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Abstract

Max-margin learning is a powerful approach to building classifiers and structured output
predictors. Recent work on max-margin supervised topic models has successfully integrated
it with Bayesian topic models to discover discriminative latent semantic structures and
make accurate predictions for unseen testing data. However, the resulting learning prob-
lems are usually hard to solve because of the non-smoothness of the margin loss. Existing
approaches to building max-margin supervised topic models rely on an iterative procedure
to solve multiple latent SVM subproblems with additional mean-field assumptions on the
desired posterior distributions. This paper presents an alternative approach by defining a
new max-margin loss. Namely, we present Gibbs max-margin supervised topic models, a
latent variable Gibbs classifier to discover hidden topic representations for various tasks,
including classification, regression and multi-task learning. Gibbs max-margin supervised
topic models minimize an expected margin loss, which is an upper bound of the existing
margin loss derived from an expected prediction rule. By introducing augmented variables
and integrating out the Dirichlet variables analytically by conjugacy, we develop simple
Gibbs sampling algorithms with no restrictive assumptions and no need to solve SVM
subproblems. Furthermore, each step of the “augment-and-collapse” Gibbs sampling algo-
rithms has an analytical conditional distribution, from which samples can be easily drawn.
Experimental results on several medium-sized and large-scale data sets demonstrate sig-
nificant improvements on time efficiency. The classification performance is also improved
over competitors on binary, multi-class and multi-label classification tasks.

Keywords: supervised topic models, max-margin learning, Gibbs classifiers, regularized
Bayesian inference, support vector machines

1. Introduction

As the availability and scope of complex data increase, developing statistical tools to dis-
cover latent structures and reveal hidden explanatory factors has become a major theme in
statistics and machine learning. Topic models represent one type of such useful tools to dis-
cover latent semantic structures that are organized in an automatically learned latent topic
space, where each topic (i.e., a coordinate of the latent space) is a unigram distribution over
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the terms in a vocabulary. Due to its nice interpretability and extensibility, the Bayesian
formulation of topic models (Blei et al., 2003) has motivated substantially broad extensions
and applications to various fields, such as document analysis, image categorization (Fei-Fei
and Perona, 2005), and network data analysis (Airoldi et al., 2008). Besides discovering
latent topic representations, many models usually have a goal to make good predictions,
such as relational topic models (Chang and Blei, 2009; Chen et al., 2013) whose major goal
is to make accurate predictions on the link structures of a document network. Another
example is supervised topic models, our focus in this paper, which learn a prediction model
for regression and classification tasks. As supervising information (e.g., user-input rating
scores for product reviews) gets easier to obtain on the Web, developing supervised latent
topic models has attracted a lot of attention. Both maximum likelihood estimation (MLE)
and max-margin learning have been applied to learn supervised topic models. Different from
the MLE-based approaches (Blei and McAuliffe, 2007), which define a normalized likelihood
model for response variables, max-margin supervised topic models, such as maximum en-
tropy discrimination LDA (MedLDA) (Zhu et al., 2012), directly minimize a margin-based
loss derived from an expected (or averaging) prediction rule.

By performing discriminative learning, max-margin supervised topic models can discover
predictive latent topic representations and have shown promising performance in various
prediction tasks, such as text document categorization (Zhu et al., 2012) and image anno-
tation (Yang et al., 2010). However, their learning problems are generally hard to solve due
to the non-smoothness of the margin-based loss function. Most existing solvers rely on a
variational approximation scheme with strict mean-field assumptions on posterior distribu-
tions, and they normally need to solve multiple latent SVM subproblems in an EM-type
iterative procedure. By showing a new interpretation of MedLDA as a regularized Bayesian
inference method, the recent work (Jiang et al., 2012) successfully developed Monte Carlo
methods for such max-margin topic models, with a weaker mean-field assumption. Though
the prediction performance is improved because of more accurate inference, the Monte Carlo
methods still need to solve multiple SVM subproblems. Thus, their efficiency could be lim-
ited as learning SVMs is normally computationally demanding. Furthermore, due to the
dependence on SVM solvers, it is not easy to parallelize these algorithms for large-scale data
analysis tasks, although substantial efforts have been made to develop parallel Monte Carlo
methods for unsupervised topic models (Newman et al., 2009; Smola and Narayanamurthy,
2010; Ahmed et al., 2012).

This paper presents Gibbs MedLDA, an alternative formulation of max-margin super-
vised topic models, for which we can develop simple and efficient inference algorithms.
Technically, instead of minimizing the margin loss of an expected (averaging) prediction
rule as adopted in existing max-margin topic models, Gibbs MedLDA minimizes the ex-
pected margin loss of many latent prediction rules, of which each rule corresponds to a
configuration of topic assignments and the prediction model, drawn from a post-data poste-
rior distribution. Theoretically, the expected margin loss is an upper bound of the existing
margin loss of an expected prediction rule. Computationally, although the expected margin
loss can still be hard to optimize using variational algorithms, we successfully develop simple
and fast Gibbs sampling algorithms without any restrictive assumptions on the posterior
distribution and without solving multiple latent SVM subproblems. By introducing a set
of auxiliary variables and integrating out the Dirichlet variables by conjugacy, each of the
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sampling substeps has a closed-form conditional distribution, from which samples can be
efficiently drawn.

Our algorithms represent an extension of the classical ideas of data augmentation
(Dempster et al., 1977; Tanner and Wong, 1987; van Dyk and Meng, 2001) and its recent
developments in learning fully observed max-margin classifiers (Polson and Scott, 2011) to
learn the sophisticated latent topic models. On the other hand, Gibbs MedLDA repre-
sents a generalization of Gibbs (or stochastic) classifiers (McAllester, 2003; Catoni, 2007;
Germain et al., 2009) to incorporate a hierarchy of latent variables for discovering latent
topic representations. We further generalize the ideas to develop a Gibbs MedLDA re-
gression model and a multi-task Gibbs MedLDA model, for which we also develop efficient
“augment-and-collapse” Gibbs sampling algorithms by exploring the same ideas of data
augmentation. Empirical results on real data sets demonstrate significant improvements
in time efficiency. The classification performance is also significantly improved in binary,
multi-class, and multi-label classification tasks.

The rest of the paper is structured as follows. Section 2 summarizes some related
work. Section 3 reviews MedLDA and its EM-type algorithms. Section 4 presents Gibbs
MedLDA and its sampling algorithms for classification. Section 5 presents two extensions of
Gibbs MedLDA for regression and multi-task learning. Section 6 presents empirical results.
Finally, Section 7 concludes and discusses future directions.

2. Related Work

Max-margin learning has been very successful in building classifiers (Vapnik, 1995) and
structured output prediction models (Taskar et al., 2003) in the last decade. Recently, re-
search on learning max-margin models in the presence of latent variable models has received
increasing attention because of the promise of using latent variables to capture the underly-
ing structures of the complex problems. Deterministic approaches (Yu and Joachims, 2009)
fill in the unknown values of the hidden structures by using some estimates (e.g., MAP
estimates), and then a max-margin loss function is defined with the filled-in hidden struc-
tures, while probabilistic approaches aim to infer an entire distribution profile of the hidden
structures given evidence and some prior distribution, following the Bayes’ way of thinking.
Though the former works well in practice, we focus on Bayesian approaches, which can nat-
urally incorporate prior beliefs, maintain the entire distribution profile of latent structures,
and be extensible to nonparametric methods. One representative work along this line is
maximum entropy discrimination (MED) (Jaakkola et al., 1999; Jebara, 2001), which learns
a distribution of model parameters given a set of labeled training data.

MedLDA (Zhu et al., 2012) is one extension of MED to infer hidden topical structures
from data and MMH (max-margin Harmoniums) (Chen et al., 2012) is another extension
that infers the hidden semantic features from multi-view data. Along similar lines, recent
work has also successfully developed nonparametric Bayesian max-margin models, such as
infinite SVMs (iISVM) (Zhu et al., 2011) for discovering clustering structures when building
SVM classifiers and infinite latent SVMs (iLSVM) (Zhu et al., 2014) for automatically
learning predictive features for SVM classifiers. Both iSVM and iLSVM can automatically
resolve the model complexity, for example, the number of components in a mixture model or
the number of latent features in a factor analysis model. The nonparametric Bayesian max-
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margin ideas have been proven to be effective in dealing with more challenging problems,
such as link prediction in social networks (Zhu, 2012) and low-rank matrix factorization for
collaborative recommendation (Xu et al., 2012, 2013).

One common challenge of these Bayesian max-margin latent variable models is on the
posterior inference, which is normally intractable. Almost all the existing work adopts a
variational approximation scheme, with some mean-field assumptions. Very little research
has been done on developing Monte Carlo methods, except the work (Jiang et al., 2012)
which still makes mean-field assumptions. The work in the present paper provides a novel
way to formulate Bayesian max-margin models and we show that these new formulations can
have very simple and efficient Monte Carlo inference algorithms without making restrictive
assumptions. The key step to deriving our algorithms is a data augmentation formulation
of the expected margin-based loss. Other work on inferring the posterior distributions of
latent variables includes max-margin min-entropy models (Miller et al., 2012) which learn
a single set of model parameters, different from our focus of inferring the model posterior
distribution.

Data augmentation refers to methods of augmenting the observed data so as to make
it easy to analyze with an iterative optimization or sampling algorithm. For deterministic
algorithms, the technique has been popularized in the statistics community by the seminal
expectation-maximization (EM) algorithm (Dempster et al., 1977) for maximum likelihood
estimation (MLE) with missing values. For stochastic algorithms, the technique has been
popularized in statistics by Tanner and Wong’s data augmentation algorithm for posterior
sampling (Tanner and Wong, 1987) and in physics by Swendsen and Wang’s sampling al-
gorithms for Ising and Potts models (Swendsen and Wang, 1987). When using the idea to
solve estimation or posterior inference problems, the key step is to find a set of augmented
variables, conditioned on which the distribution of our models can be easily sampled. The
speed of mixing or convergence is another important concern when designing a data augmen-
tation method. While the conflict between simplicity and speed is a common phenomenon
with many standard augmentation schemes, some work has demonstrated that with more
creative augmentation schemes it is possible to construct EM-type algorithms (Meng and
van Dyk, 1997) or Markov Chain Monte Carlo methods (known as slice sampling) (Neal,
1997) that are both fast and simple. We refer the readers to van Dyk and Meng (2001)
for an excellent review of the broad literature of data augmentation and an effective search
strategy for selecting good augmentation schemes.

For our focus on max-margin classifiers, the recent work (Polson and Scott, 2011) pro-
vides an elegant data augmentation formulation for support vector machines (SVM) with
fully observed input data, which leads to analytical conditional distributions that are easy
to sample from and fast to mix. Our work in the present paper builds on the method of
Polson et al. and presents a successful implementation of data augmentation to deal with
the challenging posterior inference problems of Bayesian max-margin latent topic models.
Our approach can be generalized to deal with other Bayesian max-margin latent variable
models, for example, max-margin matrix factorization (Xu et al., 2013), as reviewed above.

Finally, some preliminary results were presented in a conference paper (Zhu et al.,
2013a). This paper presents a full extension.
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3. MedLDA

We begin with a brief overview of MedLDA and its learning algorithms, which motivate our
developments of Gibbs MedLDA.

3.1 MedLDA: A Regularized Bayesian Model

We consider binary classification with a labeled training set D = {(wy, yd)}gzl, where wg =
{wdn}nN 4, denotes the bag-of-words appearing in document d and the response variable Y’
takes values from the output space Y = {—1,+1}. D is the data set size. Basically, MedLDA
consists of two parts—an LDA model for describing input documents W = {Wd}g:p and an
expected classifier for considering the supervising signal y = {yd}fl):l. Below, we introduce
each of them in turn.

LDA: Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bayesian
model that posits each document as an admixture of K topics, where each topic ®; is a
multinomial distribution over a V-word vocabulary. For document d, the generating process
can be described as

1. draw a topic proportion 8; ~ Dir(a)
2. for each word n (1 < n < Ny):

(a) draw a topic assignment! zg,|0; ~ Mult(0y)
(b) draw the observed word wgp|zdn, ® ~ Mult(®., )

where Dir(+) is a Dirichlet distribution; Mult(-) is multinomial; and ®,, denotes the topic
selected by the non-zero entry of zg,. For a fully-Bayesian LDA, the topics are random
samples drawn from a prior, for example, ®; ~ Dir(3).

Given a set of documents W, we let zg = {zdn}flvi 1 denote the set of topic assignments
for document d and let Z = {z4}7 | and ® = {6,}2 | denote all the topic assignments
and mixing proportions for the whole corpus, respectively. Then, LDA infers the posterior
distribution using Bayes’ rule

©,Z,2)p(W|Z, ®)

~ pol
p(©,Z, ®|W) = (W) ,

N, .
where py(©,Z, ®) = Hszlpo(q)k\,B) Héj:l po(Oala) [ 1,244 p(24n|64) according to the gener-
ating process of LDA; and p(W) is the marginal evidence. We can show that the posterior
distribution by Bayes’ rule is the solution of an information theoretical optimization problem

min KL [¢(©,Z, ®)|po(©,Z, ®)] — E, [logp(W|Z, ®)]
1(©,Z,®)
st.: q(©,Z,®) € P, (1)

where KL(g||p) is the Kullback-Leibler divergence and P is the space of probability distribu-
tions with an appropriate dimension. In fact, if we add the constant log p(W) to the objec-
tive, the problem is the minimization of the KL-divergence KL(¢(®,Z, ®)|p(©,Z, 2|W)),

1. z4n is a K-dimensional binary vector with only one nonzero entry.
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whose solution is the desired posterior distribution by Bayes’ rule. One advantage of this
variational formulation of Bayesian inference is that it can be naturally extended to include
some regularization terms on the desired post-data posterior distribution ¢. This insight
has been taken to develop regularized Bayesian inference (RegBayes) (Zhu et al., 2014), a
computational framework for doing Bayesian inference with posterior regularization.? As
shown in Jiang et al. (2012) and detailed below, MedLDA is one example of RegBayes
models. Moreover, as we shall see in Section 4, our Gibbs max-margin topic models follow
this similar idea too.

Expected Classifier: Given a training set D, an expected (or averaging) classifier chooses
a posterior distribution g(h|D) over a hypothesis space H of classifiers such that the ¢-
weighted (expected) classifier

hq(w) = sign E,[h(w)]

will have the smallest possible risk. MedLDA follows this principle to learn a posterior
distribution ¢(n, ©,Z, ®|D) such that the expected classifier

§ = sign F(w) (2)

has the smallest possible risk, approximated by the training error Rp(q) = 25):1 1(9a # ya)-
The discriminant function is defined as

F(W) :Eq(n,z|D) [F(nvz;W)],
F(n,z;w) :nTZ,

where Z is the average topic assignment associated with the words w, a vector with element
Zi = % 27]:[:1 zF and n is the classifier weights. Note that the expected classifier and the
LDA likelihood are coupled via the latent topic assignments Z. The strong coupling makes
it possible for MedLDA to learn a posterior distribution that can describe the observed
words well and make accurate predictions.

Regularized Bayesian Inference: To integrate the above two components for hybrid
learning, MedLDA regularizes the properties of the topic representations by imposing the
following max-margin constraints derived from the classifier (2) to a standard LDA inference
problem (1)

de(Wd) Z 6 - §d7 Vdv

where ¢ (>1) is the cost of making a wrong prediction; and & = {¢;}., are non-negative
slack variables for inseparable cases. Let L£(q) = KL(¢||po(n,®,Z, ®)) — E,[logp(W|Z, ®)]
be the objective for doing standard Bayesian inference with the classifier g and po(n, ©, Z, ®)
po(Mpo(©,Z, ®). MedLDA solves the regularized Bayesian inference (Zhu et al., 2014)
problem

D

min L ,0.Z,®)) + 2¢ 3
5 £(001:0.2,2)) £ 203 3)

s.t.: de(Wd) > ¢ — gda fd > O,Vd,

2. Posterior regularization was first used in Ganchev et al. (2010) for maximum likelihood estimation and
was later extended in Zhu et al. (2014) to Bayesian and nonparametric Bayesian methods.
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where the margin constraints directly regularize the properties of the post-data distribution
and c is the positive regularization parameter. Equivalently, MedLDA solves the uncon-
strained problem?

min L ,0,Z,P)) + 2cR ,0,Z,P)), 4
iy L£((n,©,2,8)) + 2R (40, ©.2,%) (1

where R(q) = 2521 max (0, — yqF'(wq)) is the hinge loss that upper-bounds the training
error Rp(q) of the expected classifier (2). Note that the constant 2 is included simply for
convenience.

3.2 Existing Iterative Algorithms

Since it is difficult to solve problem (3) or (4) directly because of the non-conjugacy (between
priors and likelihood) and the max-margin constraints, corresponding to a non-smooth
posterior regularization term in (4), both variational and Monte Carlo methods have been
developed for approximate solutions. It can be shown that the variational method (Zhu
et al., 2012) is a coordinate descent algorithm to solve problem (4) with the fully-factorized
assumption that

K
4(n,0,Z,®) = q(n <Hq (64) qudn>Hq<<I>k>;
k=1

while the Monte Carlo methods (Jiang et al., 2012) make a weaker assumption that

All these methods have a similar EM-type iterative procedure, which solves many latent
SVM subproblems, as outlined below.

Estimate q(n): Given ¢(©,Z,®), we solve problem (4) with respect to ¢(n). In the
equivalent constrained form, this step solves

min KL ) + 2¢ 5
i (g(m)llpo(n Zﬁd (5)

st.: yaBy[n] ' Eylza] > £ — {d, &4 > 0,Vd.

This problem is convex and can be solved with Lagrangian methods. Specifically, let g
be the Lagrange multipliers, one per constraint. When the prior py(n) is the commonly
used standard normal distribution, we have the optimum solution ¢(n) = N (k,I), where
K = ZdDzl yapdEq(Zq). It can be shown that the dual problem of (5) is the dual of a
standard binary linear SVM and we can solve it or its primal form efficiently using exist-
ing high-performance SVM learners. We denote the optimum solution of this problem by

(" (m), k", &, ).

3. If not specified, q is subject to the constraint ¢ € P.
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Estimate q(©,Z,®): Given ¢(n), we solve problem (4) with respect to ¢(®,Z, ®). In
the constrained form, this step solves

D

min L(q(O,Z,P))+ 2c 6
(i, £aOZD) +23 (6)

st ya(k*) ' Bylzg] > £ — &, €4 > 0,Vd.

Although we can solve this problem using Lagrangian methods, it would be hard to derive
the dual objective. An effective approximation strategy was used in Zhu et al. (2012) and
Jiang et al. (2012), which updates ¢(©, Z, ®) for only one step with £ fixed at £*. By fixing
£ at &, we have the solution

d

where the second term indicates the regularization effects due to the max-margin posterior
constraints. For those data with non-zero Lagrange multipliers (i.e., support vectors),
the second term will bias MedLDA towards a new posterior distribution that favors more
discriminative representations on these “hard” data points. The Monte Carlo methods
(Jiang et al., 2012) directly draw samples from the posterior distribution ¢(®,Z,®) or
its collapsed form using Gibbs sampling to estimate E,[z4], the expectations required to
learn g(n). In contrast, the variational methods (Zhu et al., 2012) solve problem (6) using
coordinate descent to estimate E;[z4] with a fully factorized assumption.

4. Gibbs MedLDA

Now, we present Gibbs max-margin topic models for binary classification and their “augment-
and-collapse” sampling algorithms. We will discuss further extensions in the next section.

4.1 Learning with an Expected Margin Loss

As stated above, MedLDA chooses the strategy to minimize the hinge loss of an expected
classifier. In learning theory, an alternative approach to building classifiers with a posterior
distribution of models is to minimize an expected loss, under the framework known as Gibbs
classifiers (or stochastic classifiers) (McAllester, 2003; Catoni, 2007; Germain et al., 2009)
which have nice theoretical properties on generalization performance.

For our case of inferring the distribution of latent topic assignments Z = {zd}dD:1 and
the classification model 7, the expected margin loss is defined as follows. If we have drawn a
sample of the topic assignments Z and the prediction model i from a posterior distribution
q(n,Z), we can define the linear discriminant function

Fn,z;w)=n'z

as before and make prediction using the latent prediction rule
g(n,z) = sign F(n,z;w). (7)
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Note that the prediction is a function of the configuration (n,z). Let (g = £ — yqn ' Zq,
where / is a cost parameter as defined before. The hinge loss of the stochastic classifier is

D
Z) = ZmaX(O, Ca),
d=1

a function of the latent variables (n,Z), and the expected hinge loss is

D

R'(q) = Eg[R(n,Z)] = Y B, [max(0, ()] ,
d=1

a functional of the posterior distribution ¢(n, Z). Since for any (1, Z), the hinge loss R(n, Z)
is an upper bound of the training error of the latent Gibbs classifier (7), that is,

5]

Z Ya # Ja(n,2a)) ,

we have

I(yq # 9a(n,2q))] ,

Mu

d=1

where I(-) is an indicator function that equals to 1 if the predicate holds otherwise 0. In
other words, the expected hinge loss R'(q) is an upper bound of the expected training
error of the Gibbs classifier (7). Thus, it is a good surrogate loss for learning a posterior
distribution which could lead to a low training error in expectation.

Then, with the same goal as MedLDA of finding a posterior distribution ¢(n, ®,Z, ®)
that on one hand describes the observed data and on the other hand predicts as well as
possible on training data, we define Gibbs MedLDA as solving the new regularized Bayesian
inference problem

min L ,©,Z,®)) +2cR’ ,0,Z,.P)). 8
iy L (g0, ©,2,8)) + 2R (q(7,0,2. 9)) Q

Note that we have written the expected margin loss R’ as a function of the complete
distribution ¢(n, ®,Z, ®). This does not conflict with our definition of R’ as a function of
the marginal distribution ¢(n, Z) because the other irrelevant variables (i.e., ® and ®) are
integrated out when we compute the expectation.

Comparing to MedLDA in problem (4), we have the following lemma by applying
Jensen’s inequality.

Lemma 1 The expected hinge loss R’ is an upper bound of the hinge loss of the expected
classifier (2):

D
R'(q) > R(q) =Y _ max (0,Ey[¢]) ;

d=1

and thus the objective in (8) is an upper bound of that in (4) when c values are the same.
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4.2 Formulation with Data Augmentation

If we directly solve problem (8), the expected hinge loss R’ is hard to deal with because of
the non-differentiable max function. Fortunately, we can develop a simple collapsed Gibbs
sampling algorithm with analytical forms of local conditional distributions, based on a data
augmentation formulation of the expected hinge-loss.

Let ¢(ya|za,m) = exp{—2cmax(0,(s)} be the unnormalized likelihood of the response
variable for document d. Then, problem (8) can be written as

min L ,0,Z,P)) —E,[lo Z,m), 9

i £(a(1.0.2,8)) ~ By log o(y|2. )] )

where ¢(y|Z,n) = []2, ¢(valza,m). Solving problem (9) with the constraint that
q(n,0©,Z,®) € P, we can get the normalized posterior distribution

pO(an Z ‘"I)) (W|Za¢)¢(3’|z7n)
U(y, W) ’

where 1 (y, W) is the normalization constant that depends on the observed data only. Due
to the complicated form of ¢, it will not have simple conditional distributions if we want to
derive a Gibbs sampling algorithm for ¢(n, ®, Z, ®) directly. This motivates our exploration
of data augmentation techniques. Specifically, using the ideas of data augmentation (Tanner
and Wong, 1987; Polson and Scott, 2011), we have Lemma 2.

q(n,©,Z,®) =

Lemma 2 (Scale Mixture Representation) The wunnormalized likelihood can be

expressed as
& 1 (A + CCd)2)
,n) = — ——— | d)\;.
?(yalza.m) /O 5o P < 3y d

Proof Due to the fact that a max(0,z) = max(0, ax) if a > 0, we have —2cmax(0,(y) =
—2max(0, c(q). Then, we can follow the proof in Polson and Scott (2011) to get the results.
|

Lemma 2 indicates that the posterior distribution of Gibbs MedLDA can be expressed as
the marginal of a higher-dimensional distribution that includes the augmented variables
A= {\}1,, that is,

0(n, 0,7, ®) - / / (A ©,Z, )N - dAp = / a(m, A, ©,Z, B)dA,
0 0 R?

where Ry = {z : x € R, = > 0} is the set of positive real numbers; the complete posterior
distribution is
po(’% 67 Za @)p(W’Z, ¢)¢(Y7 A’Za 77) .

U(y, W) ’

and the unnormalized joint distribution of y and A is

< _()\d+CCd)2>
(v, AZ,m) 1:[ =c p( oy )

g, X, 0,Z,®) =
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In fact, we can show that the complete posterior distribution is the solution of the data
augmentation problem of Gibbs MedLDA
i L A,0O,Z, ) —E, 1 S AZ,m)],
P L. (a(n )) — Eq [log ¢(y, A|Z, m)]

which is again subject to the normalization constraint that ¢(n, A, ®,Z, ®) € P. The first
term in the objective is £(q(n, A, ©,Z, ®)) = KL(¢(n, A, ©,Z, ®)||po(n, ©,Z, ®)po(A)) —
E,[log p(W|Z, ®)], where a prior distribution is imposed on the augmented variables A.
One good choice of pg(A) is the noninformative uniform prior.

Remark 3 The objective of this augmented problem is an upper bound of the objective
in (9) (thus, also an upper bound of MedLDA’s objective due to Lemma 1). This is because
by using the data augmentation we can show that

log /RD ¢(y,>\!Z,n)d>\]

:EQ(V)

q(A[V)
log /]R A Az A

>Eqvy [Eqav) [log ¢(y, AlZ,n)] — Egapv) [log ¢(A[V)]]
=Eyv.x) [log ¢(y, A|Z,n)] — Egv ) [log a(A[V)],
where V.= {n,0,Z, ®} denotes all the random variables in MedLDA. Therefore, we have

L(q(V)) = Eqovylog d(y|Z,m)|<L(q(V)) — Egv a) log ¢(y, AlZ,m)] + Eyv x) [log ¢(A|V)]
:E(Q(V7 )‘)) - Eq [IOg ¢(y7 A‘Z7 77)]

4.3 Inference with Collapsed Gibbs Sampling

Although with the above data augmentation formulation we can do Gibbs sampling to infer
the complete posterior distribution ¢(n, A, ®,Z, ®) and thus ¢(n,®,Z, ®) by ignoring A,
the mixing speed would be slow because of the large sample space of the latent variables.
One way to effectively reduce the sample space and improve mixing rates is to integrate out
the intermediate Dirichlet variables (@, ®) and build a Markov chain whose equilibrium
distribution is the resulting marginal distribution ¢(n, A, Z). We propose to use collapsed
Gibbs sampling, which has been successfully used in LDA (Griffiths and Steyvers, 2004).
With the data augmentation representation, this leads to our “augment-and-collapse” sam-
pling algorithm for Gibbs MedLLDA, as detailed below.

For the data augmented formulation of Gibbs MedLDA, by integrating out the Dirichlet
variables (@, ®), we get the collapsed posterior distribution:

D 5(Cata)| oy 6(Cr+8) & 1 (Aa + cCq)?
=po(m) b;[l 5(cx) kl;[l 3(8) };[1 NIVl <_ 2hg > !
where
(X) - F(Zd;nll(x) 1;1-)7
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I'(-) is the Gamma function; C}, is the number of times that the term ¢ is assigned to topic k
over the whole corpus; Cy, = {C%}}_; is the set of word counts associated with topic k; C¥ is
the number of times that terms are associated with topic k& within the d-th document; and
Ci= {Cg}k{il is the set of topic counts for document d. Then, the conditional distributions
used in collapsed Gibbs sampling are as follows.

For m: Let us assume its prior is the commonly used isotropic Gaussian distribution
po(n) = HkK:1 N (n1;0,%), where v is a non-zero parameter. Then, we have the conditional
distribution of 1 given the other variables:

)\ +c
a(nl2,2) x po(n Hexp< Qurcea))
K 9 D 2
N ke N (At cGa)
OceXp< Zzﬂ > Mg
k=1 d=1
D T
= T =T
exp | =5 <2 2.7 )77+<C;d )| m
= N(m; 1, 2), (10)

a K-dimensional Gaussian distribution, where the posterior mean and the covariance matrix

are
D
Ag +cl_ 9 ZdZd
uzZ(ch;yd ” zd>,and22( I+c ;

Therefore, we can easily draw a sample from this multivariate Gaussian distribution. The
inverse can be robustly done using Cholesky decomposition, an O(K3) procedure. Since K
is normally not large, the inversion can be done efficiently, especially in applications where
the number of documents is much larger than the number of topics.

For Z: The conditional distribution of Z given the other variables is

D 5(Cy+ ) (A + cCa)?\ 1y 8(Cr + B)
o TG e (200 I

By canceling common factors, we can derive the conditional distribution of one variable zg,
given others Z_ as:

-1

Ct_ +B)(Ck_ +a YIRY
q(zk, =1Z_,n, X\ wa, = 1) O<( on ¥ PG + o) exp (—fyyd(c = Aa)

22/:1 Cll;ﬁn + Zz/:l ﬁt )\d

27V + 29(1 — ) mp Ak,
—C 9 (11)
My

where C"
v = N%z; and

—n indicates that term n is excluded from the corresponding document or topic;

A = Z Nk’ C’cl -n
k' 1

1084



GI1BBS MAX-MARGIN ToPIC MODELS WITH DATA AUGMENTATION

Algorithm 1 collapsed Gibbs sampling algorithm for Gibbs MedLDA classification models
1: Initialization: set A = 1 and randomly draw zg from a uniform distribution.
2: for m=1to M do

draw the classifier from the normal distribution (10)

4 ford=1to D do

5 for each word n in document d do

6: draw a topic from the multinomial distribution (11)

7

8

w

end for

draw )\;1 (and thus A\g) from the inverse Gaussian distribution (12).
9: end for
10: end for

is the discriminant function value without word n. We can see that the first term is from
the LDA model for observed word counts and the second term is from the supervised signal
y.

For A: Finally, the conditional distribution of the augmented variables A given the other
variables is factorized and we can derive the conditional distribution for each A\; as

2
o) o o exp (- )

1
== gg (Ada 5, ]-7 62<§> 9

where

g1 (z; p, a,b) = C(p,a,b)z"~ " exp <_; (i + ax>>

is a generalized inverse Gaussian distribution (Devroye, 1986) and C(p, a,b) is a normaliza-
tion constant. Therefore, we can derive that )\gl follows an inverse Gaussian distribution

-1 _ 1L
p()\d ’Z7n> _E <)\d ’C’<d‘71> ’ (12)

where )
b b(x — a)
7G(x;a,b) = 373 CXP <_2a2x )

for a > 0 and b > 0.

With the above conditional distributions, we can construct a Markov chain which itera-
tively draws samples of the classifier weights ) using Equation (10), the topic assignments
Z using Equation (11) and the augmented variables A using Equation (12), with an initial
condition. To sample from an inverse Gaussian distribution, we apply the transformation
method with multiple roots (Michael et al., 1976) which is very efficient with a constant
time complexity. Overall, the per-iteration time complexity is O(K?3 + Ny K), where
Niotal = ZC?:I Ny is the total number of words in all documents. If K is not very large
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(e.g., K < v/Notal), which is the common case in practice as Ny is often very large,
the per-iteration time complexity is O(N;p K); if K is large (e.g., K > v/Nyotar), which
is not common in practice, drawing the global classifier weights will dominate and the per-
iteration time complexity is O(K?3). In our experiments, we initially set Ay = 1, Vd and
randomly draw Z from a uniform distribution. In training, we run this Markov chain to
finish the burn-in stage with M iterations, as outlined in Algorithm 1. Then, we draw a
sample 79} as the Gibbs classifier to make predictions on testing data.

In general, there is no theoretical guarantee that a Markov chain constructed using
data augmentation can converge to the target distribution; see Hobert (2011) for a failure
example. However, for our algorithms, we can justify that the Markov transition distribution
of the chain satisfies the condition K from Hobert (2011), that is, the transition probability
from one state to any other state is larger than 0. Condition K implies that the Markov chain
is Harris ergodic (Tan, 2009, Lemma 1). Therefore, no matter how the chain is started,
our sampling algorithms can be employed to effectively explore the intractable posterior
distribution. In practice, the sampling algorithm as well as the ones to be presented require
only a few iterations to get stable prediction performance, as we shall see in Section 6.5.1.
More theoretical analysis such as convergence rates requires a good bit of technical Markov
chain theory and is our future work.

4.4 Prediction

To apply the Gibbs classifier 9, we need to infer the topic assignments for testing document,
denoted by w. A fully Bayesian treatment needs to compute an integral in order to get
the posterior distribution of the topic assignment given the training data D and the testing
document content w:

p(z|w, D) o / plzw, 2[D)AD = /  plz. w(@)p(@[D)de,

PE PE

where Py is the V — 1 dimensional simplex; and the second equality holds due to the condi-
tional independence assumption of the documents given the topics. Various approximation
methods can be applied to compute the integral. Here, we take the approach applied in
Zhu et al. (2012), which uses a point estimate of topics ® from training data and makes
predictions based on them. Specifically, we use a point estimate » (a Dirac measure)
to approximate the probability distribution p(®|D). For the collapsed Gibbs sampler, an
estimate of ® using the samples is the posterior mean

bre o Ch + B

Then, given a testing document w, we infer its latent components z using o by drawing
samples from the local conditional distribution

p(sz = 1|z—n, W, D) X Pk, (Cfn + ak> , (13)
where C¥ is the number of times that the terms in this document w assigned to topic k

with the n-th term excluded. To start the sampler, we randomly set each word to one topic.
Then, we run the Gibbs sampler for a few iterations until some stop criterion is satisfied,
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for example, after a few burn-in steps or the relative change of data likelihood is lower
than some threshold. Here, we adopt the latter, the same as in Jiang et al. (2012). After
this burn-in stage, we keep one sample of z for prediction using the stochastic classifier.
Empirically, using the average of a few (e.g., 10) samples of z could lead to slightly more
robust predictions, as we shall see in Section 6.5.4.

5. Extensions to Regression and Multi-task Learning

The above ideas can be naturally generalized to develop Gibbs max-margin supervised topic
models for various prediction tasks. In this section, we present two examples for regression
and multi-task learning, respectively.

5.1 Gibbs MedLDA Regression Model

We first discuss how to generalize the above ideas to develop a regression model, where
the response variable Y takes real values. Formally, the Gibbs MedLDA regression model
also has two components—an LDA model to describe input bag-of-words documents and a
Gibbs regression model for the response variables. Since the LDA component is the same
as in the classification model, we focus on presenting the Gibbs regression model.

5.1.1 THE MODELS WITH DATA AUGMENTATION

If a sample of the topic assignments Z and the prediction model n are drawn from the
posterior distribution ¢(n, Z), we define the latent regression rule as

N T

gm.z)=n z (14)
To measure the goodness of the prediction rule (14), we adopt the widely used e-insensitive
loss

D
Re(nv Z) = Zmax (07 ’Ad‘ - 6) )
d=1

where Ag = yq — n'Zq is the margin between the true score and the predicted score.
The e-insensitive loss has been successfully used in learning fully observed support vector
regression (Smola and Scholkopf, 2003). In our case, the loss is a function of predictive
model 1 as well as the topic assignments Z which are hidden from the input data. To
resolve this uncertainty, we define the expected e-insensitive loss

D

Re(q) = Eq [Re(n,2)] = Y Eq [max(0, |Ag| - o)],
d=1

a function of the desired posterior distribution ¢(n, Z).
With the above definitions, we can follow the same principle as Gibbs MedLDA to define
the Gibbs MedLDA regression model as solving the regularized Bayesian inference problem

min L ,0.7Z,®)) + 2cR. ,0.7Z,P)). 15
o (q(n ) (q(n ) (15)
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Note that as in the classification model, we have put the complete distribution ¢(n, ®,Z, ®)
as the argument of the expected loss R, which only depends on the marginal distribution
q(n,Z). This does not affect the results because we are taking the expectation to compute
Re and any irrelevant variables will be marginalized out.

As in the Gibbs MedLLDA classification model, we can show that R, is an upper bound of
the e-insensitive loss of MedLDA’s expected prediction rule, by applying Jensen’s inequality
to the convex function h(x) = max(0, |z| — €).

Lemma 4 We have R, > 25:1 max(0, |[Eq[A4]| —€).

We can reformulate problem (15) in the same form as problem (9), with the unnormalized
likelihood

?(ya|n, za) = exp (—2cmax(0,]|Aqy| —€)).

Then, we have the dual scale of mixture representation, by noting that

max(0, |z| — €) = max(0,z — €) + max(0, —x — ¢). (16)

Lemma 5 (Dual Scale Mixture Representation) For regression, the unnormalized like-
lthood can be expressed as

1 (A + c(Ag — 6))2
) = [z e (~PEE I

" /OOO 1 exp <_ (wa — c(Aq + 6))2> dwy

V2w 2wy
Proof By the equality (16), we have o¢(yq|m,zq) = exp{—2cmax(0,A; — €)}
exp{—2cmax(0, —A; — €)}. Each of the exponential terms can be formulated as a scale
mixture of Gaussians due to Lemma 2. [

Then, the data augmented learning problem of the Gibbs MedLDA regression model is

i ‘C aAa a65Z5¢ —E 1 7A7 Zv )
q(n,A,IB,lC{)l,z,é) (a(m A, ) allog $ly: A, 12, m)

where ¢(y, A, w|Z,n) = [T, ¢(ya, A, walZ, w) and

exp <_ (Aa + C;ij - 6))2> \/Qier (_ (wq — c(Ag + 6))2> '

Solving the augmented problem and integrating out (@, ®), we can get the collapsed pos-
terior distribution

&(Yd, A, wd|Z,m) =

2Ty

q(’l’], )‘7 W, Z) X pO(n)p(W7 Z|a7 B)¢(Y7 )‘a w|Z7 77)
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Algorithm 2 collapsed Gibbs sampling algorithm for Gibbs MedLDA regression models

1: Initialization: set A = 1 and randomly draw zg from a uniform distribution.

2: for m=1to M do

3:  draw the classifier from the normal distribution (17)

4 ford=1to D do

5 for each word n in document d do

6: draw a topic from the multinomial distribution (18)
7 end for
8
9

draw )\;1 (and thus A\g) from the inverse Gaussian distribution (19).
draw w;l (and thus wy) from the inverse Gaussian distribution (20).
10: end for
11: end for

5.1.2 A CoOLLAPSED GIBBS SAMPLING ALGORITHM

Following similar derivations as in the classification model, the Gibbs sampling algorithm to
infer the posterior has the following conditional distributions, with an outline in Algorithm 2.
For n: Again, with the isotropic Gaussian prior po(n) = Hszl N (ng; 0,v2), we have

D
(Mg +c(Ag —€))? (wqg — c(Ag +€))?
q(M|Z, X, w) x po(n) dl;[lexp (— oy ) exp (— oy >
K2 D g+ c(Ag— )2 (wyg— c(Ag +€))?
OceXp<_kZ7zjk2_Z<(d g/\j ) Jr(d éw;l ) >>
—1 d=1
- D - D T
=exp [ —on' | 51+ ;pdzdzd n+c ;ded n
= NmipX), (17)

where the posterior covariance matrix and the posterior mean are

1 D -1 D
3= <V21 + ¢ Zﬂdidﬂ) , p=cX <Z ¢d2d> ;
d=1 d=1
and pg = /\id + wid and ¢g = ¥ + yz}—je are two parameters. We can easily draw a sample
from a K-dimensional multivariate Gaussian distribution. The inverse can be robustly done
using Cholesky decomposition.
For Z: We can derive the conditional distribution of one variable z4, given others Z_,

as:

(Chop + B)(Ch_, + )
YL Cl Y B

2 2
Y Pan
~(EEE (1 = 7)pam XE) ). (18)

q(an = 1‘Z—'7 n, >‘7 W, Wdn = t) X exXp (C’ﬂ/}dnk
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1. k 1 K 1’4 . . . . .
where v = N and T3 = N1 > w1 Mk Cj _p is the discriminant function value without

word n. The first term is from the LDA model for observed word counts. The second term
is from the supervised signal y.

For XA and w: Finally, we can derive that )\;1 and wczl follow the inverse Gaussian
distributions:

1
-1 _ -1,
Q()\d |Z’n7w)_w <)\d I C’Ad—€|71> 9 (19)
1
-1 _ .. - 1),

The per-iteration time complexity of this algorithm is similar to that of the binary Gibbs
MedLDA model, that is, linear to the number of documents and the number of topics if K
is not too large.

5.2 Multi-task Gibbs MedLDA

The second extension is a multi-task Gibbs MedLDA. Multi-task learning is a scenario where
multiple potentially related tasks are learned jointly with the hope that their performance
can be boosted by sharing some statistic information among these tasks, and it has attracted
a lot of research attention. In particular, learning a common latent representation shared by
all the related tasks has proven to be an effective way to capture task relationships (Ando
and Zhang, 2005; Argyriou et al., 2007; Zhu et al., 2014). Here, we take the similar approach
to learning multiple predictive models which share the common latent topic representations.
As we shall see in Section 6.3.2, one natural application of our approach is to do multi-
label classification (Tsoumakas et al., 2010), where each document can belong to multiple
categories, by defining each task as a binary classifier to determine whether a data point
belongs to a particular category; and it can also be applied to multi-class classification,
where each document belongs to only one of the many categories, by defining a single
output prediction rule (See Section 6.3.2 for details).

5.2.1 THE MODEL WITH DATA AUGMENTATION

We consider L binary classification tasks and each task i is associated with a classifier with
weights 1;. We assume that all the tasks work on the same set of input data W = {Wd}c?zl,
but each data d has different binary labels {yil}le in different tasks. A multi-task Gibbs
MedLDA model has two components—an LDA model to describe input words (the same as
in Gibbs MedLLDA); and multiple Gibbs classifiers sharing the same topic representations.
When we have the classifier weights 17 and the topic assignments Z, drawn from a posterior
distribution ¢(n, Z), we follow the same principle as in Gibbs MedLDA and define the latent
Gibbs rule for each task as

Vi=1,...L: ¢'(n;z)=sign F(n;zw)=sign(n, z). (21)

Let Cé ={— yénz-T z4. The hinge loss of the stochastic classifier i is
D
Rz(nla Z) = Z max(O, C&)
d=1
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and the expected hinge loss is

D

Ri(q) = Eg[Ri(mi, Z)] = Y Eq [max(0,¢})] -

d=1

For each task i, we can follow the argument as in Gibbs MedLDA to show that the expected
loss R (g) is an upper bound of the expected training error ZdD:1 Eq[I(yY # 94(ni,2a))] of the
Gibbs classifier (21). Thus, it is a good surrogate loss for learning a posterior distribution
which could lead to a low expected training error.

Then, following a similar procedure of defining the binary GibbsMedLDA classifier, we
define the multi-task GibbsMedLDA model as solving the following RegBayes problem:

min E ,@,Z,(I) +2CR/ 7@,Z7@ )
9(n,©.Z,2) (4 ) mr (a(n )

where the multi-task expected hinge loss is defined as a summation of the expected hinge
loss of all the tasks:

v (a(n,©,Z, ®)) ZR’ (n,©,Z,®)).

Due to the separability of the multi-task expected hinge loss, we can apply Lemma 2 to
reformulate each task—speciﬁc expected hinge loss R as a scale mixture by introducing a set
of augmented variables {\}}2_,. More specifically, let ¢;(y}|zq, ) = exp{—2cmax(0, (%)}
be the unnormalized likelihood of the response variable for document d in task 7. Then, we

have
i * 1 A+ ei)? ;
¢i(yalza,m) = /O exp <—(d,d)> AN

1/ 277)\2 224

5.2.2 A COLLAPSED GIBBS SAMPLING ALGORITHM

Similar to the binary Gibbs MedLDA classification model, we can derive the collapsed Gibbs
sampling algorithm, as outlined in Algorithm 3. Specifically, let

. . D Ai \2
¢i(y', NZ,m) =[] ! exp <—(d+c.gd)>

d=1 w/27r)\fj 20y

be the joint unnormalized likelihood of the class labels y* = {yé} 4—1 and the augmentation
variables A = {\}}Z_ . Then, for the multi-task Gibbs MedLDA, we can integrate out the
Dirichlet variables (@, ®) and get the collapsed posterior distribution

L
q(n, X, Z) o po(m)p(W, Zlav, B) [ [ #:1(y", X'|Z, m)
i=1
D 5Cd+a K 5Ck+ﬂ LB ( (A“rccd))
exp 5
o TS50 I LT oo (-5
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Algorithm 3 collapsed Gibbs sampling algorithm for multi-task Gibbs MedLDA
1: Initialization: set A = 1 and randomly draw zg from a uniform distribution.
2: for m =1 to M do
3: fori=1to L do

4 draw the classifier n; from the normal distribution (22)
5. end for

6: ford=1to D do

7: for each word n in document d do

8 draw a topic from the multinomial distribution (23)
9 end for

10: fort=1to L do

11: draw ()~ (and thus X)) from the inverse Gaussian distribution (24).
12: end for

13:  end for

14: end for

Then, we can derive the conditional distributions used in collapsed Gibbs sampling as
follows.

Forn: We also assume its prior is an isotropic Gaussian po(n) = [T2, [Tr—, N (nix; 0, v2).
Then, we have the factorized form ¢(n|Z,\) = I_L-L:1 q(ni|Z, X\), and each individual distri-
bution is

(_ (NG + eCh)?

D
o(m12.3) o o) [T exp (=0 ) = s, 3, 2
d

d=1
where the posterior covariance matrix and posterior mean are

D _ _T1 1
1 9 Z4Z, )\ —I—CK
Y= (ng-i-c dgl)\fi> , and Nizzz’( E .

d=

Similarly, the inverse can be robustly done using Cholesky decomposition, an O(K3) pro-
cedure. Since K is normally not large, the inversion can be done efficiently.
For Z: The conditional distribution of Z is

L ; ; K
LN e 5(Ck + B)
[Jexe ( 27, )] ™56

i=1 k=1

D
o(zin. 3 x [T G5
d=1

By canceling common factors, we can derive the conditional distribution of one variable z4,
given others Z_ as:

q(zﬁn = 1|Zmn’)\7wdn _ t) x ( k,—n /Bt)( d,—n k) HGXp (’yyd(c —+ d)nzk
i=1

Zyzl Clté,m + Zyzl Bt /\fi

2+ 20 - V)UikAén),

. 23
20y (23)
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where Afm = ﬁ 2521 mk/Cl’j;n is the discriminant function value without word n. We
d s
can see that the first term is from the LDA model for observed word counts and the second
term is from the supervised signal {y’} from all the multiple tasks.
For A: Finally, the conditional distribution of the augmented variables X is fully fac-
torized, ¢(A|Z,n) = [T, [T112, ¢(My|Z,n), and each variable follows a generalized inverse

Gaussian distribution
N+ eCh)? ! -
( d Cd) > = m < (zi7 57 17 C2(<}1)2> .

; 1
a(AglZ,m) oc ——=exp <— o
\/ 27y d
Therefore, we can derive that (A\})~! follows an inverse Gaussian distribution
o 1
()2 =6 (0 1) (o4)
d

from which a sample can be efficiently drawn with a constant time complexity.

The per-iteration time complexity of the algorithm is O(LK? + Njyq KK + DL). For
common large-scale applications where K and L are not too large while D (thus Nyytqy) is
very large, the step of sampling latent topic assignments takes most of the time. If L is very
large, for example, in the PASCAL large-scale text/image categorization challenge tasks
which have tens of thousands of categories,* the step of drawing global classifier weights
may dominate. A nice property of the algorithm is that we can easily parallelize this step
since there is no coupling among these classifiers once the topic assignments are given. A
preliminary investigation of the parallel algorithm is presented in Zhu et al. (2013b).

6. Experiments

We present empirical results to demonstrate the efficiency and prediction performance of
Gibbs MedLLDA (denoted by GibbsMedLDA) on the 20Newsgroups data set for classifi-
cation, a hotel review data set for regression, and a Wikipedia data set with more than 1
million documents for multi-label classification. We also analyze its sensitivity to key param-
eters and examine the learned latent topic representations qualitatively. The 20Newsgroups
data set contains about 20K postings within 20 groups. We follow the same setting as in
Zhu et al. (2012) and remove a standard list of stop words for both binary and multi-class
classification. For all the experiments, we use the standard normal prior po(n) (i.e., v? = 1)
and the symmetric Dirichlet priors @ = 1, 8 = 0.01 x 1, where 1 is a vector with all
entries being 1. For each setting, we report the average performance and standard devia-
tion with five randomly initialized runs. All the experiments, except the those on the large
Wikipedia data set, are done on a standard desktop computer.

6.1 Binary Classification

The binary classification task is to distinguish postings of the newsgroup alt.atheism and
postings of the newsgroup talk.religion.misc. The training set contains 856 documents, and

4. See the websites: http://1shtc.iit.demokritos.gr/;
and http://www.image-net.org/challenges/LSVRC/2012/index.
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Figure 1:

the test set contains 569 documents. We compare Gibbs MedLDA with the MedLDA model
that uses variational methods (denoted by vMedLDA) (Zhu et al., 2012) and the MedLDA
that uses collapsed Gibbs sampling algorithms (denoted by gMedLDA) (Jiang et al., 2012).
We also include unsupervised LDA using collapsed Gibbs sampling as a baseline, denoted
by GibbsLDA. For GibbsLDA, we learn a binary linear SVM on its topic representations
using SVMLight (Joachims, 1999). The results of other supervised topic models, such as
sLDA and DiscLDA (Lacoste-Jullien et al., 2009), were reported in Zhu et al. (2012). For
Gibbs MedLDA, we set « = 1, £ = 164 and M = 10. As we shall see in Section 6.5,
Gibbs MedLDA is insensitive to «, £ and M in a wide range. Although tuning ¢ (e.g., via
cross-validation) can produce slightly better results, we fix ¢ = 1 for simplicity.

Figure 1 shows the accuracy, training time, and testing time of different methods with
various numbers of topics. We can see that by minimizing an expected hinge-loss and making
no restrictive assumptions on the posterior distributions, GibbsMedLDA achieves higher
accuracy than other max-margin topic models, which make some restrictive mean-field
assumptions. Similarly, as gMedLDA makes a weaker mean-field assumption, it achieves
slightly higher accuracy than vMedLDA, which assumes that the posterior distribution is
fully factorized. For the training time, GibbsMedLDA is about two orders of magnitudes
faster than vMedLDA, and about one order of magnitude faster than gMedLDA. This
is partly because both vMedLDA and gMedLDA need to solve multiple SVM problems.
For the testing time, GibbsMedLDA is comparable with gMedLDA and the unsupervised
GibbsLLDA, but faster than the variational algorithm used by vMedLDA, especially when
the number of topics K is large. There are several possible reasons for the faster testing
than vMedLDA, though they use the same stopping criterion. For example, vMedLDA
performs mean-field inference in a full space which leads to a low convergence speed, while
GibbsMedLDA carries out Gibbs sampling in a collapsed space. Also, the sparsity of the
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Figure 2: Predictive R2, training time and testing time on the hotel review data set.

sampled topics in GibbsMedLDA could save time, while vMedLDA needs to carry out
computation for each dimension of the variational parameters.

6.2 Regression

We use the hotel review data set (Zhu and Xing, 2010) built by randomly crawling hotel
reviews from the TripAdvisor website,” where each review is associated with a global rating
score ranging from 1 to 5. In these experiments, we focus on predicting the global rating
scores for reviews using the bag-of-words features only, with a vocabulary of 12,000 terms,
though the other manually extracted features (e.g., part-of-speech tags) are provided. All
the reviews have character lengths between 1,500 and 6,000. The data set consists of 5,000
reviews, with 1,000 reviews per rating. The data set is uniformly partitioned into training
and testing sets. We compare the Gibbs MedLDA regression model with the MedLDA
regression model that uses variational inference and supervised LDA (sLDA) which also uses
variational inference. For Gibbs MedLDA and vMedLDA, the precision is set at € = le™3
and c is selected via 5 fold cross-validation during training. Again, we set the Dirichlet
parameter o = 1 and the number of burn-in M = 10.

Figure 2 shows the predictive R? (Blei and McAuliffe, 2007) of different methods. We
can see that GibbsMedLDA achieves comparable prediction performance with vMedLDA,
which is better than sLDA. Note that vMedLDA uses a full likelihood model for both input
words and response variables, while GibbsMedLDA uses a simpler likelihood model for
words only.® For training time, GibbsMedLDA is about two orders of magnitudes faster
than vMedLDA (as well as sSLDA), again due to the fact that GibbsMedLDA does not need
to solve multiple SVM problems. For testing time, GibbsMedLLDA is also much faster than
vMedLDA and sLDA, especially when the number of topics is large, due to the same reasons
as stated in Section 6.1.

5. See the website: http://www.tripadvisor.com/.
6. The MedLDA with a simple likelihood on words only doesn’t perform well for regression.
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6.3 Multi-class Classification

We perform multi-class classification on 20Newsgroups with all 20 categories. The data set
has a balanced distribution over the categories. The test set consists of 7,505 documents,
in which the smallest category has 251 documents and the largest category has 399 docu-
ments. The training set consists of 11,269 documents, in which the smallest and the largest
categories contain 376 and 599 documents, respectively. We consider two approaches to do-
ing multi-class classification—one is to build multiple independent binary Gibbs MedLDA
models, one for each category, and the other one is to build multiple dependent binary Gibbs
MedLDA models under the framework of multi-task learning, as presented in Section 5.2.

6.3.1 MULTIPLE ONE-VS-ALL CLASSIFIERS

Various methods exist to apply binary classifiers to do multi-class classification, includ-
ing the popular “one-vs-all” and “one-vs-one” strategies. Here we choose the “one-vs-all”
strategy, which has shown effective (Rifkin and Klautau, 2004), to provide some preliminary
analysis. Let 1; be the sampled classifier weights of the 20 “one-vs-all” binary classifiers af-
ter the burn-in stage. For a test document w, we need to infer the latent topic assignments
z; under each “one-vs-all” binary classifier using a Gibbs sampler with the conditional dis-
tribution (13). Then, we predict the document as belonging to the single category which
has the largest discriminant function value, that is,
§ = argmax (0] 2;),
i=1,...,L

where L is the number of categories (i.e., 20 in this experiment). Again, since GibbsMedLDA
is insensitive to a and ¢, we set a = 1 and £ = 64. We also fix ¢ = 1 for simplicity. The
number of burn-in iterations is set as M = 20, which is sufficiently large as will be shown
in Figure 7.

Figure 3 shows the classification accuracy and training time, where GibbsMedLDA
builds 20 binary Gibbs MedLDA classifiers. Note that for GibbsMedLDA the horizontal
axis denotes the number of topics used by each single binary classifier. Since there is no
coupling among these 20 binary classifiers, we can learn them in parallel, which we denote by
pGibbsMedLDA. We can see that GibbsMedLDA clearly improves over other competitors
on the classification accuracy, which may be due to the different strategies on building the
multi-class classifiers.” However, given the performance gain on the binary classification
task, we believe that the Gibbs sampling algorithm without any restrictive factorization
assumptions is another factor leading to the improved performance. For training time,
GibbsMedLDA takes slightly less time than the variational MedLDA as well as gMedLDA.
But if we train the 20 binary GibbsMedLLDA classifiers in parallel, we can save a lot of
training time. These results are promising since it is now not uncommon to have a desktop
computer with multiple processors or a cluster with tens or hundreds of computing nodes.

6.3.2 MULTI-CLASS CLASSIFICATION AS A MULTI-TASK LEARNING PROBLEM

The second approach to performing multi-class classification is to formulate it as a multiple
task learning problem, with a single output prediction rule. Specifically, let the label space

7. MedLDA learns multi-class SVM (Zhu et al., 2012).
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Figure 3: (a) classification accuracy and (b) training time of the one-vs-all Gibbs MedLDA
classifiers for multi-class classification on the whole 20Newsgroups data set.

be Y ={1,...,L}. We can define one binary classification task for each category i and the
task is to distinguish whether a data example belongs to the class ¢ (with binary label +1)
or not (with binary label —1). All the binary tasks share the same topic representations.
To apply the model as we have presented in Section 5.2, we need to determine the true
binary label of each document in a task. Given the multi-class label y4 of document d, this
can be easily done by defining

+1ifyg =i

. Coi
Vi=1,...,L: yd_{_1otherwise'

Then, we can learn a multi-task Gibbs MedLDA model using the data with transferred
multiple labels. Let 7); be the sampled classifier weights of task 7 after the burn-in stage.
For a test document w, once we have inferred the latent topic assignments z using a Gibbs
sampler with the conditional distribution (13), we compute the discriminant function value
f/lT z for each task i, and predict the document as belonging to the single category which
has the largest discriminant function value, that is,

§ = argmax (9, z).
i=1,...,L

Figure 4 shows the performance of the multi-task Gibbs MedLDA with comparison to
the high-performance methods of the one-vs-all GibbsMedLLDA and gMedLDA. Note again
that for the one-vs-all GibbsMedLDA the horizontal axis denotes the number of topics used
by each single binary classifier. We can see that although the multi-task GibbsMedLDA uses
20 times fewer topics than the one-vs-all GibbsMedLDA, their prediction accuracy scores
are comparable when the multi-task GibbsMedLDA uses a reasonable number of topics (e.g.,
larger than 40). Both implementations of Gibbs MedLDA yield higher performance than
gMedLDA. Looking at training time, when there is only a single processor core available, the
multi-task GibbsMedLDA is about 3 times faster than the one-vs-all GibbsMedLDA. When
there are multiple processor cores available, the naive parallel one-vs-all Gibbs MedLDA is
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Figure 4: (a) classification accuracy; (b) training time; and (c) testing time of the multi-
task Gibbs MedLLDA classifiers for multi-class classification on the whole 20News-
groups data set.

faster. In this case, using 20 processor cores, the parallel one-vs-all GibbsMedLDA is about
7 times faster than the multi-task GibbsMedLDA. In some scenarios, the testing time is
significant. We can see that using a single core, the multi-task GibbsMedLLDA is about 20
times faster than the one-vs-all GibbsMedLDA. Again however, in the presence of multiple
processor cores, in this case 20, the parallel one-vs-all GibbsMedLDA tests at least as fast,
at the expense of using more processor resources. So, depending on the processor cores
available, both the parallel one-vs-all GibbsMedLDA and the multi-task GibbsMedLDA
can be excellent choices. Where high efficiency single-core processing is key, then the multi-
task GibbsMedLDA is a great choice. When there are many processor cores available, then
the parallel one-vs-all GibbsMedLDA might be an appropriate choice.

6.4 Multi-label Classification

We also present some results on a multi-label classification task. We use the Wiki data set
which is built from the large Wikipedia set used in the PASCAL LSHC challenge 2012, and
where each document has multiple labels. The original data set is extremely imbalanced.®
We built our data set by selecting the 20 categories that have the largest numbers of docu-
ments and keeping all the documents that are labeled by at least one of these 20 categories.
The training set consists of 1.1 millions of documents and the testing set consists of 5,000
documents. The vocabulary has 917,683 terms in total. To examine the effectiveness of
Gibbs MedLDA, which performs topic discovery and classifier learning jointly, we compare
it with a linear SVM classifier built on the raw bag-of-words features and a two-step ap-
proach denoted by GibbsLDA+SVM. The GibbsLDA+SVM method first uses LDA with
collapsed Gibbs sampling to discover latent topic representations for all the documents and
then builds 20 separate binary SVM classifiers using the training documents with their

8. The data set is available at: http://1lshtc.iit.demokritos.gr/.
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Figure 5: Precision, recall and Fl-measure of the multi-label classification using different
models on the Wiki data set.

discovered topic representations. For multi-task Gibbs MedLDA, we use 40 burn-in steps,
which is sufficiently large. The model is insensitive to other parameters, similar to the
multi-class classification task.

Figure 5 shows the precision, recall and F1 measure (i.e., the harmonic mean of precision
and recall) of various models running on a distributed cluster with 20 nodes (each node is
equipped with two 6-core CPUs).” We can see that the multi-task Gibbs MedLDA performs
much better than other competitors. There are several reasons for the improvements. Since
the vocabulary has about 1 million terms, the raw features are in a high-dimensional space
and each document gives rise to a sparse feature vector, that is, only a few elements are
nonzero. Thus, learning SVM classifiers on the raw data leads not just to over-fitting but a
wider failure to generalize. For example, two documents from the same category might con-
tain non-intersecting sets of words, yet contain similar latent topics. Using LDA to discover
latent topic representations can produce dense features. Building SVM classifiers using the
latent topic features improves the overall F1 measure, by improving the ability to generalize,
and reducing overfitting. But, due to its two-step procedure, the discovered topic repre-
sentations may not be very predictive. By doing max-margin learning and topic discovery
jointly, the multi-task GibbsMedLDA can discover more discriminative topic features, thus
improving significantly over the two-step GibbsLDA+SVM algorithm.

6.5 Sensitivity Analysis

We now provide a more careful analysis of the various Gibbs MedLDA models on their
sensitivity to some key parameters in the classification tasks. Specifically, we will look at

9. For GibbsLDA, we use the parallel implementation in Yahoo-LDA, which is publicly available at: https:
//github.com/shravanmn/Yahoo_LDA. For Gibbs MedLDA, the parallel implementation of our Gibbs
sampler is presented in Zhu et al. (2013b).
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Figure 6: (Left) testing accuracy, (Middle) training accuracy, and (Right) training time of
GibbsMedLLDA with different numbers of burn-in steps for binary classification.

the effects of the number of burn-in steps, the Dirichlet prior «, the loss penalty ¢, and the
number of testing samples.

6.5.1 BURN-IN STEPS

Figure 6 shows the classification accuracy, training accuracy and training time of Gibb-
sMedLLDA with different numbers of burn-in samples in the binary classification task. When
M = 0, the model is essentially random, for which we draw a classifier with the randomly
initialized topic assignments for training data. We can see that both the training accuracy
and testing accuracy increase very quickly and converge to their stable values with 5 to 10
burn-in steps. As expected, the training time increases about linearly in general when using
more burn-in steps. Moreover, the training time increases linearly as K increases. In the
previous experiments, we have chosen M = 10, which is sufficiently large.

Figure 7 shows the performance of GibbsMedLLDA for multi-class classification with
different numbers of burn-in steps when using the one-vs-all strategy. We show the total
training time as well as the training time of the naive parallel implementation of pGibb-
sMedLDA. We can see that when the number of burn-in steps is larger than 20, the per-
formance is quite stable, especially when K is large. Again, the training time grows about
linearly as the number of burn-in steps increases. Even if we use 40 or 60 steps of burn-in,
the training time is still competitive, compared with the variational MedLDA, especially
considering that GibbsMedLLDA can be naively parallelized by learning different binary
classifiers simultaneously.

Figure 8 shows the testing classification accuracy, training accuracy and training time of
the multi-task Gibbs MedLDA for multi-class classification with different numbers of burn-
in steps. We can see that again both the training accuracy and testing accuracy increase
fast and converge to their stable scores after about 30 burn-in steps. Also, the training time
increases about linearly as the number of burn-in steps increases.
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classification.

6.5.2 DIRICHLET PRIOR

For topic models with a Dirichlet prior, the Dirichlet hyper-parameter can be automatically
estimated, such as using the Newton-Raphson method (Blei et al., 2003). Here, we analyze
its effects on the performance by setting different values. Figure 9 shows the classification
performance of GibbsMedLDA on the binary task with different o values for the symmetric
Dirichlet prior av = 1. For the three different topic numbers, we can see that the perfor-
mance is quite stable in a wide range of « values, for example, from 0.1 to 10. We can also
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Figure 10: Classification accuracy of GibbsMedLDA on the binary classification data set
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see that it generally needs a larger « in order to get the best results when K becomes larger.
For example, when « < 0.1, using fewer topics results in slightly higher performance. This
is mainly because a large K tends to produce sparse topic representations and an appro-
priately large « is needed to smooth the representations, as the effective Dirichlet prior is
ar =a/K.

6.5.3 Loss PENALTY ¢

Figure 10 shows the classification performance of GibbsMedLDA on the binary classification
task with different ¢ values. Again, we can see that in a wide range, for example, from
25 to 625, the performance is quite stable for all the three different K values. In the
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Figure 11: (Left) classification accuracy and (Right) testing time of GibbsMedLDA on the
binary classification data set with different numbers of z samples in making
predictions.

above experiments, we set £ = 164. For the multi-class classification task, we have similar
observations, and we set £ = 64 in the previous experiments.

6.5.4 THE NUMBER OF TESTING SAMPLES

Figure 11 shows the classification performance and testing time of GibbsMedLDA in the
binary classification task with different numbers of z samples when making predictions, as
stated in Section 4.4. We can see that in a wide range, for example, from 1 to 19, the
classification performance is quite stable for all the three different K values we have tested;
and the testing time increases about linearly as the number of z samples increases. For the
multi-class classification task, we have similar observations.

6.6 Topic Representations

Finally, we also visualize the discovered latent topic representations of Gibbs MedLDA on
the 20Newsgroup data set. We choose the multi-task Gibbs MedLDA, since it learns a
single common topic space shared by multiple classifiers. We set the number of topics
at 40. Figure 12 shows the average topic representations of the documents from each
category, and Table 1 presents the 10 most probable words in each topic. We can see that
for different categories, the average representations are quite different, indicating that the
topic representations are good at distinguishing documents from different classes. We can
also see that on average the documents in each category have very few salient topics, that
is, the topics with a high probability of describing the documents. For example, the first
two most salient topics for describing the documents in the category alt.atheism are topic
20 and topic 29, whose top-ranked words (see Table 1) reflect the semantic meaning of
the category. For graphics category, the documents have the most salient topic 23, which
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Figure 12: (a-t) per-class average topic representations on the 20Newsgroups data set.

has topic words image, graphics, file, jpeg, and etc., all of which are closely related to the
semantic of graphics. For other categories, we have similar observations.
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Table 1: The ten most probable words in the topics discovered by Multi-task Gibbs
MedLDA (K = 40) on the 20Newsgroups data set.

7. Conclusions and Discussions

We have presented Gibbs MedLDA, an alternative approach to learning max-margin super-
vised topic models by minimizing an expected margin loss. We have applied Gibbs MedLDA
to various tasks including text categorization, regression, and multi-task learning. By using
data augmentation techniques, we have presented simple and highly efficient “augment-
and-collapse” Gibbs sampling algorithms, without making any restricting assumptions on
posterior distributions. Empirical results on the medium-sized 20Newsgroups and hotel re-
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view data sets and a large-scale Wikipedia data set demonstrate significant improvements
on time efficiency and classification accuracy over existing max-margin topic models. Our
approaches are applicable to building other max-margin latent variable models, such as the
max-margin nonparametric latent feature models for link prediction (Zhu, 2012) and matrix
factorization (Xu et al., 2012). Finally, we release the code for public use.!’

The new data augmentation formulation without any need to solve constrained sub-
problems has shown great promise on improving the time efficiency of max-margin topic
models. For future work, we are interested in developing highly scalable sampling algorithms
(e.g., using a distributed architecture) (Newman et al., 2009; Smola and Narayanamurthy,
2010; Ahmed et al., 2012) to deal with large scale data sets. Omne nice property of the
sampling algorithms is that the augmented variables are local to each document. Therefore,
they can be effectively handled in a distributed architecture. But, the global prediction
model weights bring in new challenges. Some preliminary work has been investigated in Zhu
et al. (2013b). Another interesting topic is to apply the data augmentation technique to deal
with the multiclass max-margin formulation, which was proposed by Crammer and Singer
(2001) and used in MedLLDA for learning multi-class max-margin topic models. Intuitively,
it can be solved following an iterative procedure that infers the classifier weights associated
with each category by fixing the others, similar as in polychomotous logistic regression
(Holmes and Held, 2006), in which each substep may involve solving a binary hinge loss
and thus our data augmentation techniques can be applied. A systematical investigation is
our future work.
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