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Abstract

The relationship between statistical dependency and causality lies at the heart of all sta-
tistical approaches to causal inference. Recent results in the ChaLearn cause-effect pair
challenge have shown that causal directionality can be inferred with good accuracy also
in Markov indistinguishable configurations thanks to data driven approaches. This paper
proposes a supervised machine learning approach to infer the existence of a directed causal
link between two variables in multivariate settings with n > 2 variables. The approach
relies on the asymmetry of some conditional (in)dependence relations between the mem-
bers of the Markov blankets of two variables causally connected. Our results show that
supervised learning methods may be successfully used to extract causal information on the
basis of asymmetric statistical descriptors also for n > 2 variate distributions.

Keywords: causal inference, information theory, machine learning

1. Introduction

The relationship between statistical dependency and causality lies at the heart of all sta-
tistical approaches to causal inference and can be summarized by two famous statements:
correlation (or more generally statistical association) does not imply causation and causa-
tion induces a statistical dependency between causes and effects (or more generally descen-
dants) (Reichenbach, 1956). In other terms it is well known that statistical dependency is
a necessary yet not sufficient condition for causality. The unidirectional link between these
two notions has been used by many formal approaches to causality to justify the adoption
of statistical methods for detecting or inferring causal links from observational data. The
most influential one is the Causal Bayesian Network approach, detailed in (Koller and Fried-
man, 2009) which relies on notions of independence and conditional independence to detect
causal patterns in the data. Well known examples of related inference algorithms are the
constraint-based methods like the PC algorithms (Spirtes et al., 2000) and IC (Pearl, 2000).
These approaches are founded on probability theory and have been shown to be accurate
in reconstructing causal patterns in many applications (Pourret et al., 2008), notably in
bioinformatics (Friedman et al., 2000). At the same time they restrict the set of configu-
rations which causal inference is applicable to. Such boundary is essentially determined by
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the notion of distinguishability which defines the set of Markov equivalent configurations on
the basis of conditional independence tests. Typical examples of indistinguishability are the
two-variable setting and the completely connected triplet configuration (Guyon et al., 2007)
where it is impossible to distinguish between cause and effects by means of conditional or
unconditional independence tests.

If on one hand the notion of indistinguishability is probabilistically sound, on the other
hand it should not prevent us from addressing interesting yet indistinguishable causal pat-
terns. In fact, indistinguishability results rely on two main aspects: i) they refer only to
specific features of dependency (notably conditional or unconditional independence) and
ii) they state the conditions (e.g. faithfulness) under which it is possible to distinguish
(or not) with certainty between configurations. Accordingly, indistinguishability results do
not prevent the existence of statistical algorithms able to reduce the uncertainty about the
causal pattern even in indistinguishable configurations. This has been made evident by
the appearance in recent years of a series of approaches which tackle the cause-effect pair
inference, like ANM (Additive Noise Model) (Hoyer et al., 2009), IGCI (Information Ge-
ometry Causality Inference) (Daniusis et al., 2010; Janzing et al., 2012), LiNGAM (Linear
Non Gaussian Acyclic Model) (Shimizu et al., 2006) and the algorithms described in (Mooij
et al., 2010) and (Statnikov et al., 2012)1. What is common to these approaches is that
they use alternative statistical features of the data to detect causal patterns and reduce the
uncertainty about their directionality. A further important step in this direction has been
represented by the recent organization of the ChaLearn cause-effect pair challenge (Guyon,
2014). The good (and significantly better than random) accuracy obtained on the basis
of observations of pairs of causally related (or unrelated) variables supports the idea that
alternative strategies can be designed to infer with success (or at least significantly better
than random) indistinguishable configurations.

It is worthy to remark that the best ranked approaches2 in the ChaLearn competition
share a common aspect: they infer from statistical features of the bivariate distribution
the probability of the existence and then of the directionality of the causal link between
two variables. The success of these approaches shows that the problem of causal inference
can be successfully addressed as a supervised machine learning approach where the inputs
are features describing the probabilistic dependency and the output is a class denoting the
existence (or not) of a directed causal link. Once sufficient training data are made available,
conventional feature selection algorithms (Guyon and Elisseeff, 2003) and classifiers can be
used to return a prediction better than random.

The effectiveness of machine learning strategies in the case of pairs of variables encour-
ages the extension of the strategy to configurations with a larger number of variables. In
this paper we propose an original approach to learn from multivariate observations the prob-
ability that a variable is a direct cause of another. This task is undeniably more difficult
because

• the number of parameters needed to describe a multivariate distribution increases
rapidly (e.g. quadratically in the Gaussian case),

1. A more extended list of recent algorithms is available in http://www.causality.inf.ethz.ch/

cause-effect.php?page=help.
2. We took part in the ChaLearn challenge and we ranked 8th in the final leader board.
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From Dependency to Causality

• information about the existence of a causal link between two variables is returned
also by the nature of the dependencies existing between the two variables and the
remaining ones.

The second consideration is evident in the case of a collider configuration z1 → z2 ← z3: in
this case the dependency (or independency) between z1 and z3 tells us more about the link
z1 → z2 than the dependency between z1 and z2. This led us to develop a machine learning
strategy (described in Section 2) where descriptors of the relation existing between mem-
bers of the Markov blankets of two variables are used to learn the probability (i.e. a score)
that a causal link exists between two variables. The approach relies on the asymmetry of
some conditional (in)dependence relations between the members of the Markov blankets of
two variables causally connected. The resulting algorithm (called D2C and described in
Section 3) predicts the existence of a direct causal link between two variables in a multi-
variate setting by (i) creating a set of of features of the relationship based on asymmetric
descriptors of the multivariate dependency and (ii) using a classifier to learn a mapping
between the features and the presence of a causal link.

In Section 4 we report the results of a set of experiments assessing the accuracy of the
D2C algorithm. Experimental results based on synthetic and published data show that the
D2C approach is competitive and often outperforms state-of-the-art methods.

2. Learning the Relation between Dependency and Causality in a
Configuration with n > 2 Variables.

This section presents an approach to learn, from a number of observations, the relationships
existing between the n variate distribution of Z = [z1, . . . , zn] and the existence of a directed
causal link between two variables zi and zj , 1 ≤ i 6= j ≤ n, in the case of no confounding,
no selection bias and no feedback configurations. Several parameters may be estimated
from data in order to represent the multivariate distribution of Z, like the correlation or
the partial correlation matrix. Some problems however arise in this case like: (i) these
parameters are informative in case of Gaussian distributions only, (ii) identical (or close)
causal configurations could be associated to very different parametric values, thus making
difficult the learning of the mapping and (iii) different causal configurations may lead to
identical (or close) parametric values.

In other terms it is more relevant to describe the distribution in structural terms (e.g.
with notions of conditional dependence/independence) rather than in parametric terms.
Two more aspects have to be taken into consideration. First since we want to use a learning
approach to identify cause-effect relationships we need some quantitative features to describe
the structure of the multivariate distribution. Second, since asymmetry is a distinguishing
characteristic of a causal relationship, we expect that effective features should share the
same asymmetric properties.

In this paper we will use information theory to represent and quantify the notions
of (conditional) dependence and independence between variables and to derive a set of
asymmetric features to reconstruct causality from dependency.
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2.1 Notions of Information Theory

Let us consider three continuous random variables z1, z2 and z3 having a joint Lebesgue
density3. Let us start by considering the relation between z1 and z2. The mutual informa-
tion (Cover and Thomas, 1990) between z1 and z2 is defined in terms of their probabilistic
density functions p(z1), p(z2) and p(z1, z2) as

I(z1; z2) =

∫ ∫
log

p(z1, z2)

p(z1)p(z2)
p(z1, z2)dz1dz2 = H(z1)−H(z1|z2) (1)

where H is the entropy and the convention 0 log 0
0 = 0 is adopted. This quantity measures

the amount of stochastic dependence between z1 and z2 (Cover and Thomas, 1990). Note
that, if z1 and z2 are Gaussian distributed the following relation holds

I(z1; z2) = −1

2
log(1− ρ2) (2)

where ρ is the Pearson correlation coefficient between z1 and z2.
Let us now consider a third variable z3. The conditional mutual information (Cover

and Thomas, 1990) between z1 and z2 once z3 is given is defined by

I(z1; z2|z3) =

∫ ∫ ∫
log

p(z1, z2|z3)
p(z1|z3)p(z2|z3)

p(z1, z2, z3)dz1dz2dz3 =

= H(z1|z3)−H(z1|z2, z3) (3)

The conditional mutual information is null if and only if z1 and z2 are conditionally inde-
pendent given z3.

A structural notion which can be described in terms of conditional mutual information is
the notion of Markov Blanket (MB). The Markov Blanket of variable zi in an n dimensional
distribution is the smallest subset of variables belonging to Z \ zi (where \ denotes the set
difference operator) which makes zi conditionally independent of all the remaining ones. In
information theoretic terms let us consider a set Z of n random variables, a variable zi and
a subset Mi ⊂ Z\zi. The subset Mi is said to be a Markov blanket of zi if it is the minimal
subset satisfying

I(zi; (Z \ (Mi ∪ zi))|Mi) = 0

Effective algorithms have been proposed in literature to infer a Markov Blanket from
observed data (Tsamardinos et al., 2003b). Feature selection algorithms are also useful to
construct a Markov blanket of a given target variable once they rely on notions of conditional
independence to select relevant variables (Meyer and Bontempi, 2014).

2.2 Causality and Asymmetric Dependency Relationships

The notion of causality is central in science and also an intuitive notion of everyday life.
The remarkable property of causality which distinguishes it from dependency is asymmetry.

In probabilistic terms a variable zi is dependent on a variable zj if the density of zi,
conditional on the observation zj = zj , is different from the marginal one

p(zi|zj = zj) 6= p(zi)

3. Boldface denotes random variables.
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In information theoretic terms the two variables are dependent if I(zi; zj) = I(zj ; zi) > 0.
This implies that dependency is symmetric. If zi is dependent on zj , then zj is dependent
on zi too as shown by

p(zj |zi = zi) 6= p(zj)

The formal representation of the notion of causality demands an extension of the syntax
of the probability calculus as done by Pearl (1995) with the introduction of the operator do
which allows to distinguish the observation of a value of zj (denoted by zj = zj) from the
manipulation of the variable zj (denoted by do(zj = zj)). Once this extension is accepted
we say that a variable zj is a cause of a variable zi (e.g. ”diseases cause symptoms”) if the
distribution of zi is different from the marginal one when we set the value zj = zj

p(zi|do(zj = zj)) 6= p(zi)

but not vice versa (e.g. ”symptoms do not cause disease”)

p(zj |do(zi = zi)) = p(zj)

The extension of the probability notation made by Pearl allows to formalize the intuition
that causality is asymmetric. Another notation which allows to represent causal expres-
sion is provided by graphical models or more specifically by Directed Acyclic Graphs
(DAG) (Koller and Friedman, 2009). In this paper we will limit to consider causal re-
lationships modeled by DAG, which proved to be convenient tools to understand and use
the notion of causality. Furthermore we will make the assumption that the set of causal
relationships existing between the variables of interest can be described by a Markov and
faithful DAG (Pearl, 2000). This means that the DAG is an accurate map of dependencies
and independencies of the represented distribution and that using the notion of d-separation
it is possible to read from the graph if two sets of nodes are (in)dependent conditioned on
a third.

The asymmetric nature of causality suggests that if we want to infer causal links from
dependency we need to find some features (or descriptors) which describe the dependency
and share with causality the property of asymmetry. Let us suppose that we are interested
in predicting the existence of a directed causal link zi → zj where zi and zj are components
of an observed n-dimensional vector Z = [z1, . . . , zn].

We define as dependency descriptor of the ordered pair 〈i, j〉 a function d(i, j) of the
distribution of Z which depends on i and j. Example of dependency descriptors are the cor-
relation ρ(i, j) between zi and zj , the mutual information I(zi; zj) or the partial correlation
between zi and zj given another variable zk, i 6= j, j 6= k, i 6= k.

We call a dependency descriptor symmetric if d(i, j) = d(j, i) otherwise we call it asym-
metric. Correlation and mutual information are symmetric descriptors since

d(i, j) = I(zi; zj) = I(zj ; zi) = d(j, i)

Because of the asymmetric property of causality, if we want to maximize our chances to
reconstruct causality from dependency we need to identify relevant asymmetric descriptors.
In order to define useful asymmetric descriptors we have recourse to the Markov Blankets
of the two variables zi and zj .
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Figure 1: Two causally connected variables and their Markov Blankets.
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Relation i, j Relation j, i

∀k zi 6⊥⊥ c
(k)
j |zj ∀k zj ⊥⊥ c

(k)
i |zi

∀k e
(k)
i 6⊥⊥ c

(k)
j |zj ∀k e

(k)
j ⊥⊥ c

(k)
i |zi

∀k c
(k)
i 6⊥⊥ c

(k)
j |zj ∀k c

(k)
j ⊥⊥ c

(k)
i |zi

∀k zi ⊥⊥ c
(k)
j ∀k zj 6⊥⊥ c

(k)
i

Table 1: Asymmetric (un)conditional (in)dependance relationships between members of the
Markov Blankets of zi and zj in Figure 1.

Let us consider for instance the portion of a DAG represented in Figure 1 where the
variable zi is a direct cause of zj . The figure shows also the Markov Blankets of the two
variables (denoted Mi and Mj respectively) and their components, i.e. the direct causes
(denoted by c), the direct effects (e) and the spouses (s) (Pellet and Elisseeff, 2008).

In what follows we will make two assumptions: (i) the only path between the sets zi∪Mi

and zj ∪Mj is the edge zi → zj and (ii) there is no common ancestor of zi (zj) and its
spouses si (sj). We will discuss these assumptions at the end of the section. Given these
assumptions and because of d-separation (Geiger et al., 1990), a number of asymmetric
conditional (in)dependence relations holds between the members of Mi and Mj (Table 1).
For instance (first line of Table 1), by conditioning on the effect zj we create a dependence
between zi and the direct causes of zj while by conditioning on the zi we d-separate zj and
the direct causes of zi.

The relations in Table 1 can be used to define the following set of asymmetric descriptors,

d
(k)
1 (i, j) = I(zi; c

(k)
j |zj), (4)

d
(k)
2 (i, j) = I(e

(k)
i ; c

(k)
j |zj), (5)

d
(k)
3 (i, j) = I(c

(k)
i ; c

(k)
j |zj), (6)

d
(k)
4 (i, j) = I(zi; c

(k)
j ), (7)

whose asymmetry is given by

d
(k)
1 (i, j) = I(zi; c

(k)
j |zj) > 0, d

(k)
1 (j, i) = I(zj ; c

(k)
i |zi) = 0, (8)

d
(k)
2 (i, j) = I(e

(k)
i ; c

(k)
j |zj) > 0, d

(k)
2 (j, i) = I(e

(k)
j ; c

(k)
i |zi) = 0, (9)

d
(k)
3 (i, j) = I(c

(k)
i ; c

(k)
j |zj) > 0, d

(k)
3 (j, i) = I(c

(k)
j ; c

(k)
i |zi) = 0, (10)

d
(k)
4 (i, j) = I(zi; c

(k)
j ) = 0, d

(k)
4 (j, i) = I(zj ; c

(k)
i ) > 0. (11)
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Relation i, j Relation j, i

∀k zi 6⊥⊥ e
(k)
j ∀k zj 6⊥⊥ e

(k)
i

∀k zi ⊥⊥ s
(k)
j ∀k zj ⊥⊥ s

(k)
i

∀k zi ⊥⊥ e
(k)
j |zj ∀k zj ⊥⊥ e

(k)
i |zi

∀k zi ⊥⊥ s
(k)
j |zj ∀k zj ⊥⊥ s

(k)
i |zi

∀k e
(k)
i ⊥⊥ e

(k)
j |zi ∀k e

(k)
j ⊥⊥ e

(k)
i |zj

∀k e
(k)
i ⊥⊥ s

(k)
j |zj ∀k e

(k)
j ⊥⊥ s

(k)
i |zi

Table 2: Symmetric (un)conditional (in)dependance relationships between members of the
Markov Blankets of zi and zj in Figure 1.

At the same time we can write a set of symmetric conditional (in)dependence relations
(Table 2) and the equivalent formulations in terms of mutual information terms:

I(zj ; e
(k)
i ) > 0, (12)

I(zi; e
(k)
j ) > 0, (13)

I(zj ; s
(k)
i ) = I(zi; s

(k)
j ) = 0, (14)

I(zi; e
(k)
j |zj) = I(zj ; e

(k)
i |zi) = I(zi; s

(k)
j |zj) = I(zj ; s

(k)
i |zi) = 0, (15)

I(e
(k)
j ; e

(k)
i |zi) = I(e

(k)
i ; e

(k)
j |zj) = I(e

(k)
i ; s

(k)
j |zj) = I(e

(k)
j ; s

(k)
i |zi) = 0. (16)

2.3 From Asymmetric Relationships to Distinct Distributions

The asymmetric properties of the four descriptors (4)-(7) is encouraging if we want to
exploit dependency related features to infer causal properties from data. However, this
optimism is undermined by the fact that all the descriptors require already the capability
of distinguishing between the causes (i.e. the terms c) and the effects (i.e. the terms e)
of the Markov Blanket of a given variable. Unfortunately this discriminating capability is
what we are looking for!

In order to escape this circularity problem we consider two solutions. The first is to have
recourse to a preliminary phase that prioritizes the components of the Markov Blanket
and then use this result as starting point to detect asymmetries and then improve the
classification of causal links. This is for instance feasible by using a filter selection algorithm,
like mIMR (Bontempi and Meyer, 2010; Bontempi et al., 2011), which aims to prioritize the
direct causes in the Markov Blanket by searching for pairs of variables with high relevance
and low interaction.

The second solution is related to the fact that the asymmetry of the four descriptors
induces a difference in the distributions of some information theoretic terms which do not
require the distinction between causes and effects within the Markov Blanket. The conse-
quence is that we can replace the descriptors (4)-(7) with other descriptors (denoted with
the letter D) that can be actually estimated from data.
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Let m(k) denote a generic component of the Markov Blanket with no distinction between
cause, effect or spouse. It follows that a population made of terms depending on m(k) is a
mixture of three subpopulations, the first made of causes, the second made of effects and
the third of spouses, respectively. It follows that the distribution of the population is a finite
mixture (McLaughlan, 2000) of three distributions, the first related to the causes, the second
to the effects and the third to the spouses. Since the moments of the finite mixture are
functions of the moments of each component, we can derive some properties of the resulting
mixture from the properties of each component. For instance if we can show that all the
subpopulations but one are identical (e.g. all the elements of the third subpopulation in
the first mixture are larger than the elements of the analogous subpopulation in the second
mixture), we can derive that the two mixture distributions are different.

Consider for instance the quantity I(zi;m
(kj)
j |zj) where m

(kj)
j , kj = 1, . . . ,Kj is a

member of the set Mj \ zi. From (8) and (15) it follows that the mixture distribution

associated to the populations D1(i, j) = {I(zi;m
(kj)
j |zj), kj = 1, . . . ,Kj} and D1(j, i) =

{I(zj ;m
(ki)
i |zi), ki = 1, . . . ,Ki} are different since{

I(zi;m
(kj)
j |zj) > I(zj ;m

(ki)
i |zi), if m

(kj)
j = c

(kj)
j ∧m

(ki)
i = c

(ki)
i

I(zi;m
(kj)
j |zj) = I(zj ;m

(ki)
i |zi), else

(17)

It follows that even if we are not able to distinguish between a cause cj ∈ Mj and an
effect ej ∈ Mj , we know that the distribution of the population D1(i, j) differs from the
distribution of the population D1(j, i). We can therefore use the population D1(i, j) (or
some of its moments) as descriptor of the causal dependency.

Similarly we can replace the descriptors (5), (6) with the distributions of the population

D2(i, j) = {I(m
(ki)
i ;m

(kj)
j |zj), kj = 1, . . . ,Kj , ki = 1, . . . ,Ki}. From (9), (10) and (16) we

obtain that the distributions of the populations D2(i, j) and D2(j, i) are different.

If we make the additional assumption that I(zj ; e
(k)
i ) = I(zi; e

(k)
j ) > 0 from (11) we

obtain also that the distribution of the population D3(i, j) = {I(zi;m
(kj)
j ), kj = 1, . . . ,Kj}

is different from the one of D3(j, i) = {I(zj ;m
(ki)
i ), ki = 1, . . . ,Ki}.

The previous results are encouraging and show that though we are not able to distinguish
between the different components of a Markov Blanket, we can notwithstanding compute
some quantities (in this case distributions of populations) whose asymmetry is informative
about the causal relationships zi → zj .

As a consequence by measuring from observed data some statistics (e.g. quantiles)
related to the distribution of these asymmetric descriptors, we may obtain some insight
about the causal relationship between two variables. This idea is made explicit in the
algorithm described in the following section.

Though these results rely on the two assumptions made before (i.e. single path and no
common ancestors), two considerations are worthy to be made. First, the main goal of the
approach is to shed light on the existence of dependency asymmetries also in multivariate
contributions. Secondly we expect that the second layer (based on supervised learning)
will eventually compensate for configurations not compliant with the assumptions and take
advantage of complementarity or synergy of the descriptors in discriminating between causal
configurations.
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3. The D2C Algorithm

The rationale of the D2C algorithm is to predict the existence of a causal link between
two variables in a multivariate setting by (i) creating a set of features of the relationship
between the members of the Markov Blankets of the two variables and (ii) using a classifier
(e.g. a Random Forest as in our experiments) to learn a mapping between the features and
the presence of a causal link.

We use two sets of features to summarize the relation between the two Markov blankets:
the first one accounts for the presence (or the position if the MB is obtained by ranking)
of the terms of Mj in Mi and vice versa. For instance it is evident that if zi is a cause of
zj we expect to find zi highly ranked between the causal terms of Mj but zj absent (or
ranked low) among the causes of Mi. The second set of features is based on the results of
the previous section and is obtained by summarizing the distributions of the asymmetric
descriptors with a set of quantiles.

We propose then an algorithm (D2C) which for each pair of measured variables zi and
zj :

1. infers from data the two Markov Blankets (e.g. by using state-of-the-art approaches)
Mi and Mj and the subsets Mi\zj = {m(ki), ki = 1, . . . ,Ki} and Mj\zi = {m(kj), kj =
1, . . . ,Kj}. Most of the existing algorithms associate to the Markov Blanket a ranking
such that the most strongly relevant variables are ranked before.

2. computes a set of (conditional) mutual information terms describing the dependency
between zi and zj

I = [I(zi; zj), I(zi; zj |Mj \ zi), I(zi; zj |Mi \ zj)] (18)

3. computes the positions P
(ki)
i of the members m(ki) of Mi\zj in the ranking associated

to Mj\zi and the positions P
(kj)
j of the terms m(kj) in the ranking associated to Mi\zj .

Note that in case of the absence of a term of Mi in Mj , the position is set to Kj + 1
(respectively Ki + 1).

4. computes the populations based on the asymmetric descriptors introduced in Sec-
tion 2.3:

(a) D1(i, j) = {I(zi;m
(kj)
j |zj), kj = 1, . . . ,Kj}

(b) D1(j, i) = {I(zj ;m
(ki)
i |zi), ki = 1, . . . ,Ki}

(c) D2(i, j) = {I(m
(ki)
i ;m

(kj)
j |zj), ki = 1, . . . ,Ki, kj = 1, . . . ,Kj} and

(d) D2(j, i) = {I(m
(kj)
j ;m

(ki)
i |zi), ki = 1, . . . ,Ki, kj = 1, . . . ,Kj}

(e) D3(i, j) = {I(zi;m
(kj)
j ), kj = 1, . . . ,Kj},

(f) D3(j, i) = {I(zj ,m
(ki)
i ), ki = 1, . . . ,Ki}

5. creates a vector of descriptors

x = [I,Q(P̂i),Q(P̂j),Q(D̂1(i, j)),Q(D̂1(j, i)),

Q(D̂2(i, j)),Q(D̂2(j, i)),Q(D̂3(i, j)),Q(D̂3(j, i))] (19)
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where P̂i and P̂j are the empirical distributions of the populations {P (ki)
i } and {P (kj)

j },
D̂h(i, j) denotes the empirical distribution of the corresponding population Dh(i, j)
and Q returns a set of sample quantiles of a distribution (in the experiments we set
the quantiles to 0.1, 0.25, 0.5, 0.75, 0.9).

The vector x can be then derived from observational data and used to create a vector of
descriptors to be used as inputs in a supervised learning paradigm.

The rationale of the algorithm is that the asymmetries between Mi and Mj (e.g. Table 1)
induce an asymmetry on the distributions P̂ and D̂ and that the quantiles of those distri-
butions provide information about the directionality of causal link (zi → zj or zj → zi.)
In other terms we expect that the distribution of these variables should return useful in-
formation about which is the cause and the effect. Note that these distributions would be
more informative if we were able to rank the terms of the Markov Blankets by prioritizing
the direct causes (i.e. the terms ci and cj) since these terms play a major role in the asym-
metries of Table 1. The D2C algorithm can then be improved by choosing an appropriate
Markov Blanket selector algorithms, like the mIMR filter.

In the experiments (Section 4) we derive the information terms as difference between
(conditional) entropy terms (see Equations 1 and 3) which are themselves estimated by
a Lazy Learning regression algorithm (Bontempi et al., 1999) by making an assumption
of Gaussian noise. Lazy Learning returns a leave-one-out estimation of conditional vari-
ance which can be easily transformed in entropy under the normal assumption (Cover and
Thomas, 1990). The (conditional) mutual information terms are then obtained by using
the relations (1) and (3).

3.1 Complexity Analysis

In this subsection we make a complexity analysis of the approach: first it is important to
remark that since the D2C approach relies on a classifier, its learning phase can be time-
consuming and dependent on the number of samples and dimension. However, this step is
supposed to be performed only once and from the user perspective it is more relevant to
consider the cost in the testing phase. Given two nodes for which a test of the existence of
a causal link is required, three steps have to be performed:

1. computation of the Markov blankets of the two nodes. The information filters we
used have a complexity O(Cn2) where C is the cost of the computation of mutual
information (Meyer and Bontempi, 2014). In case of very large n this complexity may
be bounded by having the filter preceded by a ranking algorithm with complexity
O(Cn). Such ranking may limit the number of features taken into consideration by
the filters to n′ < n reducing then considerably the cost.

2. once a number Ki (Kj) of members of MBi (MBj) have been chosen, the rest of
the procedure has a complexity related to the estimation of a number O(KiKj) of
descriptors. In this paper we used a local learning regression algorithm to estimate
the conditional entropies terms. Given that each regression involves at most three
terms, the complexity is essentially related linearly to the number N of samples
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3. the last step consists in the computation of the Random Forest predictions on the test
set. Since the RF has been already trained, the complexity of this step depends only
on the number of trees and not on the dimensionality or number of samples.

For each test, the resulting complexity has then a cost of the order O(Cn+Cn′2 +KiKjN).
It is important to remark that an advantage of D2C is that, if we are interested in pre-
dicting the causal relation between two variables only, we are not forced to infer the entire
adjacency matrix (as typically the case in constraint-based methods). This mean also that
the computation of the entire matrix can be easily made parallel.

4. Experimental Validation

In this section the D2C (Section 3) algorithm is assessed in a set of synthetic experiments
and published data sets.

4.1 Synthetic Data

This experimental session addresses the problem of inferring causal links from synthetic
data generated for linear and non-linear DAG configurations of different sizes. All the
variables are continuous, and the dependency between children and parents is modelled by
the additive relationship

xi =
∑

j∈par(i)

fi,j(xj) + εi, i = 1, . . . , n (20)

where the noise εi ∼ N(0, σi) is Normal, fi,j(x) ∈ L(x) and three sets of continuous functions
are considered:

• linear: L(x) = {f | f(x) = a0 + a1x}

• quadratic: L(x) = {f | f(x) = a0 + a1x+ a2x
2}

• sigmoid: L(x) = {f | f(x) = 1
1+exp(a0+a1x)

}

In order to assess the accuracy with respect to dimensionality, we considered three network
sizes:

• small: number of nodes n is uniformly sampled in the interval [20, 30],

• medium: number of nodes n is uniformly sampled in the interval [100, 200],

• large: number of nodes n is uniformly sampled in the interval [500, 1000],

The assessment procedure relies on the generation of a number of DAG structures4 and
the simulation, for each of them, of N (uniformly random in [100, 500]) node observations
according to the dependency (20). In each data set we removed the observations of five
percent of the variables in order to introduce unobserved variables.

4. We used the function random dag from the R package gRbase (Dethlefsen and Højsgaard, 2005).
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For each DAG, on the basis of its structure and the data set of observations, we collect
a number of pairs 〈xd, yd〉, where xd is the descriptor vector returned by (19) and yd is the
class denoting the existence (or not) of the causal link in the DAG topology.

Several sizes of training set are considered. The largest D2C training set is made of
D = 60000 pairs 〈xd, yd〉 and is obtained by generating DAGs and storing for each of them
the descriptors associated to at most 4 positives examples (i.e. a pair where the node zi is
a direct cause of zj) and at most 6 negatives examples (i.e. a pair where the node zi is not
a direct cause of zj). A Random Forest classifier is trained on the balanced data set: we
use the implementation from the R package randomForest (Liaw and Wiener, 2002) with
default setting.

The test set is obtained by considering a number of independently simulated DAGs. We
consider 190 DAGs for the small and medium configurations and 90 for the large configu-
ration. For each testing DAG we select 4 positives examples (i.e. a pair where the node
zi is a direct cause of zj) and 6 negatives examples (i.e. a pair where the node zi is not a
direct cause of zj). The predictive accuracy of the trained Random Forest classifier is then
assessed on the test set.

The D2C approach is compared in terms of classification accuracy (Balanced Error Rate
(BER)) to several state-of-the-art approaches:

• ANM: Additive Noise Model (Hoyer et al., 2009) using a Gaussian process with RBF
kernel and the Hilbert-Schmidt Independence Criterion (pvalue=0.02)5

• DAGL1: DAG-Search score-based algorithm with potential parents selected with a L1
penalization (Schmidt et al., 2007)6.

• DAGSearch: unrestricted DAG-Search score-based algorithm (multiple restart greedy
hill-climbing, using edge additions, deletions, and reversals) (Schmidt et al., 2007)6,

• DAGSearchSparse: DAG-Search score-based algorithm with potential parents re-
stricted to the 10 most correlated features (Schmidt et al., 2007)6,

• gs: Grow-Shrink constraint-based structure learning algorithm (Margaritis, 2003)7,

• hc: hill-climbing score-based structure learning algorithm (Daly and Shen, 2007)7,

• iamb: incremental association MB constraint-based structure learning algorithm (Tsamardi-
nos et al., 2003b)7,

• mmhc: max-min hill climbing hybrid structure learning algorithms (Tsamardinos et al.,
2010)7,

• PC: Estimate the equivalence class of a DAG using the PC algorithm8 (this method was
used only for the small size configuration (Figure 3) for computational time reasons)

5. The code is available in https://staff.fnwi.uva.nl/j.m.mooij/code/additive-noise.tar.gz.
6. The code is available in http://www.cs.ubc.ca/~murphyk/Software/DAGlearn/.
7. The code is available in the R package bnlearn (Scutari, 2010).
8. The code is available in the R package pcalg (Kalisch et al., 2012)
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• si.hiton.pc: Semi-Interleaved HITON-PC local discovery structure learning algo-
rithms (Tsamardinos et al., 2003a)7,

• tabu: tabu search score-based structure learning algorithm7.

The BER of six versions of the D2C method are compared to the BER of state-of-the-art
methods in Figures 3 (small), Figure 4 (medium) and Figure 5 (large). The six versions
of D2C are obtained by considering two types of training data (i.e. one based on linear
dependency and one based on the same dependency used for testing) and three training set
sizes (equal to 400, 3000 and 60000 respectively) Each subfigure corresponds to the three
types of stochastic dependency (top: linear, middle: quadratic, bottom: sigmoid).

A series of considerations can be made on the basis of the experimental results:

• the n-variate approach D2C obtains competitive results with respect to several state-
of-the-art techniques in the linear case,

• the improvement of D2C wrt state-of-the-art techniques (often based on linear assump-
tions) tends to increase when we move to more nonlinear configurations, In particular
the accuracy of the D2C algorithm is able to generalize to DAG with different number
of nodes and different distributions also when trained only on data observed for linear
DAGs (see accuracy of D2Cxlin in the second and third row of Figures 3, 4 and 5)

• the accuracy of the D2C approach improves by increasing the number of training
examples,

• with a small number of examples (i.e. N = 400) it is already possible to learn a
classifier D2C whose accuracy is competitive with state-of-the-art methods,

• the ANM approach is not able to return accurate information about causal dependency
by taking into consideration only bivariate information,

• the analysis of the importance of the D2C descriptors (based on the Mean Decrease
Accuracy of the Random Forest in Figure 2) shows that the most relevant variables
in the vector (19) are the terms in I, D1 and D3.

The D2C code is available in the CRAN R package D2C (Bontempi et al., 2014).

4.2 Published Data

The second part of the assessment relies on the simulated and resimulated data sets proposed
in Table 11 of (Aliferis et al., 2010). These 103 data sets were obtained by simulating data
from known Bayesian networks and also by resimulation, where real data is used to elicit
a causal network and then data is simulated from the obtained network. We split the 103
data sets in two portions: a training portion (made of 52 sets) and a second portion (made
of 51 sets) for testing. This was done in order to assess the accuracy of two versions of
the D2C algorithm: the first uses as training set only 40000 synthetic samples generated as
in the previous section, the second includes in the training set also the 52 data sets of the
training portion. The goal is to assess the generalization accuracy of the D2C algorithm with
respect to DAG distributions never encountered before and not included in the training set.
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Figure 2: Importance of D2C features returned by the Random Forest mean decrease
accuracy. Ii denotes the ith component of the descriptor vector (18) while
Q(Dx(i, j))k denotes the kth quantile of the population of descriptor Dx(i, j).
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GS IAMB IAMBnPC interIAMBnPC mRMR mIMR
W-L 48-3 (32-0) 43-8 (21-0) 46-5 (26-0) 46-5 (25-0) 42-9 (17-0) 34-17 (12-0)

Table 3: D2C trained on synthetic data only: number of data sets for which D2C has an
AUPRC (significantly (pval < 0.05)) higher/lower than the method in the column.
W-L stands for Wins-Losses.

GS IAMB IAMBnPC interIAMBnPC mRMR mIMR
W-L 49-2 (36-0) 49-2 (27-0) 49-2 (32-0) 49-2 (32-0) 42-9 (17-0) 46-5 (19-1)

Table 4: D2C trained on synthetic data and 52 training data sets: number of data sets for
which the D2C has an AUPRC (significantly (pval < 0.05)) higher/lower than the
method in the column. W-L stands for Wins-Losses.

In this section we compare D2C to a set of algorithms implemented by the Causal Explorer
software (Aliferis et al., 2003)9:

• GS: Grow/Shrink algorithm

• IAMB: Incremental Association-Based Markov Blanket

• IAMBnPC: IAMB with PC algorithm in the pruning phase

• interIAMBnPC: IAMB with PC algorithm in the interleaved pruning phase

and two filters based on information theory, mRMR (Peng et al., 2005) and mIMR (Bon-
tempi and Meyer, 2010). The comparison is done as follows: for each data set and for
each node (having at least a parent) the causal inference techniques return the ranking of
the inferred parents. The ranking is assessed in terms of the average of Area Under the
Precision Recall Curve (AUPRC) and a t-test is used to assess if the set of AUPRC values
is significantly different between two methods. Note that the higher the AUPRC the more
accurate is the inference method.

The summary of the paired comparisons is reported in Table 3 for the D2C algorithm
trained on the synthetic data only and in Table 4 for the D2C algorithm trained on both
synthetic data and the 52 training data sets.

It is worthy to remark that

• the D2C algorithm is extremely competitive and outperforms the other techniques
taken into consideration,

• the D2C algorithm is able to generalize to DAG with different number of nodes and
different distributions also when trained only on synthetic data simulated on linear
DAGs,

9. Note that we use Causal Explorer here because, unlike bnlearn which estimates the entire adjacency
matrix, it returns a ranking of the inferred causes for a given node.

2452



From Dependency to Causality

• the D2C algorithm takes advantage from the availability of more training data and in
particular of training data related to the causal inference task of interest, as shown
by the improvement of the accuracy from Table 3 to Table 4,

• the two filters (mRMR and mIMR) algorithm appears to be the least inaccurate
among the state-of-the-art algorithms,

• though the D2C is initialized with the results returned by the mIMR algorithm, it is
able to improve its output and to significantly outperform it.

5. Conclusion

Two attitudes are common with respect to causal inference for observational data. The first
is pessimistic and motivated by the consideration that correlation (or dependency) does not
imply causation. The second is optimistic and driven by the fact that causation implies
correlation (or dependency). This paper belongs evidently to the second school of thought
and relies on the confidence that causality leaves footprints in the form of stochastic de-
pendency and that these footprints can be detected to retrieve causality from observational
data. The results of the ChaLearn challenge and the preliminary results of this paper con-
firm the potential of machine learning approaches in predicting the existence of causality
links on the basis of statistical descriptors of the dependency. We are convinced that this
will open a new research direction where learning techniques may be used to reduce the
degree of uncertainty about the existence of a causal relationships also in indistinguishable
configurations which are typically not addressed by conditional independence approaches.

Further work will focus on 1) discovering additional features of multivariate distributions
to improve the accuracy 2) addressing and assessing other related classification problems
(e.g. predicting if a variable is an ancestor or descendant of a given one) 3) extending the
work to partial ancestral graphs (Zhang, 2008) (e.g. exploiting the logical relations presented
in Claassen and Heskes (2011)) extending the validation to real data sets and configurations
with a still larger number of variables (e.g. network inference in bioinformatics).
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