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Abstract

We revisit, from a statistical learning perspective, the classical decision-theoretic problem
of weighted expert voting. In particular, we examine the consistency (both asymptotic
and finitary) of the optimal Naive Bayes weighted majority and related rules. In the
case of known expert competence levels, we give sharp error estimates for the optimal
rule. We derive optimality results for our estimates and also establish some structural
characterizations. When the competence levels are unknown, they must be empirically
estimated. We provide frequentist and Bayesian analyses for this situation. Some of our
proof techniques are non-standard and may be of independent interest. Several challenging
open problems are posed, and experimental results are provided to illustrate the theory.

Keywords: experts, hypothesis testing, Chernoff-Stein lemma, Neyman-Pearson lemma,
naive Bayes, measure concentration

1. Introduction

Imagine independently consulting a small set of medical experts for the purpose of reaching
a binary decision (e.g., whether to perform some operation). Each doctor has some “repu-
tation”, which can be modeled as his probability of giving the right advice. The problem
of weighting the input of several experts arises in many situations and is of considerable
theoretical and practical importance. The rigorous study of majority vote has its roots in
the work of Condorcet (1785). By the 70s, the field of decision theory was actively exploring
various voting rules (see Nitzan and Paroush (1982) and the references therein). A typical
setting is as follows. An agent is tasked with predicting some random variable Y ∈ {±1}
based on input Xi ∈ {±1} from each of n experts. Each expert Xi has a competence level
pi ∈ (0, 1), which is his probability of making a correct prediction: P(Xi = Y ) = pi. Two
simplifying assumptions are commonly made:
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(i) Independence: The random variables {Xi : i ∈ [n]} are mutually independent condi-
tioned on the truth Y .

(ii) Unbiased truth: P(Y = +1) = P(Y = −1) = 1/2.

We will discuss these assumptions below in greater detail; for now, let us just take them as
given. (Since the bias of Y can be easily estimated from data, and the generalization to the
asymmetric case is straightforward, only the independence assumption is truly restrictive.)
A decision rule is a mapping f : {±1}n → {±1} from the n expert inputs to the agent’s
final decision. Our quantity of interest throughout the paper will be the agent’s probability
of error,

P(f(X) 6= Y ). (1)

A decision rule f is optimal if it minimizes the quantity in (1) over all possible decision
rules. It follows from the work of Neyman and Pearson (1933) that, when Assumptions
(i)–(ii) hold and the true competences pi are known, the optimal decision rule is obtained
by an appropriately weighted majority vote:

fOPT(x) = sign

(
n∑
i=1

wixi

)
, (2)

where the weights wi are given by

wi = log
pi

1− pi
, i ∈ [n]. (3)

Thus, wi is the log-odds of expert i being correct, and the voting rule in (2) is also known
as naive Bayes (Hastie et al., 2009).
Main results. Formula (2) raises immediate questions, which apparently have not previously
been addressed. The first one has to do with the consistency of the naive Bayes decision
rule: under what conditions does the probability of error decay to zero and at what rate?
In Section 3, we show that the probability of error is controlled by the committee potential
Φ, defined by

Φ =
n∑
i=1

(pi − 1
2)wi =

n∑
i=1

(pi − 1
2) log

pi
1− pi

. (4)

More precisely, we prove in Theorem 1 that

− logP(fOPT(X) 6= Y ) � Φ,

where � denotes equivalence up to universal multiplicative constants. As we show in Sec-
tion 3.3, both the upper estimate of O(e−Φ/2) and the lower one of Ω(e−2Φ) are tight in
various regimes of Φ. The structural characterization in terms of “antipodes” (Lemma 2)
and the additional bounds provided in Section 3.4 may also be of interest.

Another issue not addressed by the Neyman-Pearson lemma is how to handle the case
where the competences pi are not known exactly but rather estimated empirically by p̂i. We
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present two solutions to this problem: a frequentist and a Bayesian one. As we show in Sec-
tion 4, the frequentist approach does not admit an optimal empirical decision rule. Instead,
we analyze empirical decision rules in various settings: high-confidence (i.e., |p̂i − pi| � 1)
vs. low-confidence, adaptive vs. nonadaptive. The low-confidence regime requires no ad-
ditional assumptions, but gives weaker guarantees (Theorem 7). In the high-confidence
regime, the adaptive approach produces error estimates in terms of the empirical p̂is (Theo-
rem 13), while the nonadaptive approach yields a bound in terms of the unknown pis, which
still leads to useful asymptotics (Theorem 11). The Bayesian solution sidesteps the various
cases above, as it admits a simple, provably optimal empirical decision rule (Section 5).
Unfortunately, we are unable to compute (or even nontrivially estimate) the probability of
error induced by this rule; this is posed as a challenging open problem.

Notation. We use standard set-theoretic notation, and in particular [n] = {1, . . . , n}.

2. Related Work

The Naive Bayes weighted majority voting rule was stated by Nitzan and Paroush (1982) in
the context of decision theory, but its roots trace much earlier to the problem of hypothesis
testing (Neyman and Pearson, 1933). Machine learning theory typically clusters weighted
majority (Littlestone and Warmuth, 1989, 1994) within the framework of online algorithms;
see Cesa-Bianchi and Lugosi (2006) for a modern treatment. Since the online setting is
considerably more adversarial than ours, we obtain very different weighted majority rules
and consistency guarantees. The weights wi in (2) bear a striking similarity to the AdaBoost
update rule (Freund and Schapire, 1997; Schapire and Freund, 2012). However, the latter
assumes weak learners with access to labeled examples, while in our setting the experts are
“static”. Still, we do not rule out a possible deeper connection between the Naive Bayes
decision rule and boosting.

In what began as the influential Dawid-Skene model (Dawid and Skene, 1979) and is now
known as crowdsourcing, one attempts to extract accurate predictions by pooling a large
number of experts, typically without the benefit of being able to test any given expert’s
competence level. Still, under mild assumptions it is possible to efficiently recover the expert
competences to a high accuracy and to aggregate them effectively (Parisi et al., 2014+).
Error bounds for the oracle MAP rule were obtained in this model by Li et al. (2013) and
minimax rates were given in Gao and Zhou (2014).

In a recent line of work, Lacasse et al. (2006); Laviolette and Marchand (2007); Roy et al.
(2011) have developed a PAC-Bayesian theory for the majority vote of simple classifiers.
This approach facilitates data-dependent bounds and is even flexible enough to capture
some simple dependencies among the classifiers — though, again, the latter are learners
as opposed to our experts. Even more recently, experts with adversarial noise have been
considered (Mansour et al., 2013), and efficient algorithms for computing optimal expert
weights (without error analysis) were given (Eban et al., 2014). More directly related to
the present work are the papers of Berend and Paroush (1998), which characterizes the
conditions for the consistency of the simple majority rule, and Boland et al. (1989); Berend
and Sapir (2007); Helmbold and Long (2012) which analyze various models of dependence
among the experts.
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3. Known Competences

In this section we assume that the expert competences pi are known and analyze the con-
sistency of the naive Bayes decision rule (2). Our main result here is that the probability
of error P(fOPT(X) 6= Y ) is small if and only if the committee potential Φ is large.

Theorem 1 Suppose that the experts X = (X1, . . . , Xn) satisfy Assumptions (i)-(ii) and
fOPT : {±1}n → {±1} is the naive Bayes decision rule in (2). Then

(i) P(fOPT(X) 6= Y ) ≤ exp
(
−1

2Φ
)
.

(ii) P(fOPT(X) 6= Y ) ≥ 3

4[1 + exp(2Φ + 4
√

Φ)]
.

The next two sections are devoted to proving Theorem 1. These are followed by an opti-
mality result and some additional upper and lower bounds.

3.1 Proof of Theorem 1(i)

Define the {0, 1}-indicator variables

ξi = 1{Xi=Y }, (5)

corresponding to the event that the ith expert is correct. A mistake fOPT(X) 6= Y occurs
precisely when1 the sum of the correct experts’ weights fails to exceed half the total mass:

P(fOPT(X) 6= Y ) = P

(
n∑
i=1

wiξi ≤
1

2

n∑
i=1

wi

)
. (6)

Since Eξi = pi, we may rewrite the probability in (6) as

P

(∑
i

wiξi ≤ E

[∑
i

wiξi

]
−
∑
i

(pi − 1
2)wi

)
. (7)

A standard tool for estimating such sum deviation probabilities is Hoeffding’s inequality
(Hoeffding, 1963). Applied to (7), it yields the bound

P(fOPT(X) 6= Y ) ≤ exp

(
−

2
[∑

i(pi −
1
2)wi

]2∑
iw

2
i

)
, (8)

which is far too crude for our purposes. Indeed, consider a finite committee of highly
competent experts with pi’s arbitrarily close to 1 and X1 the most competent of all. Raising
X1’s competence sufficiently far above his peers will cause both the numerator and the
denominator in the exponent to be dominated by w2

1, making the right-hand-side of (8)
bounded away from zero. In the limiting case of this regime, the probability of error
approaches zero while the right-hand side of (8) approaches e−1/2 ≈ 0.6. The inability of
Hoeffding’s inequality to guarantee consistency even in such a felicitous setting is an instance

1. Without loss of generality, ties are considered to be errors.
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of its generally poor applicability to highly heterogeneous sums, a phenomenon explored in
some depth in McAllester and Ortiz (2003). Bernstein’s and Bennett’s inequalities suffer
from a similar weakness (see ibid.). Fortunately, an inequality of Kearns and Saul (1998)
is sufficiently sharp2 to yield the desired estimate: For all p ∈ [0, 1] and all t ∈ R,

(1− p)e−tp + pet(1−p) ≤ exp

(
1− 2p

4 log((1− p)/p)
t2
)
. (9)

Put θi = ξi − pi, substitute into (6), and apply Markov’s inequality:

P(fOPT(X) 6= Y ) = P

(
−
∑
i

wiθi ≥ Φ

)
(10)

≤ e−tΦEexp

(
−t
∑
i

wiθi

)
.

Now

Ee−twiθi = pie
−(1−pi)wit + (1− pi)epiwit

≤ exp

(
−1 + 2pi

4 log(pi/(1− pi))
w2
i t

2

)
(11)

= exp
[

1
2(pi − 1

2)wit
2
]
,

where the inequality follows from (9). By independence,

E exp

(
−t
∑
i

wiθi

)
=

∏
i

Ee−twiθi

≤ exp

(
1
2

∑
i

(pi − 1
2)wit

2

)
= exp

(
1
2Φt2

)
and hence

P(fOPT(X) 6= Y ) ≤ exp
(

1
2Φt2 − Φt

)
.

Choosing t = 1, we obtain the bound in Theorem 1(i).

3.2 Proof of Theorem 1(ii)

Define the {±1}-indicator variables

ηi = 2 · 1{Xi=Y } − 1, (12)

corresponding to the event that the ith expert is correct, and put qi = 1−pi. The shorthand
w · η =

∑n
i=1wiηi will be convenient. We will need some simple lemmata:

2. The Kearns-Saul inequality (9) may be seen as a distribution-dependent refinement of Hoeffding’s

for a two-valued distribution (which bounds the left-hand-side of (9) by et
2/8), and is not nearly as

straightforward to prove; see Appendix A.
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Lemma 2

P(fOPT(X) = Y ) = 1
2

∑
η∈{±1}n

max {P (η), P (−η)}

=
∑

η∈{+1}×{±1}n−1

max {P (η), P (−η)}

and

P(fOPT(X) 6= Y ) = 1
2

∑
η∈{±1}n

min {P (η), P (−η)}

=
∑

η∈{+1}×{±1}n−1

min {P (η), P (−η)} ,

where

P (η) =
∏
i:ηi=1

pi
∏

i:ηi=−1

qi. (13)

Proof By (5), (6) and (12), that a mistake occurs precisely when

n∑
i=1

wi
ηi + 1

2
≤ 1

2

n∑
i=1

wi,

which is equivalent to

w · η ≤ 0. (14)

Exponentiating both sides,

exp (w · η) =
n∏
i=1

ewiηi

=
∏
i:ηi=1

pi
qi
·
∏

i:ηi=−1

qi
pi

=
P (η)

P (−η)
≤ 1. (15)

We conclude from (15) that among two “antipodal” atoms ±η ∈ {±1}n, the one with the
greater mass contributes to the probability of being correct and the one with the smaller
mass contributes to the probability of error, which proves the claim.

Lemma 3 Suppose that s, s′ ∈ (0,∞)m satisfy

m∑
i=1

(si + s′i) ≥ a
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and

1

R
≤ si
s′i
≤ R, i ∈ [m]

for some 1 ≤ R <∞. Then

m∑
i=1

min
{
si, s

′
i

}
≥ a

1 +R
.

Proof Immediate from

si + s′i ≤ min
{
si, s

′
i

}
(1 +R).

Lemma 4 Define the function F : (0, 1)→ R by

F (x) =
x(1− x) log(x/(1− x))

2x− 1
.

Then sup0<x<1 F (x) = 1
2 .

Proof Since F is symmetric about x = 1
2 , it suffices to prove the claim for 1

2 ≤ x < 1. We
will show that F is concave by examining its second derivative:

F ′′(x) = −2x− 1− 2x(1− x) log(x/(1− x))

x(1− x)(2x− 1)3
.

The denominator is obviously nonnegative on [1
2 , 1], while the numerator has the Taylor

expansion

∞∑
n=1

22(n+1)(x− 1
2)2n+1

4n2 − 1
≥ 0, 1

2 ≤ x < 1

(verified through tedious but straightforward calculus). Since F is concave and symmetric
about 1

2 , its maximum occurs at F (1
2) = 1

2 .

Continuing with the main proof, observe that

E [w · η] =
n∑
i=1

(pi − qi)wi = 2Φ (16)

and

Var [w · η] = 4
n∑
i=1

piqiw
2
i .
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By Lemma 4,

piqiw
2
i ≤ 1

2(pi − qi)wi,

and hence

Var [w · η] ≤ 4Φ. (17)

Define the segments I, J ⊂ R by

I =
[
2Φ− 4

√
Φ, 2Φ + 4

√
Φ
]
⊂
[
−2Φ− 4

√
Φ, 2Φ + 4

√
Φ
]

= J. (18)

Chebyshev’s inequality together with (16, 17, 18) implies that

P (w · η ∈ J) ≥ P (w · η ∈ I) ≥ 3

4
. (19)

Consider an atom η ∈ {±1}n for which w · η ∈ J . It follows from (15) and (18) that

P (η)

P (−η)
= exp (w · η) ≤ exp(2Φ + 4

√
Φ). (20)

Finally, we have

P(fOPT(X) 6= Y )
(a)
=

∑
η∈{+1}×{±1}n−1

min {P (η), P (−η)}

≥
∑

η∈{+1}×{±1}n−1:w·η∈J

min {P (η), P (−η)}

(b)

≥ 1

1 + exp(2Φ + 4
√

Φ)

∑
η∈{+1}×{±1}n−1:w·η∈J

(P (η) + P (−η))

(c)
=

1

1 + exp(2Φ + 4
√

Φ)

∑
η∈{±1}n:w·η∈J

P (η)

(d)

≥ 3/4

1 + exp(2Φ + 4
√

Φ)
,

where: (a) follows from Lemma 2, (b) from Lemma 3 and (20), (c) from the fact that
w · η ∈ J ⇐⇒ −w · η ∈ J , and (d) from (19). This completes the proof.

Remark 5 The constant 3
4 can be made arbitrarily close to 1 at the expense of an increased

coefficient in front of the
√

Φ term. More precisely, the 4
√

Φ term in (18) corresponds to
taking two standard deviations about the mean. Taking instead k standard deviations would
cause 4

√
Φ to be replaced by 2k

√
Φ and the 3

4 constant to be replaced by 1−1/k2. This leads
to (mild) improvements for large Φ.

1526



A Finite Sample Analysis of the Naive Bayes Classifier

3.3 Asymptotic tightness

Although there is a 4th power gap between the upper bound U = exp
(
−1

2Φ
)

and lower
bound L � exp(−2Φ) in Theorem 1, we will show that each estimate is tight in a certain
regime of Φ.

Upper bound. To establish the tightness of the upper bound U = e−Φ/2, consider n identical
experts with competences p1 = . . . = pn = p > 1

2 . Then

P(fOPT(X) 6= Y ) = P(B < 1
2n) = P(B < n(p− ε)), (21)

where B ∼ Bin(n, p) and ε = p− 1
2 . By Sanov’s theorem (den Hollander, 2000),

lim
n→∞

− 1

n
logP(B < n(p− ε)) = H(p− ε||p) = H(1

2 ||p), (22)

where

H(x||y) = x ln
x

y
+ (1− x) ln

1− x
1− y

, 0 < x, y < 1.

Hence,

1

n
logP(fOPT(X) 6= Y )

(a)
=

1

n
logP(B < 1

2n)

(b)−→
n→∞

−H(1
2 ||p)

= 1
2 ln 2p+ 1

2 ln 2(1− p),

(where (a) and (b) follow from (21) and (22), respectively) whence

lim
n→∞

n
√
P(fOPT(X) 6= Y ) = exp

(
1
2 ln(2p) + 1

2 ln(2(1− p))
)

(23)

= 2
√
p(1− p).

On the other hand,

Φ =
n∑
i=1

(pi − 1
2) log

pi
1− pi

= n(p− 1
2) log

p

1− p
,

and hence

n
√
U = [(1− p)/p](p−

1
2)/2.

The tightness of the upper bound follows from

F (p) :=
2
√
p(1− p)

[(1− p)/p](p−
1
2)/2

−→
p→1/2

1,

which is easily verified since F (1
2) = 1.
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Lower bound. For the lower bound, consider a single expert with competence p1 = p > 1
2 .

Thus, P(fOPT(X) 6= Y ) = 1 − p and L � exp(−2Φ) = [(1 − p)/p]2p−1. Again, it is easily
verified that

[(1− p)/p]2p−1

1− p
−→
p→1

1,

and so the lower bound is also tight.
We conclude that the committee profile Φ is not sufficiently sensitive an indicator to

close the gap between the two bounds entirely.

Remark 6 In the special case of identical experts, with p1 = . . . = pn = p, the Chernoff-
Stein lemma (Cover and Thomas, 2006) gives the best asymptotic exponent for one-sided
(i.e., type I or type II) errors, while Chernoff information corresponds to the optimal
exponent for the overall probability of error. As seen from (23), the latter is given by
1
2 ln(2p) + 1

2 ln(2(1− p)) in this case.
In contradistinction, our bounds in Theorem 1 hold for non-identical experts and are

dimension-free.

3.4 Additional bounds

An anonymous referee has pointed out that

Φ = 1
2D(P ||Q) = 1

2D(Q||P ), (24)

where P is the distribution of η ∈ {±1}n defined in (13), Q is the “antipodal” distribution
of −η, and D(P ||Q) is the Kullback-Leibler divergence, defined by

D(P ||Q) =
∑

x∈{±1}n
P (x) ln

P (x)

Q(x)
.

This leads to an improved lower bound for Φ . 0.992, as follows. By Lemma 2, we have

P(fOPT(X) 6= Y ) = 1
2

∑
η∈{±1}n

min {P (η), Q(η)}

= 1
2

(
1− 1

2 ‖P −Q‖1
)
, (25)

where the second identity follows from a well-known minorization characterization of the
total variation distance (see, e.g., Kontorovich (2007, Lemma 2.2.2)). A bound relating the
total variation distance and Kullback-Leibler divergence is known as Pinsker’s inequality,
and states that

‖P −Q‖1 ≤
√

2D(P ||Q) (26)

holds for all distributions P,Q (see Berend et al. (2014) for historical background and a
“reversed” direction of (26)). Combining (24), (25), and (26), we obtain

P(fOPT(X) 6= Y ) ≥ 1
2

(
1−
√

Φ
)
,
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which, for small Φ, is far superior to Theorem 1(ii) (but is vacuous for Φ ≥ 1).
The identity in (25) may also be used to sharpen the upper bound in Theorem 1(i) for

small Φ. Invoking Even-Dar et al. (2007, Lemma 3.10), we have

D(P ||Q) ≤ ‖P −Q‖1 log

(
min

x∈{±1}n
P (x)

)−1

. (27)

Let us suppose for concreteness that all of the experts are identical with pi = 1
2 + γ for

γ ∈ (0, 1
2), i ∈ [n]. Then

Φ = nγ log
1/2 + γ

1/2− γ

and

log

(
min

x∈{±1}n
P (x)

)−1

= n log
1

1/2− γ
=: Γ,

which, combined with (24, 25, 27) yields

P(fOPT(X) 6= Y ) ≤ 1
2

(
1− Φ

Γ

)
= 1

2

(
1− γ + γ

log(1/2 + γ)

log(1/2− γ)

)
. (28)

Thus, for 0 < γ < 1
2 and

n <
2

γ

(
log

1/2− γ
1/2 + γ

)
log

(
1− γ

2
+
γ

2
· log(1/2 + γ)

log(1/2− γ)

)
,

(28) is sharper than Theorem 1(i).

4. Unknown Competences: Frequentist Approach

Our goal in this section is to obtain, insofar as possible, analogues of Theorem 1 for unknown
expert competences. When the pis are unknown, they must be estimated empirically before
any useful weighted majority vote can be applied. There are various ways to model partial
knowledge of expert competences (Baharad et al., 2011, 2012). Perhaps the simplest scenario
for estimating the pis is to assume that the ith expert has been queried independently mi

times, out of which he gave the correct prediction ki times. Taking the {mi} to be fixed,
define the committee profile by k = (k1, . . . , kn); this is the aggregate of the agent’s empirical
knowledge of the experts’ performance. An empirical decision rule f̂ : (x,k) 7→ {±1}
makes a final decision based on the expert inputs x together with the committee profile.
Analogously to (1), the probability of a mistake is

P(f̂(X,K) 6= Y ). (29)

Note that now the committee profile is an additional source of randomness. Here we run
into our first difficulty: unlike the probability in (1), which is minimized by the naive Bayes
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decision rule, the agent cannot formulate an optimal decision rule f̂ in advance without
knowing the pis. This is because no decision rule is optimal uniformly over the range of
possible pis. Our approach will be to consider weighted majority decision rules of the form

f̂(x,k) = sign

(
n∑
i=1

ŵ(ki)xi

)
(30)

and to analyze their consistency properties under two different regimes: low-confidence and
high-confidence. These refer to the confidence intervals of the frequentist estimate of pi,
given by

p̂i =
ki
mi
. (31)

4.1 Low-confidence regime

In the low-confidence regime, the sample sizes mi may be as small as 1, and we define3

ŵ(ki) = ŵLC
i := p̂i − 1

2 , i ∈ [n], (32)

which induces the empirical decision rule f̂LC. It remains to analyze f̂LC’s probability of
error. Recall the definition of ξi from (5) and observe that

E [ŵLC
i ξi] = E[(p̂i − 1

2)ξi] = (pi − 1
2)pi, (33)

since p̂i and ξi are independent. As in (6), the probability of error (29) is

P

(
n∑
i=1

ŵLC
i ξi ≤

1

2

n∑
i=1

ŵLC
i

)
= P

(
n∑
i=1

Zi ≤ 0

)
, (34)

where Zi = ŵLC
i (ξi − 1

2). Now the {Zi} are independent random variables, EZi = (pi − 1
2)2

(by (33)), and each Zi takes values in an interval of length 1
2 . Hence, the standard Hoeffding

bound applies:

P(f̂LC(X,K) 6= Y ) ≤ exp

− 8

n

(
n∑
i=1

(pi − 1
2)2

)2
 . (35)

We summarize these calculations in

Theorem 7 A sufficient condition4 for P(f̂LC(X,K) 6= Y )→ 0 is

1√
n

n∑
i=1

(pi − 1
2)2 →∞.

3. For mi min {pi, qi} � 1, the estimated competences p̂i may well take values in {0, 1}, in which case
log(p̂i/q̂i) = ±∞. The rule in (32) is essentially a first-order Taylor approximation to w(·) about p = 1

2
.

4. Formally, we have an infinite sequence of experts with competences {pi : i ∈ N}, with a corresponding
sequence of trials with sizes {mi} and outcomes Ki ∼ Bin(mi, pi), in addition to the expert votes
Xi ∼ Y [2 · Bernoulli(pi)− 1]. An empirical decision rule fn (more precisely, a sequence of rules) is said
to be consistent if

lim
n→∞

P(fn(X,K) 6= Y ) = 0.
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Several remarks are in order. First, notice that the error bound in (35) is stated in terms
of the unknown {pi}, providing the agent with large-committee asymptotics but giving no
finitary information; this limitation is inherent in the low-confidence regime. Secondly,
the condition in Theorem 7 is considerably more restrictive than the consistency condition
Φ → ∞ implicit in Theorem 1. Indeed, the empirical decision rule f̂LC is incapable of
exploiting a single highly competent expert in the way that fOPT from (2) does. Our
analysis could be sharpened somewhat for moderate sample sizes {mi} by using Bernstein’s
inequality to take advantage of the low variance of the p̂is. For sufficiently large sample
sizes, however, the high-confidence regime (discussed below) begins to take over. Finally,
there is one sense in which this case is “easier” to analyze than that of known {pi}: since
the summands in (34) are bounded, Hoeffding’s inequality gives nontrivial results and there
is no need for more advanced tools such as the Kearns-Saul inequality (9) (which is actually
inapplicable in this case).

4.2 High-confidence regime

In the high-confidence regime, each estimated competence p̂i is close to the true value pi
with high probability. To formalize this, fix some 0 < δ < 1, 0 < ε ≤ 5, and put

qi = 1− pi, q̂i = 1− p̂i.

We will set the empirical weights according to the “plug-in” naive Bayes rule

ŵHC
i := log

p̂i
q̂i
, i ∈ [n], (36)

which induces the empirical decision rule f̂HC and raises immediate concerns about ŵHC
i =

±∞. We give two kinds of bounds on P(f̂HC 6= Y ): nonadaptive and adaptive. In
the nonadaptive analysis, we show that for mi min {pi, qi} � 1, with high probability
|wi − ŵHC

i | � 1, and thus a “perturbed” version of Theorem 1(i) holds (and in particu-
lar, wHC

i will be finite with high probability). In the adaptive analysis, we allow ŵHC
i to

take on infinite values5 and show (perhaps surprisingly) that this decision rule still admits
reasonable error estimates.
Nonadaptive analysis. In this section, ε, ε̃ > 0 are related by ε = 2ε̃+ 4ε̃2 or, equivalently,

ε̃ =

√
4ε+ 1− 1

4
. (37)

Lemma 8 If 0 < ε̃ < 1 and

ε̃2mipi ≥ 3 log(2n/δ), i ∈ [n], (38)

then

P
(
∃i ∈ [n] :

p̂i
pi

/∈ (1− ε̃, 1 + ε̃)

)
≤ δ.

5. When the decision rule is faced with evaluating sums involving ∞−∞, we automatically count this as
an error.
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Proof The multiplicative Chernoff bound yields

P (p̂i < (1− ε̃)pi) ≤ e−ε̃
2mipi/2

and

P (p̂i > (1 + ε̃)pi) ≤ e−ε̃
2mipi/3.

Hence,

P
(
p̂i
pi

/∈ (1− ε̃, 1 + ε̃)

)
≤ 2e−ε̃

2mipi/3.

The claim follows from (38) and the union bound.

Lemma 9 Let δ ∈ (0, 1), ε ∈ (0, 5), and wi be the naive Bayes weight (3). If

1− ε̃ ≤ p̂i
pi
,
q̂i
qi
≤ 1 + ε̃

then

|wi − ŵHC
i | ≤ ε.

Proof We have

|wi − ŵHC
i | =

∣∣∣∣log
pi
qi
− log

p̂i
q̂i

∣∣∣∣
=

∣∣∣∣log
pi
p̂i

+ log
q̂i
qi

∣∣∣∣
=

∣∣∣∣log
pi
p̂i

∣∣∣∣+

∣∣∣∣log
q̂i
qi

∣∣∣∣ .
Now6

[log(1− ε̃), log(1 + ε̃)] ⊆ [−ε̃− 2ε̃2, ε̃]

⊆ [−1
2ε,

1
2ε],

whence ∣∣∣∣log
pi
p̂i

∣∣∣∣+

∣∣∣∣log
q̂i
qi

∣∣∣∣ ≤ ε.

6. The first containment requires log(1 − x) ≥ −x − 2x2, which holds (not exclusively) on (0, 0.9). The
restriction ε ≤ 5 ensures that ε̃ is in this range.
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Corollary 10 If

ε̃2mi min {pi, qi} ≥ 3 log(4n/δ), i ∈ [n],

then

P
(

max
i∈[n]
|wi − ŵHC

i | > ε

)
≤ δ.

Proof An immediate consequence of applying Lemma 8 to pi and qi with the union bound.

To state the next result, let us arrange the plug-in weights (36) as a vector ŵHC ∈ Rn,
as was done with w and η from Section 3.1. The corresponding weighted majority rule f̂HC

yields an error precisely when

ŵHC · η ≤ 0

(cf. (14)). Our nonadaptive approach culminates in the following result.

Theorem 11 Let 0 < δ < 1 and 0 < ε < min {5, 2Φ/n}. If

mi min {pi, qi} ≥ 3

(√
4ε+ 1− 1

4

)−2

log
4n

δ
, i ∈ [n], (39)

then

P
(
f̂HC(X,K) 6= Y

)
≤ δ + exp

[
−(2Φ− εn)2

8Φ

]
. (40)

Remark 12 For fixed {pi} different from 0 or 1 and mini∈[n]mi →∞, we may take δ and
ε arbitrarily small — and in this limiting case, the bound of Theorem 1(i) is recovered.

Proof Suppose that Z, Ẑ, and U are real numbers satisfying∣∣∣Z − Ẑ∣∣∣ ≤ U.
Then

∀t > 0, (Ẑ ≤ 0) =⇒ (U > t) ∨ (Z ≤ t). (41)

Indeed, if both U ≤ t and Z > t, then Ẑ and Z are within a distance t of each other, but
Z > t and so Ẑ must be greater than 0.

Observe also that ‖η‖∞ = 1, and thus a simple application of Hölder’s inequality yields

|w · η − ŵHC · η| = |(w − ŵHC) · η|

≤
n∑
i=1

|wi − wHC
i | = ‖w − ŵHC‖1 .
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Invoking (41) with Z = w, Ẑ = ŵHC, and t = εn, we obtain

P (ŵHC · η ≤ 0) ≤ P ({‖w − ŵHC‖1 > εn} ∪ {w · η ≤ εn})
≤ P(‖w − ŵHC‖1 > εn) + P(w · η ≤ εn).

Corollary 10 upper-bounds the first term on the right-hand side by δ. The second term
is estimated by replacing Φ by Φ − εn in (10) and repeating the argument following that
formula.

Adaptive analysis. Theorem 11 has the drawback of being nonadaptive, in that its assump-
tions (39) and conclusions (40) depend on the unknown {pi} and hence cannot be evaluated
by the agent (the bound in Display 35 is also nonadaptive). In the adaptive approach, all
results are stated in terms of empirically observed quantities:

Theorem 13 Choose any

δ ≥
n∑
i=1

1
√
mi

and let R be the event

exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
≤ δ

2
. (42)

Then

P
(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ δ.

Remark 14 Our interpretation for Theorem 13 is as follows. The agent observes the
committee profile K, which determines the {p̂i, ŵHC

i }, and then checks whether the event R
has occurred. If not, the adaptive agent refrains from making a decision (and may choose to
fall back on the low-confidence approach described previously). If R does hold, however, the
agent predicts Y according to f̂HC. The event R will tend to occur when the estimated p̂is
are “favorable” in the sense of inducing a large empirical committee profile. When this fails
to happen (i.e., many of the p̂i are close to 1

2), R will be a rare event. However, in this case
little is lost by refraining from a high-confidence decision and defaulting to a low-confidence
one, since near 1

2 , the two decision procedures are very similar.

As explained above, there does not exist a nontrivial a priori upper bound on P(f̂HC(X,K) 6=
Y ) independent of any knowledge of the pis. Instead, Theorem 13 bounds the probability
of the agent being “fooled” by an unrepresentative committee profile.7 Note that we have
done nothing to prevent ŵHC

i = ±∞, and this may indeed happen. Intuitively, there are two
reasons for infinite ŵHC

i : (a) noisy p̂i due to mi being too small, or (b) the ith expert is
actually highly (in)competent, which causes p̂i ∈ {0, 1} to be likely even for large mi. The
1/
√
mi term in the bound insures against case (a), while in case (b), choosing infinite ŵHC

i

causes no harm (as we show in the proof).

7. These adaptive bounds are similar in spirit to empirical Bernstein methods, (Audibert et al., 2007; Mnih
et al., 2008; Maurer and Pontil, 2009), where the agent’s confidence depends on the empirical variance.
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Proof We will write the probability and expectation operators with subscripts (such as K)
to indicate the random variable(s) being summed over. Thus,

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
= PK,η (R ∩ {ŵHC · η ≤ 0})

= EK [1R · Pη (ŵHC · η ≤ 0 |K)] .

(43)

Recall that the random variable η ∈ {±1}n, with probability mass function

P (η) =
∏
i:ηi=1

pi
∏

i:ηi=−1

qi,

is independent of K, and hence

Pη (ŵHC · η ≤ 0 |K) = Pη (ŵHC · η ≤ 0) . (44)

Define the random variable η̂ ∈ {±1}n (conditioned on K) by the probability mass function

P (η̂) =
∏
i:ηi=1

p̂i
∏

i:ηi=−1

q̂i,

and the set A ⊆ {±1}n by A = {x : ŵHC · x ≤ 0} . Now∣∣Pη (ŵHC · η ≤ 0)− Pη̂ (ŵHC · η̂ ≤ 0)
∣∣ =

∣∣Pη (A)− Pη̂ (A)
∣∣

≤ max
A⊆{±1}n

∣∣Pη (A)− Pη̂ (A)
∣∣

=
∥∥Pη − Pη̂

∥∥
TV

≤
n∑
i=1

|pi − p̂i| =: M,

where the last inequality follows from a standard tensorization property of the total variation
norm ‖·‖

TV
, see e.g. (Kontorovich, 2012, Lemma 2.2). By Theorem 1(i), we have

Pη̂ (ŵHC · η̂ ≤ 0) ≤ exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
,

and hence

Pη (ŵHC · η ≤ 0) ≤M + exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)
.

Invoking (44), we substitute the right-hand side above into (43) to obtain

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ EK

[
1R ·

(
M + exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

))]

≤ EK[M ] + EK

[
1R exp

(
−1

2

n∑
i=1

(p̂i − 1
2)ŵHC

i

)]
.
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By the definition of R, the second term on the last right-hand side is upper-bounded by
δ/2. To bound M , we invoke a simple mean absolute deviation estimate (cf. Berend and
Kontorovich, 2013a):

EK |pi − p̂i| ≤

√
pi(1− pi)

mi
≤ 1

2
√
mi
,

which finishes the proof.

Remark 15 Actually, the proof shows that we may take a smaller δ, but with a more
complex dependence on {mi}, which simplifies to 2[1− (1− (2

√
m)−1)n] for mi ≡ m. This

improvement is achieved via a refinement of the bound
∥∥Pη − Pη̂

∥∥
TV
≤
∑n

i=1 |pi − p̂i| to∥∥Pη − Pη̂

∥∥
TV
≤ α ({|pi − p̂i| : i ∈ [n]}), where α(·) is the function defined in Kontorovich

(2012, Lemma 4.2).

Open problem. As argued in Remark 12, the nonadaptive agent achieves the asymptotically
optimal rate of Theorem 1(i) in the large-sample limit. Does an analogous claim hold true
for the adaptive agent? Can the dependence on {mi} in Theorem 13 be improved, perhaps
through a better choice of ŵHC?

5. Unknown Competences: Bayesian Approach

A shortcoming of Theorem 13 is that, when condition R fails, the agent is left with no
estimate of the error probability. An alternative (and in some sense cleaner) approach to
handling unknown expert competences pi is to assume a known prior distribution over the
competence levels pi. The natural choice of prior for a Bernoulli parameter is the Beta
distribution, namely

pi ∼ Beta(αi, βi)

with density

pαi−1
i qβi−1

i

B(αi, βi)
, αi, βi > 0,

where qi = 1−pi and B(x, y) = Γ(x)Γ(y)/Γ(x+y). Our full probabilistic model is as follows.
First, “nature” chooses the true state of the world Y according to Y ∼ Bernoulli(1

2), and
each of the n expert competences pi is drawn independently from Beta(αi, βi) with known
parameters αi, βi. Then the ith expert, i ∈ [n], is queried (on independent instances) mi

times, with Ki ∼ Bin(mi, pi) correct predictions and mi − Ki incorrect ones. As before,
K = (K1, . . . ,Kn) is the (random) committee profile. Additionally, X = (X1, . . . , Xn) is
the random voting profile, where Xi ∼ Y [2 · Bernoulli(pi)− 1], independent of the other
random variables. Absent direct knowledge of the pis, the agent relies on an empirical
decision rule f̂ : (x,k) 7→ {±1} to produce a final decision based on the expert inputs x
together with the committee profile k. A decision rule f̂Ba is Bayes-optimal if it minimizes

P(f̂(X,K) 6= Y ), (45)
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which is formally identical to (29) but semantically there is a difference: the probability
in (45) is over the pi in addition to (X, Y,K). Unlike the frequentist approach, where no
optimal empirical decision rule was possible, the Bayesian approach readily admits one:

Theorem 16 The decision rule

f̂Ba(x,k) = sign

(
n∑
i=1

ŵBa
i xi

)
, (46)

where

ŵBa
i = log

αi + ki
βi +mi − ki

, (47)

minimizes the probability in (45) over all empirical decision rules.

Remark 17 For 0 < pi < 1, we have

ŵBa
i −→mi→∞

wi, i ∈ [n],

almost surely, both in the frequentist and the Bayesian interpretations.

Proof Denote

Mn = {0, . . . ,m1} × {0, . . . ,m2} × . . .× {0, . . . ,mn}

and let f : {±1}n ×Mn → {±1} be an arbitrary empirical decision rule. Then

P(f(X,K) 6= Y ) =
∑

x∈{±1}n, k∈Mn

P(X = x,K = k) · P(f(X,K) 6= Y |X = x,K = k).

Observe that the quantity P(Y = y |X = x,K = k) is completely determined by y, x, k,
and the parameters α,β ∈ Rn, and denote this functional dependence by

P(Y = y |X = x,K = k) =: Gα,β(y,x,k).

Then clearly, the optimal empirical decision rule is

f∗α,β(x,k) =

{
+1, Gα,β(+1,x,k) ≥ Gα,β(−1,x,k),

−1, Gα,β(+1,x,k) < Gα,β(−1,x,k),

and a decision rule fα,β is optimal if and only if

P(fα,β(X,K) = Y |X = x,K = k) ≥ P(fα,β(X,K) 6= Y |X = x,K = k) (48)

for all x,k,α,β. Invoking Bayes’ formula, we may rewrite the optimality criterion in (48)
in the form

P(fα,β(X,K) = Y,X = x,K = k) ≥ P(fα,β(X,K) 6= Y,X = x,K = k). (49)
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For given x ∈ {±1}n and k ∈Mn, let I+(x) be the set of YES votes

I+(x) = {i ∈ [n] : xi = +1}

and I−(x) = [n] \ I+(x) the set of NO votes. Let us fix some A ⊆ [n], B = [n] \ A and
compute

P(Y = +1, I+(X) = A, I−(X) = B,k = K)

=
n∏
i=1

∫ 1

0

pαi−1
i qβi−1

i

B(αi, βi)

(
mi

ki

)
pkii q

mi−ki
i p

1{i∈A}
i q

1{i∈B}
i dpi

=
n∏
i=1

(
mi
ki

)
B(αi, βi)

∫ 1

0
p
αi+ki−1+1{i∈A}
i q

βi+mi−ki−1+1{i∈B}
i dpi

=

n∏
i=1

(
mi
ki

)
B(αi + ki + 1{i∈A}, βi +mi − ki + 1{i∈B})

B(αi, βi)
. (50)

Analogously,

P(Y = −1, I+(X) = A, I−(X) = B,k = K)

=
n∏
i=1

(
mi
ki

)
B(αi + ki + 1{i∈B}, βi +mi − ki + 1{i∈A})

B(αi, βi)
. (51)

Let us use the shorthand P (+1, A,B,k) and P (−1, A,B,k) for the joint probabilities in the
last two displays, along with their corresponding conditionals P (±1 |A,B,k). Obviously,

P (1|A,B,k) > P (−1|A,B,k) ⇐⇒ P (1, A,B,k) > P (−1, A,B,k),

which occurs precisely if

n∏
i=1

B(αi+ki+1{i∈A}, βi+mi−ki+1{i∈B})>
n∏
i=1

B(αi+ki+1{i∈B}, βi+mi−ki+1{i∈A}), (52)

as the other factors in (50) and (51) cancel out. Now B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and

Γ(αi + ki + 1{i∈A} + βi +mi − ki + 1{i∈B}) = Γ(αi + ki + 1{i∈B} + βi +mi − ki + 1{i∈A})

= Γ(αi + βi +mi + 1),

and thus both sides of (52) share a common factor of(
n∏
i=1

Γ(αi + βi +mi + 1)

)−1

.

Furthermore, the identity Γ(x+ 1) = xΓ(x) implies

Γ(αi + ki + 1{i∈A}) = (αi + ki)
1{i∈A}Γ(αi + ki),

Γ(βi +mi − ki + 1{i∈B}) = (βi +mi − ki)1{i∈B}Γ(βi +mi − ki),
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and thus both sides of (52) share a common factor of

n∏
i=1

Γ(αi + ki)Γ(βi +mi − ki).

After cancelling out the common factors, (52) becomes equivalent to∏
i∈A

(αi + ki)
∏
i∈B

(βi +mi − ki) >
∏
i∈B

(αi + ki)
∏
i∈A

(βi +mi − ki),

which further simplifies to∏
i∈A

αi + ki
βi +mi − ki

>
∏
i∈B

αi + ki
βi +mi − ki

.

Hence, the choice (47) of ŵBa
i guarantees that the decision rule in (46) is indeed optimal.

Remark 18 Unfortunately, although

P(f̂Ba(X,K) 6= Y ) = P(ŵBa · η ≤ 0)

is a deterministic function of {αi, βi,mi}, we are unable to compute it at this point, or even
give a non-trivial bound. The main source of difficulty is the coupling between ŵBa and η.

Open problem. Give a non-trivial estimate for P(f̂Ba(X,K) 6= Y ).

6. Experiments

It is most instructive to take the committee size n to be small when comparing the different
voting rules. Indeed, for a large committee of “marginally competent” experts with pi = 1

2 +
γ for some γ > 0, even the simple majority rule fMAJ(x) = sign(

∑n
i=1 xi) has a probability

of error decaying as exp(−4nγ2), as can be easily seen from Hoeffding’s bounds. The more
sophisticated voting rules discussed in this paper perform even better in this setting; see
Helmbold and Long (2012) for an in-depth study of the utility gained from weak experts.
Hence, small committees provide the natural test-bed for gauging a voting rule’s ability to
exploit highly competent experts. In our experiments, we set n = 5 and the sample sizes
mi were identical for all experts. The results were averaged over 105 trials. Two of our
experiments are described below.
Low vs. high confidence. The goal of this experiment was to contrast the extremal behavior
of f̂LC vs. f̂HC. To this end, we numerically optimized the p ∈ [0, 1]n so as to maximize the
absolute gap

∆n(p) := P(fLC(X) 6= Y )− P(fOPT(X) 6= Y ),

where fLC(x) = sign
(∑n

i=1(pi − 1
2)xi

)
. We were surprised to discover that, though the ratio

P(fLC(X) 6= Y )/P(fOPT(X) 6= Y ) can be made arbitrarily large by setting p1 ≈ 1 and the
remaining pi < 1−ε, the absolute gap appears to be rather small: we conjecture (with some
heuristic justification8) that supn≥1 supp∈[0,1]n ∆n(p) = 1/16. For f̂Ba, we used αi = βi = 1
for all i. The results are reported in Figure 1.

8. The intuition is that we want one of the experts to be perfect (i.e., p = 1) and two others to be
“moderately strong,” whereby under the low confidence rule, the two can collude to overwhelm the perfect
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Figure 1: For very small sample sizes, f̂LC outperforms f̂HC but is outperformed by f̂Ba.
Starting from sample size ≈ 13, f̂HC dominates the other empirical rules. The
empirical rules are (essentially) sandwiched between fOPT and fMAJ.
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Figure 2: Unsurprisingly, f̂Ba uniformly outperforms the other two empirical rules. We
found it somewhat surprising that f̂HC required so many samples (about 60 on
average) to overtake f̂LC. The simple majority rule fMAJ (off the chart) performed
at an average accuracy of 50%, as expected.

expert, but neither of them alone can. For n = 3, the choice p = (1, 3/4 + ε, 3/4 + ε) asymptotically
achieves the gap ∆3(p) = 1/16.
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Bayesian setting. In each trial, a vector of expert competences p ∈ [0, 1]n was drawn
independently componentwise, with pi ∼ Beta(1, 1). These values (i.e., αi = βi ≡ 1) were
used for f̂Ba. The results are reported in Figure 2.

7. Discussion

The classic and seemingly well-understood problem of the consistency of weighted majority
votes continues to reveal untapped depth and suggest challenging unresolved questions. We
hope that the results and open problems presented here will stimulate future research.
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Appendix A. Bibliographical Notes on the Kearns-Saul Inequality

Given the recent interest surrounding the Kearns-Saul inequality (9), we find it instructive
to provide some historical notes on this and related results. Most of the material in this
section is taken from Saul (2014), to whom we are indebted for writing the note and for his
kind permission to include it in this paper.

Lemma 19 Let f(x) = log cosh(1
2

√
x). Then f(x) is concave on x ≥ 0.

Proof The second derivative is given by

f ′′(x) =
sech2(1

2

√
x)

16x3/2

[√
x− sinh(

√
x)
]
.

For x > 0, the first of these factors is positive, and the second is negative. To show the
latter, recall the Taylor series expansion

sinh(t) = t+
t3

3!
+
t5

5!
+
t7

7!
+ . . . ,

from which we observe that
√
x ≤ sinh(

√
x). It also follows from the Taylor series that

f ′′(0) = − 1
96 . It follows that f ′′ is negative on the positive half-line, and hence f is concave

on this domain.

Corollary 20 For x, x0 > 0, we have

log cosh(1
2

√
x) ≤ log cosh(1

2

√
x0) +

[
tanh(1

2

√
x0)

4
√
x0

]
(x− x0). (53)
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Proof A concave function f(x) is upper-bounded by its first-order Taylor approximation:
f(x) ≤ f(x0) + f ′(x0)(x− x0). The claim follows from Lemma 19.

The results in Lemma 19 and Corollary 20 were first stated by Jaakkola and Jordan
(1997); see Jebara (2011); Jebara and Choromanska (2012) for extensions, including a
multivariate version. As pointed out by a referee, Theorem 1 in Hoeffding (1963) contains
some bounds that bear a resemblance to the Kearns-Saul inequality. However, we were
unable to derive the latter from the former — which, in particular, requires all of the
summands to be bounded between 0 and 1.

Suppose that in Equation (53), we make the substitutions

√
x =

∣∣∣∣t+ log
p

1− p

∣∣∣∣ , (54)

√
x0 =

∣∣∣∣log
p

1− p

∣∣∣∣ , (55)

where t ∈ R and p ∈ (0, 1). Then we obtain a particular form of the bound that will be
especially useful in what follows.

Corollary 21 For all t ∈ R and p ∈ (0, 1),

log cosh

(
1
2

[
t+ log

p

1− p

])
≤ − log

[
2
√
p(1− p)

]
+ (p− 1

2)t+

(
2p− 1

4 log p
1−p

)
t2.

Proof Make the substitutions suggested in (54, 55) and apply Corollary 20. The result
follows from tedious but elementary algebra.

The above result yields perhaps the most natural and direct proof of the Kearns-Saul
inequality to date:

Theorem 22 For all t ∈ R and p ∈ (0, 1),

log
[
(1− p)e−pt + pe(1−p)t

]
≤

(
2p− 1

4 log p
1−p

)
t2.

Proof Rewrite the left-hand side by symmetrizing the argument inside the logarithm,

log
[
(1− p)e−pt + pe(1−p)t

]
= log cosh

(
1
2

[
t+ log

p

1− p

])
− (p− 1

2)t+ log
[
2
√
p(1− p)

]
,

and invoke Corollary 21.

The inequality in Theorem 22 was first stated by Kearns and Saul (1998) and first
rigorously proved by Berend and Kontorovich (2013b). Shortly thereafter, Raginsky (2012)
provided a very elegant proof based on transportation and information-theoretic techniques,
which currently appears as Theorem 37 in Raginsky and Sason (2013). A third proof, found
by Schlemm (2014), fleshes out the original strategy suggested by Kearns and Saul (1998).
The fourth proof, given here, is due to Saul (2014).
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