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Abstract

In this work we address the Ev—SVM model proposed by Pérez—Cruz et al. as an extension
of the traditional v support vector classification model (v—-SVM). Through an enhancement
of the range of admissible values for the regularization parameter v, the Ev—SVM has been
shown to be able to produce a wider variety of decision functions, giving rise to a better
adaptability to the data. However, while a clear and intuitive geometric interpretation
can be given for the »—~SVM model as a nearest—point problem in reduced convex hulls
(RCH-NPP), no previous work has been made in developing such intuition for the Ev—
SVM model. In this paper we show how Ev—SVM can be reformulated as a geometrical
problem that generalizes RCH-NPP, providing new insights into this model. Under this
novel point of view, we propose the RAPMINOS algorithm, able to solve Ev—SVM more
efficiently than the current methods. Furthermore, we show how RAPMINOS is able to
address the Ev—SVM model for any choice of regularization norm /,>; seamlessly, which
further extends the SVM model flexibility beyond the usual Er—SVM models.

Keywords: SVM, Ev—SVM, nearest point problem, reduced convex hulls, classification

1. Introduction

Let us address the classification problem of learning a decision function f from X C R"
to {£1} based on m training samples (X;,y;), with i € M = {1,...,m}. We assume that
the training samples are i.i.d., following the unknown probability distribution P (X,y) on
X x {1}

Building on the well-known support vector machine (SVM) model developed in Cortes
and Vapnik (1995), a variation of it, termed v—SVM, was proposed in Scholkopf et al. (2000)
as
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In this formulation the value of v is made to lie in [0, 1], but actually there is a value
Umin > 0 such that if v € [0, vyin], then we obtain the trivial solution W =b=p =¢ = 0.
To tackle this, Pérez-Cruz et al. (2003) proposed generalizing (1) by allowing the margin p
to be negative and enforcing the norm of W to be unitary:

min _VP+;§4&' (2)
yi(W-Xi+b)>p—¢&, i€M,
s.t. §& >0, ie M,
w5 =1.

With this modification, a non—trivial solution can be obtained even for v € [0, Vyin]. This
modified formulation was called extended-v-SVM (Ev-SVM), and has been shown to be able
to generate a richer family of decision functions, thus producing better classification results
in some settings. In addition to this, Takeda and Sugiyama (2008) arrived independently to
the same model by minimizing the conditional value-at-risk (CVaR) risk measure, which is
often used in finance. Letting the cost function be f(W,b, X;,y;) = —y;(W - X; +b)/||W ],
the CVaR risk measure is defined as the mean of the (1 —v)-tail distribution of f for i € M
(Rockafellar and Uryasev, 2002).

One of the advantages of the »—SVM formulation (1) comes from its multiple connec-
tions to other well-known mathematical optimization problems, some of them allowing for
intuitive geometric interpretations. A schematic of such connections is presented in Figure
1. Connections 1 and 2 were introduced in the pioneer work of Bennett and Bredensteiner
(2000), showing how the SVM could be interpreted geometrically. Alternatively, and fol-
lowing the equivalence of the SVM and »—SVM models (connection 3, shown in Scholkopf
et al., 2000), Crisp and Burges (2000) arrived to the same geometrical problem (connec-
tions 4 and 5). Such problem, known in the literature as reduced convex hull nearest—point
problem (RCH-NPP), consists of finding the closest points in the reduced convex hulls of
the points belonging to the positive and negative classes. This can be formulated as

2
. 1
Z€M+ ieEM_ 2

St {Zi€M+ Ai = ZieM_ Ai =1,
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Figure 1: Relationships between the SVM, v—SVM and other mathematical optimization
problems. Connections and problems in gray were previously known, while con-
nections and models in black are introduced in this paper.

where we denote My = {i:y; = £1}, and 7 is the reduction coefficient of the reduced
convex hulls. A specific value of v in (1) corresponds to a specific value of 7 in (3). Broadly
speaking, the bigger v is, the smaller 7 is, and the more the hulls shrink towards their
barycenters.

Using the same notation, the intermediate RCH-Margin formulation in Figure 1 has the
following form:

1 2
min —|\Wll5+ B8 —a+ ; 4
i, GIWIE+s-atn Y (@
W.-X;>a—-&, 1€ My,
s.t. W -X; <pB+¢&, ieM_,
& >0, 1€ M.

At the light of these relationships and the fact that Ev—SVM is essentially a general-
ization of »~SVM (connection 6, Pérez-Cruz et al., 2003), it seems natural to assume that
similar connections and geometric interpretations should exist for Ev—SVM. Nevertheless,
no work has been previously done along this line. Therefore, in this paper we exploit these
known vr—SVM connections to develop a novel geometric interpretation for the Ev—SVM
model. We will show how similar connections can be proved for Ev—SVM, and how this
provides a better insight into the mathematical problem posed by this generalized model,
allowing us to develop a new algorithm for Er—SVM training.

On top of this, we demonstrate how the Ev—SVM formulation allows to extend the
SVM models through the use of general £,>;-norm regularizations, instead of the usual fo—
norm regularization. Previously, SVM models with other particular values of p have been
proposed, such as ¢1-SVM by Zhu et al. (2003) or £,,—SVM in Bennett and Bredensteiner
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(2000), acknowledging the usefulness of different ¢, norms to enforce different degrees of
sparsity in the model coefficients. Some work has also been done in approximating the NP—
hard non—convex non—continuous £p—norm within SVM models, by methods such as iterative
reweighing of £1—SVM models (Shi et al., 2011) or through expectation maximization in a
Bayesian approach (Huang et al., 2009), and also in the context of least—squares support
vector machines (Lépez et al., 2011b). In spite of this, to date no efficient implementation
seems to have been offered for the general ¢,>1-SVM. Similarly, no methods have been
proposed either to solve an equivalent ¢,>1 version of the ERCH-NPP.
The contributions of this work on these matters are the following:

e We show how the Ev—SVM problem (2) is equivalent to an extended version of the
reduced convex hull margin (RCH-Margin) problem (connections 7 and 8 in Figure
1).

e We introduce the extended reduced convex hulls nearest—point problem (ERCH-
NPP), which is both a dual form of the Ev—SVM (connection 9) and a generalization
of RCH-NPP (connection 10).

e For the case when the reduced convex hulls do not intersect, we show how ERCH-NPP
can be reduced to the RCH-NPP problem.

e For the intersecting case we analyse how the problem becomes non—convex, and pro-
pose the RAPMINOS algorithm, which uses the acquired geometric insight to find a
local minimum of ERCH-NPP faster than the currently available Ev—SVM solvers.

o All derivations are performed for the general ¢,>; regularization, thus boosting the
Ev—SVM model capability even further, and also providing means to solve RCH-NPP
for such range of norms.

e A publicly available implementation of RAPMINOS is provided.

The rest of the paper is organized as follows: Section 2 describes the recasting of (2)
as a geometrical problem. Section 3 shows that this geometrical problem is in fact a gen-
eralization of the standard RCH-NPP problem (3), able to find non—trivial solutions even
in the case where the convex hulls intersect. In Section 4 we analyse the structure of the
optimization problem posed by the ERCH-NPP problem. Based on this, Section 5 develops
the RAPMINOS algorithm and shows its theoretical properties, while in Section 6 we present
experimental results on its practical performance. Finally, Section 7 discusses briefly the
results obtained and related future work.

2. Geometry in Er-SVM

In this section we will introduce the geometric ideas behind Ev—SVM (2) by proving con-
nections 7 and 9 in Figure 1, thus arriving to the ERCH-NPP problem. We also generalize
its formulation not only to cover the fo-norm W regularization, but an arbitrary £, norm
with p > 1.

To begin with, let us define the ERCH-Margin (extended reduced—convex—hull margin)
problem and its connections with Ev—SVM.
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Proposition 1 The ERCH-Margin (extended reduced—convexr—hull margin) problem, de-
fined as

min ﬁfaanZfi (5)

min
Wi[Wllp=1  a,5¢ et
WX’LZOZ_fla ieM—i—a
s.1. W -X; <pB+¢&, 1€ M_,
£ >0, i€ M.

is equivalent to the Ev—-SVM problem (connection 7 in Figure 1).

Proof Take (2) and multiply its objective function by 2/v 1. Let us also consider the
{p-—norm, and separate the constraint [[W{|, =1 from the problem, obtaining:

2
min min —2p+ — ; 6
wAWlh=1 bt © " um ;ﬁ ©)
st yz(WXz+b)Zp_€za iEMv
& >0, ic M.

Denoting now n = 2/(vm), a = p — b and § = —p — b, direct substitution makes the
above problem become the ERCH-Margin problem. |

The geometry behind this formulation is summarized in Figure 2. There we have a
feasible estimate (W, a, 8, ) which gives two parallel hyperplanes: W-X = cand W-X = §.
We are seeking to optimize two conflicting goals: on the one hand we want to maximize
the signed distance between both hyperplanes, given by o — 3, and on the other hand we
want the hyperplane W - X = « to leave as many positive points as possible to its left.
The same is applicable to the hyperplane W - X = 3, which should leave as many negative
points as possible to its right. In the configuration illustrated, preference has been given to
correct classification, so that the hyperplanes “cross”, and 8 > «. Thus, the signed distance
between the hyperplanes is negative in this case.

In the general case, the trade—off between these two conflicting goals is regulated by the
penalty factor n = 2/(vm). The slack variables &; allow for errors when the hyperplanes do
not leave the points to their proper side. The penalty factor keeps the errors at bay, so finally
we reach a compromise between separation of the hyperplanes and correct classification.

We now move one step further and define the ERCH-NPP problem and its connection
with ERCH-Margin.

Proposition 2 The ERCH-NPP (extended reduced—convex—hull nearest—point problem) prob-
lem, defined as

1. Note that this precludes the use of ¥ = 0, but in practice such a value is not interesting, since (2) would
only minimize the errors, which tends to overfitting.
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Figure 2: Illustration of the ERCH-Margin problem. The extreme positive (negative)
points are printed in red (blue). The current estimate gives two parallel hy-
perplanes W - X = o and W - X = 3 that try to separate the two classes as
well as possible, while keeping far from each other. Errors are quantified by slack
variables &;, with two examples highlighted.

min max Ww.-X_-W-X,. (7)
Wi Wip=1 Xyelp,X_ el

with reduced convex hulls

u:t: Z)\iXi:Z)\izl,Og)\ign s
€My €My

is the dual problem of ERCH-Margin (connection 9 in Figure 1).

Proof The Lagrangian for the inner minimization problem in ERCH-Margin (5) reads

L= B-a+n) &= MW -Xi—at&)

€M ieMy
Y NW X —B—&) = > ks, (8)

1€EM_ i€ M

where we introduced the Lagrange multipliers A\; > 0,u; > 0, ¢ € M, associated to the

inequality constraints of (5). Differentiating with respect to the variables being minimized
and equating to zero gives
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oL
5o =1+ dDA=0 = > A=l

ieMy ieMy
oL
%:1—'2 N=0 = ‘Z Ai=1,

iEM_ i€EM_
%ZU-M—MzO = 0<N<n1eM

Substituting all the above in the Lagrangian (8) yields the partial dual formulation of
(5):

min  max Y AW-X;— > AW-X; (9)
WiWlp=1 A ieMy
> N= > L=,
s.t. ieMy ieM_

0< X\ <m, i€ M.

Now, considering the constraints of (9) and problem (3), we are confined to the reduced
convex hulls whose reduction coefficient is in this case n = 2/(vm). If we have 2/(vm) > 1,
we just work in the standard convex—hulls of both subsamples. By making use of the
reduced convex hulls 3 and defining X4 =,/ . AiXj, problem (9) can be written more
succinctly as

min max w.-X_-W.-Xy,,
W[Wlip=1 XUy, X_el_

which is ERCH-NPP.
|

Once we know we are working with reduced convex hulls, further geometrical intuition
can be given on what we are doing. Recall that the quantity (W - Xo + b)/||W||, gives
the signed distance from a specific point Xy to the hyperplane W - X + b = 0, in terms
of the £, norm. Note that in this case we always have unitary W vectors. Since we only
care about the orientation of the solution hyperplane (W,b) and not about its magnitude,
problem (7) can be rewritten as

max min W'v)‘(ﬁ% — W'v)‘(/—%, (10)
Wb Xiely,X_eu_ Wl» Wiy

so that we can regard that Ev-SVM finds a solution that maximizes the margin, where by
“margin” we mean the smallest signed distance between the two reduced convex hulls.
There are two cases depending on the value of the reduction coefficient 2/(vm):
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e If the coefficient is small enough, the reduced convex hulls will not intersect, so there
exists some hyperplane W producing a perfect separation between them. Therefore,
(W*- X1 +0%)/||W*||, >0 and (W*- X* +b*)/||W*||, < 0 must hold at optimality.

e If it is large enough, they will intersect, so there is no W producing perfect separation.
Therefore, it is (W* - X% +0%)/[|W*||, < 0 and (W* - X* +b*)/||W*||, > 0 that hold
at optimality.

PO

W*- X +0b*>0

Vo

W - X+b*<0

Figure 3: Case where the reduced convex hulls do not intersect (u = 1/2). The color
convention is the same as in Figure 2, whereas the extreme points of the positive
(negative) reduced hulls are printed in green (purple). The optimal solution is
given by W*, b*, Xi and X*. Observe that X7 (X*) lies in the positive (negative)
side of the hyperplane.

In the following section we will see how in the first case the problem can be reduced
to the standard RCH-NPP problem, while the second case cannot be captured by such
problem. This will lead to the conclusion that ERCH-NPP is a generalization of RCH-NPP
(connection 10 in Figure 1), and that ERCH-Margin is a generalization of RCH-Margin
(connection 8).

3. Relationship with RCH-NPP

Here we will see that ERCH-NPP (9) is in fact a generalization of RCH-NPP (3). Using
the notation of the previous section, (3) can be expressed as

1
i Xy =X_2 = i Xy —X_ 11
X+eurf,1)1(1_eu_ 2 1+ lg X+eu131)r(l_ eu- 1%+ lg: (11)

where the reduction coefficient in Uy is n = 2/(vm), and we again allow the use of a general
l,norm with ¢ > 1 to measure the distance between the hulls 2.

2. While we acknowledge the interest in ¢ < 1 norms in the field of Machine Learning, the use of such
norms introduces an additional level of non—convexity into the problem, and thus is out of the scope of
this paper.
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H
(---n-|-|-|-§
W*- X +b>0]

H

-

[WH X +b <0

Figure 4: Case where the reduced convex hulls intersect (1 = 3/4), with the same color
and solution convention than in Figure 3. Observe that X7} (X*) lies now in the
negative (positive) side of the hyperplane.

If the reduction parameter n = 2/(vm) is not small enough, the classes might overlap
as in Figure 4, and (11) thus generates the trivial solution X% = X*, so that W* = 0. The
same happens with »—SVMs, where v must be large enough to obtain meaningful solutions.
What we intend to show next is that, exactly as Ev—SVM extended v—SVM to allow for all
the range of possible values of v (that is, v € (0, Umax], With vmax = 2min{|M, |, |M_|}/m),
ERCH also extends RCH to allow for all the possible values for n.

To this aim, first we show the following lemma, whose is based on the fact that if the
hulls do not intersect, any solution with [[W{|, <1 is actually worse than the one obtained
by trivially rescaling W so that ||W|| p =1 That is to say, relaxing the constraint in such a
way does not modify the solution of the optimization, since the optimum is guaranteed to
remain at the same place.

Lemma 3 If the reduced convex hulls do not intersect, we can replace the constraint [|[W{|, =
Lin (5) with |[W{|, < 1.

Proof As was discussed above, if the reduced convex hulls do not intersect, a hyperplane
W* and a bias b* exist such that W*- X, +b* >0V X, e Uy, W*- X_+b* <0V X_ elU_.
Therefore, at the optimum of (7) and (9) the value of the inner maximum must be negative.

Since the inner problem of (9) is the dual of the inner problem of (5) and both problems
are convex (linear, in fact), by strong duality the value of their objective functions is equal
at the optimum (Rockafellar, 1970; Luenberger and Ye, 2008). Hence, the inner minimum
of (5) must be negative as well. Therefore, for any optimal solution (W*, o*, 5*,£*) we get
the optimal objective value

Pr=p"—a"+n) & <0,

ieM
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To see that we can replace the constraint ||[W||, = 1 with ||[W]|, < 1, let us suppose an
optimal solution (W*,a*, 5*,£*) such that ||W*||, < 1. We can then build another solution
W'/, 8,8, with W' = W*/[[W*[|,,, o = o /[W*|p, 8" = 87/ |W*[lp and £ = &* /W],

This solution is obviously feasible, because the constraints of (5) hold. Moreover,
|[W']|, =1 and the objective value is now

P*

P=p—-d+n) &=
2 Wy

ieM

< P*,

where the last inequality holds because P* < 0 and |[W*||, < 1. We are minimizing in (9),
so this new solution (W' o/, 8',¢’) is actually better than (W*, o*, 5*,£*), which contra-
dicts the supposed optimality of the latter. Therefore, we can safely replace ||W||, = 1 with
Wl < 1. u

The following definition and remark will also be used:

Definition 4 The convex conjugate f : X - RU+oo of a functional f: X — RU +oo
is f(2) =supex {2 2 — f(x)} = —infoex {f(z) — T - 2}, where X denotes the dual space
to X and the dot product operation (dual pairing) is a function X x X — R (Rockafellar,
1970).

Remark 5 If f(z) = cg(x), with ¢ > 0 a scalar, then f(2) = cg(i/c).

Theorem 6 The ERCH equivalent formulations (5)—(10) give a solution for the RCH for-
mulation (11) when the reduced convexr hulls do not intersect, provided that 1/p+1/q = 1.

Proof By Lemma 3, we can now write problem (5) as a single minimization problem of
the form

min B—a+nd. & (12)

W,a,8,§ ieM
W.-X;>2a—&, 1€ My,
W-Xi<pB+¢&, i€M,
& >0, i€ M,
Wi, <1,

s.t.

whose Lagrangian is

L= B-a+nd &= > MW -Xi—a+§&)

ieM i€EMy
D MW Xi—B-&) = Y ik

€M €M
+o([Wllp = 1)
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However, since the £,-norm is not necessarily differentiable, we cannot proceed now as in
Section 2. To derive the dual problem, we must take into account that it consists of finding
the maximum, with respect to the Lagrange multipliers, of the infimum of the Lagrangian,
where this infimum is with respect to the primal variables (Boyd and Vandenberghe, 2004).
In our case the primal variables are W, «, 8 and £, whereas the Lagrange multipliers are
Ai, i and 6. Thus, the dual of (12) translates to

inf L 13
ASOHC0620 WiaBe £} 13)

where L is the expression above. Splitting the infimum among the different variables, we
want to find

infyy {ZieM, AW - Xi = Yiear, MW - X + 5||W||p} +
inf, {—a +adliem, )\i} +infg {,6’ — B iem )\i} +
Yien infe, {n&i — Ni&i — ik} — 0.

For o, 8 and £ we can find the infima just by differentiating and equating to 0:

iEM iEM,
oL
€M €M
oL
875'27]—)\1—,[14’:0 = 0<\<n, 1€ M.

As for W, we can write the infimum as inf {— >, NiyiW - X; + 6||W||,}. This ex-
pression follows the form of the convex conjugate as presented in Definition 4, where we can
identify the functional f(W) = §||W ||, and the dual variable W = > e AiviXi. Moreover,
assuming for the moment that 6 > 0 and using Remark 5, we have g(W) = ||W/|,,.

Since the convex conjugate of the £,-norm is given by

g(W)

o Joo W<,
B 400 otherwise,

where 1/p+1/q = 1 (see Boyd and Vandenberghe, 2004), we get in our case that the term
inf { =3 ,c0r NiyiW - X, + 6||W ||, } equals

s--a(t) - {2

—oo otherwise,
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which can be rewritten as

<4
q

> AuiX;
ieM

)

1 0 if
—0g (5 > )‘iini> =

€M —o00 otherwise.

The optimum will be located in the region where the convex conjugate is finite, so (13)
is equivalent to

- 14
g .
Doiemy Ni = Diem A =1
st 0< N <7, i€ M,

I iens MiyiXi], < 0.

On the other hand, when 6 = 0 the infimum on W is just inf {— ZZ-GM Ay W Xi}.
Differentiating with respect to W we obtain that X, = X_, so that W = 0. Consequently,
HZiGM )\Z-inin = 0 = 4, which satisfies (14).

Observe that the non—negativity constraints of the Lagrange multipliers in (13) are
subsumed in the constraints above. This can be further rewritten, removing 4, as

min
A

> AwiX;

€M

q

St Zi€M+ Ai = ZieM_ Ai =1
0<\<n, 1e€M,

that is, problem (11).
|

Therefore, when the hulls do not intersect, ERCH-NPP results in the standard RCH-
NPP problem. It is worth noting that Bennett and Bredensteiner (2000) already described
how RCH-NPP relates to RCH-Margin (which is a particular case of our ERCH-Margin
formulation 5 for non—intersecting hulls), for the /1, ¢5 and /o—norms. Nevertheless, their
proof was omitted due to space constraints. We cover general p and ¢, which include all
these as particular cases.

Addressing now the non-intersecting case, we introduce another lemma, analogous to
Lemma 3.

Lemma 7 If the reduced convex hulls intersect, we can replace the constraint [W|, =1 in
(5) with [W]|, > 1.
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Proof Just follow a similar argument to the one presented for Lemma 3. By the nature of
problem (7), and since there is overlap, we obtain W* - X7 4+ b* < 0 and W*- X* +b* >0
for any optimal W*, X%, X* (see Figure 4).

Therefore, at the optimum of (7) and (9) the value of the inner maximum must be
positive. Supposing that ||[W*|, > 1 allows us to build an alternative feasible solution
(WH*/IWH |, & JIIW 1, B* /W ||, £ /IIW*||p), whose norm is unitary and whose primal
value is less than that of our hypothetical optimal solution, contradicting thus this optimal-
ity. |

The problem can be then rewritten as

min min 6—a+ni§4€i
W-X;>a—&, i€ M.,
W-X; <B+¢&, ie€M_,
& >0, i€ M,
Wllp > 1.

s.t.

In contrast to the derivation in Theorem 6, obtaining the dual of this problem is counter-
productive. Since the constraint ||[W]|, > 1 is non—convex, a non-zero dual gap is bound to
appear. Therefore, solving the dual problem would only provide an approximate solution
to the ERCH. Instead of following such a derivation, we take the ERCH-NPP formulation
in 7 and plug in the modified constraint on W, obtaining

min max wW.X_-W-X,.
IWlp>1 Xi€ls,X_ €U
The immediate advantage of this formulation of the ERCH is that, whatever the data
points X, a trivial solution W = 0 is never obtained. In comparison, the RCH-NPP model
always produces the trivial solution whenever the reduced hulls intersect. Joining this and

the facts above, it is immediate that ERCH-NPP can be regarded as a generalization of
RCH-NPP.

Theorem 8 ERCH-NPP is a generalization of RCH-NPP (connection 10 in Figure 1).

Proof Given the data points for which to solve ERCH-NPP, the reduced convex hulls
formed by such points might or might not intersect. If they do not intersect, by Theorem
6 the solution of the ERCH-NPP problem is exactly the solution of RCH-NPP. If they do
intersect, then RCH-NPP fails to find a non—trivial solution, while ERCH-NPP does not,
by Lemma 7. Therefore, ERCH-NPP covers all feasible cases for RCH-NPP plus a new
set, hence being a generalization of RCH-NPP. |

Note that ERCH-Margin in (5) is nothing but RCH-Margin in (4), with the additional
requirement ||[W||, = 1. Regarding the above two possible cases, we have seen that if the
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reduced convex hulls do not intersect we can substitute this constraint with [, < 1,
so that we obtain the solution of RCH-NPP and, by strong duality, that of RCH-Margin.
When they do intersect, RCH-NPP and RCH-Margin give a trivial 0 solution, whereas
ERCH-NPP and ERCH-Margin do not, since we can use the constraint now that ||W{|, > 1.
Thus, it can be stated as follows:

Corollary 9 ERCH-Margin is a generalization of RCH-Margin (connection 8 in Figure
1).

4. Structure of the ERCH-NPP
The actual problem of solving ERCH-NPP

min max wW.X_-W-X,,
Wi Wlp=1 Xi€ly,X_€U-
is non-trivial, the main reason being that the constraint ||[IW||, = 1 imposes a non—convex
feasible set. This might lead to local minima among other issues, which in turn make the
optimization process difficult.

As described in the previous section, if the reduced convex hulls for the given data
points do not intersect, then the problem above can be reduced to the standard RCH-NPP.
Therefore, in such case the optimization can be performed by just employing one of the
available solvers for RCH-NPP, such as the RCH-SK and RCH-MDM methods proposed
respectively in Mavroforakis and Theodoridis (2006) and Lépez et al. (2011a).

Of course, such methods cannot be applied in the intersecting hulls case, which is actually
the one of most interest, since it cannot be addressed by the RCH-NPP model. It is therefore
necessary to develop an optimization algorithm suitable for the general ERCH-NPP case; to
do so we will first analyze the structure of the optimization problem posed by ERCH-NPP.

It is clear that we can recast the problem to solve as the minimization of a function

||v13auipn=1 W), (15)

where

V) = mex (WX - WXL, (16)

-y WX i, WA

This can be further rewritten in the following form

fW) = max W-X, (17)

where M is the Minkowski polygon of the data, which is obtained through the Minkowski
difference M = U_ © U, defined as the set
XoeY={zlz=z—-y,ze X ycY}.
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The Minkowski polygon has been used historically in the context of RCH-NPP to design
efficient solvers (Mavroforakis et al., 2007; Keerthi et al., 2000). The properties of the
Minkowski difference guarantee that the difference of two convex sets is also a convex set
(Ericson, 2005), and so in our problem M fancies this property. In this paper we will exploit
both representations (16) and (17) to take advantage of the structure of the problem.

Interestingly, the maximum and minimum in Equation (16) can be obtained efficiently
from the observations in the work of Mavroforakis and Theodoridis (2006) about the extreme
points of reduced convex hulls. As they show, any extreme point in a reduced convex hull
can be expressed in the form

[1/n]

i=1
that is, the convex combination of [1/n] points, where |1/n] of them are given a weight
of n and an additional one the remaining weight 1 — [1/n]|n (if it is non-zero). Using this
property, they note that the extreme points with minimum margin for a given W can be
found as

[1/n]
argmin{W - X} = Z nXi" 4+ (1= [1/n]n) X{7,,
Xelu i=1

where the X!"¢ are the original points X; sorted increasingly by their margin values

W-Xine < W.Xie << WX

These observations can also be applied here to find the value of f(W), as

[1/n]
argmax {W- X} = > nXfec 4+ (1= [1/n)n) XF5 (18)
- =1
/n) A
argmin {W - X, } = Z n X"+ (1—[1/n]n) f’ffnh, (19)
X ey i=1

where the X% are the points from the negative class sorted by margin decreasingly, and
the X'"¢ are the points from the positive class sorted by margin increasingly:

W.X{ee > w.xgee > > W xdee,

W-X{" < W X5 <. < WX

v

The computation of f(W), hence, can be easily done by just performing these sortings,
which only require O(mlog(m)) operations. This ability to find the value of f(W) for a fixed
W is the key for computing the gradient of f(W). Supposing Z; = argminy_ o, {W - X}
and Z_ = argmaxy g, {W -X_} and that both Z, and Z_ are singletons (no other
choices of X attain the minimum/maximum values), the gradient is clearly Vf(W) =
(W Z_—-W - Zy)=Z_ - Z,.
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It might happen, however, that Z, or Z_ (or both) is a set of points instead of a
singleton. If that is the case, which takes place in practice quite often, a set of gradients
are possible, constituting the subdifferential

0 0
# = aVV(maX {W-X_}— HllIl {W X+})

0
—WmaX{WX}—

W X mln {W- X4},

0 0
= gy WX b g ma {=W X )

Invoking the property that the subdifferential of the maximum of a set of convex func-
tions (linear, in this case) at a given point is the convex hull of the subdifferentials of the
functions attaining such maximum at that point (Boyd and Vandenberghe, 2007) 3, we
obtain that

of
v = COHV{X‘X-W—Xmg%W-X}
—conv{X‘X-W: min W-X+}, (20)
XieUy

where conv stands for standard convex hull.
A more intuitive way to understand this subdifferential is to note that the orderings
Xdec and X" need not be unique, since it might well happen that, for instance, I/V-Xidfc =

W-X (dffl) and so the relative position of these two elements in the ordering is arbitrary. For
these multiple orderings the assignment of weights to obtain Z_ = argmaxy_ o, {W - X_}
can produce a set of different Z_ vectors, thus explaining the non—singleton subdifferential.
Note however that not every reordering produces a different subgradient, since as shown in
equations (18-19) the |1/n] first X;, vectors in the orderings receive all the same weight 7,
while all the vectors from the [1/n] 4 1 have no weight in the combination. In particular,
swaps in the ordering of two vectors W - X;, = W - X(;;1), with equal weight in such
combination produce no change in the resulting subgradient. Therefore, only equalities
involving the X /], vector can produce different subgradients. These observations will
become useful when discussing the stepsize selection of our proposed algorithm (Section
5.4).

With the subdifferential at hand, one could easily design a subgradient projection (SP)
method (Bertsekas, 1995) to solve problem (15). For clarity of the explanations to follow,
an outline of this method for the minimization of a general function f(z) constrained to
some set X is presented as Algorithm 1. As detailed in the pseudocode, the algorithm
basically alternates update steps and projection steps. In the former, the current estimate
of the solution is updated by following the negative of some subgradient belonging to the
subdifferential, while in the latter the updated solution is moved back to the feasible region

3. This property can be inferred from the observations in Clarke (1990, p. 10-11).
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Algorithm 1 Subgradient Projection (SP) method for min,cx f(z)

Initialization: chose z° € X, t = 0.

while stopping criterion not met do
Compute a subgradient gt of f(x?).
Select an updating stepsize s'.
Update step: 2! =zt — stgt.
Projection step: #'™1 = P[]
t«—t+1

end while

return 2t

through an Euclidean projection. This method, though fairly simple, is bound to perform
poorly, since it uses little information about the problem at hand. Furthermore, due to the
non—convex nature of the problem it is not easy to give any guarantees on convergence.

In spite of SP presenting these drawbacks, we show here how building on top of it and
introducing adaptations for this particular problem, it is able to find a solution for ERCH-
NPP efficiently. We enhance the SP algorithm by modifying its four basic operations:
the computation of the updating direction, the updating stepsize selection, the projection
operator, and the initialization procedure.

To guide such modifications, we first introduce the following theorem, which forms the
base of our algorithm:

Theorem 10 The optimum of ERCH-NPP when the reduced hulls intersect is located at a
non—differentiable point.

The details of the proof for this theorem are not relevant for the discussion to follow,
so it is relegated to the Appendix. Its importance rather stems from the fact that we can
guide the optimization procedure to look just for non—differentiable points in the search
space, and still be able to reach the optimum.

5. The RapMinos Algorithm

We describe now the distinctive elements of our proposed solver for ERCH-NPP: the RA-
dially Projected MInimum NOrm Subgradient ( RAPMINOS ) algorithm.

5.1 Updating Direction

The first thing to adapt is the direction used for the update. Using the negative of an
arbitrary subgradient, as in SP, can result in non—decreasing updating directions (Bertsekas,
1995), which in turn can make hard to provide any guarantees on convergence. Therefore,
we introduce a modification that guarantees descent in the objective function in every
iteration, and also allows to perform optimality checks easily. To do so, we need to resort
to the concept of minimum-norm subgradient (MNS) from the literature of non-smooth
optimization (Clarke, 1990):
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Definition 11 Consider a non—-smooth function f(x), and its subdifferential set Of(z) at
a point x. The minimum-norm subgradient g*(x) is then

g (z) = argmin||g|,
g€If(x)

for some proper norm || - ||.

In an unconstrained problem, the direction given by d = —g*(x) is guaranteed to be a
descent direction. When constraints are introduced, however, such a guarantee is harder to
obtain. We nevertheless are able to meet it through the following theorem:

Theorem 12 (Descent directions for ERCH) Consider the Lagrangian of problem (15)
LW, A) = fW) + A([[W]l, = 1),
with A € R the Lagrange coefficient. Now consider the subdifferential set of the Lagrangian,
(W) = 0f(W) + 20[[W]lp,

and suppose that the current W is feasible, so that ||W||, = 1. Then the element with
minimum norm in T'(W),

7" (W) = argmin |||, (21)
yET (W)
meets ||v*(W)|| = 0 if W is a local minimum of the problem. Else, the direction d = —~*(W)
18 guaranteed to be a descent direction.

Once again, the proof of the theorem is relegated to the Appendix to avoid technical
clutter in the discussion. The theorem itself provides a powerful tool to obtain both descent
directions and a reliable check for optimality, as we will see. But of course, a procedure must
be devised to find the appointed MNS of the Lagrangian in (21). A helpful observation for
doing so is the fact that the optimal value of the Lagrange coefficient A\ can be determined
in closed form. Consider (21), and observe that the diversity in the set I'(W) is given by the
possible elements of the subdifferentials 0 f(W') and 9||W||,, and the Lagrange coefficient .
To simplify notation, let us define g € 9f(W), n € 0||W]||, elements of the subdifferentials.
By considering the problem just in terms of A we can write

min lg + Xl 3

= mAinllgl\g +A%|[n[[3 + 2Ag - n.

Note that even if the MNS is defined for any proper norm, we have employed the fo—
norm here to ease the calculations. Computing now the derivative and solving for A we
obtain
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0
o 2X[|n[[5 429 - n =0,
A= —=—=-Plgl,,

n-n
which is precisely the negative of the coefficient for the Euclidean projection of g on n,

Pg],,. With this in mind and assuming that the subdifferential 9||W||, is a singleton n 4,
problem (21) is simplified down to

min llg — Plgl, - nll3 (22)
st. geaf(W),

and the resulting updating direction d would be d = —(g* — P [¢*],,-n) with g* the minimizer
of the problem. Before discussing how this minimizer is found, first we show how the
computation of the vector n = J||W||, is performed.

Since we have assumed that ||[W]|, = 1, we can safely temporarily replace the constraint
by [|[W][5 = 1, which eases the calculations. The derivative is then

AWIE 0 <~
ow _OW;|W1"

It is easier to develop this derivative by considering each entry of the gradient vector
separately,

oW 9 P
= A 2
e = e (23)
9
= p|WilP~" sign(Wy),

where the subgradient 5% |W;| is the sign function

1 if >0,
sign(z) =< —1 if =<0,
0 if z=0.

A few technicalities have been omitted in this derivation: we refer to the Appendix for the
details.

Now that we have a way to compute n, we show how to find the minimizer g* of problem
(22). This is easy to do upon realizing that it can be rewritten as a modified standard RCH-
NPP. To do so, first observe that

4. This is not met for the particular cases of norms p = 1 and p = oo, as they present non—differentiable
points. However, taking this assumption produces no harm in practice. Refer to the Appendix for further
discussion on this issue.
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where Z is the identity matrix and N' =T — % transformation matrix. The problem then
becomes

min [N, (24)
st.  geaf(Ww).

To realize the underlying connections with RCH-NPP, we shall rewrite explicitly the
constraint g € df(W). To do so, remember that g can be expressed as the difference of
two extreme points (see Eq. 20) and these in turn as a convex combination of the data in
each class (Egs. 18 and 19). Therefore we have that g = Y., i Xi — Zi€M+ w; X; for
some combination weights p;, which should be set according to the margin orderings (as
explained in Egs. 18-19). To be more precise, let us define the index sets

S, = z‘z‘eM+,W-Xi:W-Xf7f7m+

— o L . ydec
S_. = {2 ZGM_,W‘XrL—W X|’1/n'|7

Q_:

{ )
{ )
Q, = {2 z‘eM+,W-X¢<W-Xf’f/Cm+},
{ j

| dec
(3 ZEM_,W'Xi>W'X|'1/77‘|7

These sets can be explained as follows. At a differentiable point W the orderings X
and X ¢ are unique, and so St is a singleton containing just the index corresponding to

XF?%?:EC, which is the only pattern with weight (1 — |1/n]n), while the sets Q4 contain the
indices of all patterns with weight 1. At a non—differentiable point, however, the sets St
contain the indices of those patterns that can be swapped in the ordering while keeping the
same objective value in (7), since they have equal margin. While the patterns indexed by Q4
still maintain a fixed weight 7, the weights of the patterns indexed by S+ can be rearranged
to obtain different subgradients. We are able to represent implicitly the whole subdifferential
with St and O4. Indeed, we can define the constant C = ZiEQ_ nX; — ZiEQ+ nX;, which

only contains fixed terms, and rewrite our direction problem (24) as
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2

arg min I./\/ C + Z 10 X — Z 10 X ,
i

€S 1E€ESL 2
Dies. Hi T 2ieq n=1,
s.t. Zie&r Hi + ZieQ+ n=1,

Note that the constraints are nothing but the RCH-NPP constraints (problem 3), though
taking into account that the points in the ()1 sets have fixed weight 7. Using this fact and
defining X = N X, C = NC we get the simplified problem

2
argmin C+ Z ,uiXi - Z HiXi ) (25)
Hi1€SE i€S— i€Sy 9
ZiES_ i + ‘Q—’n = 17
s.t. dies, Hi+1Q4In =1,

0< pi <, VZ.GSi,

where only the p weights of the non—fixed points in S1 need to be optimized over. This
problem is solved trivially by introducing some small modifications into an RCH-NPP
solver; more details on this are given in the implementation section (6.1). The relevant fact
here is that we can obtain a descent direction in our ERCH algorithm by solving problem
(25), and this can be done efficiently by invoking an RCH solver.

5.2 Geometric Intuition of Updating Direction

Even though involved arguments from non—smooth optimization have been used to obtain
the updating direction, it turns out that an easy geometric intuition can be given for it.
But before introducing it, some definitions from geometry are needed:

Definition 13 Supporting hyperplane: given a set X € R™, a hyperplane hx supports X if
X s entirely contained in one of the two closed half-spaces determined by hx(x) and hx
contains at least one point from X.

Definition 14 Supporting hyperplane at a point: given a closed set X € R™ and a point x
in the boundary of X, a hyperplane hx(x) supports X at x if it is supports X and contains
x. If the set X is convex, hx(x) is guaranteed to exist (Boyd and Vandenberghe, 2004).

We further introduce the definition of supporting projection as

Definition 15 Supporting projection: given a closed convex set X € R", a point r € X at
a boundary of X and a vector v originating at x, we define the supporting projection of v on
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Figure 5: Depiction of the geometric concepts of supporting hyperplane at a point and of
supporting projection. The hyperplane hx(x) supports the set X at the point
x. The supporting projection of v is then obtained by projecting v onto hx(x),
which is equivalent to removing from v its projection on the normal vector nx ().

X, sprojy(z,v) as the Euclidean projection of v on the supporting hyperplane at z, hx(z).
That is to say

sp;oj(:r,v) = Pl =v— P[], mnx(@),

v-nx(z)
= v— —————nx(x), 26
for nx(x) the normal vector defining hx(x). This is equivalent to removing from v its
projection on the normal vector nx (x).

An illustrating example on these concepts is given in Figure 5.
Using these, we can see that our updating direction takes the form

d=—(g9" - Plg"],n) = — sproj (W,g"), (27)
[Wl[p=1
since the normal vector nyy,—1 (W) is nothing but the derivative J||[W||, = n. That is to
say, our proposed direction follows the negative of the supporting projection of g*, with ¢*
the subgradient that produces the smallest such projection.

5.3 Projection Operator

Now that the updating direction is well defined, we move on to defining a suitable projection
operator, which is required to meet our assumption above about W being feasible at every
iteration (||W]|, = 1). Instead of using Euclidean projection, as is the rule in SP, we instead
employ radial projection on the ¢, unit-ball (Figueiredo and Karlovitz, 1967), which is
defined as

RPM{ flall, i lally > 1. (28)

One major advantage of using this operator instead of Fuclidean projections is its sim-
plicity and generality for any norm p. Furthermore we have the following property:
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dt

W std?

Figure 6: Example of an updating step within the RAPMINOS algorithm. The point W is
updated by a displacement along the supporting hyperplane h = hHWszl(Wt)
following direction d*, and then mapped back to the feasible region by means of
a radial projection.

Lemma 16 The radial projection Ry, [x] never increases the £, norm of x, i.e., || R, [z] ||, <

[2llp-

Proof This is immediate from the definition, since for ||z||, < 1 the projection leaves
o unchanged, and for |[z[l, > 1, Ry[z] = w/[[z[lp, and so [|Rp[2][l, = [[z/[[z[lpll, =
[zllp/ 2|l =1 < [l]],- u

It must be noted that applying this projection operator to the ERCH-NPP problem
could, in principle, lead to infeasible W values, since for ||W||, < 1 the projection leaves
W unchanged, i.e., R, [W] = W. This violates the constraint |[WW||, = 1, producing an
infeasible W at the end of the iteration. Fortunately, it is easy to show that this situation
cannot happen during our algorithm.

Lemma 17 For a given W' vector with ||W'||, = 1 and any stepsize s' € R, the update
Wi = R, [W! + std'] with d' as defined in (27) meets |[W |, = 1.

Proof The proof follows from the fact that the displaced point W' + std? is guaranteed to
lie in the supporting hyperplane hHWHp:l(Wt), given the nature of the updating direction
d" and the fact that the ||[W?]|, = 1, i.e., W' lies in the border of the convex set ||[W?||, <1
(see Figure 6). Because of the properties of a supporting hyperplane, every point in h is
guaranteed to be outside or in the border of the set ||[W?||, < 1, and so |[|[W*' + s'd!||, > 1.
Therefore, using the definition of radial projection, |[W'||, = ||R, [W' + s'd'] ||, =1. W

Thus, we are guaranteed to remain in the feasible set throughout the whole algorithm
as long as ||[W?||, = 1, which is easy to meet.
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5.4 Stepsize Selection

Standard subgradient projection methods generally employ a constant or diminishing step-
size rule. Here, however, we can take advantage of Theorem 10 to select a more informed
stepsize. Since the optimum of the ERCH is guaranteed to lie at a non—differentiable point,
once an updating direction has been selected it makes sense to consider just those stepsizes
that land on one of such points.

Recall from the beginning of the section that a non—differentiable point (that is, one
where a non-singleton subdifferential arises) can be characterized through the orderings
W . de_ec and W - X;-‘fc as those values of W for which these orderings are not unique,
i.e., some elements might be swapped without violating the ordering. In particular, only
situations where equalities with the vectors W - Xy i arise can produce non-singleton
subdifferentials. Therefore, we can identify non—differentiable points along the updating
direction as those values of the stepsize s! for which W!+std’ produces one of such equalities,
that is to say

(Wt std') - Xpyy, = W+ s'd) - Xy,

for some other X;, vector in the ordering. Since several of such points can appear along
the direction df, our approach here is to move on to the nearest of them. That is, we select
the minimum stepsize (different from 0) that lands on a non-differentiable point. This
approach is sensible because by moving further away we could step into a different smooth
region where our current estimate of the subgradient (and thus d) is no longer valid. This
results in the stepsize rule

X W= Xi, - W
s' = min 1/l 7 = (> (29)
i+eCyJO- Xii‘d 7X|—1/7ﬂi'd

which is obtained from solving the equality above for s, and taking the minimum over all
of the possible equalities. The sets C, C_ arise from the fact that not all data points need
to be checked. These sets are defined as

alle

<.

At > X dbi < [1 7
C+ = {Z S M+: [1/77]4,_ t [ /n:‘|+ },
+

d < X“/?ﬂJr : dt,’i > [1/77
d < Xpypy dbi < [1/n],
i'dt>X[1/n17-dt,Z'>“/ —|_ )

alle

C:{iGM:

The choice of these sets becomes clear by realizing that any point not in this set produces
a negative or undefined s’ value, which is useless in our method since we are interested in
advancing by following the updating direction.

We state now the following proposition, whose proof is immediate by construction of
the stepsize, as presented above:

Proposition 18 RAPMINOS explores a non—differentiable point at each iteration.

346



GEOMETRIC INTUITION AND ALGORITHMS FOR Erv-SVM

Algorithm 2 RapMiNos method for ERCH-NPP

Inputs: data (X, y), norm p € [1, 00], stopping tolerance e.
Initialization: chose WO =W, . t=0, stop = oo.
while stop > ¢ do
Find Lagrangian MNS v} solving problem (25).
Find stepsize s* using (29).
Update step: VIl = Wt — stvyr,
Radial projection step: W't = R, [VT1] (Eq. 28).
Stopping criterion: stop = ||V} ]]co-
t—t+1.
end while
return Wt

5.5 Initialization

While any feasible W s.t. ||[W||, = 1 is a valid starting point, the choice of such point will
determine the local minima the algorithm ends up in. As we discuss later in the experi-
mental section, falling in a bad local minimum can result in poor classification accuracy.
Therefore, it is relevant to start the optimization at a sensible W point. To do so, we
propose the following heuristic. Let us consider the minimum possible value for 7, which
i Nmin = 1/ min {M, M_}. At this value each class hull gets reduced to a unique point,
its barycenter, where every pattern is assigned the same weight in the convex combination.
For such 7, the ERCH-NPP is trivially solved by computing W as the difference between
both barycenters, W, . . While such W will not be the solution for other values of 7, intu-
itively we see that it will be already positioned in the general direction of the desired W),.
Although we cannot give any theoretical guarantees on such choice being a good starting
point, we will see in the experimental section 6.5 how it performs well in practice.

5.6 Full Algorithm and Convergence Analysis

After joining the improvements presented in the previous subsections, the main steps of
the full RAPMINOS method are presented in Algorithm 2. We show now how the iteration of
such steps guarantees convergence to a local minimum of the problem. The main argument
of the proof is that the RAPMINOS algorithm visits a region of the function at each step,
but always improving the value of the objective function. Since the number of such regions
is finite, the algorithm must stop at some point, having found a local minimum. The details
of the proof are presented in what follows.

First we will require the following lemma:

Lemma 19 Consider the update W = R (W' + std!] with d* defined as in (27) and
st defined as in (29). This update never worsens the value of the objective function,
i.e., f(WIL) < f(W?). Furthermore, if Wit = W then W' is a local minimum, else
FWED) < f(W).

Proof
Theorem 12 already shows that at a local minimum the update direction selected by
RAPMINOS is null. If not at a local minimum, the updating direction is guaranteed to be
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4 M=

(a) (b) ()

Figure 7: Depiction of possible scenarios arising during a RAPMINOS update. (a) Start
in a smooth region, stop at a non—differentiable intersection between smooth
regions. (b) Start at an intersection between regions, traverse a smooth region
until another intersection is found. (c) Start at an intersection between regions,
move along a boundary until intersection with a new smooth region is found.

a descent direction. Therefore f(W? + dd') < f(W?) for some small § > 0. Consider now
the structure of the objective and subgradient functions, as shown in Eqs. 16 and 20. Note
that f(W) is piece—wise linear, the subgradient set being a unique gradient in the interior
of the linear regions, while being non—singleton in the intersections of such regions. With
this in mind, the following three cases regarding the status of W are possible, which are
also depicted in Figure 7:

e W' is a differentiable point. Then W' lies in a linear region, where the subgradient set
is a unique constant gradient. Because of this, the Minimum Norm Subgradient of the
Lagrangian is also constant throughout the whole region, and d* remains a descent
direction until a non—differentiable point marking the frontier to another region is
reached (Figure 7a).

e W' is a non-differentiable point, which means W? is in the intersection of two or more
linear regions, and W + §d' for some infinitesimal § > 0 steps in the interior of one
linear region. Since the gradient in this region is included in the subgradient of W*
(see Eq. 20) and f(W?'+6d®) < f(W?') is guaranteed, then moving further along this
region must keep the same rate of improvement (since the region is linear), until a
non—differentiable point marking the frontier to another region is reached (Figure 7b).

e W' is a non—differentiable point and W + §d' follows an intersection of regions (e.g.,
follows an edge of the problem’s surface). Then the MNS of the Lagrangian is not
changed and d' remains a descent direction until an intersection with a new linear
region is found. This case is observed when selecting the stepsize in Eq. 29 (Figure
7c).

Whatever the case, improvement in the objective is guaranteed until the next non-
differentiable point is reached. Therefore f(W?! + std') < f(W?).
Including now the radial projection, we have that
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Wt tdt
FOVEY) = f(R W s'd) = f (M) ’
Wt tdt
— R < SOV + s,
< fwh,

since ||[W! + s'd'||, > 1 (see proof for Lemma 17) and f(cW) = ¢f(W) for ¢ constant. M

With this tool we are ready to prove convergence of RAPMINOS :
Theorem 20 The RAPMINOS algorithm finds a local minimum in o finite number of steps.

Proof By Proposition 18, RAPMINOS explores a vertex or edge of f(W) at each itera-
tion. As f(W) is piece-wise linear, the number of such regions is finite, so at some point
the method could step again into a previously visited point. However, this is not possible,
since because of Lemma 19, each iteration must either stop at a local minimum or strictly
improve the objective value, thus avoiding to return to a previous point. Therefore, RAP-
MINOS converges to a local minimum in a finite number of steps. |

6. Experimental Results

We present now experimental results supporting our proposed ERCH model and the corre-
sponding RAPMINOS algorithm, as well as details on implementation.

6.1 Implementation

The RAPMINOS algorithm was implemented in Matlab, and is publicly available for down-
load ®. The code includes an adapted RCH-NPP algorithm (Clipped-MDM, see Lépez
et al., 2011a, 2008) to solve the MNS problem (Eq. 25). The adaptation involves modify-
ing the algorithm to accept the sets of points Q4, which must always retain a coefficient
w; = n and thus are not optimized over, but nevertheless should be taken into account when
computing the objective value. This can be done easily by adapting the initialization and
extreme points computation at the end of the algorithm: for further details please refer to
the code itself.

A point of technical difficulty in the implementation is the bookkeeping of the index sets
Q.+, S+. While these could be recomputed from scratch each time they are needed, it is far
more efficient to update them throughout the iterations. To do so, at the initialization of
RAPMINOS these sets are built using the initial vector W°. After that, during the algorithm
iterations, these sets are updated at two situations:

e When computing the stepsize using (29), the pattern (or patterns) that produce the
min are added to their respective S+ set. This is done because, by definition of the

5. Project web page: https://bitbucket.org/albarji/rapminos . Source code and packages available.
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stepsize rule, the margin of this pattern after the update equals that of W - Xy,
and this is what defines the S1. This pattern is also removed from the set QL in the
case it was part of it.

o After each MNS computation the values of the weights y; for the patterns in the sets
S+ are checked. If any of them turns out to be 0, it is removed from S, since such
pattern has no longer an influence in the subgradient. If it happens to be valued 7,
then the pattern is transferred to the corresponding Q4 set.

Because of numerical errors amounting during the algorithm iterations, such checks are
always done with a certain tolerance value. Also, for the same reason, it could happen
that an update of the algorithm worsens the value of the objective function, even if this is
theoretically impossible thanks to Lemma 19. To address this, our implementation stops
whenever a worsening is detected.

Regarding the quality of the solution obtained, it should be noted that the RAPMINOS al-
gorithm solves the intersecting ERCH-NPP case, and most of its assumptions are based on
this fact. To avoid convergence problems if the problem is actually non—intersecting, our
implementation first invokes a standard RCH-NPP solver. If the solution W obtained has
norm close to zero, the problem might be intersecting. To check whether there is a real
intersection we solve the following linear program

min 7, (30)
A

Doien, NiXi =D ien NiXi,
5.t Diemy N =1 en A =1,

0< X\ <n, Vi.

which finds the minimum value of n for which the reduced convex hulls intersect. If the
user—selected value of 7 is larger than the one found here, then the hulls intersect, and we
continue with the execution of RAPMINOS . Otherwise, a solution is obtained by solving
the equivalent ¢, RCH-NPP (Eq. 11) through a generalized RCH-NPP solver; details on
this solver are outlined in the Appendix.

6.2 Augmented Model Capacity: Synthetic Data Sets

We first show how the augmented v range extension of the Er—SVM model, and thus
ERCH-NPP, can improve the classification accuracy of the SVM. As shown in Section 3,
the ERCH-NPP model is able to generate non—trivial solutions for those cases where the
reduced hulls of the data intersect, on top of all the solutions attainable by the standard
RCH-NPP model for non—intersecting hulls. We hypothesize that this capability ought to
be specially useful in classification problems where the convex hulls of positive and negative
classes have a significant intersecting area, as RCH-NPP would only be able to find useful
solutions for a small range of 1 values. A similar hypothesis was previously proven for other
margin based methods when replacing the regularization constraint |||, < 1by [|[W]|, =1
or replacing the reduced convex hulls ¢y by different class shapes (for example, ellipsoids),
as shown in Takeda et al. (2013).
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To test this, we generated a series of artificial data sets with increasingly larger inter-
secting areas. We defined conditional probabilities for label +1 and label -1, denoted by
p(X| + 1) and p(X| — 1), as multivariate normal distributions. The mean vector and the
variance-covariance matrix of p(X| + 1) were defined by the null vector (0,...,0)" € R”
and the identity matrix I, € R™*™ respectively (i.e., standard normal distribution). For
the other conditional probability, p(X|—1), we randomly generated the variance-covariance
matrix having eigenvalues 0.12,...,1.52, wherein the square roots of the eigenvalues were
numbers placed at even intervals from 0.1 to 1.5. The mean vector of p(X|— 1) was defined
by ﬁ(l, ...,1)T € R”, with r a distance parameter between classes. The larger the r, the
smaller the intersecting area between classes. The training sample size and test sample size
were set to m = 2 x 10% and m = 10*, respectively, while the number of features was chosen
as n = 10.

Performance for class distance = 0.8 Performance for class distance = 1.9 Performance for class distance = 3
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Figure 8: Performance of the Ev—SVM model for a classification problem with different
degrees of distance between class centers. For each distance choice, accuracy
of the trained classifier is shown for a range of v values. The green dashed lines
represent the v threshold below which the reduced hulls intersect, hence producing
a non—convex problem.

Figure 8 shows the obtained accuracy levels with RAPMINOS for the range v € [0.1,0.9]
and a selection of class distances. The threshold for which the reduced—convex—hulls inter-
sect is also shown, below which the problem becomes non—convex and only the ERCH-NPP
model can find meaningful solutions. As expected, when the distance between class means
is large, this threshold becomes smaller, as a smaller v implies a larger 7, i.e., a smaller re-
duction on the convex hulls is required for them to become separable. For those cases where
the distance between classes is small, the intersecting range of v shows an improvement on
accuracy over the non—intersecting range, thus backing up the fact that the augmented
range of ERCH-NPP (and so Ev—SVM) can lead to more accurate models.

6.3 Augmented Model Capacity: Real-World Data Sets

We now test the benefits provided by the augmented model capacity on real-world data
sets, obtained from the benchmark repository at Ratsch (2000), but instead of making use
of the default 100 training—test partitions provided there we generated our own random
splits of each data set as done in Takeda and Sugiyama (2009). In particular, we took 4/5
of the data set as training data and the remaining 1/5 as testing data. For each data set
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we identified the vy, value for which the class hulls start intersecting, and solved ERCH-
NPP for two ranges of v values of 100 points each, one above vy, (convex range), and the
other below it (non—convex range). To solve the ERCH-NPP in the non—convex range we
resorted to the presented RAPMINOS method, while for the convex range we applied the
standard v—SVM solver provided in LIBSVM (Chang and Lin, 2001).
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Figure 9: Performance of the Ev—SVM model for a set of real-world data sets. The square
markers denote the best performing v choice.

Figure 9 shows the accuracy levels obtained with RAPMINOS for the full range of v
While for a number of the data sets the augmented v range does not provide
noticeable benefits, for titanic, breastcancer, ringnorm and specially banana higher levels of
accuracy are attainable.

values.

Table 1 presents top accuracy values in the whole v range for the standard »—SVM and
the augmented Ev~SVM model tuned with different £,-norm choices. The results seem to
confirm our hypothesis stating that the ability to select an arbitrary ¢, regularization in
the model leads to an increase in the model capacity: in 8 out of 13 data sets we find that
the model is able to obtain higher accuracy values than both the »—SVM and /5 Ev—SVM
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Figure 9: (continued) Performance of the Ev—SVM model for a set of real-world data sets.
The square markers denote the best performing v choice.

models. For illustration purposes we also include the accuracy curves for a sample of the
data sets in Figure 10.

6.4 Runtime Experiments

To show the advantage in terms of efficiency and stability of the proposed RAPMINOS al-
gorithm we present here a comparison against a reference Ev—SVM method. Recall the
Ev—SVM problem is dual to the ERCH-NPP discussed here (see Proposition 2), so in prin-
ciple similar solutions should be obtained through both approaches, although it should be
noted that the existence of local minima in both models can lead to different results. The
method of choice for the Ev—SVM problem is the one presented in Takeda and Sugiyama
(2008) 9, which finds a solution by approximating the non-linear Ev~SVM problem by a
series of linear optimization problems; such linear problems, in turn, are solved by invoking
an interior—point method.

We worked again with the data sets from the benchmark repository at Ratsch (2000),
but since we wanted to test the algorithms in the intersecting range of data, instead of
selecting v as the value maximizing validation accuracy we fixed it at a value slightly below
the separable limit v,;,. Table 2 shows training times for the reference Ev—SVM and the
RAPMINOS algorithms, together with the accuracy levels obtained in the test splits. A
basic subgradient projection method solving ERCH-NPP (see Algorithm 1) is also included
in the table to check whether the theoretical improvements provided by RAPMINOS have
noticeable effects in practice.

6. This method turns out to be a subtle modification of the original Ev—SVM method by Pérez-Cruz et al.
(2003).
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DATA SET r-SVM ERCH-RAPMINOS
o lo 0y {15 l3 loo

THYROID 88.4% || 88.4% | 86.0% 88.4% 95.3% 90.7%
HEART 92.6% 92.6% | 90.7% 94.4% 92.6% 92.6%
TITANIC 76.1% || 76.8% | 76.1% 76.8% T76.8% 77.2%
BREASTCANCER || 83.6% | 85.5% | 81.8% 83.6% 83.6% 83.6%
DIABETES 78.4% || 78.4% | 78.4% 79.1% 78.4% 78.4%
FLARE 72.2% 72.2% | 72.2%  72.2% 722%  70.3%
GERMAN 76.0% || 76.0% | 76.5% 76.0% 76.0% 77.0%
BANANA 53.2% 64.6% | 64.2% 64.5% 61.1% 64.6%
IMAGE 84.0% || 84.0% | 71.2% 81.8% 79.4% 78.4%
RINGNORM 77.6% || 77.9% | TT.8% T7.7% 78.0% 178.0%
SPLICE 86.3% 86.3% | 86.0% &86.3% 85.8% 85.8%
TWONORM 97.9% 97.9% | 97.9% 97.9% 97.8% 98.0%
WAVEFORM 89.1% || 89.1% | 89.2% 89.3% 89.3% 89.1%

Table 1: Test accuracies for »—SVM and the ERCH model trained with RAPMINOS , for different
values of the £,-norm. Numbers in bold in the RAPMINOS /> mark when the ERCH model
performs better than the standard v—SVM. Also marked in bold are those cases where a
non-standard ¢, norm produces further improvement.

The first thing to observe is that the Ev—SVM algorithm used failed to produce a solution
for some of the data sets. These failures stem from instability issues of the interior—point
solver, which at some situations was unable to find a suitable interior point. Opposite to
this, RAPMINOS always found a solution. Not only that, but also did so in considerably less
time and with a higher degree of accuracy in the solution. This last fact can be explained
by realizing that while the Ev—SVM approach finds a solution by using a series of linear
approximations to the non—convex Ev—SVM problem, RAPMINOS instead addresses the
non—convex ERCH-NPP problem directly. As a whole, RAPMINOS is able to find better—
quality solutions consistently at a lower computational cost.

Regarding the improvements of RAPMINOS over a basic subgradient projection method,
Table 2 shows how RAPMINOS was able to find a solution much faster for most of the
data sets. Some notable exceptions are breastcancer, diabetes and flare, where the simple
subgradient method finds a good solution quite fast. Table 3 reveals additional insight into
this: the solutions found by RAPMINOS tend to produce better objective values. Which is
to say, subgradient projection might return a solution faster in some settings, but performs
a worse optimization job. It is thus clear that RAPMINOS is a better solver for the ERCH-
NPP problem than a basic subgradient projection method, as we hypothesized when we
proposed the method.
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Figure 10: Performance of the Ev—SVM model for a set of real-world data sets and different

values of the £,-norm.
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DATA SET Ev—SVM SOLVER SUBGRAD. PRrOJ. RaPMINOS
Accuracy TIME | Accuracy TIME | AccurRacy TIME
THYROID 80.8% 1.46 86.3% 20.29 86.3% 0.15
HEART 82.6% 1.72 73.9% 21.46 73.9% 0.37
TITANIC 76.5% 1.80 77.82% 29.84 72.9% 0.30
BREASTCANCER 78.7% 1.05 76.6% 0.23 72.3% 0.35
DIABETES 73.5% 3.21 75.1% 0.10 74.7% 0.47
FLARE - — 63.0% 0.01 63.3% 0.20
GERMAN 66.56% 2.98 77.3% 1.48 77.3% 1.33
BANANA - — 60.5% 44.96 60.5% 0.53
IMAGE — — 82.1% 35.89 5% 1.15
RINGNORM 771% 26.85 77.1% 81.95 77.1% 7.24
SPLICE 51.9% 33.27 83.7% 46.42 84.2% 9.76
TWONORM 97.7% 24.05 97.2% 61.33 97.2% 11.02
WAVEFORM 78.8% 14.85 86.9% 54.21 86.9% 7.94

Table 2: Execution times (in seconds) and accuracy in the test set for the reference Ev—SVM solver,
the proposed RAPMINOS algorithm and a simple subgradient projection method. Entries
marked with — stand for executions where the Ev—SVM solver failed to produce a solution
at all.

6.5 Quality of Local Minima

Since in the intersecting case of ERCH-NPP the optimization problem becomes non—convex
(see Section 4), RAPMINOS only finds a local minimum of the problem. Such local minimum
might or might not have an objective value similar to the overall global minimum of the
problem, and so it might be the case that RAPMINOS finds a “bad local minimum” where
a poor solution is obtained. This kind of problem is quite similar to the issues appearing
in multilayer neural network training (Duda et al., 2001), where the non—linearity of the
model allows to find only locally optimal solutions. Although several approaches have been
proposed to address this issue, the most effective ones involve heuristics for model weights
initialization that, while not guaranteeing global optimality, provide some practical means
to avoid bad local minima.

In section 5.5 we proposed a heuristic to select the starting point for RAPMINOS . We
will show now that such initialization strategy proves to be helpful in avoiding local minima.
For doing so, for each data set in section 6.3 we ran the RAPMINOS algorithm using the
presented approach, and compared the value of the objective function (Equation 7) against
200 runs with random starting points. We fixed p = 2 and chose v as the one giving the
highest validation performance, and for those data sets where v was in the separable range,
we chose a v value slightly below the one for which hulls start intersecting. This way all
tests were run for the intersecting case.

Figure 11a presents box plots on the distribution of such objective value for all data
sets, comparing also against the value obtained with the proposed initialization. Being
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Local minima performance in RapMinos (obj. value)

g 1 1.009 6.421 2.678 1 2.737 1.163 ]ﬁ(_ﬁ 4.652 1 4.054 1 1.025

=l T - + + + + + - f +

> I

o I T | I {L

s T o [

2 ! T +

S \ | + \ i ‘ i + y

° F

: w s & om0

=1 ! e ¥ ! *

£ \ ﬁ + % \ \ +

§ N -t - - - - I R ——
QO X O < 9 @ L & )

FFSEFEES LSS

ST R > & &S RS L
é’ > o © g\o hS Q\‘b
2
\\
Q
(a)
Local minima performance in RapMinos (accuracy)

100 F B ]
SRR _ o Ll
> i — . 3 . I
g s ® + ® - L
g oo I == f
©
S a0t ‘ % -
3 : +
= 20} B .

QO L L » 2 S & )
F & E LSS S

EO RN s PRI KR & ©

&
\\
Q

Figure 11: Distribution of a) objective values (lower is better) and b) accuracies (higher is
better), obtained by RAPMINOS for several data sets. The box plots represent
the distribution of objective values and accuracies for the runs with random ini-
tialization, and the square markers the value obtained when using the proposed
initialization heuristic. Objective values are normalized to present the best min-
imum found at the bottom line, while the worst one is shown at the top along
with a multiplier representing how far away it is from the best value (worst =
multiplier - best). A multiplier value of 1 is shown when the best and worst
values are equal down to the fourth significant digit.
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DATA SET RAPMINOS SUBGRAD. PROJ.
THYROID 0.179 0.233
HEART 0.589 0.586
TITANIC -0.808 2.283
BREASTCANCER 1.194 1.411
DIABETES 0.679 0.748
FLARE 5E-09 -0.001
GERMAN -9e-07 0.053
BANANA 1.072 1.109
IMAGE -4E-06 0.011
RINGNORM 0.080 0.099
SPLICE 1.305 1.287
TWONORM 0.755 0.755
WAVEFORM 1.783 1.759

Table 3: Objective values after optimization in RAPMINOS and a simple subgradient projection
method. Lower is better.

a heuristic procedure, our proposal does not guarantee good local minima in all cases,
though nevertheless finds solutions closer to the overall best minimum more frequently than
employing a random initialization. Figure 11b presents analogous results when measuring
accuracy on the test set, where again a random initialization performs worse than our
proposed heuristic initialization.

7. Conclusions and Further Work

In this work we have given a geometrical interpretation of the Ev—SVM formulation, estab-
lishing connections from this model to other well-known models in the SVM family. Not
surprisingly, while Ev—SVM generalizes v—SVM to cover the case where v is too small, this
new interpretation generalizes the usual geometric viewpoint of »—SVM finding the nearest
points of two non—intersecting reduced convex hulls (RCH-NPP). Specifically, it also allows
these reduced—convex—hulls to intersect, that is, it also covers the case where the reduction
7 coefficient is too large.

We have also proposed the RAPMINOS method and shown how it is able to solve the
ERCH-NPP problem efficiently and for any choice of £,>;-norm. This not only allows to
build Ev—SVM models faster than with previously available methods, but also provides even
more modeling capabilities to the SVM through the flexibility to work with these different
norms.

From the light of the experiments, it would seem that the Ev—SVM model can improve
classification accuracy for those problems where there is a significant intersection between
class hulls. The added ¢, norm flexibility has also proven to be useful to increase classifi-
cation accuracy in a number of data sets, extending further the applicability of the model.
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A number of interesting extensions to this work, which would require further research
efforts, are possible. While the RAPMINOS method finds a solution efficiently and we
provide some empirical evidence on it being a reasonably good local minimum, the method
is still far from finding global minima. Even though finding global minimizers for non—
convex problems is a daunting challenge, a globalization strategy based on concavity cuts
has already been developed for the Ev—SVM model (Takeda and Sugiyama, 2008). Whether
this approach is also applicable to the dual ERCH-NPP problem is an open issue. Finally,
in this paper we have only addressed linear models. Extending the methods here to address
kernelized models is also an open problem.
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Appendix A. Proof for Theorem 10 (Optimum at Non—Differentiable
Points)

Consider the Minkowski polygon representation of the ERCH-NPP (Eq. 17). If the con-
straint |||, = 1 is ignored, the problem would become

min max W -X.
w XeM
This problem clearly involves the minimization of a piece—wise linear function, where
the pieces are determined by the inner maximization maxxyecan¢ W - X. Consider now one
of such pieces, which we shall denote S. For every W € S the inner maximization problem
selects the same solution Xg, and so the minimization in this piece can be written as

min W - Xg.
wesS
Since this is a linear problem, the optimum necessarily lies at a boundary point of .5,
that is, at the frontier with another linear region of the global problem, this frontier being a
non—differentiable region. However, when taking the constraint back into account we have

min W . Xg.
WeS,||W]|p=1

which is no longer a linear problem, since the norm constraint on W defines a non—convex
feasible set. Hence, the minimum in this linear region need not lie at an extreme. Never-
theless, we show in what follows that this property is still met regardless of this constraint.

Let us denote Sp as the feasible region within S, that is, Sp = {W|W € S, ||W]||, = 1}.
This region is a surface which is a subset of the £, unit-ball. To show that the minimum
in this region always lies at an extreme point we will assume that, on the contrary, the
optimum is in a non—extreme point W;. We will then see that there always exists another
point in a neighborhood of W presenting a better or equal value of the objective function.
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Consider the supporting hyperplane of Sr at Wi, hs,(Wr) (see Definition 13). This
hyperplane can always be defined for any interior point of Sr as the hyperplane tangent
to Sp at Wj. This hyperplane leaves all of Sp at one side. Consider also a ball B(W7)
of small radius r > 0, centered on Wj, which shall be understood as a neighborhood of
Wi. Let us define By (W;) as the intersection of this ball and the supporting hyperplane,
B, (W) = B(Wr) (N hs.(Wr). This set does define a convex set, since it is the intersection of
a hyperplane and a sphere. Because of that, the objective function W - Xg for W € By (W)
always has a minimizer at an extreme of the set. More precisely, 3 v* € By, (Wy),v* # Wt so
that v*- Xg < Wi- Xg. Thus, there exists a small displacement along a support hyperplane
from a non—extreme point Wy that cannot worsen the value of the objective function. But of
course, v* might not be a feasible point, since by the properties of the supporting hyperplane
all the points v € By (W) have ||v||, > 1.

s (W)

B(W)
B, (Wr)
Sk
Wi
.
s~~
LS
(a)
e, 51 (W)
Sk S
Wi
W

(b)

(c) Visual example of the concepts introduced for the proof of Theorem 10. a shows the feasible
region within a linear region of the problem (Sg), the supporting hyperplane at an interior point
of this region (hg,(W7)), the ball defining the neighborhood (B(W7;)) and its intersection with
the supporting hyperplane (B, (W;)). b shows how this intersection can be projected back to the
feasible region S, and how an extreme of it is able to obtain a better value of the objective function
(represented through its level sets as gray lines).

The next step is showing that projection of v* back to the feasible region Sp still
guarantees that the projected point cannot be worse than the initial W7 in terms of the
value of the objective function. First, it must be realized that the radial projection R, [v] for
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any v € By, (Wr) always results in feasible points inside Sg. This is immediate by realizing
that the radial projection just rescales the norm of its vector argument, and so
. v X .
argmin R, [v] - X = argmin —— = argminwv - X,
XeM xem ||vllp XeM

i.e., the solution of the internal problem does not change, and so the projected v remains
in the same linear region S. Using then the properties of the radial projection, || R, [v] ||, =
1, and so R, [v] € Sp.

Now note that since we also have that ¥V v € By(Wy), ||v||, > 1, then the radially
projected points can be defined as Ry, [v] = m = ¢(v) v, for some scalar c¢(v) € (0,1].
Also, since W - Xg >0,V W € Sp (because of the intersecting hulls, see Lemma 7), we can
establish the following chain of relationships

min R,[v]-Xg = min c(v)v-X
oy p (0] Xs pe i (v) s
< min v-Xg
veBL(Wr)
< Wr-Xg.

Therefore, any non—extreme point W; € Sp has always a feasible neighbor which
presents an equal or better value of the objective function, and so W cannot be opti-
mal (or at least there exists another point with an equally optimal value). Extending this
argument to every non—extreme point in Sp, we can conclude that there exists an extreme
point Wg such that Wg - Xg < W - Xg, VW € Sp. Consequently, a minimizer of the
global problem always lies at the intersection between two linear regions, that is to say, at
a non—differentiable point. |

Appendix B. Proof for Theorem 12 (Descent Directions for ERCH)

To prove this theorem we need to resort to some tools from the field of non—convex non—
smooth analysis, most of them contained in Clarke (1990). Nevertheless, for completeness
of the paper we will briefly introduce such required tools here.

Consider a general constrained optimization problem in the form

min - f(2),

st.  gi(z) <0, i=1,...,n,

where any equality constraint in the form h(x) = 0 can also be taken into account by
producing two inequality constraints h(z) < 0, h(z) > 0.
We introduce now the concept of relative subdifferential as

Definition 21 Relative subdifferential: given the set S C X, the S—relative subdifferential
of f at z, O|sf(x) is defined as

Olsf(x) ={&I& — & & € 0f(vi),yi € S,ys = x},
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that is to say, it is the set of subgradients appearing when approaching x from a succession
of points y; tending to x. In the event that x ¢ S, J|sf(x) = 0.

Consider now the augmented objective function

F(x> = max{f(x> - f(x*)hql(m)? s 7gn(x)}7

where f(z*) is the optimal value of the original objective function. Observe that at the
optimum of the original problem, F(z*) = 0, since all constraints are met (g;(xz) < 0) and
the first term takes the value 0. Let us define the set

I'(x) = conv {9 (2),0lg, () (), - - OlG@) f(2) }

where G;(z) is the set of points for which the constraint g;(x) is not feasible (g;(z) > 0).
I'(z) can be interpreted as a kind of subdifferential of the Lagrangian. We then have two
results associated with this set (Clarke, 1990, Theorem 6.2.2. and Proposition 6.2.4.):

e If x is a local minimum of the problem, then 0 € T'(z).

e Else, let v be the element of I'(x) with minimum norm. Then d = —+ is a descent
direction in F(x).

In other words, if we are not already at the optimum, performing a small step in the direction
of d reduces the value of the augmented function F'(x). Note that, given the form of F(z),
this guarantees that either the objective function f(z) or the violation in some constraint
is reduced.

Let us apply now these tools to the ERCH problem miny f(W) s.t. ||[W]||, = 1. The
augmented function F(W) comes easily as

FW) =max {f(W) = f(W7), W]l = 1,1 = [[W][p},

where the equality constraint has been rewritten as two inequalities. Now, taking into
account the fact that in our algorithm we guarantee ||W||, = 1 at every iteration, the max
in F(W) is always attained for the first term when not at the optimum. Also because of
this we have that J|q, [|[W||, = 0| w/,>n)!IWllp = Ol[W||p, and similarly for 9lg,||W]|,.
That is to say, the relative subdifferential coincides with the standard one. Therefore, the
set I'(W) results to be

[(W) = conv {9 f (W), 9[[W||p, =0|[W|p} -

We can rewrite this set in a more convenient form as

L(W) = mdf(W)+ u2d||W||, — pusd||[W||p,
= wOf(W)+ (2 — u3)0||Wl|p,

where the convex coefficients meet the usual constraints >, u; = 1, 0 < p; < 1. It should be
realized now that the gradient of the norm 9||W/||, is the 0 vector only at the origin W = 0,
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which is an infeasible point. Therefore, at the optimal W* it will be necessary to combine
this gradient with 0f(W') to produce the 0 vector bound to appear at a local minimum in
['(W), and so the coefficient must be non-zero, 1 > 0. We can then divide the expression
by p1 7, obtaining

(W)

01 (W) + F2 20| W]y,
= Of(W) + 20 W]l

for A = % € R. Tt is realized now that the expression obtained for I'(W) is actually the
standard subdifferential of the Lagrangian.

Invoking now the properties of the set I'(x) stated above, it is immediate that at local
minimum arg minyy, ||[I'(W)|| = 0. Descent in the original function f(x) is also obtained by
realizing that the direction d = — argminyy, ||[I'(W)|| guarantees descent in F (W), and so
at a point W/ = W + sd, with s > 0 sufficiently small,

FOV) = f(Wx) < max {f(W') — f(W"), [W]], - 1,
L= [[W'llp},
= F(W')<FW),
= max {f(W) — f(W"), [[W][, - 1,
1=[Wllp},
= fW) = f(W7),

since at W the constraints are met. Therefore f(W’) < f(W), and so d is also a descent
direction for f(W), concluding the proof. [

Appendix C. Computation of the Derivative of the Constraint

Depending on the actual value of the norm parameter p > 1, the norm function |[W||}
might produce a singleton or a set of subgradients. For even p the norm function is smooth
an thus produces a singleton subgradient in the form

owlp] _ 9 P

)

= p(Wp)" .

However, for an odd or non—integer value of p the absolute value function cannot be
disposed of, and the set of subgradients produced takes the form

7. Even though this transformation changes the scaling of the points in the set I'(W), note that the argument
remains legit, since we are only interested in extracting a direction vector from I'(x), and therefore scaling
is not relevant.
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oWy 9
= W’L b )
o], = am X
0
= p[WilP™" =W,
P Wil OWk| k|
= pWil”"
where the coefficients ui take the values

1 if Wi >0,
Ly = 1 if Wp<o,
[—1,1] if W, =0.

That is to say, for values of W with entries at 0 several possible subgradients appear.
Nevertheless, since if Wy, = 0 then |W|P = 0 (except for p = 1, see below), the particular
choice of uy is irrelevant, and we end up at

WIWHﬁ

S| =PI sn ().

as shown in Eq. (23).

The cases p = 1 and p = oo, which are of special relevance for their known spar-
sity /uniformity inducing properties, require some further attention. First, for p = 1 we
have

oWl:] _ 0 G
[aw k‘awk;m’_“’“’

and a similar situation to that of the general p arises, though this time the particular
choice of uy does produce different subgradients. This is not surprising, since the ¢;—norm
is non—smooth. To address this issue, in this paper we take the simplest of the available
subgradients, taking py = 0 whenever Wy, = 0, resulting in

[3!|W|!1

ST L = sign(Wy).

It must be noted, however, that by making this simplification we might be failing to identify
the correct updating directions in our algorithm when standing on a W point where the
norm is not differentiable. This, however, poses no problems to our method in practice,
but for very specifically tailored cases unlikely to arise in practice. Even in those cases the
solution of the ERCH with norm ¢; can be safely approximated by a norm choice like #1 o1,
which is smooth.

Now for p = oo the derivative is, in principle, not separable, since we have

Wl 0 .
Bl —8Wmax{|Wl]}.

Nevertheless we can rewrite this as
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NWlle 0
ow oW
and invoke again the property that the subdifferential of the maximum of a set of convex
functions (linear, in this case) at a given point is the convex hull of the subdifferentials of
the functions attaining such maximum at that point (Boyd and Vandenberghe, 2007). With
this, we obtain that

max {Wy, —Wh,... Wy, =Wy},

2l A
] =3 m it max .
k -7 if =W, =max; {|W}|},

with 7; the convex hull coefficients, i.e.,

Sori=1, 1= {is Wl = max (i)}

i€l
Now, since the scale of % is not relevant (only its orientation) and by picking only the
most convenient subgradient we arrive at

ANWleo] _ [ 0 i [Wil <max; {[W]},
oW |, "\ sign(Wi) if [Wi| = max; {|W]}.

The same comments than those for norm ¢; apply here; if needed, the £,, norm can be
approximated by a large norm such as £1¢g.

Appendix D. General /,>; RCH-NPP Solver

The generalized £,>1 RCH-NPP problem takes the form

i X, —X_ 31
aln o, | X+ [ (31)

for p > 1 and sets Uy defined as in Proposition 2. Such problem is an instance of a common
family of problems arising in machine learning in the form

mgjn f(x) +r(x),

for f convex and differentiable, r convex and lower semicontinuous, but not necessarily
differentiable. Such problems are addressed efficiently by making use of a proximal method
(see Combettes and Pesquet 2009 for a thorough review), as long as two basic ingredients
are provided: a subroutine to compute the gradient of f and an efficient method to solve
the proximity operator of r, an optimization subproblem taking the form

1
prox, (y) = min o[z = y[|3 + r(2).

Problem 31 can be written in min, f(z) + r(z) form by defining

s =3

fl@) = [ X4 —X_|,,
r(x) = w (X4)+a (Xo),
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where (¢(x) is an indicator function valued 0 if z € C, +o0 else. Using the results of the
previous appendix the gradient of f can be shown to take the form

Xi-x_| \I1 .
(Hlxjfix_\‘q) sign(X4 — X_)

Xp—x_| \! .
- (ﬁ) sign(Xs — X_)

Viz) =

)

while the proximity operator of r is

o1
prox,(y) = min|le —yl3 + e, (X4) + e (X0),
.1 t
= dmin || Xy — Y3+ (Xo) 4+ min o[ X2 = Vo[ + a0 (X2) ¢
Xy 2 X_ 2

1 1
= in —|| X, — Y| in —||[X_ —Y_|3
{leéﬁg” + +Hz}+{Xm€132H ||2}7

where y has also been decomposed in two parts Y, and Y_. It is evident now that the
proximity operator can be computed by solving two independent subproblems, which turn
out to be instances of the classic RCH-NPP where one of the hulls is a singleton Y.. Such
problem is solved through trivial modifications of a standard RCH-NPP solver.

In our RAPMINOS implementation we make use of the FISTA proximal algorithm (Beck
and Teboulle, 2009), which by the inclusion of the aforementioned gradient and proximity
subroutines results in an effective ¢,>1 RCH-NPP solver.

It is also worth pointing out that for the extreme ¢; and /., cases problem (31) becomes
non—differentiable, preventing the use of the presented approach. Still, a solution is easily
attainable by realizing that in these two cases the minimization of the norm function can
be rewritten as a set of linear constraints, as

min||z||; = min E max {x;, —z;} = min g zi st. oz > wy, —x; Vi,
x x L T,z L
(] K]

min [|z||cc = minmax{|xi|,...,|zq|} = minz st. z >z, —x; Vi,
T T T,z

Hence, the whole problem is rewritten as a Linear Program, which we solve by making use
of Matlab’s internal LP solver routine linprog.

Appendix E. Bias Computation in ERCH-NPP

When no reduction of the hulls is applied in RCH-NPP the usual procedure to compute
the bias is to take it in such a way that the classification hyperplane lies at the middle of
the extreme points in the convex—hulls (b = —2W - (X4 + X_) for the optimal solution
X1 and X_ of Eq. 7). However, such bias value is not necessarily equivalent to the one
obtained when solving v—SVM, as already pointed out by Crisp and Burges (2000). The
same situation holds for Ev—SVM, and so we show here how to compute the correct value
of b.
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The KKT complementary slackness conditions of the inner minimization problem in
ERCH-Margin (Eq. 5) are the following

MW -Xi—a+§&)=0 Vie M,
A(W-X; —B—&)=0 Vie M,
&G =0 Vi,

from which, together with the relationships obtained from the derivatives of the Lagrangian
(Eq. 8) the following statements can be derived

e IficMi)>0 — W-X;—a+&=0.
oIfieM_,Ai>0—>W-Xi—6—§i:0.
oIf)\i<77—>Mi>0—>fi:0.

Joining these three facts we can compute « by finding an ¢ € My s.t. 0 < \; < 7, as for
this case W - X; — a = 0, and similarly for 5, obtaining

a=W-X; for somei € M,,0 < \; <,
8=W- X, for somei € M_,0 < \; < n.

Once a and B are known the bias can be computed through the definitions of these two
terms (see the proof for Proposition 1), as

b= 50+ 5). (32)

Therefore, for any given W in ERCH-Margin or ERCH-NPP its corresponding bias can be
computed with the obtained formula. A similar derivation was already proposed in Chang
and Lin (2001) for the »—SVM, though the connection with RCH-Margin was not made.

It should be noted, however, that the presented bias computation requires the sets
1€ Mi,0< A \j<nandie M_,0< A <n tobenon-empty. If one of them turns out to
be empty, which is a not so uncommon situation in practice, the bias cannot be computed
in closed form. In such cases lower and upper bounds on b can be derived from the KKT
conditions, as done in Chang and Lin (2001). We follow such procedure to obtain bounds
on b and pick some value in the admissible range. Another possible solution would be to
determine the bias as the one maximizing classification accuracy over the training set, that
is

b* = arg max Z sign {y;(X; - W +b)}.
ieM

Such problem is solvable in log-linear time by sorting all the X; - W values and counting the
number of correct labellings for each possible b between all couples of consecutive X; - W
values. Even though this procedure seems to be more solid than selecting b from some
loose bounds, it is actually prone to overfitting. Only in settings where the training data
presents low noise have we found this procedure to produce better test accuracies, and thus
we recommend resorting instead to the bounds provided by the KKT conditions.
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