.

Upper and lower bound on βn of (11) for δ = n−9/2. Using n ≥ 4K ≥ 8, c2 ≥ 1, and
monotonicity in n we have

βn =
√
c1 log(c2

2n
9) log(4n9) +

√
c1 log(ec2n4.5)

2(1− n−4.5)n7/4

≤
√
c1

log(c2
2n

9) + log(4n9)

2
+

√
c1 log(ec284.5)

2(1− 8−4.5)87/4

≤
√
c1

(
9 log n+ log(4c2

2)/2 +
log(e2c2

289)

25/4(82 − 8−2.5)
√

log(e84.5)

)
.

Using

log(e2c2
289) ≤ log(e2c2

2(c2 + 1)27) ≤ 29 log(c2 + 1) + 2 log(c2 + 1)/ log 2 ≤ 32 log(c2 + 1)

and 4c2
2 ≤ (c2 + 1)3

βn ≤
√
c1

(
9 log n+ 1.5 log(c2 + 1) +

32 log(c2 + 1)

489

)
≤
√
c1(9 log n+ 1.6 log(c2 + 1)) = Cβ

recalling (18). On the other hand, keeping only the first term of βn

βn ≥
√
c1 log(c2

2n
9) log(4n9) ≥

√
c1 log(89c2

2)29 log 2 ≥
√

58c1 log 2 log(ec2) ≥
√

40c1 log(ec2).

Upper bound on γn of Lemma 2 when δ = n−9/2. If Assumption 1 is satisfied with c2 ≥ 1
then Lemma 11 implies σ2

k ≤ c1 log(ec2) for any 1 ≤ k ≤ K, thus recalling Σ̄ = maxp σp
we have Σw ≤ Σ̄ ≤

√
c1 log(ec2). For δ = n−9/2, the lower bound above on βn leads to

Σ̄/βn ≤ 1/
√

40 and

γn = (Σ̄/βn +
√

8)1/3 ≤ (1/
√

40 +
√

8)1/3 < 1.5.

Appendix C. Proof of Proposition 8 and 9

In this section, we use Lemmata 1 and 2 to prove Proposition 8 and 9, respectively.
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C.1 Proof of Proposition 8

Proof of Proposition 8 By definition, the pseudo-loss of the algorithm is

L̃n(AMC-UCB) =

K∑
k=1

w2
kσ

2
kE
[I{ξ}
Tk,n

]
+

K∑
k=1

w2
kσ

2
kE
[I{ξC}
Tk,n

]
≤

K∑
k=1

w2
kσ

2
kP(ξ)

infω∈ξ Tk,n(ω)
+

K∑
k=1

w2
kσ

2
k

P(ξC)

2
, (37)

because Tk,n ≥ 2 by the definition of AMC-UCB. Recalling (14) from Lemma 1 that upper
bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
kσ

2
kP(ξ)

infξ Tk,n
≤

K∑
k=1

wkσk

(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)
=

Σ2
w

n
+

12Σwβn

n3/2λ
3/2
min

+
4KΣ2

w

n2

using
∑

k wkσk = Σw. Finally, using (37) and the previous inequality and recalling P(ξC) ≤
2nKδ from Corollary 16, δ = n−9/2, and βn ≤ Cβ from Appendix B.3, we have

R̃n(AMC-UCB) = L̃n(AMC-UCB)− Σ2
w

n

≤ 12Σwβn

n3/2λ
3/2
min

+
4KΣ2

w

n2
+ nKδ

K∑
k=1

w2
kσ

2
k

≤
12ΣwCβ

n3/2λ
3/2
min

+
4KΣ2

w

n2
+
KΣ2

w

n7/2

≤
12ΣwCβ

n3/2λ
3/2
min

+
(4K +

√
2/16)Σ2

w

n2
,

that concludes the proof.

C.2 Proof of Proposition 9

Proof of Proposition 9 We decompose and bound L̃n(AMC-UCB) on ξ and ξC again as
in (37). Recalling (17) from Lemma 2 that upper bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
kσ

2
kP(ξ)

infξ Tk,n
≤

K∑
k=1

wkσk

(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)
=

Σ2
w

n
+

12K1/3Σwβnγn

n4/3
+

4KΣ2
w

n2

2258



Adaptive Strategy for Stratified Monte Carlo

using
∑

k wkσk = Σw. Finally, using (37) and the previous inequality and recalling P(ξC) ≤
2nKδ from Corollary 16, δ = n−9/2, βn ≤ Cβ, and γn < 1.5 from Appendix B.3, we have

R̃n(AMC-UCB) = L̃n(AMC-UCB)− Σ2
w

n

≤ 12K1/3Σwβnγn

n4/3
+

4KΣ2
w

n2
+ nKδ

K∑
k=1

w2
kσ

2
k

≤
18K1/3ΣwCβ

n4/3
+

4KΣ2
w

n2
+
KΣ2

w

n7/2

≤
18K1/3ΣwCβ

n4/3
+

(4K +
√

2/16)Σ2
w

n2
,

that concludes the proof.

Appendix D. Bounds on Rn(AMC-UCB)

This section contains the proofs of the regret bounds for AMC-UCB.

D.1 Problem-Dependent Bound

Proof of Proposition 3 By definition, we have

Ln(AMC-UCB) =
K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
+

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I

{
ξC
} ]
. (38)

Using the definition of µ̂k,n, we have

(µ̂k,n − µk)2I{ξ} ≤
(∑Tk,n

t=1 (Xk,t − µk)
)2

infω∈ξ T
2
k,n(ω)

I{ξ} ≤
(∑Tk,n

t=1 (Xk,t − µk)
)2

infξ T
2
k,n

.

Taking expectation and using Corollary 19

E
[
(µ̂k,n − µk)2I{ξ}

]
≤

E
[(∑Tk,n

t=1 (Xk,t − µk)
)2]

infξ T
2
k,n

=
E[Tk,n]σ2

k

infξ T
2
k,n

,

so we bound the first sum of (38) as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

. (39)

Recalling (14) from Lemma 1 that upper bounds wkσk/Tk,n on ξ, we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
K∑
k=1

(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)2
E[Tk,n]. (40)
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Since
∑

k Tk,n = n, we have
∑

k E[Tk,n] = n, (40) can be rewritten as

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
(Σw

n
+

12βn

n3/2λ
3/2
min

+
4KΣw

n2

)2
n

≤
(Σ2

w

n2
+

24Σwβn

n5/2λ
3/2
min

+
8KΣ2

w

n3
+

288β2
n

n3λ3
min

+
32K2Σ2

w

n4

)
n

≤ Σ2
w

n
+

24Σwβn

n3/2λ
3/2
min

+ 16
KΣ2

w

n2
+

288β2
n

n2λ3
min

.

Finally, using (38), (39), and the previous inequality and recalling δ = n−9/2, Corollary 21,
and βn ≤ Cβ from Appendix B.3 we have

Rn(AMC-UCB) = Ln(AMC-UCB)− Σ2
w

n

≤ 24Σwβn

n3/2λ
3/2
min

+ 16
KΣ2

w

n2
+

288β2
n

n2λ3
min

+
KCξ

n5/2

≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+ 16
KΣ2

w

n2
+

√
KCξ
2n2

≤
24ΣwCβ

n3/2λ
3/2
min

+
288C2

β

n2λ3
min

+

√
KCξ + 32KΣ2

w

2n2
.

This concludes the proof.

D.2 Problem-Independent Bound

Proof of Proposition 4 Again, we decompose Ln(AMC-UCB) on ξ and ξC as in (38), and
bound it on ξ as in (39). Recalling (17) from Lemma 2 that upper bounds wkσk/Tk,n on ξ,
we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
K∑
k=1

(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)2
E[Tk,n]. (41)

Since
∑

k Tk,n = n, we have
∑

k E[Tk,n] = n, (41) can be rewritten as

K∑
k=1

w2
k

σ2
kE[Tk,n]

infξ T
2
k,n

≤
(Σw

n
+

12K1/3βnγn

n4/3
+

4KΣw

n2

)2
n

≤
(Σ2

w

n2
+

24K1/3Σw

n7/3
βnγn +

8KΣ2
w

n3
+

288K2/3

n8/3
β2
nγ

2
n +

32K2Σ2
w

n4

)
n

≤ Σ2
w

n
+

24K1/3Σw

n4/3
βnγn +

288K2/3

n5/3
β2
nγ

2
n +

16KΣ2
w

n2
.
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Finally, using (38), (39), and the previous inequality and recalling δ = n−9/2, Corollary 21,
βn ≤ Cβ, and γn < 1.5 from Appendix B.3 we have

Rn(AMC-UCB) = Ln(AMC-UCB)− Σ2
w

n

≤ 24K1/3Σw

n4/3
βnγn +

288K2/3

n5/3
β2
nγ

2
n +

16KΣ2
w

n2
+
KCξ

n5/2

≤
36K1/3ΣwCβ

n4/3
+

648K2/3C2
β

n5/3
+

√
KCξ + 32KΣ2

w

2n2

≤
36K1/3ΣwCβ

n4/3
+
K2/3(2058C2

β + 32Σ2
w) +K1/6Cξ

(2n)5/3
.

This concludes the proof.

Remark 22 Observe that in the proof of Proposition 8 and 9, we already bounded a linear
combination of E[I{ξ} /Tk,n] (leading to the desired rates), that is clearly upper bounded
also by E[Tk,n]/ infξ T

2
k,n appearing in both proofs above. Unfortunately, a reverse inequal-

ity does not directly hold, thus here we had to proceed in a more involved way leading to
looser constants. If one could derive such a reverse inequality and then use the bounds on
R̃n(AMC-UCB), that might give sharper constants also in the bounds on Rn(AMC-UCB).

Appendix E. Bounds on the Cross Product-Terms

In this appendix, we prove Proposition 5 and 6 stating that the cross product-terms in
(2) are 0 for symmetric distributions and decrease at polynomial rate in n in the general
sub-Gaussian case.

E.1 Vanishing of the Terms for Symmetric Arm Distributions

Proof of Proposition 5

Step 1: Conditioning on a pair of numbers of pulls. Recall that (ŝk,t)k≤K,t≤n are the
unbiased empirical variances (see Equation 12). At each time step t > 2K, AMC-UCB chooses
kt based on the values of (Bp,t)p≤K , which depend on {Tp,t−1}p≤K and {σ̂p,t−1}p≤K . Thus
{Tp,t}p≤K is a deterministic map of {Tp,t−1}p≤K and {σ̂p,t−1}p≤K . Hence, by induction,
each Tk,n is a deterministic function of {σ̂p,t}p≤K,t<n, and so of {ŝp,t}p≤K,t≤n, as well.

Now fix arms k,k′ and 1 ≤ s,s′ ≤ n such that P(Tk,n = s, Tk′,n = s′) > 0. Then we have

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

∣∣Tk,n = s, Tk′,n = s′
]

= E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣∣Tk,n = s, Tk′,n = s′

]
(42)

= E
[
E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣{ŝp,t}p≤K,t≤n]∣∣∣∣Tk,n = s, Tk′,n = s′

]
.
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Since the full sample sequences of the individual arms are independent, the sequences
(Xk,1, . . . , Xk,s) and (Xk′,1, . . . , Xk′,s′) remain conditionally independent conditioning on
{ŝp,t}p≤K,t≤n. This leads to:

E
[(1

s

s∑
t=1

Xk,t − µk
)( 1

s′

s′∑
t=1

Xk′,t − µk′
)∣∣∣{ŝp,t}p≤K,t≤n] (43)

= E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝp,t}p≤K,t≤n]E[ 1

s′

s′∑
t=1

Xk′,t − µk′
∣∣∣{ŝp,t}p≤K,t≤n].

Step 2: For any k ≤ K and s ≤ n, E
[

1
s

∑s
t=1Xk,t − µk

∣∣{ŝp,t}p≤K,t≤n] = 0 a.s. We first
state the following Lemma proven in Appendix F:

Lemma 23 Let ν be a symmetric distribution on R around 0, X = (X1, . . . , Xn) be gen-
erated in an i.i.d. way according to ν, and ŝ2,. . . ,ŝn are the unbiased empirical standard
deviations given by (35). Then for 1 ≤ t ≤ n, E[Xt|{ŝt′}t′≤n] = 0 a.s.

As νk is symmetric, Lemma 23 applies to X = (Xk,1−µk, . . . , Xk,n−µk) and {ŝk,t}t≤n,
that is,

E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝk,t}t≤n] =

1

s

s∑
t=1

E[Xk,t − µk|{ŝk,t′}t′≤n] = 0 a.s.

By definition, {ŝp,t}p6=k,t≤n is independent of (Xk,1, . . . , Xk,s, {ŝk,t}t≤n), hence

E
[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝp,t}p≤K,t≤n] = E

[1

s

s∑
t=1

Xk,t − µk
∣∣∣{ŝk,t}t≤n] = 0 a.s. (44)

Step 3: The cross product-terms E[(µ̂k,n − µk)(µ̂k′,n − µk′)] = 0. We combine (42), (43),
and (44) to get in case of P(Tk,n = s, Tk′,n = s′) > 0

E[(µ̂k,n − µk)(µ̂k′,n − µk′)|Tk,n = s, Tk′,n = s′] = E[0 · 0|Tk,n = s, Tk′,n = s′] = 0.

Conditioning on {Tk,n = s, Tk′,n = s′} and using the equation above

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)

]
=

n∑
s=2

n∑
s′=2

E
[
(µ̂k,n − µk)(µ̂k′,n − µk′)|Tk,n = s, Tk′,n = s′

]
P
(
Tk,n = s, Tk′,n = s′

)
= 0.

Taking the weighted sum over k and k′ concludes the proof.
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E.2 Bounds on the Terms for General Arm Distributions

The following lemma proven in Appendix F will be used for the proof:

Lemma 24 Let X be a random variable. Let (Ωu)u=1,...,p be a partition of an event Ω′ of
the probability space. Let au ∈ R for u = 1, . . . , p, and a = min1≤u≤p au, ā = max1≤u≤p au.
We have∣∣∣E[X p∑

u=1

auI{Ωu}
]∣∣∣− ∣∣aE[XI

{
Ω′
}

]
∣∣ ≤ ∣∣∣E[X p∑

u=1

auI{Ωu}
]
− aE[XI

{
Ω′
}

]
∣∣∣

≤ (ā− a)E|XI
{

Ω′
}
|.

Proof of Proposition 6 For any given k 6= q, introduce

Zkq
def
=

Tk,n∑
t=1

(Xk,t − µk)

Tq,n∑
t=1

(Xq,t − µq)

 = Tk,nTq,n(µ̂k,n − µk)(µ̂q,n − µq).

Then it suffices to bound |wkwqE[Zkq/(Tk,nTq,n)]|.

Step 1: E[Zkq] = 0. Let Tk,t
def
= min{s ≥ 1 : Tk,s ≥ t}, that is, that random time step when

AMC-UCB pulls arm k the tth time. (Tk,t =∞ if k is not pulled t times.) Now

E[Zkq] = E
[( n∑

t=1

(Xk,t − µk)I{Tk,n ≥ t}
)( n∑

t=1

(Xq,t − µq)I{Tq,n ≥ t}
)]

=
n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′

} ]
=

n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t < Tq,t′

} ]
+

n∑
t=1

n∑
t′=1

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

} ]
.

Fix any 1 ≤ t, t′ ≤ n. Proposition 17 implies that {Tk,n ≤ t − 1} ∈ G(k)
t−1 (defined in

Proposition 17), and thus also {Tk,n ≥ t} ∈ G
(k)
t−1. Tk,t > Tq,t′ means that for some time step

s ≥ t′, {Tq,s ≥ t′}, but {Tk,s < t}. Thus,

{Tk,t > Tq,t′} =

∞⋃
s=t′

{Tq,s ≥ t′} ∩ {Tk,s < t}.

Intersecting this by {Tk,n ≥ t} and noting that for s ≥ n, {Tk,s < Tk,n} = ∅

{Tk,t > Tq,t′} ∩ {Tk,n ≥ t} =
n−1⋃
s=t′

{Tq,s ≥ t′} ∩ {Tk,s < t ≤ Tk,n}.
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Now, by Proposition 17 for any s ≤ n, {Tk,s < t} = {Tk,s ≤ t − 1} ∈ G(k)
t−1. Moreover,

on {Tk,s < t}, Tq,s is G(k)
t−1-measurable, thus {Tq,s ≥ t′} ∩ {Tk,s < t} ∈ G(k)

t−1. Hence

{Tk,t > Tq,t′} ∩ {Tk,n ≥ t} ∈ G(k)
t−1, as well. Observe that Tk,n ≥ t and Tk,t > Tq,t′ together

imply Tq,n ≥ t′, so I
{
Tk,t > Tq,t′ ∧ Tk,n ≥ t ∧ Tq,n ≥ t′

}
is G(k)

t−1-measurable. Also Xq,t′ is

obviously G(k)
t−1-measurable, while Xk,t is independent of G(k)

t−1. Thus, conditioning on G(k)
t−1,

we have

E
[
(Xk,t − µk)(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

} ]
= E

[
(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

}
E
[
Xk,t − µk|G

(k)
t−1

]]
= E

[
(Xq,t′ − µq)I

{
Tk,n ≥ t ∧ Tq,n ≥ t′ ∧ Tk,t > Tq,t′

}
0
]

= 0.

By summing for t,t′ and repeating the same reasoning for the other term of E[Zkq] with
arm q, we obtain that E[Zkq] = 0.

Step 2: Bounding the terms on ξC . By Corollary 21 we have∣∣∣∣E [ Zkq
Tk,nTq,n

I
{
ξC
}]∣∣∣∣ ≤ KCξ

n5/2
and

∣∣E [ZkqI{ξC}]∣∣ ≤ 2KCξ

n3/2
, (45)

implying, since E[Zkq] = 0 (Step 1), also

|E[ZkqI{ξ}]| ≤
2KCξ

n3/2
. (46)

Step 3: Bounding the terms on ξ. We recall that under Assumption 1, n ≥ 4K, and
δ = n−9/2, combining Lemmata 1 (Equation 15) and 2 we have that AMC-UCB run by βn
given by (11) satisfies on ξ for all arm p, −λpM ≤ Tp,n − T ∗p,n ≤M , where

M
def
= 4 min

(
3βn

Σwλ
3/2
min

√
n+K,K1/3 3βnγn

Σw
n2/3 +K

)

and γn = (Σ̄/βn +
√

8)1/3 as in Lemma 2. Recalling βn ≤ Cβ and γn < 1.5 from Ap-
pendix B.3 M is upper bounded by min

(
B
√
n,An2/3

)
, where

B
def
=

12Cβ

Σwλ
3/2
min

+ 2
√
K and A

def
= K1/3

(
18Cβ
Σw

+ 41/3

)
.

Moreover, by (16) of Lemma 2,

Tp,n ≥ (wpn)2/3

γ2n
> 4(wn)2/3/9 = En2/3 on ξ,

where w
def
= mink wk and E

def
= 4w2/3/9 > 0. Note that B displays a dependency on λ−1

min,
but A and E do not. Summarizing these inequalities on Tp,n we have

Tp,n ≥ max
(
T ∗p,n − λp min

(
B
√
n,An2/3

)
, En2/3

)
def
= T p,n

and Tp,n ≤ T ∗p,n + min
(
B
√
n,An2/3

) def
= T̄p,n
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on ξ. Note that using n ≥ 4K ≥ 8, Σ2
w ≤ c1 log(ec2), c2 ≥ 1, and λmin ≤ 1/K it is easy to

see that each T̄p,n > 643. Since now

{{Tk,n = t, Tq,n = t′} ∩ ξ : T k,n ≤ t ≤ T̄k,n, T q,n ≤ t′ ≤ T̄q,n}

is a partition of ξ, we have by Lemma 24

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ =

∣∣∣E[Zkq T̄k,n∑
t=Tk,n

T̄q,n∑
t′=T q,n

1

tt′
I
{
{Tk,n = t, Tq,n = t′} ∩ ξ

} ]∣∣∣
≤ E|ZkqI{ξ} |

( 1

T k,nT q,n
− 1

T̄k,nT̄q,n

)
+

1

T̄k,nT̄q,n
|E[ZkqI{ξ}]|.

Note now that by Cauchy-Schwarz’s inequality

E|ZkqI{ξ} | ≤ E|Zkq| ≤

√√√√E
[( Tk,n∑

t=1

(Xk,t − µk)
)2
]
E
[( Tq,n∑

t=1

(Xq,t − µq)
)2
]
.

Using Corollary 19 the right-hand side is bounded by
√

ETk,nσ2
kETq,nσ2

q . Since

ETk,n = E[Tk,nI{ξ}] + E[Tk,nI
{
ξC
}

] ≤ T̄k,nP(ξ) + 2Kn2δ ≤ T̄k,n + 2Kn−5/2 ≤ T̄k,n +
√

2/64

by definition of T̄k,n and T̄k,n > 643, ETk,n < (1 +
√

2/41152)T̄k,n < 1.01T̄k,n. Similarly,

ETq,n < 1.01T̄q,n. Thus we have E|ZkqI{ξ} | ≤ 1.01σkσq

√
T̄k,nT̄q,n. From this and (46), one

gets

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 1.01wkσkwqσq

√
T̄k,nT̄q,n

(
1

T k,nT q,n
− 1

T̄k,nT̄q,n

)
+

2wkwq
T̄k,nT̄q,n

KCξ

n3/2

≤ 1.01
wkσkwqσq
T k,nT q,n

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

+
1.3KCξ

106n3/2
.

Now for n large enough (compared to K, c1, log c2, 1/Σw, and log n), n ≥ 8A3 (i.e.,
An2/3 ≤ n/2) holds. Thus

T p,n ≥ T ∗p,n −Aλpn2/3 = λp(n−An2/3)

implies also
wpσp
T p,n

≤ Σw
n−An2/3 ≤ 2Σw

n for any arm p. This leads to the bound

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 4.04

Σ2
w

n2

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

+
1.3KCξ

106n3/2
. (47)
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Step 4: problem-dependent upper bound. We deduce that

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

≤
(
nλk +B

√
n
)(
nλq +B

√
n
)
−
(
nλk −Bλk

√
n
)(
nλq −Bλq

√
n
)√

nλknλq

=
B(λk + λq + 2λkλq)n

√
n+B2(1− λkλq)n

n
√
λkλq

≤ B
√
n

(
1 +B/

√
n√

λkλq
+ 2
√
λkλq

)

≤ B

(
1 +B/

√
8

λmin
+ 1

)
√
n

using n ≥ 4K ≥ 8 and λkλq ≤ 1/4. Thus, we have from this and (47)

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 5B

(
1 +B/

√
8

λmin
+ 1

)
Σ2
w

n3/2
+

1.3KCξ

106n3/2
=
C1 + 1.3KCξ/106

n3/2
,

where C1
def
= 5B((1 +B/

√
8)/λmin + 1)Σ2

w.
Finally, using (45), we have∣∣∣wkwqE[ Zkq

Tk,nTq,n

]∣∣∣ ≤ wkwq∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣+ wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I
{
ξC
} ]∣∣∣

≤
C1 + 1.3KCξ/106

n3/2
+
KCξ

4n5/2

≤
C1 + (1.3K/106 + 1/16)Cξ

n3/2
,

where C1 and Cξ depend only polynomially on log n, λ−1
min, K, Σw, c1, and log c2. This

concludes the proof for the problem-dependent bound.

Step 4’: problem-independent upper bound. Using T̄k,n ≥ T k,n ≥ En2/3, which implies

that T̄k,n ≥ max(λkn,En
2/3), we deduce that

T̄k,nT̄q,n − T k,nT q,n√
T̄k,nT̄q,n

≤
(
nλk +An2/3

)(
nλq +An2/3

)
−
(
nλk −Aλkn2/3

)(
nλq −Aλqn2/3

)√
max

(
λkn,En2/3

)
max

(
λqn,En2/3

)
=
A(λk + λq + 2λkλq)nn

2/3 +A2(1− λkλq)n4/3√
max

(
λkλqn2, Emax(λk, λq)nn2/3, E2n4/3

)
≤ A

[
(λk + λq)n

5/3√
Emax(λk, λq)n5/3

+
2λkλqn

5/3√
λkλqn

+
An4/3

En2/3

]

≤ An5/6

[√
λk + λq√
E/2

+
2
√
λkλq

n1/6
+

A

En1/6

]

≤ A√
2

(
2√
E

+ 1 +
A

E

)
n5/6
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using n ≥ 4K ≥ 8 and λkλq ≤ 1/4. Thus, we have from this and (47) that

wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣ ≤ 2.02

√
2A

(
2√
E

+ 1 +
A

E

)
Σ2
w

n7/6
+

1.3KCξ

106n3/2
≤
C2 + 9K2/3Cξ/107

n7/6
,

where C2 = 3A(2/
√
E + 1 +A/E)Σ2

w.
Finally, using (45), we have∣∣∣wkwqE[ Zkq

Tk,nTq,n

]∣∣∣ ≤ wkwq∣∣∣E[ Zkq
Tk,nTq,n

I{ξ}
]∣∣∣+ wkwq

∣∣∣E[ Zkq
Tk,nTq,n

I
{
ξC
} ]∣∣∣

≤
C2 + 9K2/3Cξ/107

n7/6
+
KCξ

4n5/2

≤
C2 + (9K2/3/107 + 1/32)Cξ)

n7/6
,

where C2 and Cξ depend only polynomially on log n, K, Σw, c1, log c2, and 1/w. This
concludes the proof for the problem-independent bound.

Appendix F. Proofs of Technical Lemmata

Proof of Lemma 11 Using that log(c2/δ) ≥ 0

E
[
|X − µ|2I{A}

]
=

∞∫
0

P
(
|X − µ|2 > ε,A

)
dε

≤
c1 log(c2/δ)∫

0

P(A) dε+

∞∫
c1 log(c2/δ)

P
(
|X − µ|2 > ε

)
dε

≤ δc1 log(c2/δ) +

∞∫
c1 log(c2/δ)

c2e
−ε/c1 dε = δc1 log(ec2/δ).

Proof of Lemma 15 Using (9) for ε2 = c1 log(c2/δ)(> 0) we have

P(AC) ≤ c2e
−c1 log(c2/δ)/c1 = δ and P(A) ≥ 1− δ > 0, (48)

so Var[X|A] and also µ̃
def
= E[X|A] = E[XI{A}]/P(A) make sense. If P(A) = 1 then σ̃ = σ,

and the claim follows. Now assume P(A) < 1. Since E[|X − µ|2|AC ] ≥ c1 log(c2/δ) ≥
E[|X − µ|2|A], we have

σ2 = E[|X − µ|2] = E[|X − µ|2|AC ]P(AC) + E[|X − µ|2|A]P(A) ≥ E[|X − µ|2|A]. (49)

Moreover,
σ̃2 = E[|X − µ̃|2|A] = E[|X − µ|2|A]− |µ− µ̃|2,
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and thus

σ2 − σ̃2 = σ2 − E[|X − µ|2|A] + |µ− µ̃|2 ≥ 0 (50)

by (49). But (49) implies also that

σ2 − E[|X − µ|2|A] =
σ2P(A)− E[|X − µ|2I{A}]

P(A)
=

E[|X − µ|2I
{
AC
}

]− σ2P(AC)

P(A)

=
E[(|X − µ|2 − σ2)I

{
AC
}

]

P(A)
. (51)

Using that δ ≤ 1/e and Lemma 11 imply c1 log(c2/δ) ≥ c1 log(ec2) ≥ σ2, we have

E
[
(|X − µ|2 − σ2)I

{
AC
} ]

=

∞∫
0

P(|X − µ|2 − σ2 > ε′, AC) dε′ =

∞∫
σ2

P(|X − µ|2 > ε,AC) dε

=

c1 log(c2/δ)∫
σ2

P(AC) dε+

∞∫
c1 log(c2/δ)

P(|X − µ|2 > ε) dε

≤ δ(c1 log(c2/δ)− σ2) +

∞∫
c1 log(c2/δ)

c2e
−ε/c1 dε (by Equations 48 and 9)

= δc1 log(c2/δ)− δσ2 + c1c2e
−c1 log(c2/δ)/c1 = δc1 log(ec2/δ)− δσ2.

This, (51), and (48) imply

σ2 − E[|X − µ|2|A] ≤ δ c1 log(ec2/δ)− σ2

1− δ
. (52)

For the last term of (50), noticing that E[XI
{
AC
}

] + E[XI{A}] = µ we have

|µ− µ̃| =
∣∣∣∣µP(A)− E[XI{A}]

P(A)

∣∣∣∣ =

∣∣E[XI
{
AC
}

]− µP(AC)
∣∣

P(A)
=

∣∣E[(X − µ)I
{
AC
}

]
∣∣

P(A)

≤
√

E[|X − µ|2]E[I{AC}]
P(A)

(by Cauchy-Schwarz’s inequality) (53)

=
σ
√

P(AC)

P(A)
≤ σ
√
δ

1− δ

using again (48). From (50), (52), and (53), we derive

σ2 − σ̃2 ≤ δ c1 log(ec2/δ)− σ2

1− δ
+

δσ2

(1− δ)2
≤ c1δ

log(ec2/δ)

(1− δ)2
.

Since (σ − σ̃)2 ≤ (σ + σ̃)(σ − σ̃) = σ2 − σ̃2, the claim follows.
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Proof of Lemma 23 Denote (ŝ2, . . . , ŝn) by Ŝ(X). Then Ŝ(X) = Ŝ(−X) holds due to the
quadratic form of the empirical variances. Thus, by the symmetry of ν,

E[Xt|Ŝ(X)] = E[−Xt|Ŝ(−X)] = −E[Xt|Ŝ(X)] a.s.,

implying E[Xt|{ŝt′}t′≤n] = E[Xt|Ŝ(X)] = 0 a.s.

Proof of Lemma 24 By the definition of ā and a,

X

p∑
u=1

auI{Ωu} ≤ XI{X ≥ 0} āI
{

Ω′
}

+XI{X < 0} aI
{

Ω′
}
.

This implies

E
[
X

p∑
u=1

auI{Ωu}
]
≤ E

[
XI{X ≥ 0} āI

{
Ω′
}

+XI{X < 0} aI
{

Ω′
} ]

= E
[
(ā− a)XI{X ≥ 0} I

{
Ω′
}

+ aX(I{X < 0}+ I{X ≥ 0})I
{

Ω′
} ]

= (ā− a)E
[
XI{X ≥ 0} I

{
Ω′
} ]

+ aE[XI
{

Ω′
}

]

≤ (ā− a)E|XI
{

Ω′
}
|+ aE[XI

{
Ω′
}

].

By applying the inequality above for −X we have

E
[
X

p∑
u=1

auI{Ωu}
]
≥ −(ā− a)E|XI

{
Ω′
}
|+ aE[XI

{
Ω′
}

].

Those two inequalities lead to the second inequality of the lemma, while the first one follows
from the triangle inequality.
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